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ABSTRACT

In this paper, we first present an explanation regarding the common occurrence of
spikes in the training loss when neural networks are trained with stochastic gradi-
ent descent (SGD). We provide evidence that the spikes in the training loss of SGD
are “catapults”, an optimization phenomenon originally observed in GD with large
learning rates in Lewkowycz et al. (2020). We empirically show that these cata-
pults occur in a low-dimensional subspace spanned by the top eigenvectors of the
tangent kernel, for both GD and SGD. Second, we posit an explanation for how
catapults lead to better generalization by demonstrating that catapults promote
feature learning by increasing alignment with the Average Gradient Outer Product
(AGOP) of the true predictor. Furthermore, we demonstrate that a smaller batch
size in SGD induces a larger number of catapults, thereby improving AGOP align-
ment and test performance.

1 INTRODUCTION

Figure 1: Spikes in
training loss when opti-
mized using SGD (x-axis:
iteration). (Source:
Wikipedia)

Training algorithms are a key ingredient to the success of deep learn-
ing. Stochastic gradient descent (SGD) (Robbins & Monro, 1951), a
stochastic variant of gradient descent (GD), has been effective in find-
ing parameters that yield good test performance despite the complicated
nonlinear nature of neural networks. Empirical evidence suggests that
training networks using SGD with a larger learning rate results in bet-
ter predictors (Frankle et al., 2019; Smith & Topin, 2019; Gilmer et al.,
2021). In such settings, it is common to observe significant spikes in
the training loss (Keskar & Socher, 2017; Ruder, 2016; Xing et al.,
2018; LeCun et al., 2015) (see Figure 1 as an example). One may not a
priori expect the training loss to decrease back to its “pre-spike” level
after a large spike. Yet, this is what is commonly observed in train-
ing. Furthermore, the resulting “post-spike” model can yield improved
generalization performance (He et al., 2016; Zagoruyko & Komodakis,
2016; Huang et al., 2017).

Why do spikes occur during training, and how do the spikes affect generalization?

In this work, we answer these question by connecting three common but seemingly unrelated phe-
nomena in deep learning:

1. Spikes in the training loss of SGD,
2. Catapult dynamics in GD (Lewkowycz et al., 2020),
3. Better generalization when training networks with small batch SGD as opposed to larger

batch size or GD.

In particular, we show that spikes in the training loss of SGD correspond to catapults, which were
originally characterized in Lewkowycz et al. (2020) as a single spike in the loss when training with
GD and large learning rate. We then show that smaller batch size in SGD results in a greater number
of catapults. We connect the optimization phenomena of catapults to generalization by showing
that catapults improve generalization through increasing feature learning, which is quantified by
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the alignment between the Average Gradient Outer Product (AGOP) of the trained network and the
true AGOP (Trivedi et al., 2014; Radhakrishnan et al., 2022; Xia et al., 2002; Härdle & Stoker,
1989; Hristache et al., 2001). Since decreasing batch size in SGD leads to more catapults, our result
implies that SGD with small batch size yields improved generalization (see Table 1 for an example).
We outline our specific contributions in the context of optimization and generalization below.
Optimization. We demonstrate that spikes in the training loss, specifically Mean Squared Error,
occur in the top eigenspace of the Neural Tangent Kernel, a kernel resulting from the linearization
of a neural network (Jacot et al., 2018). Namely, we project the residual (i.e., the difference between
the predicted output and the target output) to the top eigenspace of the tangent kernel and show that
spikes in the total loss function correspond to the spikes in the components of the loss in this low-
dimensional subspace (see Section 3.1). In contrast, the components of the loss in the space spanned
by the remaining eigendirections decrease monotonically. Thus, the catapult phenomenon occurs in
the span of the top eigenvectors while the remaining eigendirections are not affected. This explains
why the loss drops quickly to pre-spike levels, namely the loss value right before the spike, from the
peak of the spike. We further show that multiple catapults can be generated in GD by increasing the
learning rate during training (see Section 3.2). While prior work Lewkowycz et al. (2020) observed
that the spectral norm of the tangent kernel decreased for one catapult, we extend that observation
by showing that the norm decreases after each catapult.
We further provide evidence for catapults in SGD with large learning rates (see Section 3.3).
Namely, we demonstrate that spikes in the loss when training with SGD correspond to catapults
by showing that similarly to GD:

1. The spikes occur in the top eigenspace of the tangent kernel,
2. Each spike results in a decrease in the spectral norm of the tangent kernel.

