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ABSTRACT

Reasoning has emerged as a key capability of large language models. In linguis-
tic tasks, this capability can be enhanced by self-improving techniques that refine
reasoning paths for subsequent finetuning. However, extending these language-
based self-improving approaches to vision language models (VLMs) presents a
unique challenge: visual hallucinations in reasoning paths cannot be effectively
verified or rectified. Our solution starts with a key observation about visual con-
trast: when presented with a contrastive VQA pair, i.e., two visually similar im-
ages with synonymous questions, VLMs identify relevant visual cues more pre-
cisely compared with when given a single VQA sample. Motivated by this ob-
servation, we propose Visual Contrastive Self-Taught Reasoner (VC-STaR), a
novel self-improving framework that leverages visual contrast to mitigate hal-
lucinations in model-generated rationales. We collect a diverse suite of VQA
datasets, curate contrastive pairs according to multi-modal similarity, and gen-
erate rationales using VC-STaR. Consequently, we obtain a new visual reasoning
dataset, VisCoR-55K, which is then used to boost the reasoning capability of var-
ious VLMs through supervised finetuning. Extensive experiments show that VC-
STaR not only outperforms existing self-improving approaches but also surpasses
models finetuned on the SoTA visual reasoning datasets, demonstrating that the
inherent contrastive ability of VLMs can bootstrap their own visual reasoning.
The code, dataset and trained models will be released upon acceptance.

1 INTRODUCTION

The scaling of large language models (LLM) has led to the emergence of reasoning capabilities (Wei
et al., 2022a), making a transition from System 1 to System 2 (Kahneman, 2011) and enabling lan-
guage models to tackle complex, multi-step problems (Wei et al., 2022b; Kojima et al., 2022). This
emergent ability can be further enhanced by various techniques (Wang et al., 2023b; Li et al., 2023b;
Hao et al., 2023; Gao et al., 2023; OpenAI, 2024b; Guo et al., 2025). Among them, self-improving
approaches (Zelikman et al., 2022; Gulcehre et al., 2023; Madaan et al., 2023; Qu et al., 2024; Ma
et al., 2025) form a prominent branch, mainly because they can be easily applied and extended with-
out external reward models (Lu et al., 2024a), predefined step decomposition (Liu et al., 2025), or
specially designed reasoning structures (Li et al., 2025).

However, it is infeasible to directly adapt such language-based self-improving methods to vision
language models (VLMs) (Liu et al., 2023; Bai et al., 2025). Previous self-improving approaches
focus on textual coherence and the quality of the final answer (Zelikman et al., 2022; Zhang et al.,
2024a), while they are unable to verify or rectify the visual hallucinations that persist in current
VLMs (Tong et al., 2024; Li et al., 2024). Even worse, they may get stuck in speculative reasoning
that privileges textual priors over real visual evidences (Favero et al., 2024; Wu et al., 2025). We
claim that the key problem for self-improving in VLMs is: how to rectify visual hallucinations in
VLMs’ reasoning paths for high-quality visual rationale generation.

Our solution is built upon an interesting observation: VLMs can see better during contrasting. As
shown in Fig. 1a, the VLM generates a wrong rationale with visual hallucinations given a single
visual question answering (VQA) sample. Instead, when presented with a contrastive VQA pair,
i.e., two similar images with synonymous questions (Setting C in sub-figure 1b), the model captures
fine-grained visual evidence more accurately and rectifies the erroneous rationale. Statistics of this
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Naïve Answering

Think step by step to an-
swer this question: what 
kind of trick is this skate-
boarder performing? 

The skateboarder appears to be
executing an ollie, one of the
most fundamental tricks in
skateboarding where they jump
into mid-air with their board
attached underneath them
without using any handrails or
other objects… ❌

🤔
User

😵💫
VLM

Contrasting and Answering

Discriminate between two images and think
step by step to answer two similar questions
for two images respectively. For the first
image: What kind of trick is this skateboarder
performing? For the second image: What's
the name of the skateboarding trick the man
is doing?

…The first image shows a skateboarder balancing with one foot while
sliding along the edge of an elevated ramp using their back wheels (tail),
indicating they might be executing or attempting what could resemble a
“tail slide.” … For both questions regarding identifying specific tricks
based purely visually from these descriptions alone: 1) **First Image:**
The trick appears more aligned towards ‘Tail Slide’, where balance and
control over rear portion dominate. … ✅

🤔
User

🧐
VLM

VLMs can see better
during contrasting !

(a) Visual hallucinations within the reasoning paths can mislead the model. Contrasting within a contrastive
VQA pair, the VLM may rectify its own hallucinations.

Results and Statistic

Success Failure

(b) Results and statistics of rectifying hallucinatory outputs by three settings. H: with hint; C: via contrasting.

Figure 1: Contrasting makes the VLM see better. (a) Contrastive VQA pairs compels a more
accurate response. (b) Compared with a previous self-improving method STaR (Zelikman et al.,
2022) that enhances the quality of reasoning with hints (ground-truth answers), contrasting with
hints can rectify more cases. The blocks along the x-axis mark initial VLM failures. The color of
each block indicates the outcome of rectifying: green for success and gray for failure. Statistical
analyses suggest that contrasting with hints produces minimal additional errors and rectify more
erroneous cases. Tested VLM is Qwen2.5VL-7B (Bai et al., 2025).

phenomenon on a group of failure cases are shown in Fig. 1b. Compared with the hints-only (Setting
H in sub-figure 1b) self-improving (provide the model with the ground-truth answers), the hints and
contrasting (Setting C&H in sub-figure 1b) setting not only prevents the model from making new
errors but also leads to the rectification of its original hallucinations.

Motivated by this, we propose a new self-improving framework, Visual Contrastive Self-Taught
Reasoner (VC-STaR). VC-STaR contains three steps: (1) think step by step and generate a coarse
rationale; (2) compare visual queries in a contrastive VQA pair and provide a contrastive analysis;
(3) rethink and refine the coarse rationale via an LLM based on the contrastive analysis. In order to
guarantee the scalability of VC-STaR, we also propose a task-agnostic contrastive VQA pair curation
framework, which can be readily adapted to various VQA tasks, e.g., reasoning (Lu et al., 2021b),
math (Gao et al., 2025), chart Liu et al. (2024a), and OCR (Yuan et al., 2022). Specifically, we
curate the contrastive VQA pairs within individual datasets, based on the similarity of both images
and questions. We utilize these contrastive VQA pairs to generate faithful rationales, resulting in a
novel Visual Contrastive Reasoning dataset (VisCoR-55K) as illustrated in Fig. 2. Finetuning with
VisCoR-55K enhances VLMs’ visual reasoning capability.

VC-STaR achieves prominent results on a wide range of challenging benchmarks, including
MMVP (Tong et al., 2024), HallusionBench (Guan et al., 2024b), MathVista (Lu et al., 2024b),
MathVision Wang et al. (2024), and MMStar (Chen et al., 2024d). On the one hand, VC-STaR
outperforms existing self-improving baselines. On the other hand, it exhibits a clear advantage over
models trained on recently proposed reasoning datasets. The experimental results validate that visual
reasoning capability of VLMs can be bootstrapped through the lens of contrast.

