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Abstract
In this work, we investigate the emergence of linear separability for unseen data points in the

high-dimensional last-layer feature space of deep neural networks. Through empirical analysis, we
observe that, after training, in-distribution and out-of-distribution samples become linearly separable
in the last-layer feature space when the hidden dimension is sufficiently high—even in regimes where
the input data itself is not. We leverage these observations for the task of uncertainty quantification.
By connecting our findings to classical support vector machine margin theory, we theoretically
show that the separating hyperplane exhibits a higher weight norm when facing in-distribution data
points. This work highlights linear separability as a fundamental and analyzable property of trained
deep neural networks’ representations, offering a geometric perspective on the practical uncertainty
quantification task in neural networks.

1. Introduction

Retraining the last layer has been proposed as a solution to various problems. For instance, Kirichenko
et al. [11] empirically showed that retraining only the last layer with a small amount of group-
annotated data can effectively correct a model’s reliance on spurious correlations. Likewise, Kang
et al. [10] demonstrated that last-layer retraining can effectively mitigate the effects of label imbalance
in training data. Since the last layer is typically a linear transformation, these findings suggest that
the last-layer encodings are linearly separable enough to distinguish each target data class. This
naturally raises the question: Does the geometry of linear separability in this space also emerge in
other settings, such as separating seen and unseen data points?

The significance of this question lies in its direct applications, such as uncertainty quantification.
Uncertainty quantification aims to address this problem by distinguishing between data the model
is familiar with and data it has rarely or never seen. While traditional uncertainty quantification
methods often rely on probabilistic modeling or Bayesian inference, the linear separability in the
last-layer feature can suggest that a fundamentally geometric approach may also be effective.

In this study, we explore how linear separability arises for unseen data points within the high-
dimensional last-layer feature space of deep neural networks. Surprisingly, we observe that the
linear separability of unseen data points is a pervasive phenomenon in neural networks trained by
standard procedures, occurring in both classification and regression settings. We also find that this
phenomenon also emerges in high-dimensional real image datasets.

Building on this observation, we propose a novel uncertainty quantification method inspired by
the linear separability of last-layer encodings. Specifically, we measure how easily a test point can
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Figure 1: Left: Input data (leftmost) are encoded by a deep neural network (DNN) into a linearly
separable latent space (middle), where in-distribution (ID) and out-of-distribution (OOD)
test samples (green stars) can be separated by a hyperplane (green lines). Right: Vi-
sualization of the linear logistic regressor’s predictions, where yellow indicates higher
OOD probability. These results imply that OOD data points are linearly separable in the
last-layer feature space, across both classification (top) and regression (bottom) tasks.

be linearly separated from the training set in the last-layer encoding space. Leveraging classical
support vector machine (SVM) theory, we theoretically demonstrate that the inverse of the norm of
the SVM decision boundary vector—which separates the unseen encoding from the seen training
encodings—can serve as a meaningful measure of uncertainty.

2. Last-layer Linear Separability of Unseen Data Points

To examine the last-layer linear separability of unseen data points, we first conduct toy experiments
on synthetic datasets. As shown on the left side of Figure 1, we generate four toy datasets with various
shapes: the top two are binary classification tasks, and the bottom two are regression tasks. We train
two-layer DNNs for each task and compute the last-layer encodings over a grid covering the input
domain. Grid points that are sufficiently close to any training sample are labeled as in-distribution,
while the rest are considered out-of-distribution. We then train a linear logistic regressor on these
encodings and visualize the predicted probability of being out-of-distribution on the right side of
Figure 1.

Surprisingly, we observe that the last-layer encodings of in-distribution and out-of-distribution
data points are linearly separable. Even more interestingly, this linear separability arises not only in
models trained on classification tasks but also in those trained on regression tasks. This phenomenon
is not limited to toy examples or a particular dataset: encodings from ResNet [7], pre-trained on
CIFAR-10 and CIFAR-100 [12], are nearly perfectly linearly separable from those of the SVHN
dataset [19], achieving AUROC scores of 0.9996–0.9998.

To further analyze this phenomenon, we vary the latent feature dimension (16, 32, 64, 128, and
256) and visualize the OOD probability in Figure 2. Interestingly, we observe that last-layer linear
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Figure 2: Visualization of OOD probability as the latent feature dimension increases (from left to
right: d = 16, 32, 64, 128, 256.). As the latent dimension grows, the last-layer feature
space exhibits increasingly clear linear separability between in-distribution (blue) and
out-of-distribution regions (yellow).

separability emerges when the latent dimension is sufficiently high. This trend is particularly evident
when examining the points between the two moon-shaped clusters. The result is intuitive: as the
latent feature dimension increases, the last-layer features become more separable, since there are
more degrees of freedom to distinguish between ID and OOD data points.