We corroborate our findings across several network architectures including Wide
ResNet (Zagoruyko & Komodakis, 2016) and ViT (Dosovitskiy et al., 2020) and datasets
including CIFAR-10 (Krizhevsky et al., 2009) and SVHN (Netzer et al., 2011).

Moreover, as small batch size leads to higher variance in the eigenvalues of the tangent kernel for
any given batch, small batch size results in an increased number of catapults.

Batch size AGOP alignment Test loss

2000 (GD) 0.81 0.74

50 0.84 0.71

10 0.89 0.59

5 0.95 0.42

Table 1: Smaller SGD batch size leads to a higher
(better) AGOP alignment and smaller (better) test
loss. The results correspond to Figure 7a (a syn-
thetic dataset).

Generalization. We show that catapults im-
prove the generalization performance by align-
ment between the AGOP of the trained network
with that of the true model1. The AGOP identi-
fies the features that lead to greatest change in
predictor output when perturbed and has been
recently identified as the mechanism through
which neural networks learn features (Radhakr-
ishnan et al., 2022). We use AGOP alignment
to provide an explanation for prior empirical re-
sults from Zhu et al. (2022b); Lewkowycz et al.
(2020) showing that a single catapult can lead
to better test performance in GD. Moreover, we
extend these prior results to show that test per-
formance continues to improve as the number of catapults increases in GD. Thus, we show that de-
creasing batch size with SGD can lead to better test performance due to an increase in the number of
catapults. We further demonstrate that AGOP alignment is an effective measure of generalization by
showing that test error is highly correlated with the AGOP alignment when training on the same task
across different optimization algorithms including Adagrad (Duchi et al., 2011), Adadelta (Zeiler,
2012) and Adam (Kingma & Ba, 2014) etc. We corroborate our findings on CelebA (Liu et al.,
2015) and SVHN (Netzer et al., 2011) datasets and architectures including fully-connected and con-
volutional neural networks. See Section 4.
1.1 RELATED WORKS

Linear dynamics. Recent studies have shown that (stochastic) GD for wide neural networks prov-
ably converges to global minima with an appropriately small learning rate (Du et al., 2019; Liu et al.,
2022; Zou & Gu, 2019). These works leveraged the fact that neural networks, under certain condi-
tions on initialization, can be accurately approximated by their linearization when network width is