2 RELATED WORKS

Reasoning in Language. Dual-system theory (Kahneman, 2011) illustrates two systems in human
cognition: a fast, intuitive System 1 and a slow, deliberate System 2 which is akin to emergent
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General (42.7%)

OCR (7.8%)

Where are they located relative to each other?
The dog is on the left 

side, and the cat is 
on the right side.

The cat is positioned 
to the left of the dog.

Please write out the expression of the 
formula in the image using LaTeX format.

\cos \angle 5 = \frac { P 
E } { B P } = \frac { \frac 

{ 1 } { 2 } x } { 4 - x }

\cos \angle B = 
\frac { B E } { B D } 

= \frac { 4 } { 5 }

21 VQA Datasets 5 Categories

Reasoning (25.0%)

If you select a marble without looking, which 
color are you less likely to pick?

The answer is blue. The answer is black.

Math (15.7%)

Find x. Assume that segments that appear to 
be tangent are tangent.

The answer is 30. The answer is 9.

Graph/Chart (8.8%)

What is the smallest number of orange candies?
The smallest number 

of orange candies is 11 
orange candies.

The smallest number 
of orange candies is 31 

orange candies.

Figure 2: VisCoR-55K. We introduce the Visual Contrastive Reasoning dataset (VisCoR-55K), a
new collection of 55K high-quality visual reasoning samples. Spanning the domains of general
VQA, reasoning, math, graph/chart, and OCR, each sample is created by leveraging a contrastive
counterpart to generate a faithful rationale. Rationales are shown in the Sec. A.3.

reasoning capability of LLMs (Wei et al., 2022a). Consequently, reasoning enhancement (Wei et al.,
2022b; Kojima et al., 2022) is considered a pathway to elevate LLMs’ cognitive performance. One
solution involves a reward model (Li et al., 2023b; Lu et al., 2024a), often coupled with Monte Carlo
tree search (Hao et al., 2023; Zhang et al., 2024a), to discover optimal reasoning paths. However,
this solution is constrained by the need of an auxiliary model and the requirement for reasoning
step dividing (Liu et al., 2025). Another way employs macro reasoning actions (Gao et al., 2023;
Khot et al., 2023; Yang et al., 2025a) to inject human prior knowledge, however, hand-crafted macro
actions struggle to adapt to diverse reasoning scenarios. While reinforcement learning (Rafailov
et al., 2023; Trung et al., 2024; Guo et al., 2025) has also attracted the attention, its success relies on
the data format and the design of reward functions. Self-improving methods (Zhang et al., 2024a)
offer a more scalable alternative, enabling LLMs to refine its own reasoning by constructing high-
quality reasoning data (Wang et al., 2023b), utilizing ground-truth answers as hints (Zelikman et al.,
2022), or leveraging internal feedback (Qu et al., 2024). With fewer external constraints, self-
improving methods pave the way for more flexible and general language reasoners.

Reasoning in Vision. Human reasoning is stimulated not only by textual input but also by visually-
related queries. Fostering the visual reasoning ability (Zhang et al., 2024c) for VLMs (Liu et al.,
2023; Li et al., 2023a) is therefore a critical frontier topic. Early attempts often rely on external
scaffolding like scene graphs (Mitra et al., 2024), macro actions (Xu et al., 2025; Dong et al., 2025),
or bounding boxes highlighting key region in images (Shao et al., 2024). However, such approaches
suffer from fundamental limitations: they are constrained by the data structure or tend to generate
stereotyped reasoning paths. Despite these advances, the self-improving paradigm which has shown
its effectiveness in text-only domain is underexplored for visual reasoning. The primary obstacle
is the visual hallucinations embedded in reasoning paths cannot be easily rectified by existing text-
centric self-improving frameworks (Zhang et al., 2024a; Zelikman et al., 2022; Qu et al., 2024). The
proposed VC-STaR attempts to bridge this gap through the lens of contrast.

Power of Contrasting. Contrasting has shown effectiveness in a wide range of machine learning
topics. By comparing different views (Tian et al., 2020), e.g., data augmentations, of the same
sample while distinguishing them from others (Wang & Isola, 2020), contrastive self-supervised
learning methods (He et al., 2020; Grill et al., 2020; Radford et al., 2021; Liang et al., 2022; Pan
et al., 2023) excel at learning potent feature representations. Explicitly cross-image contrasting is
also studied under uni-modal setting (Pan et al., 2023; Ding et al., 2024; Chen et al., 2024a) and
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Data Collec*on

VQA datasets for different tasks

Contras*ve VQA Pair Hun*ng

Q: What is 
she doing？

Q: What is the 
person doing？

Matching Matching

Vectorizing Vectorizing

Image Embedding Matching
Ques3on Embedding Matching

Difficulty-Based Sampling

Right AnswerQEasy 
Sample

Median 
Sample

Hard 
Sample

Q with H&C Right Answer

Wrong AnswerQ

Wrong Answer

Wrong Answer

😄

☹

☹ Q with H&C

Q

✅

✅

❌

❌

❌

…

… …

Graph/Chart Reasoning
OCRGeneralMath

Figure 3: Contrastive VQA pair curation pipeline. To facilitate effective contrastive analysis, we
curate corresponding challenging counterparts for VQA samples from a pool of diverse datasets.
Each curated pair consists of two samples that share a synonymous question but feature distinct yet
semantically similar images. Collected pairs are filtered by a difficulty-based sampling procedure.

multi-modal setting (Park et al., 2019; Kim et al., 2021; Yao et al., 2022; Dunlap et al., 2024). Based
on these advancements, VLMs are endowed with robust capabilities for multi-image comprehension
and comparison (Alayrac et al., 2022; Bai et al., 2025; Chameleon, 2025; Lin et al., 2025). Some
prior works have leveraged contrasting to create better instruction-tuning data (Jiao et al., 2025; Ma
et al., 2024). However, how contrasting can help visual reasoning remains an open question. We
observe that VLMs’ inherent comparative ability can be repurposed to actively suppress its own
visual hallucinations, bootstrapping their visual reasoning capability. This discovery offers a new
perspective about the power of contrasting in reasoning.