3. Linear Separability for Uncertainty Quantification

To verify the extensibility of this phenomenon to real-world tasks, we propose a novel uncertainty
quantification method based on our findings. We begin by formally defining the problem of un-
certainty quantification in deep neural networks. Let Pid(x, y) and Pid(x) denote the joint and the
marginal in-distribution probability distributions, respectively, where x ∈ Xid and Xid is the support
of the in-distribution distribution. Let Pood(x) denote the marginal out-of-distribution distribution
with domain x ∈ Xood. Our goal is to construct an uncertainty measure u(x) that assigns higher
values to out-of-distribution inputs, i.e., u(x) ≤ u(x′) for x ∼ Pid(x) and x′ ∼ Pood(x).

We usually say that two d-dimensional real vectors e, e′ ∈ Rd are linearly separable if there
exists a hyperplane that separates them. However, mere separability between the two sets does not
necessarily convey uncertainty. To measure the degree of separability, we propose a simple algorithm
based on SVM theory [3]. Given a dataset D = {(xi, yi)}Ni=1 with binary labels yi ∈ {−1, 1}, the
(hard-margin) linear SVM solves a convex optimization problem that minimizes ∥w∥2 subject to
the constraint yi(⟨w, xi⟩ − b) ≥ 1 for all i = 1, . . . , N . Intuitively, the SVM finds a hyperplane
⟨w, x⟩ − b = 0 that linearly separates the two classes while maximizing the margin between them.
Since the distance from a point x to the hyperplane is given by ⟨w,x⟩−b

∥w∥2
, and points on the decision

boundary satisfy ⟨w, x⟩ − b = 1, minimizing ∥w∥2 is equivalent to maximizing the margin, which
equals ∥w∥−1

2 .
We propose a measure of linear separability between two points, defined as l(x′, x) = ∥w∥−1

2 ,
where w is the solution to the hard-margin linear SVM problem with hypothetical labels y′ = +1
and y = −1. This notion can be extended to measure the linear separability between a point and
a set: l(x′,X ) = ∥w∥−1

2 , where the solution satisfies ⟨w, x′⟩ − b ≥ 1 and ⟨w, x⟩ − b ≤ −1 for all
x ∈ X . If no such w exists, we define l(x′,X ) = 0.

Building on this definition, we define an uncertainty measure. Given a training dataset Dtrain =
{(xi, yi)}Ni=1 ∼ Pid(x, y), we compute an encoding set E = {ei}Ni=1, where ei = ϕ(xi) for all
i = 1, . . . , N and ϕ is a pre-trained encoder. For a test point x∗, we measure the uncertainty
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lE(x
∗) := l(ϕ(x∗), E) — that is, the margin obtained by separating ϕ(x∗) from the training encodings

E using a hard-margin linear SVM. Intuitively, this quantity reflects the distance from x to the
hyperplane that separates it from the convex hull of the training encodings. Importantly, this notion
differs from Euclidean distance: a point near the training set in Euclidean space may still be linearly
separable, while a point farther away may not be.

We investigate whether the proposed uncertainty measure lE satisfies a key property for uncer-
tainty quantification: that lE(x) ≤ lE(x

′) for x ∼ Pid(x) and x′ ∼ Pood(x). Importantly, we do not
require the in-distribution and out-of-distribution sets to be completely linearly separable. Instead,
we show that this property holds even when the two sets are only partially linearly separable, which
is a much weaker and more realistic condition in high-dimensional settings.

Theorem 1 Let Pid and Pood be two probability distributions over Rd, and suppose there ex-
ists a hyperplane defined by (w, b) ∈ Rd × R such that ⟨w, x⟩ < b, Pid almost surely and
Pood [⟨w, x′⟩ ≥ b] > ϵ for some ϵ > 0. Then the lE(x) has a lower upper bound than lE(x

′)
for x ∼ Pid(x) and x′ ∼ Pood(x

′).