1When the true model is not available, we use a SOTA model as a substitute.
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sufficiently large (Jacot et al., 2018; Liu et al., 2020; Zhu et al., 2022a; Liu et al., 2021). In this set-
ting, referred to as the kernel regime, the training dynamics of wide networks can be approximated
by the linear dynamics of the corresponding linear model.
Catapult phase. When training networks with GD and large learning rate, recent
work Lewkowycz et al. (2020) identified a striking phenomenon that cannot be manifested in the
kernel regime. This phenomenon, referred to as the “catapult phase”, is characterized by an increase
in loss during the early stages of training, followed by a decrease that forms a single spike in the
training loss. After the catapult, the spectral norm of the tangent kernel, i.e., its top eigenvalue,
decreases and thus, remarkably prevents divergence. Recent studies focusing on understanding cat-
apults in GD include Zhu et al. (2022b), which considers quadratic approximations of neural net-
works, and Meltzer & Liu (2023), examining two-layer homogeneous neural networks. Our work
investigates the impact of catapults in SGD on both optimization and generalization through exper-
imental approaches.
Edge of stability. A phenomenon related to catapults is the “Edge of Stability” (EoS), which
describes the dynamics of the training loss and the sharpness, i.e., eigenvalues of the Hessian of the
loss, at the later stage of training networks with GD (Cohen et al., 2020) and SGD (Jastrzebski et al.,
2019; Jastrzębski et al., 2018). In Cohen et al. (2020), it was conjectured that at EoS, the spikes
in the training loss are micro-catapults. There is a growing body of work analyzing the mechanism
of EoS in training dynamics with GD (Arora et al., 2022; Ahn et al., 2022; Damian et al., 2022;
Li et al., 2022; Agarwala et al., 2022; Agarwala & Dauphin, 2023), and SGD Kalra & Barkeshli
(2023). Our work provides evidence that the spikes in the training loss using SGD are catapults and
demonstrates the connection between the loss spikes and feature learning.
Generalization and sharpness. It has been observed that networks trained with SGD generalize
better than GD, and smaller batch sizes often lead to better generalization performance (Kandel &
Castelli, 2020; LeCun et al., 2002; Masters & Luschi, 2018; Keskar et al., 2016; Smith et al., 2020;
Goyal et al., 2017; Jastrzębski et al., 2017). Empirically, it has been observed that training with
SGD results in flat minima (Hochreiter & Schmidhuber, 1994; 1997). However, we noticed that
it is not always the case, e.g., Geiping et al. (2021). A number of works been argued that flatness
of the minima is connected to the generalization performance (Neyshabur et al., 2017; Wu et al.,
2017; Kleinberg et al., 2018; Xie et al., 2020; Jiang et al., 2019; Dinh et al., 2017), however we
know only one theoretical result in that direction (Ding et al., 2022). Training algorithms aiming to
find a flat minimum were developed and shown to perform well on a variety of tasks (Foret et al.,
2020; Izmailov et al., 2018). As an explanation for empirically observed improved generalization,
prior work Lewkowycz et al. (2020) argued that a single catapult with GD resulted in flatter minima.
In this work we propose a different line of investigation to understand generalization properties of
GD-based algorithms based on feature learning as measured by the alignment with AGOP.

2 PRELIMINARIES
Notation. We use bold letters (e.g.,w) to denote vectors and capital letters (e.g.,K) to denote
matrices. For trainable parameters, we use superscript t to denote the iteration t, e.g., wt during
training. We use Õ(·) to denote the same order of magnitude as O(·) but with logarithmic factors
absorbed. We use k · kF to denote the Frobenius norm and use k · k2 to denote the spectral norm.
Optimization task. Given training data {(xi, yi)}ni=1 := (X,y) with data xi 2 Rd and
labels yi 2 R for i 2 [n], we minimize the Mean Square Error (MSE) L(w; (X,y)) =
1
n

Pn
i=1(f(w;xi)�yi)2, where f(w; ·) : Rp ! R is a parameterized model, e.g., a neural network.

We denote the weight parameters at initialization by w0. Mini-batch SGD is conducted as follows:

w
t+1 = w

t � ⌘

b

@

@w

X

xj2Xbatch

(f(wt;xj) � yj)
2,

where ⌘ is the learning rate and (Xbatch,ybatch) is a randomly sampled batch from (X,y) with
batch size b. When b = n, mini-batch SGD reduces to GD.
Paramterization. Unless specified, we use NTK parameterization (Jacot et al., 2018) for neural
networks, that is, we initialize each trainable parameter i.i.d. from standard normal distribution, i.e.,
w0 ⇠ N (0, Ip), and multiply each pre-activated neuron with an extra scaling factor 1/

p
m where m

is the fan-in of that neuron. For example, for neurons in fully connected networks, the fan-in is the
width of the previous hidden layer. In convolutional nets, fan-in is the number of channels multiplied
by the size of the window. We also use Pytorch (Paszke et al., 2019) default parameterization in some
settings.
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Definition 1 ((Neural) Tangent Kernel). The tangent kernel K(w; ·, ·) of a parameterized machine
learning model f(w; ·) : Rp ⇥ Rd ! R is defined as

K(w;x, z) =
D
@f(w;x)/@w, @f(w; z)/@w

E
, 8x, z 2 Rd. (1)

Critical learning rates. For a wide neural network f(w; ·) with input data X trained with GD, the
optimization dynamics will follow catapult dynamics when the learning rate is larger than a critical
learning rate (Lewkowycz et al., 2020). Otherwise, dynamics approximately follow linear dynamics
where the loss decreases monotonically (Lee et al., 2019). The critical learning rate is defined as

