
MAP-THOR: Benchmarking Long-Horizon Multi-Agent Planning Frameworks
in Partially Observable Environments

Siddharth Nayak 1 Adelmo Morrison 1 Marina Ten Have 1 Vittal Thirumalai 1 Jackson Zhang 1 Darren Chen 1

Aditya Kapoor 2 Eric Robinson 3 Karthik Gopalakrishnan 4 James Harrison 5 Anuj Mahajan† 6

Brian Ichter‡ 5 Hamsa Balakrishnan 1

Abstract

Evaluating embodied multi-agent planners neces-
sitates robust and versatile benchmarks. We intro-
duce MAP-THOR (Multi-Agent Planning in AI2-
THOR), a benchmark specifically designed to as-
sess the performance of embodied multi-agent
planning systems in realistic, partially observ-
able environments within the AI2-THOR envi-
ronment. Existing benchmarks offer extensive
environments for single-agent tasks, but fail to
capture the complexities inherent in multi-agent
interactions, non-stationarity, partial observabil-
ity and long-horizon planning. Addressing these
gaps, MAP-THOR facilitates the development of
frameworks that allocate tasks and enable coor-
dination among multiple agents. MAP-THOR
introduces a comprehensive suite of household
tasks demanding collaboration and adaptation to
dynamic environmental changes, mirroring real-
world scenarios. Our benchmark includes detailed
metrics for success rate, efficiency, and collabora-
tive effectiveness, setting a new standard for eval-
uating multi-agent planning systems. Through
rigorous experiments, we show that MAP-THOR
offers a robust evaluation framework for language
model (LM)-based multi-agent planning systems.
Ultimately, we hope that MAP-THOR serves as a
standard benchmark to identify embodied multi-
agent planning frameworks that systematically
improve generalization for long-horizon partially
observable planning.

1Massachusetts Institute of Technology, Cambridge, USA
2TCS, India 3USAF-MIT AI Accelerator 4Stanford, USA 5Google,
San Fransisco, USA 6Apple, Cupertino, USA. Correspondence
to: Siddharth Nayak <sidnayak@mit.edu>. †Work done outside
Apple. ‡Now at Physical Intelligence.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Building cooperative embodied agents that can engage in
and help humans in multi-agent tasks is a valuable yet
challenging endeavor. This requires developing effective
multi-agent planning frameworks for advancing the capa-
bilities of robotic systems to handle complex real-world
tasks such as household chores (Brodeur et al., 2017; Wu
et al., 2018; Kolve et al., 2017; Chang et al., 2017; Carroll
et al., 2019; Gan et al., 2020; Shridhar et al., 2019), search
and rescue missions (Rahman et al., 2022), and industrial
and workspace operations (Mandi et al., 2023; Sengar et al.,
2022; Baghel et al., 2021; Kapoor et al., 2023) alongside
other agents and humans. Humans are skilled at solving
complex tasks in a group by cooperating and communicat-
ing with others (Woolley et al., 2010). Thus, evaluating
such planners requires robust benchmarks that accurately
reflect the challenges of real-world environments such as the
complexity of perception, partial observation, long planning
horizon, natural language communication, and so on (Deitke
et al., 2022). However, existing benchmarks primarily focus
on single-agent tasks and fail to capture the complexities
of multi-agent systems. This gap in the literature hinders
the development of more advanced and capable multi-agent
planning frameworks.

Multi-agent planning in realistic environments presents sev-
eral challenges (Albrecht et al., 2024). Firstly, the interac-
tions between agents introduce non-stationarity, as the ac-
tions of one agent can influence the observations and actions
of others (Oliehoek & Amato, 2016; Tan, 1993; Tampuu
et al., 2015). Secondly, partial observability requires agents
to make decisions based on incomplete information (Amato,
2024), often leading to suboptimal actions. Thirdly, long-
horizon planning demands the ability to sequence actions
over extended periods, making it difficult to maintain co-
herent and effective strategies (Zhang et al., 2021). These
factors make it challenging to develop and evaluate multi-
agent planners that can generalize across diverse tasks and
environments.

To address these challenges, we introduce MAP-THOR, a
benchmark specifically designed for evaluating embodied

1

MAP-THOR: Benchmarking Long-Horizon Multi-Agent Planning Frameworks in Partially Observable Environments

multi-agent planning systems. MAP-THOR is built within
the AI2-THOR environment and features a comprehensive
suite of household tasks that require multiple agents to col-
laborate and adapt to dynamic changes . Our benchmark
includes detailed metrics for success rate, efficiency, and
collaborative effectiveness, setting a new standard for evalu-
ating multi-agent planning systems.

We verify the effectiveness of MAP-THOR through rigor-
ous experiments that benchmark various language model
(LM)-based multi-agent planning frameworks. Our results
demonstrate that MAP-THOR provides a comprehensive
and challenging evaluation environment, allowing for mean-
ingful comparisons between different approaches.

Our main contributions are as follows:

• We introduce MAP-THOR (Multi-Agent Planning in
THOR), a comprehensive benchmark suite of house-
hold tasks within the AI2-THOR simulator under par-
tial observability to standardize methodologies and
metrics for evaluating multi-agent planning effective-
ness and robustness.

• Detailed metrics for success rate, efficiency, and col-
laborative effectiveness among agents.

• Rigorous experiments demonstrating the effectiveness
of MAP-THOR in benchmarking state-of-the-art LM-
based multi-agent planning frameworks.

In the subsequent sections, we refer to language models as
LMs, large language models as LLMs and vision language
models as VLMs.

2. Related Work
The AI community has developed numerous platforms to
drive algorithmic advances in both single-agent and multi-
agent reinforcement learning. Notable environments in-
clude the Arcade Learning Environment (Bellemare et al.,
2013), OverCookedAI (Carroll et al., 2019), Minecraft-
based Malmo (Johnson et al., 2016), maze-based Deep-
Mind Lab (Beattie et al., 2016) , Doom-based ViZDoom
(Kempka et al., 2016), Google football (Kurach et al., 2020),
StarCraft II (Vinyals et al., 2019), DOTA (Berner et al.,
2019). These platforms have primarily focused on develop-
ing and testing reinforcement learning algorithms in con-
trolled, often static settings.