As SVM optimization fundamentally minimizes ∥w∥2 (equivalently maximizing lE(x) =
∥w∥−1

2 ), the theorem suggests that we can achieve higher lE(x
′) than lE(x), even when the in-

distribution encoded point ϕ(x) is linearly separable from the training set encoding E . This insight
is supported by the statistical learning theory-style proposition, which is provided in Appendix A.
Briefly speaking, we upper bound lE with generalization error, which is higher for OOD data.

4. OOD detection on real-world datasets

We evaluate the performance of our uncertainty quantification method against several standard OOD
detection approaches. For a fair comparison, we only include methods that do not require additional
training or fine-tuning. In other words, all methods are implemented using models pre-trained on the
in-distribution dataset with the standard cross-entropy loss.

First, as a baseline, we implement 3 methods, including maximum softmax probability [8]
(MSP), maximum logit [9] (MaxLogit), and energy score [17] (Energy). These baseline methods
only utilize output logit values, without access to the last layer encodings. Second, we compare 2
distance-based methods, MDS [15] and KNN [20]. For a more comprehensive comparison, we also
include 4 additional methods: an input perturbation-based approach [16] (ODIN), a dropout-based
Bayesian approximation [6] (Dropout), virtual-logit based method [23] (VIM), and the most recent
pruning-based activation scaling method [24] (Scale). In total, we compare 9 methods.

For our method (Geo), as it requires solving an SVM optimization problem over the entire training
set, we introduce a simple yet effective sampling-based approximation. Rather than using the full
dataset, we randomly sample M ≪ N training embeddings, specifically from the class predicted by
the model in classification problem. We set M = 300 throughout all experiments. We also extend our
method to consider model’s confidence, by computing l

logit
E (x) = [∥w∥2 ·maxi [f(x)]i]

−1, where
[f(x)]i denotes the i-th logit output of the classifier (GeoLogit). We summarize our base and
modified algorithms in Appendix B.

We utilize the OpenOOD v1.5 framework [26] to implement each method. OpenOOD categorizes
OOD datasets into two groups: Near OOD and Far OOD. As ImageNet-1K [4] is used as the in-
distribution dataset, SSB-hard [22] and NINCO [1] are used as Near OOD datasets, while iNaturalist
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DenseNet WideResNet ViT

Near OOD Far OOD Near OOD Far OOD Near OOD Far OOD

FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC

MSP 65.56 76.54 51.55 85.53 75.01 75.80 53.93 85.85 78.72 71.77 54.23 84.10
MaxLogit 68.38 76.69 44.14 88.65 83.81 72.76 77.28 82.42 85.69 69.54 65.51 83.48

Energy 68.91 76.01 44.78 88.31 85.66 68.27 82.42 76.18 86.53 66.54 70.26 80.86
ODIN 74.33 74.31 50.55 87.91 87.72 63.71 87.75 64.09 88.08 61.22 80.22 75.97

Dropout 65.56 76.54 51.55 85.53 75.01 75.80 53.93 85.85 78.72 71.77 54.23 84.10
MDS 87.13 54.64 56.88 78.20 69.92 74.16 26.43 93.06 71.79 75.30 33.77 91.01
KNN 69.33 70.19 43.78 84.52 66.25 75.68 27.35 93.22 71.37 70.67 38.68 85.10
VIM 71.63 70.94 31.91 88.65 78.72 69.96 28.06 92.48 81.31 71.88 35.82 90.52
Scale 65.41 78.56 31.55 92.83 93.06 45.60 85.74 62.90 84.48 67.12 66.69 81.11

Geo 67.54 75.11 43.04 88.49 66.24 77.02 30.22 92.93 70.58 72.48 42.19 85.99
GeoLogit 63.56 78.25 34.20 91.19 63.70 78.47 30.85 91.54 69.79 73.70 38.74 87.35

Table 1: OOD detection performance on the ImageNet dataset (as an in-distribution) using DenseNet-
201, WideResNet-50, and ViT-B/32 as backbone models. We report the mean and standard
deviation of FPR@95 (%, ↓ lower is better) and AUROC (%, ↑ higher is better). Bold, real,
and dashed underlined values denote the best, second-best, and third-best results.

[21], Textures [2], and OpenImage-O [23] are used as Far OOD datasets. We present the results on
Table 1.

The result highlights the strong generalizability of our methods, Geo and GeoLogit, to various
model architectures. Our algorithms consistently rank among the top performers across all OOD
settings. For example, with WideResNet, GeoLogit and Geo achieve the best and second-best
FPR@95 and AUROC scores on Near OOD setting, outperforming all baselines. The result shows
that our method adapts well across diverse architectures. These results validate the applicability of
the last-layer linear separability for uncertainty quantification in large-scale scenarios.