⌘crit(f(w0;X)) := 2/�max(HL(w0)), (2)

where HL denotes the Hessian of the loss.
Note that for a linear model h(w; ·) = hw;�(·)i : Rp ⇥ Rd ! R with input data X 2 Rn⇥d, the
tangent kernel is given by K = �(X)�(X)T and the Hessian is HL = 2

n�(X)T�(X). Therefore,
K and H share the same largest eigenvalue, and we have ⌘crit(h) = n/�max(K). As wide net-
works are close to their linear approximations at initialization, we can further approximate ⌘crit by
⌘̃crit = n/�max(K(w0)) where |⌘crit � ⌘̃crit| = Õ(1/

p
m) with m denoting network width (see

the derivation in Appendix A.1). In principle, the critical learning rate can be defined pointwise for
any w for which the network f(w; ·) is close to its linear approximation. When it is clear from the
context, we omit the argument of ⌘crit. Lastly, we use ⌘max to denote the maximum learning rate
with which the optimization of the loss function can stably converge (possibly through catapults).

3 CATAPULTS IN OPTIMIZATION

3.1 CATAPULTS OCCUR IN THE TOP EIGENSPACE OF THE TANGENT KERNEL FOR GD
In this section, we show that catapults mainly occur in the subspace spanned by the top eigen-
directions of the tangent kernel.

Given input data X 2 Rn⇥d, let f t 2 Rn denote the predictions of f on X at iteration t. The
tangent kernel matrix K(wt) 2 Rn⇥n corresponding to f

t can be decomposed as K(wt) := Kt =Pn
j=1 �

t
ju

t
ju

t
j
T , with �t

j and u
t
j 2 Rn, j 2 {1, · · · , n}, being the eigenvalues and unit-length

eigenvectors, respectively. We assume �1 � �2 � · · · � �n. Given an integer s, 1  s < n, we
consider the top eigenspace, i.e., the subspace spanned by the top eigenvalues �j with 1  j  s,
as well as the corresponding projection operators Ps : Rn ! Rn.

For the residual vector rt := f
t � y, define Psr

t =
Ps

j=1

⌦
r
t,ut

j

↵
u
t
j as the projection of rt onto

the top eigenspace and P?
s r

t =
Pn

j=s+1

⌦
r
t,ut

j

↵
u
t
j as the projection onto the complementary

subspace. We can decompose the loss L(f t) as

L(f t) = 1

n

��f t � y
��2

2
=

1

n

��Psr
t
��2

2
+

1

n

��P?
s r

t
��2

2
, (3)

We denote 1
nkPsr

tk22 and 1
n

��P?
s r

t
��2

2
by PLs and PL?

s respectively and hide t for simplicity.

We now present our claim that the catapult occurs in the top eigenspace of the tangent kernel.
Claim 1. For ⌘ 2 (⌘crit, ⌘max), the catapult occurs in the top eigenspace of the tangent kernel, i.e.,
the loss spike in PL?

s diminishes in magnitude as s increases.

We empirically justify Claim 1. In particular, we consider two neural network architectures: a 5-
layer Fully Connected Neural Network (FCN) and a 5-layer Convolutional Neural Network (CNN).
We train the models with fixed learning rates on CIFAR-2 (2 class subset of CIFAR-10) and take
n = 128 and s = 1, 3, 5. The experimental details can be found in Appendix F. From the results
in Figure 2, we can see that when there is a catapult, as s increases, the loss value at the peak of
the spike in PL?

s decreases. Finally, PL5 corresponds to the spike in the training loss while PL?
5

decreases almost monotonically.
Choice of top eigenspace dimension s. Note that a larger learning rate will make the loss increase
in more eigen-directions, as indicated by the linear dynamics before the spike. Therefore, in general,
we need a larger s to capture the spikes in the training loss for larger learning rates. However, for
⌘ 2 (⌘crit, ⌘max) such that the GD can stably converge with catapults, we consistently observe that
s is a small constant no larger than 10 in all our experiments. The remaining loss PL?

s decreases
nearly monotonically with the number of iterations (See Figure 2b and d).
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(b) Loss decomposition
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Figure 2: Catapult dynamics for 5-layer FCN (a-b) and CNN (c-d). Panel (a) and (c) are training
loss and the spectral norm of the tangent kernel with different learning rates, and Panel (b) and (d)
are training loss decomposed into non-top eigenspace of the tangent kernel, PL?

