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ABSTRACT

While previous approaches to 3D human motion generation have achieved no-
table success, they often rely on extensive training and are limited to specific
tasks. To address these challenges, we introduce Motion-Agent, an efficient
conversational framework designed for general human motion generation, edit-
ing, and understanding. Motion-Agent employs an open-source pre-trained lan-
guage model to develop a generative agent, MotionLLM, that bridges the gap
between motion and text. This is accomplished by encoding and quantizing mo-
tions into discrete tokens that align with the language model’s vocabulary. With
only 1–3% of the model’s parameters fine-tuned using adapters, MotionLLM
delivers performance on par with diffusion models and other transformer-based
methods trained from scratch. By integrating MotionLLM with GPT-4 without
additional training, Motion-Agent is able to generate highly complex motion se-
quences through multi-turn conversations, a capability that previous models have
struggled to achieve. Motion-Agent supports a wide range of motion-language
tasks, offering versatile capabilities for generating and customizing human mo-
tion through interactive conversational exchanges.

1 INTRODUCTION

Large Language Models (LLMs) have recently attracted much attention in both industry and
academia. Many LLMs, such as GPT-4 (Achiam et al., 2023), LLaMA (Touvron et al., 2023),
Gemma (Team et al., 2024a), have shown their advanced capabilities, robustness and generaliza-
tion across various downstream tasks. These progresses have motivated researchers to explore the
application of LLMs in multimodal tasks, integrating them with modalities such as images (Koh
et al., 2024), videos Zhang et al. (2023a), audio (Borsos et al., 2023; Huang et al., 2023), and more,
resulting in promising outcomes in understanding these different modalities. However, the utiliza-
tion of LLMs in the context of multimodal generation, particularly of 3D human motion, remains
underexplored, which is crucial for advancing robots and humanoid applications.

Research in 3D human motion has explored various language-related tasks, including text-
conditioned motion generation (Zhang et al., 2023b; Guo et al., 2022a; Tevet et al., 2023; Zhang
et al., 2022; Shafir et al., 2024; Guo et al., 2024; Jiang et al., 2024b), motion captioning (Guo et al.,
2022b; Jiang et al., 2024b), motion reasoning (Endo et al., 2023; Jiang et al., 2024c). However,
existing methods often require extensive training, leading to high computational demands and in-
efficiency. These models are typically trained on task-specific data, making them data-dependent
and limiting their ability to generalize across diverse scenarios. They also struggle with handling
long, complex prompts with performance degradation. Furthermore, most existing models lack
the capability to support multi-turn conversational interactions, thus limiting both the generation
and refinement processes, and restricting the ability to create dynamic, interactive systems that can
seamlessly generate and allow editing motions through dialogue.

Moving forward with the most recent LLM and MLLM development, in this work, we propose
Motion-Agent, a multimodal framework that leverages the generalization and flexibility of pre-
trained LLMs. Central to the framework is our new generative agent, MotionLLM, the incorpo-
ration of which eliminates the need for extensive pre-training by employing lightweight adapter-
based fine-tuning of a pre-trained LLM. Unlike MotionChain (Jiang et al., 2024c), which requires
pre-training and large datasets for extensive instruction tuning to achieve conversational control,
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User$  Can you generate a motion containing an example 
of both an aerobic exercise and an anaerobic exercise?
Motion-Agent$

cont’d
User$  Well, I don’t want the person to do push-ups now, 
can you make the person do squats instead?
Motion-Agent$

User$  After the exercise, the person is tired and proceeds 
to sit down to rest.
Motion-Agent$

User$  What is this person doing in the gym? What is the 
type of the exercise and what are the training goals?

Motion-Agent$ The person is running on a treadmill. 
Running on a treadmill is a type of aerobic exercise 
that primarily focuses on cardiovascular fitness. The 
training goal can vary but often includes improving 
heart health, increasing stamina and endurance, losing 
weight, or preparing for competitive running events.

User$  Explain the motion you have just generated in 
detail.
Motion-Agent$ The motion sequence generated involves 
two exercises. First, the person performs jumping 
jacks, which is a physical jumping exercise where the 
body's limbs are moved repetitively in and out while 
the hands clap overhead, then quickly return to the 
sides. This exercise is aerobic, helping to increase 
heart rate and improve cardiovascular fitness. Second, 
the person does push-ups, which involve repeatedly 
raising and lowering the body using the arms while 
lying face down. This exercise is anaerobic, focusing 
on strengthening the upper body and core muscles by 
resisting body weight.

User$  Replace squats with running in place, and I want the 
person to sit on a chair in front instead of on the ground.
Motion-Agent$

Figure 1: Multi-turn Conversation Between User and Motion-Agent. First Turn: Motion Un-
derstanding; Second Turn: Motion Generation; Third Turn: Motion Understanding with Previously
Generated Motion; Fourth Turn: Motion Editing; Fifth Turn: Continue Motion Generation; Last
Turn: Motion Editing on Long Sequence. Note that all turns are continuous.

Motion-Agent integrates MotionLLM with GPT-4 and leverages the LLM’s inherent conversational
capabilities without additional training. This enables efficient, customizable motion generation, un-
derstanding, and multi-turn editing across various tasks.

In Motion-Agent, we first train a pair of motion tokenizer and detokenizer. The motion tok-
enizer encodes motions into motion embeddings and quantizes them into a set of discrete LLM-
understandable tokens using a codebook, while the detokenizer reconstructs tokens back to their
original continuous forms. This tokenizer-detokenizer pair enables the translation between continu-
ous motion sequences and discrete tokens, facilitating interaction with the LLM while still allowing
for the recovery of the original motions from the tokens. MotionLLM is trained by enriching a
pre-trained LLM’s vocabulary with these additional motion tokens, while keeping the original text
tokens unchanged. Given that motions can be represented as temporal sequences, our tokenization
process converts motions into token sequences akin to sentences in natural language. MotionLLM
translates between text token sequences and motion token sequences. On top of this, GPT-4 acts as
a coordinator, decomposing user instructions to determine the number of calls to MotionLLM and
how to structure those calls effectively. The resulting motion token sequences from multiple calls
are concatenated and decoded by the detokenizer to produce the final output.