We further investigate the performance of our method on CIFAR datasets [12] in Appendix C.
We also present the performance of our method on the regression task in Appendix D.

5. Discussion and Limitation

In the context of calibration, a model is expected to produce well-calibrated probability esti-
mates—meaning its predicted confidence should align with actual accuracy. Since our uncertainty
scores do not represent probabilities in the [0, 1] range, we assess calibration by dividing the test set
into quantile-based bins based on uncertainty and computing the accuracy within each bin. We find
that our uncertainty measure shows a consistent trend: accuracy generally decreases as uncertainty
increases, closely aligning with the behavior of the Ensemble method. We present these calibration
results in Appendix E.

Core limitations of our method are memory and time inefficiency: our method requires a user
to save the last layer encoding of the training dataset, and it requires computing the last-layer
encoding vectors for the entire training set in advance. This is a common limitation of feature-
based methods, including MDS [18] and KNN [20]. To alleviate this, one can consider memory-
efficient approximations such as encoding compression, prototype selection, or clustering-based
summarization of the training encodings. On the other hand, to further reduce computation time,
one possible extension is to implement batch-wise uncertainty quantification. While these skills
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may slightly reduce accuracy, they offer a practical trade-off for deploying uncertainty estimation in
resource-constrained environments.
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Appendix A. Proof of Theorem 1

First, we restate our target theorem.

Theorem 2 Let Pid and Pood be two probability distributions over Rd, and suppose there exists a
hyperplane defined by (w, b) ∈ Rd × R such that ⟨w, x⟩ < b, Pid almost surely and Pood(⟨w, x′⟩ ≥
b) > ϵ for some ϵ > 0. Then the uncertainty measure lE(x) has a lower upper bound than lE(x

′) for
x ∼ Pid(x) and x′ ∼ Pood(x

′).

To prove the theorem, we need one proposition and one lemma.

Proposition 3 Let D = {(xi, yi)}Ni=1 be a dataset with a deterministic labelling scheme, yi =

−1, ∀i = 1, . . . , N − 1 and yN = +1. Assume each xi
iid∼ P [x|y = −1] , ∀i = 1, . . . , N − 1

and xN ∼ P [x|y = +1] with xi ∈ Rd and ∥xi∥2 ≤ B. Assume there exists a linear classifier
(w, b) ∈ Rd×R s.t. ⟨xi, w⟩ − b < −1, ∀i = 1, . . . , N − 1 and ⟨xN , w⟩ − b ≥ +1. For the zero-one
loss function L(x, y;w, b) = 1{sign[⟨x,w⟩−b]̸=y}, with probability 1− δ, the following holds,

E [L(x, y;w, b)] < C1 ∥w∥2 + C0,

where the constant C1 = BC0, C0 =
1+

√
N−1
N

√
2−1ln(2δ−1).

In statistical learning theory on SVM, the weight norm ∥w∥2 is typically assumed to be upper
bounded, and this bound is used to derive an upper bound on the generalization error. In contrast, we
use a similar reasoning in reverse: we show that the norm of the weight vector is lower bounded by
the generalization error.
Proof Without loss of generality, we ignore the b term, as we can simply concatenate it as an element
of w with concatenating 1 to x. Define a hinge loss function, h(x, y;w) = max(0, 1− y⟨x,w⟩). We
define two versions, h+(x) = max(0, 1− ⟨x,w⟩), h−(x) = max(0, 1 + ⟨x,w⟩). Define a sample
version of the hinge loss:

ĥ+(Xn) =
1

n

n∑
i=1

h+(xi), where xi ∈ Xn,

where Xn is an n-sized subsample set and xis are from D. Likewise, define ĥ−(Xn). Set
X+
1 = {xN} and X−