1 ,PL?
3 and PL?

5 .
All the networks are trained on a subset of CIFAR-10. In this experiment, the critical learning rates
for FCN and CNN are 3.6 and 4.5 respectively.
Lastly, we note that our claim extends to multidimensional outputs. In particular, for k-class classi-
fication tasks, we project the flattened vector of predictions of size kn to the top eigenspaces of the
empirical NTK, which is of size kn ⇥ kn. Correspondingly, we empirically observe that catapults
occurs in the top ks eigenspace with a small s. See Figure 10 in Appendix B.

(a) Mechanism of catapults
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(b) Shallow network
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(c) 5-layer FCN
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(d) 5-layer CNN

Figure 3: Multiple catapults during GD with increased learning rates. Panel (a): the mechanism
of multiple catapults: extra spike in the training loss occurs when ⌘ is increased to satisfy ⌘ > ⌘crit.
Panel (b,c,d): decomposing the training loss of the shallow network, 5-layer FCN, and 5-layer CNN
respectively into PL10 and PL?

10. The experimental details can be found in Appendix F.2.

3.2 MULTIPLE CATAPULTS IN GD

Much empirical evidence has shown that during the catapult dynamics, there is a single spike in
the training loss (Lewkowycz et al., 2020). In this section, we show that during GD, the spike in
the training loss can be generated multiple times by repeatedly increasing the learning rate during
training. As a result, kKk2 will accordingly decrease multiple times.

In the experiments, we start with a small constant learning rate, i.e., ⌘ < ⌘crit ⇡ n/�max(K). We
increase the learning rate to let ⌘ > ⌘crit to generate the catapult. We repeat this procedure multiple
times to generate multiple catapults. Each time we use a larger ⌘, as ⌘crit becomes larger after each
catapult. This mechanism is illustrated in Figure 3(a) in which we train a wide, shallow network
on 128 data points from CIFAR-2. In Figure 3b, we can see that for the shallow network, PL10

captures the spikes of the loss.

We further use the same 5-layer FCN and 5-layer CNN as the ones in Figure 2 and show that multiple
catapults can be seen in deep nets as well since (1) the spectral norm of the tangent kernel decreases
corresponding to each spike and (2) all the spikes in the training loss are mainly in the top eigenspace
of the tangent kernel (See Figure 3b and c).

3.3 CATAPULTS IN SGD

In this section, we provide evidence that catapults also occur in SGD and manifest as spikes in
the training loss. Specifically, we leverage the mechanism of catapults in GD to demonstrate the
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occurrence of catapults in batches of SGD, and we further show that the empirical phenomenon
observed in the catapults of GD occurs in SGD.

Mechanism of catapults in SGD. Our analysis of multiple catapults in GD made clear that the
mechanism of the catapult lies in the quantitative relation between ⌘ and ⌘crit. Namely, the catapult
occurs when ⌘ > ⌘crit otherwise the loss decreases monotonically. In SGD, for a fixed large learning
rate ⌘, the critical learning rate ⌘crit defined on each batch will oscillate around ⌘ due to the variance
of batches. Therefore, we can expect that there are numerous catapults in SGD, which ultimately
form spikes in the training loss.

We mathematically formulate this reasoning as follows. For a batch Xbatch ⇢ X , we can similarly
find the critical learning rate for each batch ⌘crit(Xbatch) := 2/�max(HL(w;Xbatch)). We inves-
tigate the change of the loss after one SGD step corresponding to this batch since an SGD step can
be viewed as a GD step on a batch. We further consider the loss change corresponding to the top
eigenspace of the tangent kernel, since that is where the catapults occur (as shown in Section 3.1):

PDi↵1(f
t(Xbatch)) := PL1(f

t+1(Xbatch)) � PL1(f
t(Xbatch)). (4)

Following the same reasoning for GD, we make the following claim for SGD:
Claim 2. For neural networks f with width m, 8t > 0, sgn(⌘ � ⌘crit(f t(Xbatch)) + ") =
sgn(PDi↵1(f t(Xbatch))) where |"| = Õ(1/

p
m).