Our Motion-Agent framework leverages pre-trained LLMs in two key ways: (1) fine-tuning a
lightweight LLM via adapters to serve as a text-motion translation agent, and (2) using an LLM
for conversational interactions without training, thus facilitating multi-turn dialogue for refining
generated motions and producing extended motions by iteratively generating and concatenating se-
quences. Despite training only a small number of parameters, MotionLLM can achieve competitive
results in motion generation (text to motion) compared to those trained-from-scratch models with
specialized architectures. In motion captioning (motion to text), MotionLLM achieves state-of-the-
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art performances, generating semantically accurate and contextually appropriate text descriptions.
MotionLLM enables bidirectional translation between text and motion, outperforming other au-
toregressive models while using fewer trainable parameters, making it an ideal fit for the overall
Motion-Agent framework. By combining MotionLLM with GPT-4, Motion-Agent enables versa-
tile dialogue-based motion generation and reasoning, without requiring specific datasets or extra
training for these tasks.

To summarize, our contributions include:

• We introduce a simple, efficient conversational framework, Motion-Agent, that utilizes pre-
trained LLMs and produces strong results in various motion-language tasks.

• We demonstrate the flexibility and versatility of our method by achieving highly customiz-
able motion-language tasks, including long and complex motion generation, multi-turn
editing, and multi-turn reasoning.

2 RELATED WORK

Multimodal LLMs Recent advancements have integrated large language models (LLMs) with mul-
tiple modalities such as image, video, music, audio, and point cloud using different approaches (Liu
et al., 2024; Han et al., 2024; Wu et al., 2023b; Chen et al., 2023a; Gao et al., 2023). Various
approaches have been proposed to align different modalities. For instance, Video-LLaMA (Zhang
et al., 2023a) leverages Q-formers to bridge the gap between modalities. PointLLM (Xu et al.,
2023b) utilizes a projector to align the feature space of point clouds with the feature space of the
LLM. VALLE-X (Zhang et al., 2023d) and LlamaGen (Sun et al., 2024) tokenize inputs from var-
ious modalities to connect them with language. On the other hand, emerging research (Wu et al.,
2023a; Lu et al., 2024; Du & Kaelbling, 2024) demonstrates promising results with compositional
language models. These models, often composed of smaller specialized components, excel in data
efficiency and perform well on unseen distributions, aligning with the design of our framework.

3D Human Motion Synthesis Modern works can generate human motions based on a variety of
inputs such as action labels (Petrovich et al., 2021; Lee et al., 2023; Guo et al., 2020; Xu et al.,
2023a), textual descriptions (Jiang et al., 2024b; Wang et al., 2023; Zhang et al., 2023b; Guo et al.,
2022b; Zhou et al., 2023; Tevet et al., 2023; 2022; Guo et al., 2024; Zhang et al., 2022; Dabral
et al., 2023; Petrovich et al., 2022; Zhang et al., 2023c; Pinyoanuntapong et al., 2024), control sig-
nals (Xie et al., 2024; Wan et al., 2023; Petrovich et al., 2024; Huang et al., 2024; Goel et al., 2023),
music or audio (Dabral et al., 2023; Tseng et al., 2022; Zhou & Wang, 2023; Siyao et al., 2022;
2023), and others (Zhong et al., 2024). Particularly, text-guided 3D motion generation or text-to-
motion has garnered significant interest. Notably, some diffusion models have emerged as powerful
tools, such as Tevet et al. (2023); Shafir et al. (2024); Wang et al. (2023); Zhou et al. (2023); Xie
et al. (2024); Zhang et al. (2022). Despite the proficiency in generating motions, diffusion models
necessitate manual length control of the generated motions with limited flexibility. In addition to
diffusion models, which employ continuous motion representation, discrete token-based methods
utilizing Vector Quantized Variational Autoencoders (VQ-VAEs) have also demonstrated promis-
ing results. Notable examples include TM2T (Guo et al., 2022b), T2M-GPT (Zhang et al., 2023b),
MotionGPT (Jiang et al., 2024b) and MoMask (Guo et al., 2024). Most existing works in both
approaches focus on conditional generation to translate between modalities. In our work, we em-
phasize generating human motion through complex, customized user conversations while proposing
a training-efficient approach to bridge these modalities using pre-trained LLMs.

Conversational Control For Human Motion Generating 3D human motion through conversation
is more flexible, which allows users to customize versatile requests and control motion via iterative
refinement. While models like MotionGPT (Jiang et al., 2024b) handle some simple single-turn
tasks using instruction tuning, and MotionChain (Jiang et al., 2024c) supports multi-turn interactions
by sampling single-turn data into multi-turn training data, both methods rely heavily on extensive
instruction tuning and additional data. In contrast, our Motion-Agent framework uses a composition
of LLMs to eliminate extra training. By training the translation agent, MotionLLM, solely on the
original text-motion paired data, our method eliminates the need for further data or training, resulting
in higher efficiency and broader generalizability.
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GPT4

MotionLLM

Motion 

Detokenizer

Text 

Detokenizer

# list of optional commands to call
MotionLLM.generate(“Description:…")
MotionLLM.caption(motion_file)

</>

Text 

Tokenizer

Motion 

Tokenizer

Mixed tokens

LLM+LoRA

Motion/Text 

tokens

Generated 

tokens

MotionLLM

A person first jumps up and 

down, then he runs in a circle, 

after that he do some backflips.

What is the job of the man 

doing? 

input = motion_file

The person is probably a 

sportsman.

Figure 2: Motion-Agent pipeline. GPT-4 can interact with the translation agent (i.e., MotionLLM)
to generate or interpret motions based on input requirements. The generated motion tokens are con-
catenated and decoded, and the textual caption produced by MotionLLM is returned and processed
by GPT-4.

3 METHOD

As shown in Fig. 2, our Motion-Agent framework primarily consists of three components: an LLM
(i.e., GPT-4) for conversational interaction and prompting control, a pair of motion tokenizer/deto-
kenizer, and a translation agent (i.e., MotionLLM). The text tokenizer is inherited from the LLMs
and remains unchanged, while the motion tokenizer and detokenizer are trained together to ensure
proper reconstruction of motion sequences. Once trained, the motion tokenizer and detokenizer are
kept fixed. The motion detokenizer plays a key role in smoothing the transitions between different
motion sequences, ensuring seamless integration of motion outputs.

To ensure bidirectional understanding, our framework also enables motion comprehension. Thus,
the agent should also be capable of generating textual captions from given motions upon request.
This bidirectional translation is crucial for applications such as answering questions about motions or
generating descriptions, where models that can only perform motion generation are not suitable. On
the other hand, our proposed MotionLLM can indeed be a good fit, ensuring bidirectional translation
within a unified architecture.