3 VISUAL CONTRASTIVE SELF-TAUGHT REASONER (VC-STAR)

Let θ be a VLM and D = {(vi, qi, ai)}Ni=1 be a set of visual question answering (VQA). The VQA
set consists N triplets, where vi, qi, and ai represent the i-th image, question, and corresponding
ground-truth answer, respectively. Following previous self-taught reasoners (Zelikman et al., 2022;
Madaan et al., 2023), the original VQA dataset D can be enriched by generating a rationale r with
θ for each triplet, which transforms D into a a visual reasoning dataset R = {(vi, qi, ai, ri)}Mi=1.
However, as metioned in Sec. 1, rationale ri may be contaminated by visual hallucinations. Mo-
tivated by the observation illustrated in Fig. 1, VC-STaR aims to refine rationale ri into a more
faithful one r̃i by contrasting the (vi, qi, ai) with a contrastive VQA counterpart sample (v̂i, q̂i, âi)
where qi is synonymous with q̂i and vi shares similar context with v̂i. The contrastive VQA pairs
P = {

(
(vi, qi, ai), (v̂i, q̂i, âi)

)
}Ki=1 support the contrasting and rationale refining process. The con-

trastive VQA pairs are curated by searching (v̂i, q̂i, âi) for (vi, qi, ai) within diverse data groups in
D for different VQA tasks, ensuring the generalization of VC-STaR. The VC-STaR is designed to
address two key challenges: (1) how to curate meaningful contrastive VQA pairs; (2) how to transfer
the fine-grained discriminative ability from dual-image contrasting to refine the single-image reason-
ing. Sec. 3.1 elaborates on the pipeline for curating contrastive VQA pairs. Building upon this foun-
dation, Sec. 3.2 introduces our contrasting and rethinking procedure which embeds the dual-image
comparison into a new reasoning path, guided by an LLM, to produce a more faithful rationale. The
refined rationales are then used to construct a new reasoning dataset R̃ = {(vi, qi, ai, r̃i)}Li=1, which
we name the Visual Contrastive Reasoning dataset (VisCoR-55K). The VLM θ is updated to a new
version θ̃ with improved reasoning capability by finetuning on VisCoR-55K.

3.1 CONTRASTIVE VQA PAIR CURATION

To ensure the generalization of VC-STaR, the contrastive VQA pair curation pipeline should be
flexible enough across a wide spectrum of VQA tasks. For better contrasting, each contrastive VQA
pair

(
(vi, qi, ai), (v̂i, q̂i, âi)

)
should possess three key properties: (1) qi and q̂i are synonymous. This

shared question acts as a semantic anchor, grounding the two images vi and v̂i at the same point in the
semantic space. The images thus represent different manifestations of this anchor, providing a solid
basis for contrasting; (2) vi and v̂i are visually similar. vi and v̂i should not be trivially distinct but
exhibit visual similarity, creating a confusing contrasting. This visual proximity compels VLMs to
engage in fine-grained contrasting to discriminate subtle differences; (3) qi is reasoning dependent.
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Contrastive VQAs Think

Q: What is the person doing？
A: She is reading a book.

Q: What is she doing？
A: She is enjoying the scenery.

To answer this question, I am focusing on the woman's
behavior and her interaction with the surroundings. I notice
that she isn't actively engaging with anything; she's simply
sitting on the bench. Therefore, the most direct and factual
conclusion is that the woman is sitting on the bench.

Please think step by step to answer this question.

The first image shows a woman sitting on a bench in a park
or garden. She's holding what looks like a book or some
papers, so it seems she's reading. In contrast, the second
image captures a woman on a bench by the water on a
cloudy day. She's holding a red umbrella and looking out at
the horizon. So, for questions regarding their actions: 1)
**First Image** she is most likely reading. 2) **Second
Image** she is simply enjoying the scenery.

Please discriminate clearly between provided images, 
then answer the quesLon for both images respecLvely.

Contrast

Rethink

Please refine the rationale based 
on the contrastive analysis.

To answer what the woman is
doing now, I am focusing on her
behavior and her interaction with
the surroundings. She is sitting on
a bench in a park, and the key
detail is what she's holding: it
looks like a book or a booklet. If
she were looking off into the
distance or holding something
else, I'd probably guess she was
just enjoying the scenery. But all
the visual content point to her
interacting with the book in her
hands. So, the most likely answer
is that she's reading.

🤔

🤔

😵💫

🧐

🤔

😎

Figure 4: Faithful rationale generation pipeline. A contrastive analysis can be obtained based
on the curated contrastive VQA pair. Leveraging the property of VLMs illustrated in Fig. 1, the
contrastive analysis is then used to trigger a rethinking procedure, which refines the naive rationale
into a more faithful one. This pipeline is designed to generate rationales for supervised finetuning.

qi should be reasoning-provoking rather than one that can be solved by a straightforward answer. To
achieve these requirements, as illustrated in Fig. 3, we propose a three-stage curation pipeline:

Data Collection. We collect 21 VQA datasets spanning five categories: reasoning (Zhang et al.,
2019; Lu et al., 2021b), graph/chart (Kembhavi et al., 2016; Mathew et al., 2022; Masry et al., 2022;
Tang et al., 2023; Lu et al., 2023; Liu et al., 2024a), math (Lu et al., 2021a; Cao & Xiao, 2022; Gao
et al., 2025), general (Zhu et al., 2016; Johnson et al., 2017; Acharya et al., 2019; Schwenk et al.,
2022; Wang et al., 2023a; Chen et al., 2024b), and OCR (ICDAR, 2019; Kiela et al., 2020; Yuan
et al., 2022; Zhang et al., 2024b). This broad collection enriches the diversity of our curated pairs,
which ensures the generalization ability of the finetuned model.

Contrastive VQA Pair Hunting. In order to compute the similarity of VQA pairs, we first rep-
resent the question qi and the image vi by high-dimensional embeddings, denoted as eqi and evi
respectively. We use GTE (Li et al., 2023c) text embeddings to represent the questions. In terms
of image embedding, existing models fall into two types, i.e., vision-language contrastive learning
approaches (Radford et al., 2021; Tschannen et al., 2025) while vision-only self-supervised learn-
ing methods (Zhang et al., 2023; Oquab et al., 2024). The former ones mainly capture at global
semantic information, while the later ones are good at instance discrimination. Neither of them are
generic enough to adapt to the diverse domains. To tackle the dilemma, we build a versatile visual
embedding model based on ID-based visual metric learning (Ypsilantis et al., 2024; An et al., 2023).
Hunting for a counterpart (v̂i, q̂i, âi) is then performed dataset-by-dataset. A sample (vj , qj , aj) is
recalled as a valid counterpart if it satisfies: γ(evi , e

v
j ) < ϕv and γ(eqi , e

q
j) < ϕq , where γ(·, ·)

is the cosine distance, and ϕv and ϕq are pre-defined thresholds for visual and question similarity,
respectively. Any sample that fails to meet both conditions is dropped.

Difficulty-Based Data Sampling. For the goal of developing visual reasoning capability, qi should
be a difficult question requires reasoning rather than a straightforward one. We define the levels of
difficulty based on the performance of VLM θ: (1) easy samples are with the simple qi which can
be correctly answered by θ without any auxiliary help; (2) median samples are with qi which makes
θ initially fails but succeeds when contrasting with (v̂i, q̂i, âi) based on provided hint ai (the C&H
setting introduced in Fig. 1); (3) hard samples are the ones with qi that cannot be correctly addressed
by θ even with the help of contrasting. We only keep median-difficult contrastive VQA pairs for the
rationale generating.