In recent years, several photorealistic simulator environ-
ments have been developed to simulate more complex, real-
world scenarios. Examples include AI2-THOR (Kolve et al.,
2017), Habitat (Savva et al., 2019; Szot et al., 2021; Puig
et al., 2023), HoME (Brodeur et al., 2017), MatterPort3D
(Chang et al., 2017), IGibson (Li et al., 2021; Shen et al.,

2021), ThreeDWorld (Gan et al., 2020) and VirtualHomeSo-
cial (Puig et al., 2018). These environments have enabled the
creation of frameworks for single embodied agent tasks. For
instance, FactorWorld (Xie et al., 2023), KitchenShift (Xing
et al., 2021) and Colosseum (Pumacay et al., 2024) focus on
policy generalization for manipulation tasks by evaluating
all potential perturbations. However, these frameworks do
not address the complexities of multi-agent interactions and
planning.

ALFRED (Shridhar et al., 2019), built on top of AI2-THOR,
focuses on single-agent tasks where an agent must follow
language instructions to perform household activities in
a visually rich environment. While ALFRED excels in
evaluating single-agent capabilities, it does not address the
complexities of multi-agent interactions, non-stationarity, or
collaborative planning. MAP-THOR extends this line of re-
search by incorporating multi-agent scenarios, necessitating
coordination and dynamic adaptation among agents.

RoCo (Mandi et al., 2023) leverages LLMs to enable dialec-
tic collaboration between multiple robots in structured envi-
ronments where detailed knowledge about the environment
is available. In contrast, MAP-THOR challenges planners
in partially observable settings without privileged informa-
tion, focusing on real-world applicability and adaptability
to dynamic changes.

SMART-LLM (Kannan et al., 2023) presents a multi-agent
planning framework using LLMs to generate and coordinate
plans for multiple robots. This approach assumes a static
and fully observable environment, limiting its applicability
to real-world scenarios. While SMART-LLM introduces a
dataset of 36 tasks within AI2-THOR, these tasks are lim-
ited to single floor plans and do not support multi-agent
collaboration for certain tasks, such as Pick up the
pillow, Open the laptop to turn it on, and
Turn off the lamp. MAP-THOR, on the other hand,
introduces tasks that require agents to explore and gather in-
formation dynamically, providing a more realistic evaluation
of multi-agent planning systems.

While prior research has significantly advanced the evalua-
tion of multi-agent embodied-AI frameworks, there remains
a need for a standardized and systematic assessment of
these proposed solutions. To address this gap, we introduce
MAP-THOR, a benchmark designed to build upon previous
efforts. MAP-THOR aims to evaluate multi-agent embod-
ied task planners, focusing on challenges such as partial
observability, non-stationarity, and long planning horizons.

3. MAP-THOR
To simulate open-ended, long-horizon tasks that resemble
everyday activities, we build MAP-THOR on the AI2Thor
simulator (Kolve et al., 2017), which supports a diverse

2

MAP-THOR: Benchmarking Long-Horizon Multi-Agent Planning Frameworks in Partially Observable Environments

(a) Kitchen (b) Bedroom (c) LivingRoom (d) Bathroom

Figure 1. Photorealistic rendering of household scenarios in the AI2Thor simulator enables the usage of multiple autonomous robots to
carry out daily tasks.

set of interactions and photorealistic rendering. Figure ??
shows a few scenes from the simulator. MAP-THOR com-
prises of 45 tasks, each defined for five distinct floor plans.
The tasks vary in the ambiguity in the natural language
instruction given as input to the agents. These tasks are solv-
able by both single and multiple agents. We also include
automatic checker modules to verify subtask completion
and evaluate plan quality.

An increase in ambiguity in the language task instruction
increases the difficulty level of the tasks. The complete task
list of each category can be found in the Appendix C.

• Explicit item type, quantity, and target location:
Agents are explicitly instructed to transport spe-
cific items to specific target locations. For ex-
ample, put bread, lettuce, and a tomato
in the fridge clearly defines the objects (tomato,
lettuce, bread) and the target (fridge).

• Explicit item type and target location but implicit
item quantity: The object type is explicitly described,
but its quantity is not disclosed. For example, Put all
the apples in the fridge. Agents must ex-
plore the environment to locate all specified items and
also predict when to stop.

• Explicit target location but implicit item types and
quantity: The target location is explicitly defined but
the item types and their quantities are concealed. For ex-
ample, Put all groceries in the fridge.

• Implicit target location, item type and quantity: Item
types and their quantities along with the target location
are implicitly defined. For example, Clear the
floor by placing the items at their
appropriate positions. The agent is expected
to place items like pens, books, and laptops on the study
table, and litter in the trash can.

A detail list of the task types is provided in Appendix C

Metrics We evaluate the algorithms using the following
metrics to compare their performances on the tasks:

• Success Rate (SR): The fraction of episodes in which all
subtasks are completed. Success equals 1 if all subtasks
are successfully executed in an episode, otherwise it is

0.
• Transport Rate (TR): The fraction of subtasks com-

pleted within an episode, which provides a finer granu-
larity of task completion.

• Coverage (C): The fraction of successful interactions
with target objects. It is useful to verify if the LMs can
infer the objects to interact with, in scenarios where the
tasks have objects that are specified implicitly.

• Balance (B): The ratio between the minimum and maxi-
mum number of successful high-level actions executed
by any agent that contributed towards making progress
in a subtask necessary for the completion of the language
instruction task. We only check for a subset of high-level
actions that must be executed for accomplishing critical
subtasks that leads to the successful completion of the
language instruction task. If each agent i out of n agents
completes si successful tasks, the balance is defined as:
B := min {s1,··· ,sn}

max{s1,··· ,sn}+ϵ . This measures how evenly the
work is distributed among agents. A balance of zero
indicates at least one agent performed no successful
high-level actions, while a balance of one indicates all
agents performed the same number of successful high-
level actions. Here ϵ = 1e − 4 is a small number to
avoid division by zero.

• Average steps (L): The number of high-level actions
taken by the team to complete the task, capped at T = 30
in our experiments. If the task is not completed within
T steps, the episode is deemed a failure.

For all the metrics, we report the means along with the
95% confidence interval across all the tasks. Since SR is a
binomial metric, we report the Clopper-Pearson Interval as
the confidence interval.