3.1 THE MOTION-AGENT FRAMEWORK

In this framework, GPT-4 serves as the coordinator of both motion generation and comprehension,
enabling seamless interaction between users and a multimodal text-motion agent. The agent is
responsible for translating between text and motion modalities. Within the conversation, the input
to GPT-4 consists of two components: a fixed instruction prompt p, which provides guidelines for
interacting with the text-motion agent, and a customized request c from the user. Based on this
input, GPT-4 generates a structured plan, determining whether the agent should perform tasks such
as motion generation or captioning. It also decides how many times to invoke the agent and specifies
the arguments for each invocation. This plan, formatted as a JSON file, is then parsed and executed
by the agent to carry out the specified tasks.

For generation, the agent generates motion token sequences corresponding to each set of arguments,
and these sequences are concatenated for universal decoding. Specifically, let G represent the agent
and [ai]

N
i=1 the arguments for each of the N calls determined by GPT-4. The resulting motion

token sequences zi = G(ai) are concatenated to form a single sequence z = (z1, z2, . . . , zN ). This
sequence is decoded by the decoder D to produce the final motion, m = D(z), as will be outlined
in the tokenization section.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

For motion understanding and reasoning, the agent generates textual captions of the motions, which
are then returned to GPT-4. This allows GPT-4 to interpret the motion and respond to user queries
accordingly, enabling seamless interactions between users and the system through both motion gen-
eration and comprehension.

Since LLMs such as GPT-4 possess strong multi-turn conversational abilities, users can continuously
ask the model to refine, edit, or extend previous generations, as well as pose additional questions.
In response, GPT-4 will re-generate the plan or provide answers, thus providing an interactive and
adaptive system. This dynamic interaction leads to a unified framework that supports an exception-
ally wide variety of combinations, lengths, and task complexities, offering enhanced flexibility and
customization across both motion generation and comprehension.

3.2 MOTION TOKENIZATION

In order to align better with LLM’s next-token prediction mechanism, we tokenize motions into
discrete representations using Vector Quantization (VQ) and Variation AutoEncoders (VAE). This
VQ-VAE approach is widely adopted by Guo et al. (2022b), Siyao et al. (2022), Siyao et al. (2023)
Zhang et al. (2023b), Jiang et al. (2024b), and Guo et al. (2024).

In our motion tokenization, a motion sequence is represented as m1:T ∈ RT×D and is first encoded
using an encoder E to motion embeddings z1:T/N ∈ RT/N×d, where N is the downsampling rate
and d is the number of the hidden dimensions. Then the motion embeddings are quantized by a
quantizer using a codebook C = {ck}K1 , where K is the codebook size and each ck ∈ Rd. The
quantization results can be represented as ẑ1:T/N , where

ẑt = argmin
ck∈C

||zt − ck||2

The original sequence can be reconstructed by the decoder D: m̂1:T = D(ẑ1:T/N ).

We follow Zhang et al. (2023b) to optimize the VQ-VAE, using reconstruction loss together with a
commitment loss. We also add an additional regularization on the joint positions p to enhance the
generation performance. The loss can be formulated as:

Lvq = ||m − m̂||1︸ ︷︷ ︸
Lre

+α ||p − p̂||1︸ ︷︷ ︸
Lp

+β ||z − sg[ẑ]||2︸ ︷︷ ︸
Lcommit

where sg[·] is the stop-gradient operation, α and β are weighting factors. The codebooks are trained
using exponential moving average (EMA) and codebooks reset following T2M-GPT (Zhang et al.,
2023b). After training, the tokenizers are frozen for further usage.

3.3 LLM-BASED MOTION-LANGUAGE AGENT

Following tokenization, the motion representation is discretized into K distinct motion tokens. We
utilize the indices of these motion tokens from the codebook to construct the motion token vocab-
ulary Vm = {< Motion i >}Ki=1. In addition, we introduce special tokens “<Motion>” and
“</Motion>” to denote the start and end of a motion token sequence. These special tokens, to-
gether with the motion tokens, form a new vocabulary set VM of size K + 2. This vocabulary will
then be appended to the pre-trained LLM’s vocabulary.

After expanding the LLM’s vocabulary, a motion can now be denoted as a token sequence that is un-
derstandable by the LLM. During the generation process, the LLM predicts the succeeding token by
maximizing the probability pθ(xt|x<t, c), where x1:T is the target token sequence and c represents
the prompt. This prediction is performed iteratively in an autoregressive manner. Consequently, the
training objective aims to maximize the log-likelihood LLLM = −

∑
log pθ(xt|xx<t , c).

During the inference process, our approach utilizes instructive prompts such as “Generate a motion
that matches the following input human motion description.” accompanied by a sentence describing
the desired motion. The LLM then proceeds to predict tokens autoregressively until it predicts the
“</Motion>” token, indicating the completion of the motion generation. This autoregressive pro-
cess allows for the generation of motions with variable lengths, adapting to the specific requirements
of the given description.
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Methods Motion Generation Captioning Multi-turn Editing Reasoning Composition

MotionGPT (Jiang et al., 2024b) short ✓ ✗ ✗ ✗
MoMask (Guo et al., 2024) short ✗ ✗ ✗ ✗

MotionChain (Jiang et al., 2024c) short ✓ ✓ ✓ ✓
Ours long ✓ ✓ ✓ ✓

Table 1: Comparison on functionalities among recent motion generation models. Italicized model
indicates the corresponding model requires pre-training and task-specific tuning.

To fine-tune the LLM, we employ LoRA (Hu et al., 2021). Throughout the whole training process,
the tokenizer, the embeddings, and the output layer of the original text tokens remain unchanged
and frozen. Only the additional adapters are trained. These LoRA adapters are trained for the task
at hand (generation or captioning) while maintaining a general architecture where multiple adapters
can coexist harmoniously. This approach allows us to leverage the power of LLMs while tailoring
them to specific motion-language tasks, ensuring efficient and effective training without altering the
core components of the LLM.

4 EXPERIMENTS

We assess our Motion-Agent framework with general and complex conversational user inputs,
demonstrating its ability to handle intricate, multi-turn interactions. We also evaluate MotionLLM
on single-turn motion generation and motion captioning tasks.