3.2 CONTRASTING AND RETHINKING

Rationales in the reasoning dataset R = {(vi, qi, ai, ri)}Mi=1 generated by the VLM θ itself include
visual hallucinations. To achieve the goal:

R = {(vi, qi, ai, ri)}Mi=1 → R̃ = {(vi, qi, ai, r̃i)}Mi=1 , (1)

5
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where r̃i is the rectified rationale, we use the contrastive VQA counterpart (v̂i, q̂i, âi) to provoke a
rethinking action to refine ri into r̃i. As illustrated in Fig. 4, this pipeline includes three steps:

Thinking step. Following the design of Zelikman et al. (2022) to provide the VLM θ with ground-
truth answer ai as hints, we prompt the VLM θ to generate the coarse rationale ri for the target VQA
sample (vi, qi, ai) as follows:

ri = f(vi, qi, ai|θ, δt) , (2)
where f is a inference process with a “thinking prompt” δt. Details of δt are in the Sec. A.2.

Contrasting step. Asking the VLM θ to compare the target VQA sample (vi, qi, ai) with its con-
trastive counterpart (v̂i, q̂i, âi) results a contrastive analysis ci which may provide more faithful
visual information:

ci = f(
(
(vi, qi, ai), (v̂i, q̂i, âi)

)
|θ, δc) , (3)

where the δc is the “contrasting prompt”. When ai has the same meaning with âi, δc requires
summarizing the common patterns of vi and v̂i; When ai is different from âi, δc expects the analysis
about the fine-grained differences between vi and v̂i. Details of δc are in the Sec. A.2.

Rethinking step. As demonstrated in Fig. 1, ci is more trustworthy than ri. Hence, we adopt a
LLM ψ to transfer the information from ci to a new reasoning path according to ri:

r̃i = f(ri, ci|ψ, δr) , (4)
where δr is the “rethinking prompt” which asks the LLM ψ to rectify the visual hallucinations in ri
according to the visual information from ci. δr requires LLM ψ responding like directly answer the
question qi, details are in the Sec. A.2.

To ensure the quality of the R̃, we finalize the visual reasoning dataset by employing a text-matching
post-processing to filter out samples that contain incorrect reasoning patterns. The final visual rea-
soning dataset contains 55K VQA samples with corresponding rationales, a.k.a., the VisCoR-55K.

4 EXPERIMENTS

Section 4.1 details our experimental setup, including the supervised finetuning process and the
benchmarks used to evaluate the effectiveness of the VC-STaR. In Section 4.2, we present a compre-
hensive performance comparison. As a self-improving method for visual reasoning, we benchmark
VC-STaR against two primary groups: (1) other self-improving baselines adaptable to visual reason-
ing, and (2) models trained on off-the-shelf visual reasoning datasets. Finally, Section 4.3 provides
in-depth ablation studies on designs of our method, including the contrastive VQA pair construction,
the generalization on other base models, the difficulty sampling strategy, and the effect of the types
of contrastive VQA counterpart.

4.1 SETUP

Implementation Details. Using the LLaMA-factory framework (Zheng et al., 2024), we finetune
the model for 3 epochs via full-parameter supervised finetuning (SFT), with the vision tower’s pa-
rameters frozen. The SFT utilizes a learning rate of 1e-5, a batch size of 256. The inference process
of the finetuned model does not require such a contrastive pipeline illustrated in Fig. 4, and it fol-
lows the standard inference paradigm of VLMs. As for the curation of contrastive VQA pair, the
question similarity threshold ϕq is set to 0.15 and the visual similarity threshold ϕv is set as 0.5 for
datasets of general images. For the datasets including icon, geometry, chart or graph images, the
visual similarity threshold ϕv is set as 0.3. The LLM ψ used in the rethinking step of our rationale
generation pipeline is the open-sourced Qwen2.5-72B.

Evaluation Benchmarks. We employ 6 benchmarks designed to assess its robustness against hal-
lucination, mathematical reasoning, and general abilities. The MMVP (Tong et al., 2024) and Hal-
lusion (Guan et al., 2024a) benchmakrs focus on visual hallucination, and the MathVista (Lu et al.,
2024b) and MathVision (Wang et al., 2024) benchmarks are about the mathematical reasoning. The
MMStar (Chen et al., 2024c) is a highly curated benchmark, composed of purified samples from
multiple benchmarks, e.g., MMMU (Yue et al., 2024) and MMBench Liu et al. (2024b). The MME-
RealWorld benchmark Zhang et al. (2025b) is a large-scale, human-annotated benchmark for diffi-
cult, real-world tasks. Therefore, MMStar and MME-RealWorld are suitable to evaluate the general
perceptual and cognitive abilities under varied scenarios.
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Table 1: Performance comparison with self-improving baselines and the models trained on off-
the-shelf visual reasoning datasets on hallucination, math, and general benchmarks. We adopt the
Qwen2.5VL-7B as our base model, and report its reasoning performance as a baseline. MME-
RW is short for MME-RealWorld Zhang et al. (2025b); R1-OV is short for R1-Onevision (Yang
et al., 2025b). Blue (red) numbers in parentheses represent performance gains (drops) relative to the
baseline. The best performance is in boldface, and the second best is underlined.

Method
Bench. Hallucination Math General Avg.

MMVP Hallusion MathVista MathVision MMStar MME-RW

Base Model 70.0 53.1 68.4 24.0 61.8 55.9 55.5

VQA SFT 74.3(+4.3) 54.2(+1.1) 65.4(-3.0) 19.4(-4.6) 59.7(-2.1) 56.8(+0.9) 55.0(-0.5)

Self-Improving Approaches

STaR(2022) 73.0(+3.0) 55.9(+2.8) 66.9(-1.5) 19.8(-4.2) 58.9(-2.9) 58.1(+2.2) 55.4(-0.1)

Verifier(2024a) 73.7(+3.7) 53.2(+0.1) 67.0(-1.4) 20.3(-3.7) 58.2(-3.6) 56.7(+0.8) 54.9(-0.6)

Feedback(2024) 75.0(+5.0) 53.4(+0.3) 68.8(+0.4) 22.1(-1.9) 63.2(+1.4) 56.0(+0.1) 56.4(+0.9)

Off-the-Shelf Visual Reasoning Datasets

Virgo(2025) 68.0(-2.0) 47.2(-5.9) 63.5(-4.9) 21.5(-2.5) 59.7(-2.1) 29.4(-26.5) 48.2(-7.3)

LLaVA-CoT(2025) 71.7(+1.7) 50.3(-2.8) 68.4(+0.0) 24.4(+0.4) 63.1(+1.3) 59.3(+3.4) 56.2(+0.7)

R1-OV(2025b) 68.0(-2.0) 55.8(+2.7) 68.2(-0.2) 25.4(+1.4) 53.2(-8.6) 46.3(-9.6) 52.8(-2.7)

LPT(2025) 74.0(+4.0) 53.4(+0.3) 69.2(+0.8) 24.2(+0.2) 64.3(+2.5) 56.1(+0.2) 56.9(+1.4)

VC-STaR(Ours) 75.7(+5.7) 56.3(+3.2) 69.7(+1.3) 25.3(+1.3) 62.4(+0.6) 59.3(+3.4) 58.1(+2.6)

4.2 MAIN RESULTS

Comparison with the base model. To evaluate the effectiveness of our approach, we employ
Qwen2.5VL-7B as the base model and adopt the ”think step by step” prompt to enable chain-of-
thought reasoning. We compare our method against this baseline, with results summarized in Ta-
ble 1. VC-STaR demonstrates consistent performance gains across diverse challenging benchmarks,
achieving an average improvement of 2.4%. Notably, it yields substantial improvements of 5.7%
and 3.2% on MMVP and the Hallusion Benchmark, respectively, validating its efficacy in mitigating
hallucinations within the reasoning process. Our approach also shows its enhanced reasoning capa-
bilities on mathematical benchmark, i.e., MathVista and MathVision. Furthermore, the improvement
on the MMStar and MME-RealWorld underscore the generalizability of the VC-STaR under varied
challenging general-purpose scenarios.