Remark 1. For linear model f(·), the claim holds with " = 0. For wide neural networks, " measures
the deviation from their pointwise linear approximations (Lee et al., 2019; Liu et al., 2020).

(a) Sign match between ⌘ � ⌘crit
and PDi↵1

(b) ⌘crit and training loss with
⌘ = 0.1, 0.8
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(c) Loss decomposed into PL5

and PL?
5 with ⌘ = 0.8

Figure 4: Mechanism of catapults in SGD. Panel(a): The alignment between sgn(⌘ � ⌘crit) and
sgn(PDi↵t

1), for which the catapults occur (see the training loss in Figure 4(c) for shallow net and
Figure 5 (a,b) for deep nets). Panel(b): ⌘crit(Xbatch) and training loss when trained with ⌘ =
0.1, 0.8. Panel (c): training loss with ⌘ = 0.8 decomposed into PL5 and PL?

5 . All the networks
are trained on a subset of CIFAR-10. See the details of experiments in Appendix F.3.
We empirically verify our claim on the following finite width networks: a shallow network and
the same 5-layer FCN and CNN as the ones in Figure 2. To ensure the occurrence of cata-
pults, we choose the learning rate as the critical learning rate of the whole training set. In Fig-
ure 4a, we show the probability of sgn(PDi↵1) = sgn(⌘ � ⌘crit) throughout the training. Our
results demonstrate that the sign of PDi↵1(f t(Xbatch)) and ⌘ � ⌘crit(f t(Xbatch)) is well matched
throughout the training process thus corroborating the existence of catapult dynamics in SGD. As
⌘̃crit = b/kK(w;Xbatch)k2 is close to ⌘crit for wide neural networks (see the empirical validation
in Appendix A), where b denotes the batch size, similar to GD, we can use kK(w;Xbatch)k2 to
indicate the change of ⌘crit for SGD.

We now consider the spikes in the training loss of SGD. We can expect that the training loss is likely
to increase and result in a spike when PL1(Xbatch) increases since rwL(Xbatch) approximates
rwL(X). As PL1(Xbatch) increases when ⌘ > ⌘crit for the selected batch, we analyze the rela-
tionship between when ⌘ > ⌘crit across batches and the emergence of spikes. Specifically, we train
a shallow network with a learning rate of 0.1, which is always below ⌘crit(Xbatch) (Figure 4b upper
left), and a learning rate of 0.8, which oscillates around ⌘crit(Xbatch) (Figure 4b upper right). We
observe that the training loss has significant spikes with ⌘ = 0.8, but decreases monotonically with
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⌘ = 0.1 (Figure 4b). This suggests that spikes in the training loss are catapults. Below, we provide
additional evidence that such spikes in the training loss of SGD are indeed catapults.
Catapults occur in the top eigenspace of the tangent kernel for SGD. We have shown in Sec-
tion 3.1 that in GD the catapults consistently occur in the top eigenspace of the tangent kernel. Now
we show that we observe a similar pattern in SGD.

In the experiment for shallow networks, we similarly decompose the loss with ⌘ = 0.8 into PL5 and
PL?

5 based on the eigenspace of the tangent kernel. We observe that PL5 corresponds to the spikes
in the training loss, while the decrease of PL?

5 is nearly monotonic, with only small oscillations
present (Figure 4c).

We also observe the same phenomenon for deep networks. Specifically, PL1 corresponds to the
spikes in the training loss while the remaining loss PL?

1 decreases nearly monotonically. The
empirical results are shown in Figure 5, where we consider four network architectures: (1) 5-layer
FCN, (2) 5-layer CNN (the same as the ones in Figure 2), (3) Wide ResNets 10-10 (Zagoruyko &
Komodakis, 2016) and (4) ViT-4 (Dosovitskiy et al., 2020).

This observation, along with the results in Figure 5 for deep networks, is consistent with our findings
for GD and provides evidence that the spikes in training loss for neural networks are caused by
catapults.
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(a) 5-layer FCN
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(c) WRN (zoomed-in)
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(d) ViT-4 (zoomed-in)

Figure 5: Catapult dynamics in SGD for modern deep architectures. The training loss is decom-
posed into PL1 and PL?