4.1 EXPERIMENT SETUP

Datasets. Our experiments on MotionLLM are conducted with KIT Motion Language Dataset
(KIT-ML) (Plappert et al., 2016), HumanML3D (Guo et al., 2022a). KIT-ML contains 3,911 human
motion sequences, while HumanML3D dataset, obtained from AMASS (Mahmood et al., 2019) and
HumanAct12 (Guo et al., 2020), contains 14,616 human motions sequences with 44,970 textual
descriptions. For Motion-Agent, we use the MotionLLM model which is trained on HumanML3D.

Evaluation Metric. For motion generation, we follow T2M (Guo et al., 2022a). Global represen-
tations of motion and textual descriptions are first extracted with the pre-trained network in (Guo
et al., 2022a) and then measured in the following: 1) Text matching: R-precision (Top-1, Top-2,
and Top-3 accuracy) by ranking Euclidean distances between motion and text embeddings, and MM
Dist, which measures the average distance between text and generated motion embeddings. 2) Gen-
eration diversity: quantifies the variance of generated motions across all descriptions. 3) Motion
fidelity: FID assesses the distance between the distribution of real and generated motions, reflecting
how closely they match real motion distributions. For motion captioning, we follow TM2T (Guo
et al., 2022b) to evaluate the quality of motion captioning by facilitating linguistic metrics from nat-
ural language studies, including Bleu (Papineni et al., 2002), Rouge (Lin, 2004), Cider (Vedantam
et al., 2015), and Bert Score (Zhang et al., 2020).

Implementation Details. We utilize GPT-4 (Achiam et al., 2023) as the conversational LLM in our
Motion-Agent framework, which offers enhanced textual control and interaction capabilities. In our
tokenizer, we set the downsampling rate N to 4, the hidden dimension d to 512, and the codebook
size K to 512. The weighting factors α and β for Lp and Lcommit are set to 0.5 and 0.02 respectively.
For MotionLLM, we employ Gemma2-2b-it (Team et al., 2024b), a lightweight open-source LLM
from Google, which offers accessibility and can be deployed on a single consumer-level GPU. The
LoRA rank is set to 64 for generation and 32 for captioning, the values of alpha remain the same
with the rank. All of our experiments are conducted on NVIDIA RTX4090s.

4.2 RESULTS OF MOTION-AGENT

In this section, we present the results of our Motion-Agent framework, demonstrating its ability
to generate long outputs through complex combinations of tasks via multi-turn conversations. It
is important to note that no established ground truth exists for such tasks, aside from text-motion
translation, where we do not conduct additional training for these extended tasks.
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User$  Generate a motion of a person performing a 
floor exercise in artistic gymnastics, and make it 
long.
Motion-Agent$

User$  Generate another motion that a person is kicked 
down and then stands up to fight back by slapping and 
kicking.
Motion-Agent$

Motion-Agent$  Based on the given goal celebration 
motion involving a meditation, the player is most 
likely Erling Haaland. This meditation celebration 
has become one of this iconic goal celebration.

User$  A football player is doing the following 
celebration pose. Can you guess who he is?

Figure 3: Motion-Agent can comprehend abstract, complex user prompts and generate accurate,
long motions. It also understands and answers user questions based on real-world knowledge. No-
tably, the three turns in this figure stem from a continuous conversation, demonstrating the flexibility
of its multi-turn capability in scenarios that should not be influenced by previous turns.

User$ Generate a motion where a golfer hits the ball, runs to the hole to check, 
and then celebrates by jumping and waving hands.

Motion-Agent$MotionGPT$ MoMask$

Figure 4: Comparison with Other Methods. Our Motion-Agent accurately generates motions
involving a series of actions, while other models struggle with more complex descriptions like this,
resulting in short and unclear motions.

As shown in Table 1, Motion-Agent is proficient in various motion-language tasks, generating long
motion sequences through natural conversational user interactions. MotionGPT (Jiang et al., 2024b)
supports bidirectional translation but lacks versatility, while MoMask (Guo et al., 2024) excels in
generation but is limited to this task. Although MotionChain (Jiang et al., 2024c) 1 can perform
similar functions, it requires additional datasets for task-specific instruction tuning. These methods,
along with most existing approaches, are restricted to relatively short motion sequences. In contrast,
without training on additional datasets, our Motion-Agent can generate longer sequences, accurately
matching the given prompts, as indicated in Figure 4. While HumanML3D (Guo et al., 2022a)
contains a wide range of human motions, its sequences are generally short and atomic, lasting less
than 10 seconds. By decomposing descriptions of long motions into a series of short motions using
LLMs and subsequently concatenating these short motions into longer sequences, our Motion-Agent
can theoretically achieve infinite motion generation. This decompose-and-integrate approach can
thoroughly leverage existing data for long motion generation, mapping known data distributions to
unknown ones and enhancing both efficiency and scalability.

The integration of LLMs also improves the system’s ability to interpret vague, abstract, or complex
motion descriptions, allowing for iterative refinement through multi-turn conversations. Figure 1
already illustrates our framework’s strong multi-turn contextual capabilities, enabling it to under-
stand, extend, and edit the results of previous turns effectively. Additionally, our multi-turn func-
tionality facilitates non-contextual requests, as evidenced by the results in Figure 3, which were
generated within a single conversation comprising multiple turns. This flexibility allows users to
avoid restarting for new requests. Furthermore, the results in Figure 3 demonstrate that our method

1By the time of submission, MotionChain has not open-sourced its implementation or pre-trained model.
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User$ I will provide two motions, and I’d like you to generate a motion that facilitates a smooth transition 
between them.

Direct Concatenation$ Transition by Motion-Agent$

Motion1 Motion2

Figure 5: Motion-Agent can compose motions with smooth transitions. In this example, the two
motions “a person falls down on the back” and “a person is walking” are provided to Motion-Agent
in two turns. The system then generates a “stand up” motion to facilitate a seamless composition of
the two motions.

can accommodate general, customized, and complex user requests through conversational and iter-
ative exchanges. Our Motion-Agent is also capable of generating transition motions to connect and
compose movements seamlessly, as shown in Figure 5, an ability that previous motion generation
models struggled to achieve. This further demonstrates the motion understanding and generation
capabilities of our method.

More qualitative results are presented in the appendix A.1.1 and the supplementary material.

4.3 EVALUATIONS OF MOTIONLLM

We evaluate MotionLLM on both text-to-motion and motion-to-text tasks to validate that it achieves
satisfactory results. MotionLLM is focused on enabling bidirectional translation with minimal train-
ing load, while still maintaining competitive performance across key benchmarks. Quantitative re-
sults are shown in Table 2.