For qualitative validation, Figure 5 provides visual comparisons that offer deeper insights. The visu-
alizations reveal that our model excels at grounding its textual rationales in the corresponding visual
evidence. This capability remains robust even when confronted with visually complex patterns,
thereby effectively mitigating hallucinations.

Comparison with self-improving baselines. We reproduce three self-improving baselines and
compare VC-STaR against them. Each baseline is applied to the Qwen2.5VL-7B base model and
generates rationales on VisCoR-55K for finetuning, differing in their core improvement mechanism:
(1) STaR (Zelikman et al., 2022): Leverages ground-truth answers to regenerate rationales for in-
correct predictions. (2) Verifier (Lu et al., 2024a): Filters out visually hallucinated rationales via
a self-verification step (Zhang et al., 2025a) to ensure visual grounding. (3) Feedback (Qu et al.,
2024): Refines rationales based on self-generated feedback in a recursive manner. Table 1 reveals a
critical trade-off: existing self-improving methods boost performance on hallucination benchmarks
at the expense of math and general capabilities. Our approach mitigates this pattern and achieves
robust, consistent performance gains.

Comparison with off-the-shelf visual reasoning datasets. We also evaluate VC-STaR against base
model finetuned on four off-the-shelf visual reasoning datasets. These datasets represent diverse
strategies for rationale generation. For instance, Virgo (Du et al., 2025) makes the VLM think slowly
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Question

Qwen2.5VL-7B

The white sign in the picture has a red circle with a line through it, which is
a universal symbol indicating "no parking." This sign is typically used to
prohibit vehicles from parking in a specific area for a certain period of time.
The exact duration or conditions under which parking is prohibited would be
specified by additional text on the sign, but the symbol itself clearly
indicates that parking is not allowed.

There are two forks visible in the image, one on each plate with the cake
slices.

Qwen2.5VL-7B
“think step by step”

The white sign in the image has a red circle with a line through it, which is a
universal symbol indicating "no" or "prohibited." Specifically, this sign is a
"No Parking" sign. It means that parking is not allowed in the area where
the sign is posted. This type of sign is typically used to prevent vehicles
from blocking traffic or causing congestion in certain areas.

To determine how many forks are visible in the image, let‘s follow these
steps: 1. Identify the objects: Look closely at the image and identify all the
objects that could be forks. 2. Count the forks: - There is one fork placed on
the napkin next to the slice of cake on the left plate. - There is another fork
partially visible on the right side of the image, resting on the plate with the
chocolate cake. 3. Verify the count: Double-check to ensure no additional
forks are hidden or partially obscured. After following these steps, we can
conclude that there are two forks visible in the image.

Qwen2.5VL-7B
+

VC-STaR

<think>The white sign in the image contains a symbol that indicates "No
Right Turn." This is evident because the sign features an arrow pointing to
the right, which is universally recognized as a prohibition against turning
right at that location. The absence of any conflicting symbols or additional
text confirms this interpretation. Furthermore, the consistency in traffic
signage conventions reinforces the conclusion that the sign's purpose is to
prohibit right turns.</think><answer>The white sign means "No Right Turn."
It prohibits vehicles from making a right turn at that particular
location.</answer>

<think>The white sign in the image contains a symbol that indicates "No
Right Turn." This is evident because the sign features an arrow pointing to
the right, which is universally recognized as a prohibition against turning
right at that location. The absence of any conflicting symbols or additional
text confirms this interpretation. Furthermore, the consistency in traffic
signage conventions reinforces the conclusion that the sign's purpose is to
prohibit right turns.</think><answer>The white sign means "No Right Turn."
It prohibits vehicles from making a right turn at that particular
location.</answer>

What is the meaning 
of the white sign?

How many forks are 
visible in the image?

Figure 5: Qualitative Comparison with base model. The second row shows the directly response
from the base model, the third row shows the response when the base model is prompted to “think
stey by step”, the last row shows the model improved with our VC-STaR. We highlight the key visual
evidences with red boxes for clarity of visualization. More results are in Sec. A.3.
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Figure 6: Performance comparison with other contrastive VQA pair construction strategies.
Rationales in all settings are generated from the proposed VC-STaR. The red dashed line represents
the base model (Qwen2.5VL-7B) performance.

with purely textual rationales. In contrast, LLaVA-CoT (Xu et al., 2025) leverages hand-crafted
templates filled by the powerful GPT-4o (OpenAI, 2024a). Other approaches first convert visual
information into text; R1-Onevision (Yang et al., 2025b) generates rationales from image captions
using the DeepSeek-R1 model (Guo et al., 2025), while Long Perceptual Thought (LPT) (Liao
et al., 2025) extends this by using dense captions (Onoe et al., 2024) and keywords like “wait”
to elicit more detailed outputs from a similar LLM. In our experiments, we directly finetune the
base model on each of these datasets. Based on the results shown in Table 1, we can draw the
following conclusion: (a) Enhancing visual reasoning with purely textual rationales from Virgo is
ineffective. This strongly indicates that visual modality matters. (b) The model trained on LLaVA-
CoT suffers limited improvement, which demonstrates that the hand-crafted template struggle to
generalize across diverse VQA tasks. (c) The models trained on datasets generated by DeepSeek-R1
based on captions achieves notable improvements. However, the performance gap between them and
ours highlights the clear advantage of our visually-native approach over relying on textual captions.

4.3 ANALYSIS

Can contrastive VQA pairs constructed in other ways? To answer this, we explore alternative
strategies for curating contrastive VQA pairs. The first strategy is editing-based, utilizing the HQ-
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Table 2: Evaluation of the effect of VC-STaR on other
base models. Blue numbers in parentheses represent
performance gains.

Model VC-STaR Hallusion MathVision MMStar

Qwen2.5VL ✘ 46.9 18.4 55.0
3B ✔ 53.2(+6.3) 21.9(+3.5) 55.7(+0.7)

InternVL2.5 ✘ 48.2 21.3 61.1
8B ✔ 55.4(+7.2) 23.4(+2.1) 62.5(+1.4)

Table 3: Effect of the easy samples adding
to VisCoR-55K. Red numbers in paren-
theses represent performance drops.