N−1 = {x1, . . . , xN−1}, so that ĥ+(X+
1 ) = 0 and ĥ−(X−

N−1) = 0. For a Xn s.t.
ĥ+(Xn) = 0, define X ′

n = {x1, . . . , xi−1, x
′
i, xi+1, . . . , xn}, i.e. one element of Xn is altered. Then,

sup
x′
|ĥ+(Xn)− ĥ+(X ′

n)| =
1

n
sup
x′
i

|h+(x′i)|

≤ 1

n
sup
x′
i

|1− ⟨x′i, w⟩|

≤ 1

n
sup
x′
i

1 + |⟨x′i, w⟩| by Triangle inequality

≤ 1

n
sup
x′
i

1 +
∥∥x′i∥∥2 · ∥w∥2 by Cauchy-Schwarz inequality

≤
1 +B ∥w∥2

n
by assumption

9



EMERGENT LINEAR SEPARABILITY OF UNSEEN DATA POINTS IN LAST-LAYER FEATURE SPACE

This holds regardless of the altered position i. Define P+ = P [·|y = +1] and E+ [·] =
E [·|y = +1]. Similarly define P− and E−. As each xi’s are sampled independently, we can apply
McDiarmid’s inequality. For any ϵ > 0,

P+
[
ĥ+(Xn)− E+

[
ĥ+(Xn)

]
< −ϵ

]
≤ exp

[
− 2ϵ2

n(n−1(1 +B ∥w∥2))2

]
= exp

[
− 2ϵ2

n−1(1 +B ∥w∥2)2

]
i.e. with a probability 1− δ

2 ,

E+
[
ĥ+(Xn)

]
< (1 +B ∥w∥2)

√
(2n)−1 ln(2δ−1),

as we assumed ĥ+(Xn) = 0. As each data points inX+
1 andX−

N−1 are sampled i.i.d. respectively,

E+
[
ĥ+(X+

1 )
]
= E+ [h+(xN )] = E+ [h+(x)]. (Recall E+ := E [·|y = +1].) So,

E+
[
h+(x)

]
< (1 +B ∥w∥2)

√
2−1 ln(2δ−1).

Likewise, with a probability 1− δ
2 ,

E− [
h−(x)

]
< (1 +B ∥w∥2)

√
(2(N − 1))−1 ln(2δ−1),

and both event occurs at least with a probability 1− δ.
So

E [h(x, y;w)] = P(y = +1)E [h(x, y;w)|y = +1] + P(y = −1)E [h(x, y;w)|y = −1]
= P(y = +1)E+

[
h+(x)

]
+ P(y = −1)E− [

h−(x)
]

<
1

N
(1 +B ∥w∥2)

√
2−1 ln(2δ−1) +

N − 1

N
(1 +B ∥w∥2)

√
(2(N − 1))−1 ln(2δ−1)

=
1 +
√
N − 1

N
(1 +B ∥w∥2)

√
2−1 ln(2δ−1)

and the zero-one loss L is dominated by the hinge loss function h, we obtain the result.

Now, we will demonstrate that the generalization error is higher when the test point xN = x ∼
Pid(x) is drawn from the same distribution as the in-distribution training set xi ∼ Pid(x), than when
xN = x′ ∼ Pood(x) comes from an out-of-distribution distribution. This result aligns with intuition:
when xN is from a different distribution, it is easier to distinguish it from the in-distribution samples,
yielding a lower classification error and thus a smaller lower bound on ∥w∥2. Conversely, when xN
is from the same distribution, the classifier struggles more, leading to a higher error and hence a
higher lower bound on ∥w∥2. As a result, the upper bound of uncertainty measure lE(x) =

1
∥w∥2

is
lower for in-distribution points than for out-of-distribution points, if they share the same constants
C0 and C1.

10
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Lemma 4 Define two probability distributions P and P′, such that, P′ [x|y = +1] = P′ [x|y = −1] =
P′(x) (i.e. random label) and P [x|y = +1] ̸= P [x|y = −1] = P′(x). Define the corresponding
expectations, E and E′. Assume the marginal distribution of label is equal, i.e. P(y) = P′(y)
with P′(y = +1) ≤ P′(y = −1). Assume ∃(w, b) ∈ Rd × R such that ⟨w, x⟩ < b, P′(x) al-
most surely, while P(⟨w, x⟩ ≥ b) > ϵ for some ϵ > 0. Then for the zero-one loss function
L(x, y;w, b) = 1{sign[⟨x,w⟩−b] ̸=y}, the following holds,

min
w,b

E [L(x, y;w, b)] < min
w′,b′

E′ [L(x, y;w′, b′)
]

Proof For the random label case, minimum loss can be achieved by the majority vote. If P′(y =
+1) = p,P′(y = −1) = 1− p, then

min
w′,b′

E′ [L(x, y;w′, b′)
]
= min(p, 1− p) = p,

as we assumed p < 1− p. Set w and b which satisfy our assumption. Then we obtain

E [L(x, y;w, b)|y = −1] =
∫

1{⟨x,w⟩>b}dP [x|y = −1]

=

∫
1{⟨x,w⟩>b}dP′(x)

= 0 by assumption.