For generation, we compare our model with state-of-the-art (SOTA) approaches, including diffusion
models (Tevet et al., 2023; Chen et al., 2023b; Zhang et al., 2022) and token-based models (Zhang
et al., 2023b; Jiang et al., 2024b; Guo et al., 2024). Despite fine-tuning only a small number of
parameters, our model performs competitively against these models trained from scratch. This
demonstrates our advantages of leveraging the generalization and robustness capabilities of LLMs.
Additionally, our model exhibits low MMDist, high R Precision and high Diversity, indicating strong
motion-language understanding and generative capabilities. Note that MoMask (Guo et al., 2024)
and the diffusion models are non-autoregressive, requiring known target lengths for generation, and
evaluate using ground truth lengths. However, since the FID metric measures the distance between
the distribution of generated results and ground truth, variable length generated by autoregressive
models can lead to higher FID scores. Yet, our MotionLLM achieves a lower FID than some other
autoregressive models such as MotionGPT (Jiang et al., 2024b) with only about one-third of train-
able parameters. Additionally, the autoregressive nature of our model offers advantages over non-
autoregressive models when ground truth motion lengths are not provided. This makes MotionLLM
a better fit for our Motion-Agent framework, as it eliminates the need for specifying motion lengths.

In Sec. 4.4, we provide further analysis and evidence that increasing the model size can lead to
overall improvements in performance scores. For a more economical choice, we selected one of the
smallest LLMs (Gemma2-2B) available to the public.

For captioning, we compare models capable of bidirectional generation. Leveraging the strong text
processing capabilities of LLMs, MotionLLM produces accurate descriptions of human motions.
We assess the generated captions using linguistic metrics from Guo et al. (2022b), which calculate
semantic similarities to ground truth captions. To ensure an accurate evaluation, we follow Jiang
et al. (2024b) by using the unprocessed ground truth texts, as Guo et al. (2022b) ignores gram-
matical tense and plural forms. As demonstrated in Tab. 2, our method outperforms previous SOTA
approaches across all metrics by a large margin, thanks to the language abilities of pre-trained LLMs.
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Tasks Methods R Precision ↑ FID ↓ MultiModal Dist ↓ Diversity↑Top 1 Top 3

Generation

T2M (Guo et al., 2022a) 0.457±.002 0.740±.003 1.067±.002 3.340±.008 9.188±.002

TM2T (Guo et al., 2022b) 0.424±.003 0.729±.002 1.501±.017 3.467±.011 8.589±.076

MDM (Tevet et al., 2023) 0.320±.005 0.611±.007 0.544±.044 5.566±.027 9.559±.086

MLD (Chen et al., 2023b) 0.481±.003 0.772±.002 0.473±.013 3.196±.010 9.724±.082

MotionDiffuse (Zhang et al., 2022) 0.491±.001 0.782±.001 0.630±.001 3.113±.001 9.410±.049

T2M-GPT (Zhang et al., 2023b) 0.491±.003 0.775±.002 0.116±.004 3.118±.011 9.761±.081

MotionGPT (Jiang et al., 2024b) 0.492±.003 0.778±.002 0.232±.008 3.096±.008 9.528±.071

MotionChain (Jiang et al., 2024c) 0.504±.003 0.790±.003 0.248±.009 3.033±.010 9.470±.075

MoMask Guo et al. (2024) 0.521±.002 0.807±.002 0.045±.002 2.958±.008 9.620±.064

MotionLLM 0.515±.004 0.801±.004 0.230±.009 2.967±.020 9.908±.102

Captioning

Bleu@1↑ Bleu@4↑ Rouge↑ Cider↑ Bert Score↑
TM2T (Guo et al., 2022b) 48.90 8.27 38.1 15.80 32.2

MotionGPT (Jiang et al., 2024b) 48.20 12.47 37.4 29.20 32.4
MotionChain (Jiang et al., 2024c) 48.10 12.56 33.9 33.70 36.9

MotionLLM 54.53 17.65 48.7 33.74 42.63

Table 2: Quantitative evaluation of MotionLLM on the HumanML3D (Guo et al., 2022a) test
set. For motion generation, we follow T2M (Guo et al., 2022a) for the evaluation metrics. The
evaluations are conducted 20 times to obtain a 95% confidence interval. Methods indicated in italics
utilize the ground truth lengths for estimation. Models above capable of bidirectional generation are
also included in the captioning evaluation. For motion captioning, we use the ground truth captions
without pre-processing and linguistic metrics suggested by Guo et al. (2022b) for evaluation. Best
scores are highlighted in boldface, while underscore refers to the second best.

4.4 ABLATION STUDY

Ablation on Motion-Agent Theoretically, the MotionLLM agent in our Motion-Agent frame-
work can be replaced with any model capable of motion-text translation. However, models like
MoMask (Guo et al., 2024), which require manual motion length input, may encounter issues (see
Sec A.1.2), making autoregressive models preferable. In this study, we substitute MotionLLM with
MotionGPT (Jiang et al., 2024b), which also supports bidirectional translation. After integrating
with Motion-Agent, we observe that MotionGPT is capable of generating longer and more complex
motions compared to its original implementation. However, it still falls short of the accuracy and
smoothness achieved by using MotionLLM. For example (Figure 6), in the user prompt “A person
lies face up to rest and then stands up after a while.” GPT-4 decomposes this into two components:
“lying face up for a while” and “transition from lying face up to standing up.” While MotionGPT
correctly generates the first part, it incorrectly generates the second as “from lying face down.” This
results in an abrupt and unsmooth transition between the two motions. In contrast, MotionLLM
accurately generates both parts, ensuring a smooth, seamless motion transition.

User$ A person lies face up to rest and then stands up after a while.

Motion-Agent (with MotionLLM)$ Motion-Agent (with MotionGPT)$

Figure 6: Motion-Agent Ablation Study. We substituted MotionLLM with MotionGPT and no-
ticed that MotionGPT cannot generate smooth motion transition.

Additionally, our framework can be adapted to use different LLMs for conversation. We tested sub-
stituting GPT-4 with various models, including Llama (Touvron et al., 2023), Gemma (Team et al.,
2024b), and Mixtral (Jiang et al., 2024a). Most of these models successfully generated reasonable
outputs and are capable of facilitating multi-turn interactions. Some smaller models may struggle
with producing the correct JSON format. This ablation study demonstrated that our framework is
applicable to all other LLMs, not just GPT-4. The performance of our framework can improve
alongside the development of LLMs. More details are in Sec A.2.