We highlight the distinction between task, subtask and high-
level action in the Appendix A

4. Experiments
We instantiate the problem with multiple agents cooperat-
ing to accomplish a long-horizon rearrangement task (Batra
et al., 2020) in an indoor environment. The agents do not
know the objects present in the environment a priori and are

3

MAP-THOR: Benchmarking Long-Horizon Multi-Agent Planning Frameworks in Partially Observable Environments

encouraged to explore the environment to gather more infor-
mation to complete the task. We list the set of observation
and action space in the Appendix B.

Baselines

For replication real-world setup, we make modifications to
the baselines to make them work in partially observable
settings with limited reliance on the simulator. More details
about implementations can be found in Appendix D.

• Act: We query the LLM with the task and the observa-
tions to suggest a high-level action.

• Chain-of-Thought (Wei et al., 2022): We modify the
Act prompt with a chain-of-thought style addendum to
let the LM reason about the possible implications while
selecting a high-level action.

• ReAct (Yao et al., 2023): We use a ReAct-style prompt-
ing to let the LMs reason after suggesting high-level
actions and possibly suggest ways to correct for any
failures.

• SmartLLM (Kannan et al., 2023): We modify the
official codebase to only include information from the
local observations of the agents instead of assuming full
observability.

• CoELA (Zhang et al., 2024): We modify the list of
available high-level actions to include all possible valid
combinations of actions with interactable objects in the
agent’s local observation. As the scene becomes more
cluttered, this list and the prompt becomes combinato-
rially longer. In the original implementation, the list of
available actions is filtered based on the feasibility of
the actions as suggested by a conditional checker.

It should be noted that Act, Chain-of-Thought, ReAct and
SmartLLM are all CMAS frameworks whereas CoELA fol-
lows the DMAS framework (refer (Chen et al., 2023) for
details about CMAS and DMAS).

Algorithm Success
Rate

Transport
Rate Coverage Balance Steps

Act 0.33 0.67 0.91 0.59 24.92
(0.19, 0.49) (0.59, 0.76) (0.86, 0.95) (0.52, 0.66) (22.12, 27.73)

ReAct 0.34 0.72 0.92 0.67 24.08
(0.20, 0.49) (0.63, 0.80) (0.86, 0.97) (0.61, 0.73) (21.27, 26.89)

CoT 0.14 0.59 0.87 0.62 28.4
(0.06, 0.28) (0.51, 0.67) (0.81, 0.92) (0.56, 0.69) (26.91, 29.97)

SmartLLM 0.11 0.23 0.91 0.45 29.87
(0.05, 0.23) (0.13, 0.31) (0.80, 0.96) (0.37, 0.52) (26.20, 30.00)

CoELA 0.25 0.46 0.76 0.73 28.93
(0.10, 0.36) (0.35, 0.56) (0.67, 0.85) (0.67, 0.80) (27.77, 30.00)

Table 1. Comparison of evaluation metrics against baselines aver-
aged across all tasks.

Baseline Comparisons: Table 1 compares the baselines in
a 2-agent scenario using GPT-4V as the underlying VLM.
Act and ReAct show similar performance, with Act strug-
gling due to its lack of strategic planning or correction and

ReAct performing slightly better by dynamically adjusting
actions based on reasoning on immediate feedback. CoT’s
performance declines with longer planning horizons due to
its inability to maintain coherence over extended planning
sequences, consistent with findings in (Stechly et al., 2024),
showing its effectiveness only with highly specific prompts.
SmartLLM, operating in a plan-and-execute paradigm, gen-
erates impractical plans with issues like infinite loops and
failure to handle low-level action failures, leading to lower
success rates and poor transport metrics. It also tends to hal-
lucinate objects. CoELA, using a decentralized multi-agent
system (DMAS), performs poorly due to large input prompts
and struggles to select the correct action from numerous
choices. Its decentralized decision-making is less efficient
than the centralized multi-agent system (CMAS). Previous
research (Chen et al., 2023) confirms CMAS frameworks
are more effective than DMAS frameworks.

5. Conclusion
In this paper, we introduced MAP-THOR, a benchmark
designed to evaluate the performance of multi-agent plan-
ning systems in realistic, partially observable environments
within the AI2-THOR simulator. MAP-THOR addresses
a critical gap in the existing benchmarks, which predomi-
nantly focus on single-agent tasks and fail to capture the
complexities of multi-agent interactions, non-stationarity,
and long-horizon planning. Our test suite sets a new stan-
dard for evaluating multi-agent planning systems by in-
cluding detailed metrics for success rate, efficiency, and
collaborative effectiveness. We benchmarked several state-
of-the-art language model (LM) based multi-agent planning
frameworks. The results showed that MAP-THOR offers
a rigorous and comprehensive evaluation, facilitating the
identification of frameworks that significantly improve gen-
eralization for long-horizon, partially observable planning
tasks. Future work will involve expanding MAP-THOR to
include more diverse tasks and environments, further en-
hancing its applicability and robustness. We also plan to
integrate more advanced evaluation metrics and explore the
use of MAP-THOR in real-world scenarios, bridging the
gap between simulation and practical deployment.

Acknowledgements
We would like to thank Keerthana Gopalakrishnan, Sydney
Dolan, Jasmine Aloor, and Victor Qin for helpful discus-
sions and feedback. OpenAI credits for GPT-4 access was
provided through OpenAI’s Researcher Access Program.
The research was sponsored by the United States Air Force
Research Laboratory and the Department of the Air Force
Artificial Intelligence Accelerator and was accomplished
under Cooperative Agreement Number FA8750-19-2-1000.
The views and conclusions contained in this document are

4

MAP-THOR: Benchmarking Long-Horizon Multi-Agent Planning Frameworks in Partially Observable Environments

those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the Department of the Air Force or the U.S. Government.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding
any copyright notation herein.

References
Albrecht, S. V., Christianos, F., and Schäfer, L. Multi-

Agent Reinforcement Learning: Foundations and Modern
Approaches. MIT Press, 2024. URL https://www.
marl-book.com.

Amato, C. (a partial survey of) decentralized, coopera-
tive multi-agent reinforcement learning. arXiv preprint
arXiv:2405.06161, 2024.