Also,

E [L(x, y;w, b)|y = +1] =

∫
1{⟨x,w⟩<b}dP [x|y = +1]

< 1− ϵ by assumption.

Therefore,

E [L(x, y;w, b)] = P(y = +1)E [L(x, y;w, b)|y = +1] + P(y = −1)E [L(x, y;w, b)|y = −1]
< p(1− ϵ)

< p = min
w′,b′

E′ [L(x, y;w′, b′)
]

From the Theorem 4, we can regard P′(x) as an in-distribution data distribution with random
label y. Conversely, P [x|y = +1] represents an out-of-distribution data distribution with a proper
OOD label. Now we can prove the main theorem.
Proof [Proof of Theorem 1] By setting P′ = Pid and P = Pood, we assume the existence of (w, b)
which linearly separate two distributions, at least with ϵ probability. So minw,b Eood [L(x, y;w, b)] <
minw′,b′ Eid [L(x, y;w

′, b′)] by Theorem 4. We have already showed Eid [L(x, y;w
′, b′)] < C1 ∥w′∥2+

C0 and Eood [L(x, y;w, b)] < C1 ∥w∥2+C0 on Theorem 3 and trivially minw′,b′ Eid [L(x, y;w
′, b′)] ≤

Eid [L(x, y;w
′, b′)] and minw,b Eood [L(x, y;w, b)] ≤ Eood [L(x, y;w, b)]. As the two cases share

the same constants C0 and C1 by setting, the lower bound of ∥w′∥2 trained on in-distribution dataset
is higher than the lower bound of ∥w∥2 trained on out-of-distribution dataset. Conversely, lE(x′) for
in-distribution x′ has a lower upper bound than lE(x) for out-of-distribution x.

11
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Appendix B. Our Algorithms

Here we present our algorithm computing uncertainty.

Algorithm 1 Uncertainty Quantification with Linear Separability
Input: pre-trained model and encoder f and ϕ, training input set X , training data encoding set E ,
test data point x∗, SVM optimizer O, number of samples M
Output: uncertainty measure lE(x

∗) or llogit
E (x∗)

1: Sample M training data encoding EM = {ei}Mi=1 ⊂ E
2: (If classification task, choose eis such that f(xi) ≈ f(x∗))
3: Set a dataset D = {(ei,−1)}Mi=1 ∪ {(ϕ(x∗),+1)}
4: D ←− Normalize D
5: Compute SVM w, b = O(D)
6: if ∄w, b then
7: return 0
8: else if GeoLogit then
9: return l

logit
E (x∗) = 1

∥w∥2·maxi[f(x∗)]i
10: else
11: return lE(x

∗) = 1
∥w∥2

12: end if

Appendix C. Results on CIFAR Datasets

Here we present the results for CIFAR datasets. We also utilize the OpenOOD v1.5 framework
[26] to implement each method. When CIFAR-10 or CIFAR-100 [12] is used as the in-distribution
dataset, the other CIFAR dataset and TinyImageNet [14] serve as Near OOD datasets, while MNIST
[5], SVHN [19], Textures [2], and Places365 [27] are considered Far OOD datasets.

We employ two types of models: ResNet [7] and WideResNet [25]. For ResNet, we use three
pre-trained models provided by the OpenOOD framework [26], which achieve average accuracies of
95% on CIFAR-10 and 77% on CIFAR-100. For WideResNet, we train three models using a standard
training scheme, achieving 96% and 80% accuracy on CIFAR-10 and CIFAR-100, respectively. Note
that for the CIFAR datasets, we use three independently trained models, allowing us to compute the
mean and standard deviation of each metric and to apply the Ensemble method [13]. We present the
results on Table 2 and Table 3.