Nonetheless, our framework can be summarized as a combination of a larger LLM for conversation
and a motion-language translation agent, providing flexible choices for different components.
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Ablation on MotionLLM We conducted an ablation study to examine the impact of different
LLM backbones and adapter sizes. The results are shown in Table 3, from which we may conclude
that using larger backbone models or increasing the LoRA rank leads to overall improvements in the
metrics. Additional ablation studies on different tokenizers and a comparison between LoRA and
full fine-tuning are presented in Section A.6.

Models Trainable Params R Precision ↑ FID ↓ Multimodal Dist ↓ Diversity ↑Top 1 Top 3

T2M-GPT (Zhang et al., 2023b) 228.4M 0.416 0.745 0.514 3.007 10.921
MotionGPT (Jiang et al., 2024b) 220M 0.366 0.680 0.510 3.527 10.350

Gemma2-2b R=16 20.8M 0.411 0.738 0.745 2.994 11.313
Gemma2-2b R=32 41.5M 0.415 0.750 0.712 2.938 11.251
Gemma2-2b R=64 83.1M 0.422 0.762 0.658 2.929 11.195
LLaMA3-8B R=32 83.9M 0.381 0.737 0.646 3.046 11.210
Gemma2-9b R=32 108M 0.439 0.776 0.438 2.872 11.151

Table 3: More comparisons and ablation study on the KIT-ML (Plappert et al., 2016) dataset.
Gemma (Team et al., 2024a) and LLaMA (Touvron et al., 2023) are chosen as LLM backbones. R
indicates the LoRA rank, the value of alpha is kept the same with the rank. Two other autoregressvie
transformer models are included for reference.

5 DISCUSSION

Limitations and Future Work. Our Motion-Agent specializes in generating motions of articu-
lated 3D human body, without incorporating 3D visual understanding, such as interaction with the
surrounding environment (e.g., “a person puts his hand on the table”). Also, Motion-Agent does not
include detailed hand or facial movements. Nonetheless, our framework demonstrates high flexibil-
ity, making it well-suited to incorporate additional agents for handling these tasks in future exten-
sions. Additionally, while we have conducted preliminary trials on multi-human motion generation
using our Motion-Agent framework—with some initial results (see Appendix A.3)—this has not yet
been fully explored. Therefore, this paper still focuses on single-human motion generation. We left
the extension for human-environment interaction and multi-human interaction for future work.

Concluding Remarks. In this work, we propose a novel LLM-based multimodal, conversational
motion-language learning framework, offering both flexibility and generalizability. By harness-
ing the linguistic comprehension and generation capabilities of pre-trained LLMs, our Motion-
LLM achieves strong results in bidirectional translation between motion and natural language. The
Motion-Agent framework is easily expandable across various tasks through conversational inter-
actions. Our approach is not only easy to train and adaptable but also user-friendly, making it a
versatile solution for motion-language learning applications. Motion-Agent offers a comprehensive
solution for enhancing LLMs’ capabilities in understanding, generating, and editing human motion,
aligning with our goal of teaching LLMs to interpret human motion effectively.
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A APPENDIX

In the appendix, we present:

• Section A.1: More Qualitative Results.

• Section A.2: Ablation study on different LLMs

• Section A.3: Preliminary Trials on Multi-human Motion Generation using Motion-Agent

• Section A.4: More details about the evaluation metrics.

• Section A.5: More details regarding our implementation.

• Section A.6: More Ablation Studies on MotionLLM

A.1 QUALITATIVE RESULTS

Rendered original videos of all examples shown in the paper can be found in the corresponding
folder of the supplementary material.

A.1.1 MOTION-AGENT

More examples of Motion-Agent are presented in Figure 7, 8, 9, and corresponding videos can be
found in the supplementary material.

User$ What is the person doing?

Motion-Agent$ The person is mimicking a chicken by putting their hands to their armpits.
User$ Do you have any ideas why he is doing like this?
Motion-Agent$ The person could be acting like a chicken for various reasons such as performing in a play, entertaining 
children, participating in a game or contest, or simply having fun in a humorous or light-hearted situation.
User$ Are there any other possibilities for this motion besides mimicking a chicken?
Motion-Agent$ The specific description of the motion with hands placed under the armpits primarily suggests mimicking 
a chicken. However, it's possible, though less likely, that this motion could be used in other creative or humorous 
contexts not directly related to imitating a chicken, such as unconventional dance moves or as part of a physical 
comedy routine.
User$ What's the difference between this motion and the previous one?

Motion-Agent$ The difference between this motion and the previous one is that in this motion, the person explicitly 
raises both arms and flaps them like a bird, which suggests a broader imitation of a bird's flying motion. In 
contrast, the previous motion involved placing hands under the armpits and acting like a chicken, which is more 
specific to chicken behavior and includes mimicking the wings tucked to the sides rather than outright flapping.

Figure 7: More examples of Motion-Agent.

A.1.2 MOTIONLLM

Motion Generation Figure 10 presents the comparison on no-length-given motion generation.
More qualitative results are in the supplementary material.

Motion Captioning Our model is capable of generating high-quality motion captions, demonstra-
tions are provided in Table 4.
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User$  Give me some possible scenarios for this motion.

Motion-Agent$ The person could be playing a game, sneaking up on someone, or possibly injured and trying to move to a 
safer location.
User$ What do you think that person will do next?
Motion-Agent$ After crawling forward, the person might try to stand up, continue crawling, or reach for something in 
front of them. The exact next action would depend on the context of why they are crawling.
User$ Imagine this person is in one of the scenarios you just said, and predict a longer motion.
Motion-Agent$

User$ Can you explain it?
Motion-Agent$ In the scenario where the person is sneaking up on someone or trying to move cautiously, the sequence of 
motions could be as follows: First, the person is slowly crawling forward. Then, they stand up from the crawling 
position. After standing up, they look around cautiously to ensure the environment is safe or to locate their target. 
Finally, they start walking slowly to continue their cautious movement.
User$ Then let's say this person is noticed and ran away. Generate a longer motion.
Motion-Agent$

User$ Can you briefly write in the style of a news report about what's happening?
Motion-Agent$ In a surprising turn of events, an individual was spotted engaging in what appeared to be a stealthy 
approach, slowly crawling forward in an attempt to sneak up on another person. Witnesses reported that the sneaking 
individual stood up cautiously after a brief moment, looking around to assess the situation. However, the stealthy 
maneuver did not go unnoticed. Upon realizing they had been detected, the individual quickly turned and fled the 
scene, leaving onlookers bewildered by the unexpected encounter.