Baghel, R., Kapoor, A., Bachiller, P., Jorvekar, R. R.,
Rodriguez-Criado, D., and Manso, L. J. A toolkit to gen-
erate social navigation datasets. In Advances in Physical
Agents II: Proceedings of the 21st International Work-
shop of Physical Agents (WAF 2020), November 19-20,
2020, Alcalá de Henares, Madrid, Spain, pp. 180–193.
Springer, 2021.

Batra, D., Chang, A. X., Chernova, S., Davison, A. J., Deng,
J., Koltun, V., Levine, S., Malik, J., Mordatch, I., Mot-
taghi, R., Savva, M., and Su, H. Rearrangement: A Chal-
lenge for Embodied AI. CoRR, abs/2011.01975, 2020.
URL https://arxiv.org/abs/2011.01975.

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wain-
wright, M., Küttler, H., Lefrancq, A., Green, S., Valdés,
V., Sadik, A., et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P.,
Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse,
C., et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019.

Brodeur, S., Perez, E., Anand, A., Golemo, F., Celotti, L.,
Strub, F., Rouat, J., Larochelle, H., and Courville, A. C.
HoME: a Household Multimodal Environment. CoRR,
abs/1711.11017, 2017. URL http://arxiv.org/
abs/1711.11017.

Carroll, M., Shah, R., Ho, M. K., Griffiths, T., Seshia, S.,
Abbeel, P., and Dragan, A. On the utility of learning
about humans for human-ai coordination. Advances in
neural information processing systems, 32, 2019.

Chang, A., Dai, A., Funkhouser, T., Halber, M., Niessner,
M., Savva, M., Song, S., Zeng, A., and Zhang, Y. Matter-
port3d: Learning from rgb-d data in indoor environments.
International Conference on 3D Vision (3DV), 2017.

Chen, Y., Arkin, J., Zhang, Y., Roy, N., and Fan, C. Scalable
Multi-Robot Collaboration with Large Language Models:
Centralized or Decentralized Systems? arXiv preprint
arXiv:2309.15943, 2023.

Deitke, M., Batra, D., Bisk, Y., Campari, T., Chang, A. X.,
Chaplot, D. S., Chen, C., D’Arpino, C. P., Ehsani, K.,
Farhadi, A., et al. Retrospectives on the embodied ai
workshop. arXiv preprint arXiv:2210.06849, 2022.

Gan, C., Schwartz, J., Alter, S., Mrowca, D., Schrimpf,
M., Traer, J., De Freitas, J., Kubilius, J., Bhandwaldar,
A., Haber, N., et al. Threedworld: A platform for inter-
active multi-modal physical simulation. arXiv preprint
arXiv:2007.04954, 2020.

Johnson, M., Hofmann, K., Hutton, T., and Bignell, D. The
malmo platform for artificial intelligence experimenta-
tion. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI’16, pp.
4246–4247. AAAI Press, 2016. ISBN 9781577357704.

Kannan, S. S., Venkatesh, V. L., and Min, B.-C.
SMART-LLM: Smart Multi-Agent Robot Task Plan-
ning using Large Language Models. arXiv preprint
arXiv:2309.10062, 2023.

Kapoor, A., Swamy, S., Bachiller, P., and Manso, L. J.
Socnavgym: A reinforcement learning gym for social
navigation. In 2023 32nd IEEE International Con-
ference on Robot and Human Interactive Communica-
tion (RO-MAN), pp. 2010–2017, 2023. doi: 10.1109/
RO-MAN57019.2023.10309591.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and
Jaśkowski, W. Vizdoom: A doom-based ai research plat-
form for visual reinforcement learning. In 2016 IEEE con-
ference on computational intelligence and games (CIG),
pp. 1–8. IEEE, 2016.

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L.,
Herrasti, A., Gordon, D., Zhu, Y., Gupta, A., and Farhadi,
A. AI2-THOR: An Interactive 3D Environment for Visual
AI. arXiv, 2017.

Kurach, K., Raichuk, A., Stańczyk, P., Zajac, M., Bachem,
O., Espeholt, L., Riquelme, C., Vincent, D., Michalski,
M., Bousquet, O., et al. Google research football: A novel
reinforcement learning environment. In Proceedings of
the AAAI conference on artificial intelligence, volume 34,
pp. 4501–4510, 2020.

5

https://www.marl-book.com
https://www.marl-book.com
https://arxiv.org/abs/2011.01975
http://arxiv.org/abs/1711.11017
http://arxiv.org/abs/1711.11017

MAP-THOR: Benchmarking Long-Horizon Multi-Agent Planning Frameworks in Partially Observable Environments

Li, C., Xia, F., Martı́n-Martı́n, R., Lingelbach, M., Srivas-
tava, S., Shen, B., Vainio, K., Gokmen, C., Dharan, G.,
Jain, T., et al. igibson 2.0: Object-centric simulation
for robot learning of everyday household tasks. arXiv
preprint arXiv:2108.03272, 2021.

Mandi, Z., Jain, S., and Song, S. RoCo: Dialectic multi-
robot collaboration with large language models. arXiv
preprint arXiv:2307.04738, 2023.

Oliehoek, F. A. and Amato, C. A concise intro-
duction to decentralized pomdps. In SpringerBriefs
in Intelligent Systems, 2016. URL https://api.
semanticscholar.org/CorpusID:3263887.

Puig, X., Ra, K. K., Boben, M., Li, J., Wang, T., Fi-
dler, S., and Torralba, A. Virtualhome: Simulating
household activities via programs. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pp. 8494–8502, 2018. URL https://api.
semanticscholar.org/CorpusID:49317780.

Puig, X., Undersander, E., Szot, A., Cote, M. D., Part-
sey, R., Yang, J., Desai, R., Clegg, A. W., Hlavac, M.,
Min, T., Gervet, T., Vondruš, V., Berges, V.-P., Turner,
J., Maksymets, O., Kira, Z., Kalakrishnan, M., Malik, J.,
Chaplot, D. S., Jain, U., Batra, D., Rai, A., and Mottaghi,
R. Habitat 3.0: A Co-Habitat for Humans, Avatars and
Robots, 2023.

Pumacay, W., Singh, I., Duan, J., Krishna, R., Thomason, J.,
and Fox, D. The colosseum: A benchmark for evaluating
generalization for robotic manipulation. arXiv preprint
arXiv:2402.08191, 2024.