Neasy Hallusion MathVision MMStar

0k 56.3 25.3 62.4

+20k 52.2(-4.1) 23.3(-2.0) 61.3(-1.1)

+40k 55.7(-0.6) 21.9(-3.4) 59.5(-2.9)

Table 4: Analysis about the effect of positive and negative contrastive VQA counterparts on GQA
benchmark. We adopt the Qwen2.5VL-7B as our base model, and report its reasoning performance
as a baseline. QR: query for relationships; QA: query for attributes; QG: query for global informa-
tion; QC: query for category; CA: comparing of attribute; CC: choosing the object of one certain
category; CAt: choosing the object of one certain attribute. Blue (red) numbers in parentheses rep-
resent performance gains (drops) relative to the baseline.

Setting Pos. Neg. QR QA QG QC CA CC CAt Total

Base Model - - 43.8 51.4 31.5 44.4 30.2 60.6 44.4 45.4

VC-STaR ✔ ✘ 48.3(+4.5) 52.8(+1.4) 46.8(+15.3) 57.1(+12.7) 42.9(+12.7) 60.1(-0.5) 44.4(+0.0) 50.6(+5.2)

VC-STaR ✘ ✔ 51.6(+7.8) 56.8(+5.4) 33.9(+2.4) 59.2(+14.8) 46.0(+15.8) 70.8(+10.2) 66.7(+22.3) 53.7(+8.3)

VC-STaR ✔ ✔ 53.5(+9.7) 57.3(+5.9) 46.3(+14.8) 55.6(+11.2) 36.5(+6.3) 72.7(+12.1) 55.6(+11.2) 54.7(+9.3)

Edit dataset (Hui et al., 2025). By prompting an LLM to create questions from editing instructions,
we generate pairs where an original and an edited image yield different answers. The second strat-
egy is caption-based, leveraging a dense caption dataset, i.e.DOCCI (Onoe et al., 2024). For this,
we instruct an LLM to parse dense captions of visually similar images and generate a question that
hinges on their subtle differences. For both strategies, we generate rationales for these newly cre-
ated contrastive pairs using our proposed VC-STaR and finetune the Qwen2.5VL-7B. The results,
presented in Fig. 6, lead to several observations: (a) VC-STaR is broadly effective, but performance
is data-dependent. This is attributable to the biased data distribution of HQ-Edit and DOCCI, high-
lighting a key limitation of their curation scope. (b) VisCoR-55K includes contrastive pairs from a
broader range of reasoning tasks, resulting in a more balanced performance.

Does VC-STaR generalize to other base models? We conduct experiments on Qwen2.5VL-3B
and InternVL2.5-8B (Chen et al., 2025). Following the same self-improving procedure, we use
VC-STaR to generate visual reasoning datasets from our VisCoR contrastive pairs, specifically for
the two base models. We then finetune the Qwen2.5VL-3B and InternVL2.5-8B via the LLaMA-
factory and SWIFT (Zhao et al., 2025), respectively. The results, presented in Table 2, demonstrate
the model-agnostic effectiveness of our approach. These consistent and significant gains confirm that
VC-STaR is a versatile and broadly applicable strategy for enhancing the visual reasoning ability.

What is the effect of easy samples on visual reasoning? Starting with our VisCoR-55K datasets,
we incrementally add easy samples of two batches with 20K each. As illustrated in Table 3, we
observe that the inclusion of easy samples is harmful. Specifically, when the number of easy samples
increases, performance decreases. Therefore, we do not use the easy samples to avoid the potential
“overthink” for straightforward problems.

How the contrastive VQA pairs of different types contribute? A contrastive VQA pair can be cat-
egorized as “positive” if both samples yield the same answer, and “negative” if their answers differ.
To investigate the respective contributions of these two types of counterparts to our method’s per-
formance, we conducted a controlled experiment on the GQA dataset (Hudson & Manning, 2019).
The structured nature of GQA allows for the reliable curation of both positive and negative pairs via
simple text matching. We applied VC-STaR to three distinct training sets: one generated from only
positive contrastive pairs, one from only negative pairs, and a combined set including both. The
results, detailed in Table 4, reveal a clear and significant trend. While both types of pairs are benefi-
cial, negative counterparts are substantially more effective than positive ones, and their combination
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yields the optimal total gain, highlighting their complementary roles. We attribute the superior effi-
cacy of negative counterparts to their ability to induce stronger semantic contrast. Accordingly, our
approach incorporates both positive and negative pairs without restriction to achieve optimal gain.

5 DISCUSSION

Rethinking VC-STaR from a cognitive perspective. Learning and reasoning are inherently com-
parative and contrastive processes. Humans rarely learn concepts in isolation. Instead, our human-
beings refine our understanding by comparing examples, identifying distinguishing features, and
reasoning through analogies and differences. The prototype theory concludes this cognitive be-
havior as that our human-beings identify new identities by comparing them with the prototype
concept (Rosch, 1975). Besides, the structure-mapping theory says that analogical reasoning can
recognize the relationships shared by two domains (Gentner, 1983). This mapping can be treated as
a fine-grained contrasting process. In our work, the contrasting process provide an opportunity to
learn visual concept from the prototype, and our rethinking strategy reinforce the structure-mapping
by generating new reasoning paths via contrasting. Through this work, we hope to highlight the
potential of porting such human-like cognitive behaviors to the domain of reasoning.

Computational cost of the VC-STaR. Our approach introduces a modest cost in data generation,
while maintaining a fine-tuning cost comparable to existing self-improving frameworks like STaR.
We train the 7B model using the LLaMAFactory framework once the VisCoR-55K dataset is gen-
erated. This process takes approximately 4 hours on a single node with 8×A800 GPUs. This cost
is nearly identical to the standard fine-tuning procedure in approach like STaR. The additional cost
stems from our data generation pipeline. The one-time contrastive VQA pair mining step processes
approximately 7 samples per second, accelerated by our implementation featuring multi-processing
concurrency and batch-wise computation. The rethinking step generates reasoning paths at about 1
sample per second, thanks to the advanced vLLM framework Kwon et al. (2023) for fast inference.
We argue this is a reasonable and acceptable investment to create our reasoning dataset.

6 CONCLUSION

In this work, we demonstrate that visual hallucination, a critical bottleneck for VLM reasoning, can
be effectively mitigated to achieve better visual reasoning ability through the lens of contrast. Our
key finding is that VLMs can see better by contrast. This phenomenon motivates us to propose
the VC-STaR. The VC-STaR refines hallucinatory reasoning paths through analysis over curated
contrastive VQA pairs, which yields our high-quality VisCoR-55K. Finetuning on VisCoR-55K
delivers a consistent performance gain across five benchmarks targeting hallucination, math, and
general reasoning, significantly surpassing other self-improving baselines and models trained on
state-off-the-art visual reasoning datasets.