Figure 8: More examples of Motion-Agent.

Motion Model Caption
Ground Truth a person walks forward just like a mummy

TM2T a person walk in a counterclockwise circle with their arm out to the side
MotionGPT the person is walking like a mummy from the deaddemo 1

Ours a person walks forward while holding arms out as if to be a zombie
Ground Truth a person walks forward slowly while their right hand is slightly elevate

TM2T a person slowly walk forward while hold onto something with their left hand

MotionGPT a person walks forward slowly, placing one foot in front of the other, on a belt
that circulates, enabling the person to effectively slowly walk in place.demo 2

Ours the person is walking on a balance beam
Ground Truth a person moves side to side in a zigzag fashion backwards

TM2T a person does a cartwheel to the right
MotionGPT a person is practing defense moves.demo 3

Ours a person walks backwards in zig-zag motion
Ground Truth a person makes and drinks a cup of coffee

TM2T person hold something with their right hand and make a sawing motion with
their left hand

MotionGPT a person is eating somethingdemo 4

Ours a person uses their left hand to open a bottle, drinks from it, then places the
bottle back down

Table 4: Comparsion of motion captioning ability across different models. Original motions can be
found in supplementary material.

A.2 ABLATION STUDY ON DIFFERENT LLMS

In this study, we replace GPT-4 with several other LLMs, including Llama (Touvron et al., 2023),
Gemma (Team et al., 2024b), and Mixtral (Jiang et al., 2024a). The experiment involved a straight-
forward two-turn conversation. In the first turn, the we prompted, ”Generate a motion that a person
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User$  Now generate a motion of a person stepping to the left.
Motion-Agent$

User$  Then he picks up something from the ground.
Motion-Agent$

User$  Then he walks forward and then places something on the ground.
Motion-Agent$

User$  Then the person walks as if he's drunk.
Motion-Agent$

User$  Then he stretches his arms.
Motion-Agent$

Figure 9: More examples of Motion-Agent.

is doing exercise.” In the second turn, we provided a motion that a person is slowly crawling forward
and asked, ”Briefly explain the possible scenarios for this motion.” The decomposed arguments from
the agent in the first turn and the response from the second turn are presented in Table 5.

Overall, we observe that different LLMs can generate reasonable outputs in response to user re-
quests. However, smaller models, such as Llama-3-7B and Mixtral-8x7B, while capable of produc-
ing some acceptable responses, struggled to adhere strictly to the instructed JSON format. As a
result, the agent was unable to parse their outputs successfully.

A.3 MULTI-HUMAN WITH MOTION-AGENT

In this section, we present the results of our preliminary trials on multi-human motion generation
using the Motion-Agent framework, specifically focusing on generating motions for two individuals.

In our implementation, each person is represented in the HumanML format (Guo et al., 2022a), with
their motions defined separately. To uniquely define the motions of both individuals, we incorporate
location information for the first frame, represented by a tuple of three parameters, relative r =
(θ, x, z). Here, the first person is always positioned at the origin in 3D space, and the relative tuple
r determines the position of the second person concerning the first. The parameter θ denotes the
rotation radius, while x and z represent the coordinates (with the y-axis as vertical). Therefore, the
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MoMask

Ours

Time

A person stands motionless and then takes one step 
backwards to the left.

Figure 10: Comparison between MotionLLM and MoMask (Guo et al., 2024), which is non-
autoregressive. During regular inference, MoMask uses a length estimator to predict the length
conditioned on the text. This estimator is likely to fail. In this example, their incorrect predicted
length causes severe drifting.

LLM Turn 1 Decomposition Results Turn 2 Reasoning Response

GPT-4-Turbo ’A person does jumping jacks.’, ’A
person does push-ups.’, ’A person
does sit-ups.’, ’A person stretches.’

”The person could be participat-
ing in a military training exercise,
playing a game that involves crawl-
ing, navigating through a confined
space, or engaging in a fitness rou-
tine that includes floor-based move-
ments.”

Llama-3-70B ’A person stands up straight.’, ’A
person raises their arms above their
head.’, ’A person bends their knees
slightly.’, ’A person starts jogging
in place.’, ’A person lowers their
arms to their sides.’

”The person could be participat-
ing in a military or law enforce-
ment training exercise, engaging
in a crawling competition, playing
a game that involves crawling, or
navigating through a confined or
obstacle-filled space.”

Gemma2-27B ’A person does jumping jacks.’, ’A
person does push-ups.’, ’A person
does sit-ups.’

Possible scenarios include: army
training exercise, searching for
something lost on the ground, play-
ing a game, navigating a tight
space, or enacting a dramatic scene.

Llama-3.1-8B ’A person starts in a standing posi-
tion.’, ’A person bends their knees.’,
’A person lowers their body.’, ’A
person stands up.’, ’A person re-
peats the motion.’

”The person could be crawling
through a tight space, crawling on
the floor for exercise, or crawling as
a form of slow and deliberate move-
ment in a situation where walking
or running is not feasible.”

Llama-3-7B Failed to follow the format Failed to follow the format

Mixtral-8x7B Failed to follow the format Failed to follow the format

Table 5: Comparison of Using Different LLMs on a Two-Turn Prompt.
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User$  Can you generate motions of two people waving to each other?
Motion-Agent$

Figure 11: Multi-human Motion Generation using Motion-Agent.

motion of each person together with r can uniquely determine the whole motion. In this context,
GPT-4 is tasked with generating three outputs: the arguments for MotionLLM for each person and
the relative tuple r.

Figure 11 shows an example of multi-human generation using Motion-Agent. In this case, the two
arguments are ”A person waves.”, and r = (3.14, 0, 1), indicating that the second person rotates 180
degrees (since 3.14 ≈ π) from facing the z+ direction (hence positioned face to face with the first
person) and is standing 1 meter away from the first person.

A.4 EVALUATION METRIC

We detail the calculation of several evaluation metrics proposed in Guo et al. (2022a). We denote
ground-truth motion features, generated motion features, and text features as fgt, fpred, and ftext.
Note that these features are extracted with pretrained networks in Guo et al. (2022a).