Rahman, A., Bhattacharya, A., Ramachandran, T., Mukher-
jee, S., Sharma, H., Fujimoto, T., and Chatterjee, S. Ad-
versar: Adversarial search and rescue via multi-agent
reinforcement learning. In 2022 IEEE International Sym-
posium on Technologies for Homeland Security (HST),
pp. 1–7. IEEE, 2022.

Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans,
E., Jain, B., Straub, J., Liu, J., Koltun, V., Malik, J.,
Parikh, D., and Batra, D. Habitat: A Platform for Em-
bodied AI Research. CoRR, abs/1904.01201, 2019. URL
http://arxiv.org/abs/1904.01201.

Sengar, V., Kapoor, A., George, N., Vatsal, V., Gubbi, J., Pal,
A., et al. Challenges in applying robotics to retail store
management. arXiv preprint arXiv:2208.09020, 2022.

Shen, B., Xia, F., Li, C., Martı́n-Martı́n, R., Fan, L.,
Wang, G., Pérez-D’Arpino, C., Buch, S., Srivastava, S.,
Tchapmi, L., et al. igibson 1.0: a simulation environment
for interactive tasks in large realistic scenes. In 2021
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 7520–7527. IEEE, 2021.

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W.,
Mottaghi, R., Zettlemoyer, L., and Fox, D. ALFRED:
A Benchmark for Interpreting Grounded Instructions for
Everyday Tasks. CoRR, abs/1912.01734, 2019. URL
http://arxiv.org/abs/1912.01734.

Singh, I., Traum, D., and Thomason, J. TwoStep: Multi-
agent Task Planning using Classical Planners and Large
Language Models. arXiv preprint arXiv:2403.17246,
2024.

Stechly, K., Valmeekam, K., and Kambhampati, S. Chain of
Thoughtlessness: An Analysis of CoT in Planning. arXiv
preprint arXiv:2405.04776, 2024.

Szot, A., Clegg, A., Undersander, E., Wijmans, E., Zhao,
Y., Turner, J., Maestre, N., Mukadam, M., Chaplot, D.,
Maksymets, O., Gokaslan, A., Vondruš, V., Dharur, S.,
Meier, F., Galuba, W., Chang, A., Kira, Z., Koltun, V.,
Malik, J., Savva, M., and Batra, D. Habitat 2.0: Training
Home Assistants to Rearrange their Habitat. In Advances
in Neural Information Processing Systems (NeurIPS),
2021.

Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I., Ko-
rjus, K., Aru, J., Aru, J., and Vicente, R. Multia-
gent Cooperation and Competition with Deep Reinforce-
ment Learning. CoRR, abs/1511.08779, 2015. URL
http://arxiv.org/abs/1511.08779.

Tan, M. Multi-Agent Reinforcement Learning: Independent
vs. Cooperative Agents. In In Proceedings of the Tenth
International Conference on Machine Learning, pp. 330–
337. Morgan Kaufmann, 1993.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D., Powell, R., Ewalds, T.,
Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I.,
Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M.,
Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V.,
Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Gulcehre,
C., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama, D.,
Wünsch, D., McKinney, K., Smith, O., Schaul, T., Lilli-
crap, T. P., Kavukcuoglu, K., Hassabis, D., Apps, C., and
Silver, D. Grandmaster level in starcraft ii using multi-
agent reinforcement learning. Nature, 575:350 – 354,
2019. URL https://api.semanticscholar.
org/CorpusID:204972004.

Wang, J., He, G., and Kantaros, Y. Safe Task Planning for
Language-Instructed Multi-Robot Systems using Confor-
mal Prediction. arXiv preprint arXiv:2402.15368, 2024.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E. H.,
Le, Q., and Zhou, D. Chain of Thought Prompting
Elicits Reasoning in Large Language Models. CoRR,
abs/2201.11903, 2022. URL https://arxiv.org/
abs/2201.11903.

6

https://api.semanticscholar.org/CorpusID:3263887
https://api.semanticscholar.org/CorpusID:3263887
https://api.semanticscholar.org/CorpusID:49317780
https://api.semanticscholar.org/CorpusID:49317780
http://arxiv.org/abs/1904.01201
http://arxiv.org/abs/1912.01734
http://arxiv.org/abs/1511.08779
https://api.semanticscholar.org/CorpusID:204972004
https://api.semanticscholar.org/CorpusID:204972004
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

MAP-THOR: Benchmarking Long-Horizon Multi-Agent Planning Frameworks in Partially Observable Environments

Woolley, A., Chabris, C., Pentland, A., Hashmi, N., and Mal-
one, T. Evidence of a collective intelligence factor in the
performance of human groups. Science (New York, N.Y.),
330:686–8, 10 2010. doi: 10.1126/science.1193147.

Wu, Y., Wu, Y., Gkioxari, G., and Tian, Y. Building gener-
alizable agents with a realistic and rich 3d environment.
arXiv preprint arXiv:1801.02209, 2018.

Xie, A., Lee, L., Xiao, T., and Finn, C. Decomposing the
generalization gap in imitation learning for visual robotic
manipulation. arXiv preprint arXiv:2307.03659, 2023.

Xing, E., Gupta, A., Powers, S., and Dean, V. Kitchen-
shift: Evaluating zero-shot generalization of imitation-
based policy learning under domain shifts. In NeurIPS
2021 Workshop on Distribution Shifts: Connecting
Methods and Applications, 2021. URL https://
openreview.net/forum?id=DdglKo8hBq0.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. ReAct: Synergizing Reasoning and
Acting in Language Models, 2023.

Zhang, H., Du, W., Shan, J., Zhou, Q., Du, Y., Tenenbaum,
J. B., Shu, T., and Gan, C. Building Cooperative Em-
bodied Agents Modularly with Large Language Models.
ICLR, 2024.

Zhang, K., Yang, Z., and Başar, T. Multi-agent reinforce-
ment learning: A selective overview of theories and algo-
rithms. Handbook of reinforcement learning and control,
pp. 321–384, 2021.

7

https://openreview.net/forum?id=DdglKo8hBq0
https://openreview.net/forum?id=DdglKo8hBq0

MAP-THOR: Benchmarking Long-Horizon Multi-Agent Planning Frameworks in Partially Observable Environments

A. Terminology
We differentiate between the terms subtasks and high-level actions in this section. In essence, multiple high-level actions
are needed to be carried out in a sequence to complete a subtask. Multiple subtasks need to be satisfied to complete the
high-level language instruction.