Our proposed methods, Geo and GeoLogit, consistently demonstrate strong OOD detection
performance across both CIFAR-10 and CIFAR-100 in-distribution datasets, for both ResNet and
WideResNet structures. In particular, GeoLogit achieves competitive or superior results across
all near and far OOD scenarios, especially excelling in the more challenging CIFAR-100 setting.
For example, on CIFAR-100 with WideResNet, Geo and GeoLogit record the best or second-best
performance in Near OOD setting, outperforming several strong baselines such as KNN, VIM, and
Scale. Notably, GeoLogit performs comparably to or better than the Ensemble method in many cases,
without requiring training multiple models.
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CIFAR 10 CIFAR 100

Near OOD Far OOD Near OOD Far OOD

FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC

MSP 48.17 (3.94) 88.03 (0.25) 31.72 (1.84) 90.73 (0.43) 54.80 (0.33) 80.27 (0.11) 58.70 (1.06) 77.76 (0.44)
MaxLogit 61.32 (4.65) 87.52 (0.47) 41.68 (5.27) 91.10 (0.89) 55.47 (0.66) 81.05 (0.07) 56.72 (1.33) 79.68 (0.57)

Energy 61.33 (4.65) 87.58 (0.46) 41.70 (5.33) 91.21 (0.92) 55.61 (0.61) 80.91 (0.08) 56.58 (1.38) 79.77 (0.61)
ODIN 81.69 (5.07) 79.35 (2.52) 64.79 (5.55) 85.38 (1.01) 58.08 (0.56) 79.85 (0.11) 58.96 (0.86) 79.25 (0.22)

Dropout 48.17 (3.94) 88.03 (0.25) 31.72 (1.84) 90.73 (0.43) 54.80 (0.33) 80.27 (0.11) 58.70 (1.06) 77.76 (0.44)
MDS 49.90 (3.96) 84.20 (2.40) 32.21 (3.39) 89.72 (1.36) 83.52 (0.60) 58.69 (0.09) 72.26 (1.56) 69.39 (1.39)
KNN 33.99 (0.39) 90.64 (0.20) 24.28 (0.41) 92.96 (0.14) 61.23 (0.13) 80.18 (0.15) 53.65 (0.28) 82.40 (0.17)
VIM 44.84 (2.30) 88.68 (0.28) 25.06 (0.51) 93.48 (0.24) 62.64 (0.27) 74.98 (0.13) 50.73 (1.00) 81.70 (0.62)
Scale 93.79 (0.57) 53.95 (3.84) 92.23 (0.70) 52.41 (4.53) 74.68 (1.22) 74.30 (0.58) 64.57 (1.22) 79.83 (0.43)

Geo 39.21 (1.20) 89.74 (0.24) 26.77 (0.10) 92.26 (0.11) 56.85 (0.16) 80.73 (0.16) 51.50 (0.68) 82.71 (0.18)
GeoLogit 39.07 (1.72) 89.96 (0.23) 25.94 (0.51) 92.74 (0.28) 54.17 (0.35) 81.48 (0.05) 51.85 (0.83) 81.52 (0.25)

Ensemble 34.30 90.34 22.80 92.82 51.34 82.33 55.39 79.47

Table 2: OOD detection performance on CIFAR-10 and CIFAR-100 (as an in-distribution) using
ResNet-18 as the backbone.

CIFAR 10 CIFAR 100

Near OOD Far OOD Near OOD Far OOD

FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC

MSP 44.67 (1.84) 89.42 (0.06) 32.39 (2.05) 91.74 (0.21) 52.80 (0.47) 81.85 (0.11) 55.99 (1.81) 79.76 (0.47)
MaxLogit 56.47 (1.57) 89.30 (0.05) 38.81 (1.60) 92.28 (0.36) 54.27 (0.57) 82.35 (0.26) 54.73 (1.99) 81.38 (0.49)

Energy 56.47 (1.57) 89.38 (0.05) 38.79 (1.60) 92.38 (0.37) 54.33 (0.52) 82.31 (0.29) 54.57 (2.04) 81.67 (0.50)
ODIN 86.39 (0.15) 78.02 (0.43) 70.11 (0.53) 80.05 (2.16) 61.50 (0.25) 80.34 (0.24) 61.09 (2.10) 79.63 (0.89)

Dropout 44.69 (1.84) 89.42 (0.06) 32.40 (2.05) 91.74 (0.21) 52.80 (0.47) 81.85 (0.11) 55.99 (1.81) 79.76 (0.47)
MDS 39.56 (1.63) 89.89 (0.33) 19.25 (0.53) 94.80 (0.14) 55.99 (0.76) 81.63 (0.14) 49.47 (1.92) 83.84 (0.78)
KNN 29.54 (0.09) 92.09 (0.14) 21.48 (0.50) 94.01 (0.16) 54.34 (0.77) 82.55 (0.06) 53.45 (1.52) 82.36 (0.45)
VIM 37.05 (1.19) 91.16 (0.26) 17.19 (0.96) 95.89 (0.21) 54.27 (0.46) 81.09 (0.08) 45.87 (1.78) 84.57 (0.55)
Scale 88.57 (0.36) 79.31 (1.25) 67.29 (4.11) 85.09 (2.36) 75.49 (0.39) 75.83 (0.41) 53.48 (1.08) 84.43 (0.32)