1 . We train the networks on a subset of CIFAR-10. The complete versions
of Panel (c) and (d) can be found in Figure 11 in Appendix B.

Decreases in the spectral norm of the tangent kernel correspond to spikes. In this section, we
provide further evidence of catapults in SGD by empirically showing that the spectral norm of the
tangent kernel decreases whenever there is a spike in SGD.

In Lewkowycz et al. (2020), the catapult led to a decrease in the spectral norm of the tangent kernel
in GD, and our experimental results in Section 3.1 extended this finding to settings with multiple
catapults in GD. We observe a consistent phenomenon in SGD. Specifically, in our experiments
with shallow networks, we observe a significant decrease in the spectral norm of the tangent kernel
whenever there is a spike in the training loss during SGD (Figure 4c). This observation remains
consistent for deep networks (Figure 5) as well. Therefore, this finding further justifies that spikes
in the training loss of SGD are catapults.

We further validate our empirical observations on (1) the occurrence of the loss spikes of SGD in
the top eigenspace of the tangent kernel and (2) the decrease in the spectral norm of the tangent
kernel during loss spikes in the setting with Pytorch default parameterization, under which the wide
networks are still close to their linear approximations (Liu et al., 2020; Yang & Hu, 2020), and on
additional datasets (see Appendix B). All experimental details can be found in Appendix F.

4 CATAPULTS LEAD TO BETTER GENERALIZATION THROUGH FEATURE
LEARNING

Previous empirical results from Zhu et al. (2022b); Lewkowycz et al. (2020) show that a single
catapult can lead to better test performance in GD for wide neural networks. In this section, we
observe a similar trend in our experiments for both GD and SGD with multiple catapults. We further
show that the underlying mechanism behind the improved test performance is the alignment between
the trained network’s AGOP and the true AGOP, which increases when catapults occur.
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The AGOP is defined as follows:
Definition 2 (Average Gradient Outer Product (AGOP)). Given a parameterized model f(w; ·) :
Rp ⇥ Rd ! R, the AGOP of it with respect to data X 2 Rn⇥d is defined as

G(w) =
1

n

nX

i=1

@f(w;xi)

@xi

@f(w;xi)

@xi

T

2 Rd⇥d. (5)

Remark 2. The derivative of the predictor with respect to the input provides a natural measure of
the significance of each element in the input to the predictor. Typically, important features will have
a larger scale of derivatives since they lead to greater change in predictor output upon perturbation.
The AGOP was recently identified as the mechanism through which neural networks select features
and is thus directly a measure of feature learning in neural networks (Radhakrishnan et al., 2022).
To measure feature learning for the trained model f , we quantify the degree of AGOP alignment.
Specifically, we evaluate the cosine similarity between G and optimal G⇤ which corresponds to f
and f⇤ respectively on the test set:

AGOP alignment : cos(G,G⇤) :=
hG,G⇤i

kGkF kG⇤kF
, (6)

where f⇤ is the true model. When the true model is not available, we use a state-of-the-art model as
a substitute.
Experimental settings. We work with a total of five datasets: three synthetic datasets and two
real-world datasets. For synthetic datasets, we consider true functions f⇤(x) = (1)x1x2 (rank-2),
(2)x1x2(

P10
i=1 xi) (rank-3) and (3)