ETHICS STATEMENT

We confirm that this research adheres to the ICLR Code of Ethics. The datasets utilized for this
work are all publicly accessible and intended for academic research. No commercial or private data
was used, ensuring that our study is free from associated privacy concerns. The authors take full
responsibility for the ethical conduct of this research.
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To ensure the reproducibility of our results and to foster future research, we commit to making our
resources publicly available upon the acceptance of this paper. These resources will include: our
newly curated VisCoR-55K dataset, and the final finetuned model weights. Crucially, our dataset
release will not only contain the final rationales generated by VC-STaR but also the corresponding
contrastive VQA counterparts used to produce them. We believe this unique data will be a valuable
resource for the community. We hope that providing this data will enable researchers to explore the
role of contrast in promoting visual reasoning and other cognitive abilities across a wider range of
settings, such as reinforcement learning.
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A APPENDIX

A.1 DETAILS ABOUT VISCOR-55K
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Figure 7: Statistics of the contrastive VQA pair curation. The bar chart (left y-axis) displays
the total number of contrastive VQA pairs found in each dataset, with colors indicating the data
category. The line graph (right y-axis) plots the ratio of hard samples identified within those pairs
for each dataset. In the upper right, the pie charts provide a categorical breakdown of the sample
distribution.

The construction of our VisCoR-55K dataset is a multi-stage process involving efficient pair cu-
ration, difficulty-based filtering, and quality-controlled rationale generation. The entire pipeline is
designed to produce a high-quality, challenging visual reasoning dataset. Our curation process for
contrastive VQA pairs begins with a dataset-by-dataset, divide-and-conquer strategy. To maintain
computational tractability and avoid a costly O(n2) search complexity across the entire data pool,
we implement a greedy, first-match-exit search algorithm: for each sample within a given source
dataset, the search for a contrastive VQA counterpart terminates as soon as the first valid match is
identified. This efficient approach allows us to scale the curation process effectively. Following this
procedure, we initially curated a large pool of 240k raw contrastive VQA pairs. The distribution is
visualized by the bar chart in Fig. 7, with the left y-axis indicating the number of samples.
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This initial pool of 240k pairs then undergoes a rigorous filtering and refinement pipeline. First,
we apply the difficulty-based sampling strategy (as detailed in Sec. 3.1) to select only the hard
samples, which are most effective for enhancing the model’s reasoning capabilities. The proportion
of hard samples varies significantly across datasets, and is illustrated by the line graph in Fig. 7
(plotted against the right y-axis). This critical filtering step narrows our collection down to 86k
challenging contrastive pairs. Subsequently, we leverage the contrasting and rethinking pipeline to
generate a high-quality rationale for each of these 86k samples. As a final quality control measure,
we employ a text-matching-based post-processing step to automatically filter out any rationales
containing unexpected or erroneous reasoning patterns. This process culminates in our final VisCoR-
55K dataset, a collection of high-fidelity visual reasoning samples ready for finetuning. The pie
charts in Fig. 7 provide a categorical overview of the data composition throughout this pipeline.

A.2 PROMPTS FOR THINKING, CONTRASTING, AND RETHINKING

As introduced in Sec. 3.2, 3 steps lead to the final rationales. We design 3 prompts for the thinking,
contrasting, and rethinking steps. The thinking prompt is:

You are a helpful assistant to answer the question by thinking step by step.
### INPUT ###
- Image: The image that serves as the basis for answering the question.
- Question: The question pertains to the content of the image.
- Answer: The correct answer for the question about the image.
### INSTRUCTION ###
- You should analyze the question and decide to focus on which visual content.
- You should parse the details of visual content based on the question.
- You should conclude the visual evidence to answer the question.
### OUTPUT ###
- The returned content MUST be in the natural flow.
<Image><Question><Answer>

The contrasting prompt is:

You are a helpful assistant to think step by step for discriminating between two images to
answer two synonymous questions.
### INPUT ###
- First Image: One image that serves as the basis for answering the question.
- Second Image: The other image that serves as the basis for answering the question.
- First Question: The question pertains to the content of the First Image.
- Second Question: The question pertains to the content of the Second Image.
- Answer: The correct answer for the question about the images.
### INSTRUCTION ###
- When the correct answers for the two images are the same, you should summarize the com-
mon patterns in the visual content of the two images.
- When the correct answers for the two images are different, you should identify the differ-
ences in visual content between two images.
- Conclude the visual evidence to answer the questions respectively.
### OUTPUT ###
- Return in the natural flow.
<FirstImage><SecondImage>
<FirstQuestion><SecondQuestion><Answer>

The “Answer” here is the concatenation of both samples. The rethinking prompt is:
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You are a helpful assistant to rewrite the coarse rationale into a more correct and more
logical one based on a contrastive analysis.
### INPUT ###
- Question: The question to be answered based one given target image.
- Answer: The correct answer to answer the question.
- Coarse Rationale: The naive reasoning process answering the question.
- Contrastive Analysis: The reasoning process when comparing the first image with the
second image for synonymous questions.
### INSTRUCTION ###
- The contrastive analysis is more reliable than the coarse rationale.
- If the answers in the contrastive analysis are the same for the two images, the model
should formulate a summary reasoning schema. This schema must summarize the key visual
features and confirm that the provided visual evidence aligns with this schema to derive the
conclusion.
- If the answers in the contrastive analysis are different for the two images, you can employ
backward chaining hypothesizing the visual cues that would be present if the alternative
answer were correct, and then highlighting the critical distinctions between this hypothetical
scenario and the actual visual evidence.
### OUTPUT ###
- The output MUST be in the format of ’<think>the thinking con-
tent</think><answer>the answering content</answer>’.
- The content of thinking content MUST be between the special token of ’<think>’ and
’</think>’
- The content of answering content MUST be between the special token of ’<answer>’
and ’</answer>’.
<Question><Answer><CoarseRationale><ContrastiveAnalysis>

A.3 ADDITIONAL QUALITATIVE RESULTS

Examples of rationales generated by VC-STaR in VisCoR-55K are illustrated in Fig. 8. After ob-
taining the model finetuned with VisCoR-55K on Qwen2.5VL-7B, we test it on some customized
visual question answering cases and observe the interesting results shown in Fig. 9.

A.4 STATEMENT ON THE USE OF LARGE MODELS

During the preparation of this paper, we utilized the large language model to assist with grammar
checking and language polishing. The outputs of the model were used solely as a reference to
improve the clarity and readability of our writing. All final content presented in this paper was
written and verified by the human authors, who take full responsibility for its accuracy and integrity.
The core intellectual contributions of this work, e.g., initial motivation, experimental design, and
execution of the experiments, were developed exclusively through discussions among the authors,
with no involvement from any large language model.
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Question Rationales

<think>To determine the figure that logically completes the sequence, let's carefully analyze the target image: 1. **Shape 
Analysis**: - The shapes in the sequence are pentagons, and they remain consistent in form across all positions. 2. **Size 
Progression**: - Observing the figures, there is a clear trend of increasing size as the sequence progresses from left to right and 
top to bottom. Each subsequent shape grows larger than the previous one. 3. **Color/Pattern Observation**: - There is no 
apparent change in color or shading patterns influencing the placement of the figures. The consistency in color suggests that 
size is the primary factor driving the sequence. 4. **Conclusion Based on Size Increase**: - Given the established pattern of 
gradual size expansion, the next figure in the sequence must continue this trend by being larger than the preceding shapes while 
maintaining the same form. The details in the image confirm that the progression relies solely on incremental growth in size 
without introducing additional complexities such as color changes or new shapes. Therefore, the figure that aligns perfectly with 
this principle is option D.</think><answer>D</answer>