• Subtasks: A task is split up into multiple subtasks. For example, if a task is “Fetch all the groceries and put them in the
fridge”, then the initial subtasks could include: “Locate the groceries”, “transport the groceries”, “Locate the fridge”.
These subtasks could get updated with new observations. For example, while locating the groceries, the agents come
across a tomato and a lettuce. Then the subtasks “transport the tomato to the fridge” and “transport the lettuce to the
fridge” gets updated in the subtasks list. This basically splits up the high-level instruction I into multiple mid-level
subtasks

• High-level actions: These are the set of actions required to complete the subtasks. For example, to complete the
“transport the lettuce in the fridge”, we would require: the following set of actions:

– Navigate to lettuce
– Pickup lettuce
– Navigate to the fridge
– Open fridge
– Put lettuce in the fridge
– Close fridge

B. Environment
When more than 3 agents are added to some of the floor plans (especially the kitchen floor plans), the environment gets
crowded and does not allow for a lot of free space to navigate to different objects (the number of reachable paths reduces).

B.1. Observation Space

The observations for each robot include an image of size resolution 1000 × 1000 × 3. The textual observation for each
agent in the prompt is the list of objects visible in this image and the agents’ current location and rotation. The field of view
is 90 degrees. The agents can interact with the objects only if it is within its visibility range of 1.5m.

B.2. Action Space

The actions space A consists of navigation actions ANAV , interaction actions AINT .

Navigation actions ANAV consists of the following actions:

• Move(<direction>): Moves the robot by 0.25m towards the specified direction where <direction> can be
one of (Ahead, Back, Right, Left)

• Rotate(<direction>): Rotates the robot by 90 degrees towards the specified direction where, <direction>
can be one of (Right, Left)

• LookUp(<angle>) rotates the pitch of the robot camera upwards by the specified angle.
• LookDown<angle> rotates the pitch of the robot camera downwards by the specified angle.
• NavigateTo(<object id>) makes the robot navigate to the specified object. The path is found using the
A∗−shortest path algorithm. Note that the robot is only able to find a path to the specified object in the environment
only if it has encountered that object previously during the episode. Otherwise, the NavigateTo(.) action will be
unsuccessful and the agent will have to explore.

Interaction actions AINT consists of the following actions:

• Pickup(<object id>): Picks up the object
• Put(<receptacle id>): Puts the object in the robots hand on the receptacle
• Open(<object id>): Opens the object
• Close(<object id>): Closes the open object
• Slice(<object id>): Slices the object
• Clean(<object id>): Cleans the object

8

MAP-THOR: Benchmarking Long-Horizon Multi-Agent Planning Frameworks in Partially Observable Environments

• ToggleOn(<object id>): Toggles the object on
• ToggleOff(<object id>): Toggles the object off

C. Task Types
The complete list of task for each task type:

• Explicit object type, explicit quantity and target:
– put bread, lettuce, and a tomato in the fridge
– Put the pots and pans on the stove burners
– Slice the bread and tomato and crack the egg
– Put the butter knife, bowl, and mug in the sink
– Turn off the faucet and light if either is on
– Put the tissue box, keys, and plate in the box
– Put the computer, book, and pen on the couch
– Put the bowl and tissue box on the table
– Put apple in fridge and switch off the light
– Put the watch and Keychain inside the drawer
– Wash the bowl, mug, pot, and pan
– Put the Box on the sofa and the bowl in the box

• Explicit object type and explicit target: Here we explicitly describe the object type but keep the quantity of the objects
ambiguous. E.g. Put all the apples in the fridge. For this, the agents have to explore the environment
to ensure that they find all of them.
– Open all the drawers (make sure they are closed initially)
– Open all the cabinets
– Turn on all the stove knobs
– Put all the vases on the table
– Put all the potatoes in the bowl
– Put all pencils and pens in the box
– Move all lamps next to the door
– Turn off all light switches
– Turn on all light switches

• Explicit target, implicit object types: The object types are implicitly defined whereas the target is explicitly defined. E.g.
Put all groceries in the fridge. This tests whether the model can identify objects of certain categories.
– Put all groceries in the fridge (should identify the tomato, bread, apple, potato, and lettuce)
– Put all shakers in the closest drawer (should identify the salt shaker and pepper shaker)
– Put all tableware on the countertop (should identify the bowl, plate, mug)
– Put all food on the countertop (should identify the tomato, bread, apple, potato, and lettuce)
– Put all school supplies on the couch (should identify the pencil, computer, and book)
– Put all kitchenware in the cardboard box (should move the bowl and plate)
– Put all silverware in the sink
– Move everything on the table to the desk (should move the laptop, pencil, pen, plate, credit card, book, and newspaper)
– Slice the lettuce, trash the mug and switch off the light
– Put all electronics on the couch
– Make a dish by microwaving eggs and tomato
– Put all readable objects on the sofa
– Wash all fruits

• Implicit target and object types: Here both the object type and the target are explicitly defined. E.g. Clear the
floor by placing the items at their appropriate positions. Here the model is expected to
keep items like pens, book, laptop on the study table, litter in the trash can, etc.
– Clear the floor by placing items at their appropriate positions (depending on what’s on the floor)
– Clear the table by placing the items in their appropriate positions (depends on the floorplan, e.g. bread, apple, tomato,

knife, bowl, book)
– Clear the countertop by placing items in their appropriate positions (should move the lettuce, mug, and paper towel

9

MAP-THOR: Benchmarking Long-Horizon Multi-Agent Planning Frameworks in Partially Observable Environments

roll)
– Clear the desk by placing the items in other appropriate positions (should move the statue, watch, and remote control)
– Clear the table by placing the items in other appropriate positions (should move the book, credit card, laptop, plate,

newspaper, pen, and pencil)
– Clear the couch by placing the items in other appropriate positions (should move the pillow)
– Make the living room dark
– Make a mug of coffee and toast the bread
– Trash all groceries
– Slice all sliceable objects

D. Baselines
While there are a lot of impressive LLM-based multi-agent planners, they vary in the assumptions about access to information
about the environment. We were not able to find the official codebase for the Safe Multi-Agent Planning with Conformal
Prediction (Wang et al., 2024) and TwoStep (Singh et al., 2024). We describe the prompts used for our model as well as
every baseline. Note that we show the prompt for the 2-agent case, but it is easily modified to generalize to the n-agent case.
The italics and bolding added for emphasis.