Geo 31.39 (0.47) 91.67 (0.13) 21.96 (0.49) 93.86 (0.14) 52.31 (0.20) 82.93 (0.05) 51.57 (1.67) 82.73 (0.42)
GeoLogit 31.64 (0.46) 91.77 (0.11) 21.73 (0.44) 94.20 (0.16) 51.92 (0.29) 83.01 (0.12) 51.22 (1.52) 82.46 (0.41)

Ensemble 32.39 91.15 24.39 93.26 48.34 83.76 51.43 81.69

Table 3: OOD detection performance on CIFAR-10 and CIFAR-100 (as an in-distribution) using
WideResNet-50 as the backbone.

Appendix D. Application to Regression Task

Unlike methods that rely on logit values from the final layer or decision-boundary-based approaches
such as VIM, purely feature-based methods like MDS, KNN, and Geo are directly applicable to
regression problems. In this section, we examine how these methods behave in regions of high
uncertainty, particularly on unseen input domains.

We construct a regression task using a sine function, sampling 1,000 data points from the intervals
x ∈

[
0, 12π

]
∪
[
π, 32π

]
. A two-layer neural network with 256 hidden units is trained for 30 epochs to

fit this function. Consequently, the model has no exposure to the regions x ∈
(
1
2π, π

)
∪
(
3
2π, 2π

)
.
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Figure 3: Uncertainty quantification results on a sine regression task using different methods: Ensem-
ble, MDS, KNN, and Geo. The shaded blue regions represent the predictive uncertainty
estimated by each method. The solid black line indicates the ground truth (GT) in the seen
domain, while the dashed black line shows the GT in the unseen domain.

We expect uncertainty quantification methods to yield higher uncertainty values in these intervals.
For comparison, we also implement an Ensemble method by training five additional models and
using the prediction variance as a measure of uncertainty. The results are shown in Figure 3.

The Ensemble method shows generally high uncertainty regardless of whether the input lies
within the seen or unseen domain. This behavior suggests that the Ensemble method struggles
to capture uncertainty effectively in this simple sine function regression task. Meanwhile, both
MDS and KNN—being distance-based methods—also exhibit limited ability to detect the rightmost
unseen interval. Although they show a visible uncertainty peak in the middle unseen interval, they
significantly underestimate uncertainty beyond 3

2π, failing to recognize the out-of-distribution.
In contrast, our proposed Geo method demonstrates strong and localized uncertainty responses in

both unseen regions. It produces distinct high-uncertainty bands in the unseen domain while maintain-
ing low uncertainty within the seen domain. This behavior reflects Geo’s ability to capture uncertainty
with geometric separability from known data. Overall, these results highlight Geo’s suitability for
regression tasks and its ability to deliver accurate and interpretable uncertainty estimates.

Appendix E. Calibration Analysis

We assess the calibration of uncertainty estimates by binning test samples into 10 quantiles based on
each method’s confidence score (or inverse of uncertainty score) and computing the classification
accuracy within each bin. This setup does not require the uncertainty to be probabilistic but tests
whether lower-confidence predictions correspond to lower accuracy, as expected in well-calibrated
systems.

As shown in Figure 4, on the CIFAR-10 dataset, all methods—including MDS, Geo, and
Ensemble—exhibit relatively smooth, increasing trends, indicating that their confidence scores are
moderately aligned with actual accuracy. However, on the more complex CIFAR-100 dataset, only
Geo and Ensemble maintain a clear monotonic calibration trend, while MDS fails to distinguish
uncertainty levels, particularly in the lowest quantiles. This suggests that Geo is not only effective
in detecting out-of-distribution and uncertain samples, but also potentially provides well-ranked
confidence estimates that are competitive with established methods like Ensembles.
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Figure 4: Calibration results on CIFAR-10 (left) and CIFAR-100 (right) using quantile-binned
accuracy. Each method’s uncertainty score is divided into 10 quantile bins, and the
corresponding accuracy is computed per bin.
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