<think>The image shows two red London United buses parked side by side, with their front ends visible. 
Therefore, based on this observation: There are **two** buses shown in the 
picture.</think><answer>2.</answer>

<think>The image shows an animal positioned in such a way that only one horn is clearly visible, as the rest of 
its head is partially obscured by an archway. This indicates that while there may be another horn present, it is 
not visible from this angle or due to the obstruction. The visual evidence supports the conclusion that only one 
horn is identifiable in the given view.</think><answer>1</answer>

<think>To determine the measure of angle A, we start by analyzing the given information and leveraging geometric properties. 
Triangle ABC is inscribed in circle O, with D as the midpoint of side BC. Since D is the midpoint, OD is perpendicular to BC, and 
OD extended intersects the circle at point E. Connecting EC, we are given that angle OEC is 65°. From the property of isosceles 
triangles, since OE and OC are radii of the circle, triangle OEC is isosceles, and thus angles OEC and OCE are equal. Therefore, 
angle EOC can be calculated as: \[ \text{Angle EOC} = 180^\circ - 2 \times 65^\circ = 50^\circ. \] Next, because D is the midpoint 
of BC and OD is perpendicular to BC, it follows that CE equals BE. This symmetry implies that angle EOB is also 50°. 
Consequently, the central angle BOC, which subtends arc BC, is twice angle EOB: \[ \text{Angle BOC} = 2 \times 50^\circ = 
100^\circ. \] Finally, angle A, being an inscribed angle subtending the same arc BC, is half of the central angle BOC: 
\[ \text{Angle A} = \frac{1}{2} \times 100^\circ = 50^\circ. \] This reasoning aligns with the specific details provided in the problem 
and confirms the measure of angle A.</think> <answer>A: 50°</answer>

How many buses are there?

Choose the figure that would 
logically complete the sequence.

How many horns are visible?

In the given diagram, triangle ABC is 
inscribed within circle O, and D is the 
midpoint of side BC. If OD is extended to 
intersect circle O at point E, and EC is then 
connected, what is the measure of angle A if 
angle OEC is 65°? 
Choices: A: 50° B: 55° C: 60° D: 65°

Figure 8: Examples of rationales in VisCoR-55K.

Question Qwen2.5VL-7B Qwen2.5VL-7B “think step by step” Qwen2.5VL-7B+VC-STaR

The image shows a group of people in what 
appears to be a sports stadium, reacting with 
shock and surprise. The person in the center 
is holding a baseball bat, which could 
suggest that something unexpected or 
dramatic has occurred on the field, such as a 
foul ball hitting someone or a player making 
an extraordinary play. The expressions and 
body language of the spectators indicate a 
sudden and intense reaction to an event that 
has just taken place. Without additional 
context, it's not possible to determine the 
exact cause of their shock, but it is clear that 
whatever happened was surprising and 
possibly dangerous.

To determine what makes the people in the image so 
shocked, let's analyze the context and details: 1. Setting: 
The image appears to be taken at a baseball game, as 
indicated by the presence of a baseball bat and the crowd's 
attire, which includes team colors and logos. 2. Action: One 
person is holding a baseball bat, which suggests that 
something unexpected or dramatic has occurred on the field. 
This could be a play that resulted in a controversial or 
surprising outcome, such as a home run, a foul ball, or an 
unusual play. 3. Reactions: The people in the image are 
displaying strong reactions—some are covering their faces 
with their hands, while others are looking towards the field 
with expressions of shock or surprise. This indicates that 
whatever happened was unexpected and likely had a 
significant impact on the game. 4. Contextual Clues: The 
fact that the bat is being held up suggests that it might have 
been used in a way that surprised the spectators, possibly 
due to a foul ball or a hit that went into the stands, leading 
to a potential injury or disruption. Given these observations, 
the people are likely shocked because of a surprising event 
on the field, such as a foul ball hitting someone in the 
stands, a controversial play, or an unexpected turn of 
events during the game. The exact cause would depend on 
the specific circumstances of the game, but the general 
reaction points to a moment of high drama or surprise.

<think>The image depicts a scene at what 
appears to be a baseball game, with 
spectators showing expressions of surprise 
or shock. The key detail is the presence of a 
bat in mid-air, which suggests an unexpected 
event such as a foul ball or a player's swing. 
This aligns with the idea that something 
sudden and surprising has occurred during 
the game, causing the audience’s reaction. 
While other scenarios might involve different 
causes for shock—such as accidents or 
unrelated incidents—the visual evidence 
here points directly to the bat as the source 
of their astonishment.</think><answer>The 
people are shocked because a bat has been 
thrown into the crowd, likely during a 
moment of excitement or surprise at the 
baseball game.</answer>

The car parked in the parking spot 
labeled "33" is blue.

The car on the parking spot labeled 
"33" is blue.

<think>The question asks about the color of the 
car in parking spot 33. The analysis shows that 
there is no car occupying parking spot 33 in the 
image, as it appears empty. Since there is no 
vehicle present in this specific spot, it is 
impossible to determine any color associated 
with it. This conclusion aligns with the 
observation that the absence of a car directly 
answers the question.</think> <answer> There is 
no car parked in parking spot 33, so I cannot 
determine its color.</answer>

The girl with a single braid is working 
on the problem “11	 − 	2”. The answer 
to this problem is 9.

To determine what answer the girl with a 
single braid will written on the board, we 
need to solve the mathematical expression 
she is working on: The expression on the 
board for the girl with a single braid is : 7×2. 
Let’s break it down step by step: 1. Identify 
the operation: the operation here is 
multiplication. 2. Multiply the numbers: 7 
multiplied by 2 is 14. So, the girl with a single 
braid will write the number 14 on the board.

<think>To answer the question “What answer will the girl with a 
single braid write on the board?”, let‘s break down the analysis 
step by step: 1. Identify the Girl with Single Braid: - The girl with a 
single braid is located on the far left side of the image. 2. Position 
on the Board: - She is positioned directly below the equation (3 
\times 3 =). 3. Action with Chalk: - The girl is holding a piece of 
chalk, indicating that she is ready to write. 4. Conclusion from 
Visual Evidence: The equation (3 (times 3) equals 9. The girl is 
positioned directly below this equation, suggesting she will write 
the result. Based on these observations, it is clear that the girl 
with a single braid will write the number 9 on the board as the 
solution to the equation (3 \times 3 =). Therefore, the answer is: 
The girl with a single braid will write the number 9 on the
board.</think><answer> The girl with a single braid will write the 
number 9 on the board.</answer>

What makes the people 
so shocked?

What color is the car on 
the parking spot 33?

What answer will the girl with a
single braid write on the board? 

Figure 9: Additional qualitative comparison.
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