D.1. Act

We describe the prompt used for the Act baseline:

10

MAP-THOR: Benchmarking Long-Horizon Multi-Agent Planning Frameworks in Partially Observable Environments

Prompt for the Act Baseline

You are an excellent planner and robot controller who is tasked with helping 2 embodied robots named Alice and Bob
carry out a task. Both robots have a partially observable view of the environment. Hence they have to explore around in the
environment to do the task.

They can perform the following actions:
[“navigate to object <object id>”, “rotate in <rotation> direction”, “pick up object <object id>”, “put object on
<receptacle id>”, “open object <object id>”, “close object <object id>”, “slice object <object id>”, “toggle object
<object id> on”, “toggle object <object id> off”, “clean object <object id>”, “look up by angle <angle>”, “look down by
angle <angle>”, “move in <translation> direction”, “stay idle”, “Done”]

Here “Done” is used when all the robots have completed the main task. Only use it when you think all the subtasks
are complete.

“stay idle” is used when you want the robot to stay idle for a one-time step. This could be used to wait for the other robot to
complete its subtask. Use it only when you think it is necessary.
Here <rotation> can be one of [“Right”, “Left”].
Here <angle> is the angle in degrees and can only be one of [30, 60, 90, 120, 150, 180].
Here <translation> can be one of [“Ahead”, “Back”, “Left”, “Right”].

You need to suggest the action that each robot should take at the current time step.

Important Notes
* The robots can hold only one object at a time.
For example: If Alice is holding an apple, she cannot pick up another object until she puts the apple down.
* Even if the robot can see objects, it might not be able to interact with them if they are too far away. Hence you will need to
make the robot navigate closer to the objects they want to interact with.
For example: An action like “pick up <object id>” is feasible only if robot can see the object and is close enough to it. So you
will have to navigate closer to it before you can pick it up.
* In some scenarios, the agents might not see the objects that they want to interact with. In such cases, you will have to make the
robot explore the environment to find the object. In such scenarios you can use actions to rotate in place or look up / down or
navigate to explore the environment.
* If you open an object, please ensure that you close it before you navigate to a different place.
* Opening object like drawers, cabinets, fridge can block the path of the robot. So open objects only when you think it is necessary.

INPUT FORMAT
* You will get a description of the task robots are supposed to do.
* You will get an image of the environment at the current time step from Alice’s perspective and Bob’s perspective as the
observation input. Here the objects are named as “<object name> <object id>”.
* You will get a trace of the steps taken by the robots and the actions they took at each time step and whether it was successful or not.

OUTPUT FORMAT
In your output, do not have any extra text or content outside of the python dictionary as below. Do NOT put any text, spaces, or
enter keys (i.e. “/n”) outside of it.

Your output should ONLY be in the form of a python dictionary, without any reasoning or extra text, as shown be-
low:
{“Alice”: “action to be taken by Alice”,
“Bob”: ”action to be taken by Bob}

For example: If you think Alice should pick up an apple and Bob should navigate to the fridge, you will have to
give the output as:
{“Alice”: “pick up apple”,
“Bob”: “navigate to fridge”}
* NOTE: DO NOT OUTPUT ANYTHING EXTRA OTHER THAN WHAT HAS BEEN SPECIFIED

D.2. ReAct

We describe the prompt used for the ReAct baseline:

11

MAP-THOR: Benchmarking Long-Horizon Multi-Agent Planning Frameworks in Partially Observable Environments

Prompt for ReAct Baseline

You are an excellent planner who is tasked with helping 2 embodied robots named Alice and Bob carry out a task. Both robots
have a partially observable view of the environment. Hence they have to explore around in the environment to do the task.

They can perform the following actions: [”navigate to object <object id>”, ”rotate in <rotation> direction”, ”pick
up object <object id>”, ”put object on <receptacle id>”, ”open object <object id>”, ”close object <object id>”, ”slice
object <object id>”, “toggle object <object id> on”, “toggle object <object id> off”, ”clean object <object id>”, ”look up
by angle <angle>”, ”look down by angle <angle>”, “move in <translation> direction”, ”stay idle”, ”Done”]
Here ”Done” is used when all the robots have completed the main task. Only use it when you think all the subtasks are complete.
”stay idle” is used when you want the robot to stay idle for a one-time step. This could be used to wait for the other robot to
complete its subtask. Use it only when you think it is necessary.
Here <rotation> can be one of [”Right”, ”Left”].
Here <angle> is the angle in degrees and can only be one of [30, 60, 90, 120, 150, 180].
Here <translation> can be one of [“Ahead”, “Back”, “Left”, “Right”].

You need to suggest the action that each robot should take at the current time step.
Important Notes
* The robots can hold only one object at a time.
For example: If Alice is holding an apple, she cannot pick up another object until she puts the apple down.
* Even if the robot can see objects, it might not be able to interact with them if they are too far away. Hence you will need to
make the robot navigate closer to the objects they want to interact with.
For example: An action like ”pick up <object id>” is feasible only if robot can see the object and is close enough to it. So you
will have to navigate closer to it before you can pick it up.
* In some scenarios, the agents might not see the objects that they want to interact with. In such cases, you will have to make the
robot explore the environment to find the object. In such scenarios you can use actions to rotate in place or look up / down or
navigate to explore the environment.
* If you open an object, please ensure that you close it before you navigate to a different place.
* Opening object like drawers, cabinets, fridge can block the path of the robot. So open objects only when you think it is
necessary.
INPUT FORMAT
* You will get a description of the task robots are supposed to do.
* You will get an image of the environment at the current time step from Alice’s perspective and Bob’s perspective as the
observation input. Here the objects are named as ”<object name> <object id>”.
* You will get a trace of the steps taken by the robots and the actions they took at each time step and whether it was successful or not.