Multimodal Distance (MM-Dist). MM-Dist is widely used to evaluate the motion generation abil-
ity of the model. MM-Dist measures the distance between the text embedding and the generated
motion feature. Given N randomly generated samples, the MM-Dist measures the feature-level dis-
tance between the motion and the text. It computes the average Euclidean distances between each
text feature and the generated motion feature from this text:

MM-Dist =
1

N

N∑
i=1

∥fpred,i − ftext,i∥

where fpred,i and ftext,i are the features of the i-th text-motion pair.

Frechet Inception Distance (FID). FID measures the distance of motion features distribution be-
tween real and generated motions. We calculate FID by

FID = ∥µgt − µpred∥2 − Tr(Σgt +Σpred − 2(ΣgtΣpred)
1/2)

where µgt and µpred are the means of fgt and fpred. Σ is the covariance matrix and Tr denotes the
trace of a matrix.

R precision Given the motion sequence and 32 text descriptions (1 ground-truth and 31 randomly
selected mismatched descriptions), we rank the Euclidean distances between the motion and text
embeddings to get Top-1, Top-2, and Top-3 accuracy of motion-text;

Diversity. Diversity measures the variance of the whole motion sequences across the dataset. We
randomly sample Sdis pairs of motion and each pair of motion features is denoted by fpred,i and
f ′

pred,i. The diversity can be calculated by

Diversity =
1

Sdis

Sdis∑
i=1

∥fpred,i − f ′
pred,i∥

In our experiments, we set Sdis to 300 as (Guo et al., 2022a).

Linguistic metrics. Linguistic metrics including Bleu (Papineni et al., 2002), Rouge (Lin, 2004),
Cider (Vedantam et al., 2015) and Bert Score (Zhang et al., 2020), we follow TM2T (Guo et al.,
2022b), using NLPEval to calculate. Readers can refer to their papers for further details.
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A.5 MORE IMPLEMENTATION DETAILS

Prompts For MotionLLM. We use different prompts for different tasks.

Task Prompts

Motion Generation Generate a motion matching the following
input human motion description.

Motion Captioning Generate a caption matching the following
input human motion token sequence.

Table 6: Instructing prompts for MotionLLM training and inference.

Hyper-parameters. Our hyper-parameters settings for different tasks.

Hyper-parameter Motion Generation Motion Captioning

Batch size 6 6
Learning rate 1e-5 1e-5
LoRA rank 64 32
LoRA alpha 32 32

LoRA dropout 0.1 0.1
Codebook size 512 512
Codebook dim 512 512

Total vocab size 256514 256514

Table 7: Hyper-parameters of our models used in our main experiments. Other VQ training settings
are borrowed from T2M-GPT (Zhang et al., 2023b)

A.6 MORE ABLATION STUDIES ON MOTIONLLM

Ablation study on different tokenizers We conducted additional experiments replacing our cur-
rent VQ-VAE tokenizer with the RVQ-VAE tokenizer used in MoMask (Guo et al., 2024). RVQ-
VAE differs from traditional VQ-VAE by using Q+1 ordered codebooks. The first codebook is used
for base tokens, similar to traditional VQ, while the remaining Q codebooks are used to represent
residuals for enhancing fidelity.

Following MoMask’s approach, the MotionLLM in our case is aware of the base layer tokens.
To predict the residual layer token sequences, we follow MoMask to use an additional non-
autoregressive (NAR) transformer that takes as input the base layer token sequences from the LLM
output. This NAR transformer can thus be considered as part of our detokenizer, which does not
affect the LLM’s inference or training process.

The results are shown in Table 8. Our results show that using RVQ-VAE does not significantly
improve performance compared to the original VQ-VAE, validating that the VQ-VAE model is al-
ready sufficiently effective for our tasks. While RVQ-VAE provides some potential improvements
in fidelity, it introduces additional training overhead (the 13.4M parameters are from the NAR trans-
former). Specifically, the NAR transformer required for residual token prediction is challenging to
train and adds complexity to the system (namely, requiring an additional training step for the NAR
transformer).

Notwithstanding, we believe that both VQ-VAE and RVQ-VAE are effective for motion tokeniza-
tion, and that the choice between them is more of an engineering decision based on the specific
trade-offs involved. Our Motion-Agent framework remains flexible and can support different tok-
enizers, as long as they can convert motions into discrete representations. Future advancements in
tokenization methods may further enhance the framework’s performance and capabilities.
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Models Trainable Params R Precision ↑ FID ↓ Multimodal Dist ↓ Diversity ↑Top 1 Top 3

Gemma2-2b R=32 VQ 41.5M 0.415 0.750 0.712 2.938 11.251
Gemma2-2b R=64 VQ 83.1M 0.422 0.762 0.658 2.929 11.195
Gemma2-9b R=32 VQ 108M 0.439 0.776 0.438 2.872 11.151

Gemma2-2b R=64 RVQ 83.1M+13.4M 0.429 0.768 0.647 2.857 10.126

Gemma2-2b Full VQ 2697.4M 0.423 0.774 0.591 2.913 11.138

Table 8: More ablation studies conducted on KIT-ML (Plappert et al., 2016).

Ablation study on LoRA vs Full fine-tuning We also experimented fine-tuning all the parameters
of LLM, the corresponding result is shown in Table 8. When using a 2B backbone, full fine-tuning
does improve overall scores but at the costly expense of significantly increasing training overhead,
which is in stark contrast to LoRA fine-tuning a 9b backbone model which requires over 20 times
fewer parameters trained. Fully training such a large model also demands substantially more com-
putational power and memory, making it nearly impossible on consumer-level GPUs. This result
indicates that LoRA is indeed a more efficient and effective approach than full fine-tuning, suggest-
ing it is a better alternative for scaling up to a larger backbone in the future.

21


	Introduction
	Related Work
	Method
	The Motion-Agent Framework
	Motion Tokenization
	LLM-based Motion-Language Agent

	Experiments
	Experiment Setup
	Results of Motion-Agent
	Evaluations of MotionLLM
	Ablation Study

	Discussion
	Appendix
	Qualitative Results
	Motion-Agent
	MotionLLM

	Ablation Study on Different LLMs
	Multi-human with Motion-Agent
	Evaluation Metric
	More Implementation details
	More Ablation Studies on MotionLLM