P4
j=1

Qj
i=1 xi (rank-4) (Abbe et al., 2021). The true functions

f⇤(x) of these datasets are multi-index models e.g., functions of the form f⇤(x) = g(Ux) where U
is a low-rank matrix. The relationship between AGOP and generalization on learning such functions
was discussed in (Härdle & Stoker, 1989; Hristache et al., 2001; Trivedi et al., 2014; Xia et al.,
2002; Radhakrishnan et al., 2022; Damian et al., 2022). For the two real-world datasets, we use (1)
CelebA (Liu et al., 2015) and (2) SVHN dataset (Netzer et al., 2011). The experimental details can
be found in Appendix F.
Improved test performance by catapults in GD. In Section 3.2, we showed that catapults can
be generated multiple times. We now show that generating multiple catapults leads to improved
test performance of neural networks trained with GD by leading to increased AGOP alignment. In
Figure 6, we can see for all tasks, the test loss/error decreases as the number of catapults increases
while AGOP alignment increases. This indicates that learning AGOP strongly correlates with test
performance.
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Figure 6: Multiple catapults in GD. A greater number of catapults in GD leads to a higher (better)
AGOP alignment and smaller (better) test loss/error. We train 2-layer FCN in Panel(a), 4-layer FCN
in Panel(b,c,e) and 5-layer CNN in Panel(d). Experimental details can be found in Appendix F.4.
Intuition of the connection between catapults and AGOP alignment. In particular, catapults
occur when training with a large learning rate (⌘ 2 (⌘crit, ⌘max)), where the training dynamics are
no longer in the NTK regime. Now a large learning rate diminishes the effect of initialization on
the final weights. This is because the weight change scales with the loss, which is large when the
catapults occur. Consequently, it leads to a more significant change in the gradient df/dx. This is
analogous to escaping the NTK regime and feature learning by utilizing near zero initialization as
discussed in Yang & Hu (2020); Radhakrishnan et al. (2022), in which case the effect of initialization
is negligible due to its small magnitude. We validate in experiments that using near-zero initializa-
tion leads to increased AGOP alignment and better generalization(See Figure ?? in Appendix). Thus,
in summary, networks can be trained with such large learning rates due to the catapult phenomena
and as an additional consequence, such large learning rates lead to improved AGOP alignment.
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Improved test performance by catapults in SGD. In Section 3.3, we have demonstrated the oc-
currence of catapults in SGD. We now show that decreasing batch size in SGD leads to better test
performance as a result of an increase in the number of catapults and thus, increased AGOP align-
ment. We estimate the number of catapults during training by counting the number of the occurrence
of the event PDi↵t

1(Xbatch) > ✏ with ✏ = 10�8 until the best validation loss/error. Recall that when
catapults occur, the component of the loss in the top eigenspace of the tangent kernel will increase,
as discussed in section 3.3.
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Figure 7: Similarity between AGOP alignment and test performance. A greater number of
catapults in SGD leads to a higher (better) AGOP alignment and smaller (better) test loss/error. We
train a 2-layer FCN in Panel(a), 4-layer FCN in Panel(b,c,e) and 5-layer CNN in Panel(d) by SGD.

In Figure 7, we can see that across all tasks, as the batch size decreases, (1) the number of catapults
increases, (2) the test loss/error decreases and (3) the AGOP alignment improves. These findings
indicate that in SGD, a smaller batch size leads to more catapults which in turn improves the test
performance through alignment with the AGOP . These observations are consistent with our findings
in GD. We further verify our observation with Pytorch default parameterization on the same tasks
(see Figure 19 in Appendix E).
Generalization with different optimizers correlates with AGOP alignment. We further demon-
strate the strong correlation between the test performance and AGOP alignment by comparing the
predictors trained on the same task with a number of different optimization algorithms. From the
results shown in Figure 8, we can see that the AGOP alignment strongly correlates with the test
performance, which suggests that models learning the AGOP is useful for learning the problem.
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Figure 8: Strong correlation between test performance and AGOP alignment for different op-
timization algorithms. We train a 2-layer FCN in Panel(a), a 4-layer FCN in Panel(b,c,e) and a
5-layer CNN in Panel(d). We use GD, SGD, SGD with Momentum (Qian, 1999)(SGD+M), RM-
Sprop (Hinton), Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012) and Adam (Kingma & Ba,
2014) for training.

5 SUMMARY

In this work, we framed and answered two questions: (1) why do spikes occur during training with
SGD and (2) how do the spikes affect generalization? For the first question, we demonstrate that
the loss spikes correspond to catapults by showing the spikes occur in the top eigenspace of the
tangent kernel and each loss spike corresponds to a decrease in the spectral norm of the tangent
kernel. For the second question, we show that catapults lead to increased alignment between the
AGOP of the trained model and the true AGOP. A consequence of our results is the explanation for
the observation that SGD with small batch size leads to improved generalization. This is due to an
increase in the number of catapults and thus improved AGOP alignment. For the future direction,
it would be interesting to connect AGOP alignment with functional properties observed in neural
networks, e.g., Jacot (2023).
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