OUTPUT FORMAT
You are supposed to think and suggest the action each robot is supposed to take at the current time step. Before suggesting an
action you need to think, which requires that you reason over the inputs and logically reflect on the task, observation and course
of actions needed to complete the task.
Output Requirements: At each time step you must ONLY output a PYTHON DICTIONARY of the following two elements:
*First Element: Key = ”Think” | Value:(Type: String): A logical reflection of the best action to be taken given the inputs: task
at hand, observations, and trace.
*Second Element: Key = ”Action” | Value:(Type: Python Dictionary):
The value should be in the form of a python dictionary as shown below.
{”Alice”: ”action to be taken by Alice”, ”Bob”: ”action to be taken by Bob”}

For example: If you think Alice should pick up an apple and Bob should navigate to the fridge, you will have to
give the output as: {”Alice”: ”pick up apple”, ”Bob”: ”navigate to fridge”}
Here is an example output:
{”Think”: ”To solve the task, I need to find and put the apple. The apple is likely to be on the countertop or table. Then find the
fridge.”, ”Action”: {”Alice”: ”pick up apple”, ”Bob”: ”navigate to fridge”} }
* NOTE: DO NOT OUTPUT ANYTHING EXTRA OTHER THAN WHAT HAS BEEN SPECIFIED

D.3. Chain of Thought

We describe the prompt used for the Chain-of-Thought baseline:

12

MAP-THOR: Benchmarking Long-Horizon Multi-Agent Planning Frameworks in Partially Observable Environments

Prompt for Chain of Thought Baseline

You are an excellent planner who is tasked with helping 2 embodied robots named Alice and Bob carry out a task. Both robots
have a partially observable view of the environment. Hence they have to explore around in the environment to do the task.

They can perform the following actions: [“navigate to object <object id>”, “rotate in <rotation> direction”, “pick
up object <object id>”, “put object on <receptacle id>”, “open object <object id>”, “close object <object id>”, “slice
object <object id>”, “toggle object <object id> on”, “toggle object <object id> off”, “clean object <object id>”, “look up
by angle <angle>”, “look down by angle <angle>”, “move in <translation> direction”, “stay idle”, “Done”] Here “Done”
is used when all the robots have completed the main task. Only use it when you think all the subtasks are complete. “stay idle” is
used when you want the robot to stay idle for a one-time step. This could be used to wait for the other robot to complete its
subtask. Use it only when you think it is necessary. Here <rotation> can be one of [“Right”, “Left”].
Here <angle> is the angle in degrees and can only be one of [30, 60, 90, 120, 150, 180].
Here <translation> can be one of [“Ahead”, “Back”, “Left”, “Right”].

You need to suggest the action that each robot should take at the current time step.

Important Notes
* The robots can hold only one object at a time. For example: If Alice is holding an apple, she cannot pick up another object until
she puts the apple down.
* Even if the robot can see objects, it might not be able to interact with them if they are too far away. Hence you will need to make
the robot navigate closer to the objects they want to interact with. For example: An action like “pick up <object id>” is feasible
only if robot can see the object and is close enough to it. So you will have to navigate closer to it before you can pick it up.
* In some scenarios, the agents might not see the objects that they want to interact with. In such cases, you will have to make the
robot explore the environment to find the object. In such scenarios you can use actions to rotate in place or look up / down or
navigate to explore the environment.
* If you open an object, please ensure that you close it before you navigate to a different place.
* Opening object like drawers, cabinets, fridge can block the path of the robot. So open objects only when you think it is necessary.

INPUT FORMAT
* You will get a description of the task robots are supposed to do.
* You will get an image of the environment at the current time step from Alice’s perspective and Bob’s perspective as the
observation input. Here the objects are named as ”<object name> <object id>”.
* You will get a trace of the steps taken by the robots and the actions they took at each time step and whether it was successful
or not.

OUTPUT FORMAT
You are supposed to FIRST reason through the situation logically and step by step, then suggest the action each robot is supposed
to take at the current time step.
In your output, do not have any extra text or content outside of the python dictionary as below.
Your output should ONLY be in the form of a python dictionary as shown below:
{”reason”: ”Reasoning for action plan....”, ”Alice”: ”action to be taken by Alice”, ”Bob”: ”action to be taken by Bob”}
Put all of your reasoning inside of the “reason” key of the dictionary. Do NOT put any text, spaces, or enter keys (i.e. “/n”)
outside of it.

For example: If you think Alice should pick up an apple and Bob should navigate to the fridge, you will have to give the output
as:
{”reason”: ”since the subtask list is empty, the robots need to transport the apple to the fridge”, ”Alice”: ”pick up apple”,
”Bob”: ”navigate to fridge”}

Let’s think step by step, but make sure to put all of your reasoning inside of the “reason” key of the dictionary!
* NOTE: DO NOT OUTPUT ANYTHING EXTRA OTHER THAN WHAT HAS BEEN SPECIFIED

D.4. SmartLLM

We adapt the prompt from the official codebase of SmartLLM (master branch; commit
#be42930050f7d4d8f2fad027aff14a699c3300aa) as given here: https://github.com/SMARTlab-
Purdue/SMART-LLM/blob/master/scripts/run llm.py with a slight modification. Instead of letting the agents access all
the objects in the environment through the simulator metadata, we just give the list of objects visible from the agents‘
point-of-view.

13

https://github.com/SMARTlab-Purdue/SMART-LLM/blob/master/scripts/run_llm.py
https://github.com/SMARTlab-Purdue/SMART-LLM/blob/master/scripts/run_llm.py

MAP-THOR: Benchmarking Long-Horizon Multi-Agent Planning Frameworks in Partially Observable Environments

D.5. CoELA

We adapt the prompt from the official codebase of CoELA (master branch: commit
#3d34de46dc77f9aaabe438cd2b92ea6c5c04973a) as given here: https://github.com/UMass-Foundation-
Model/Co-LLM-Agents/tree/master/tdw mat/LLM. We modify some aspects of the prompt as described: Instead of relying
on the simulator/pre-defined conditional logic for generating the list of available action options, we give a list of all possible
actions based on the observation. This includes the option to send the communication message, all navigation actions, and
all combinations of valid actions with the interactable objects in the current observation.

14

https://github.com/UMass-Foundation-Model/Co-LLM-Agents/tree/master/tdw_mat/LLM
https://github.com/UMass-Foundation-Model/Co-LLM-Agents/tree/master/tdw_mat/LLM

