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Abstract

The DARPA AI Quantified (AIQ) program seeks to establish mathematical foundations
for predicting when AI models will succeed or fail and why. Unlike conventional bench-
marks which evaluate model capabilities, AIQ emphasizes the evaluation of theoretical
claims about model generalization: given assumptions, do theoretical guarantees hold
under empirical tests? This paper presents an early-stage vision for the Mathematical
Assurance of Generative Al Network Evaluation Toolkit (MAGNET), an open frame-
work designed to map theoretical claims to empirical evaluations. While MAGNET is
still in the prototype phase, we describe how it will represent claims through structured
evaluation cards and execute reproducible experiments to verify or falsify those claims.
If successful, MAGNET will allow practitioners to encode a theoretical claim in an
evaluation card and rapidly test it on relevant benchmarks at scale, lowering the barrier
from theoretical proposal to empirical validation. By articulating a vision for MAGNET
at the outset of AIQ, we aim to stimulate community discussion and enable a virtu-
ous cycle connecting theoretical and empirical work on model generalization. Active
development is underway at https://github.com/AIQ-Kitware/aiq-magnet.

1 Introduction

Recent advances in state-of-the-art Al have shown that it is possible to achieve remarkable results on text,
vision, and multimodal tasks [1]]. However, benchmark wins do not necessarily guarantee reliable model
performance in high-stakes deployments. While conventional leaderboards have advanced the breadth and
comparability of model evaluation [2} 13} 4, |5} 6], they are not designed to test theoretical claims about
model generalization. As a result, there is a need for novel approaches to predict what capabilities models
have, when models will generalize, why they sometimes fail, and how theoretical guarantees about model
generalization may transfer across data modalities and model scales.

The DARPA Artificial Intelligence Quantified (AIQ) program [7]] emphasizes the evaluation of theoretical
claims themselves: given a set of assumptions, does predicted model generalization hold under rigorously
controlled evaluations? AIQ is comprised of two coordinated thrusts: Technical Area 1 (TA1), which
develops mathematical theories, and Technical Area 2 (TA2), which tests those theories at scale. Under
TA2, we introduce the Mathematical Assurance of Generative Al Network Evaluation Toolkit (MAGNET),
a framework in the prototype phase — illustrated in Figure [I|— that will map theoretical claims to
empirical evaluations. MAGNET aims to reduce friction between theory and empirical validation by
providing standardized evaluation cards specifying assumptions, guarantees, and corresponding tests.
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Figure 1: As part of the DARPA AIQ program, MAGNET bridges the gap between theoretical (TA1)
and empirical (TA2) work on model generalization, creating a virtuous cycle that enables refinement of
mathematical theories while enhancing traditional benchmarking efforts. Please see text for more details.

Our contributions are threefold: (1) We frame the evaluation of model generalization as theoretical claim
verification — distinguishing our approach from conventional model benchmarking; (2) We introduce
MAGNET — an open framework for translating theoretical claims into structured, reproducible evaluation
protocols; and (3) We outline a research agenda — scaling theory-driven evaluations into standardized
tests to support systematic progress in model benchmarking and evaluation.

2 Related Work

Benchmarks. Large-scale evaluations such as GLUE [2]], SuperGLUE [3]], MMLU [4]], BIG-bench [3]],
and HELM [6] have established community standards for multitask and longitudinal benchmarking. For a
comprehensive overview on model benchmarking, we refer the reader to Ni et al. [1]. These frameworks
generally emphasize breadth and comparability, but they do not directly test mathematical predictions or
guarantees of model generalization. We aim to build on these existing frameworks, using them as tools to
produce the benchmark data needed to empirically validate mathematical claims at scale.

Theoretical guarantees. Key flavors of theoretical claims in the literature are briefly described:

- Scaling laws. Predictable power-law relations between loss and scale have been established [8] 9], with
extensions toward predicting downstream model performance [10} [T} [12].

- Generalization bounds. Predictors of model generalization based on spectral norms and margins [[13} [14]],
sharpness [15}16], PAC-Bayes [17.[18]], compression [19]], and complexity measures have been widely
studied. More recent work links generalization to heavy-tailed spectra [21]] and kernel consistency [22].

- Adversarial Robustness. Certified defenses such as randomized smoothing provide formal guarantees of
model performance against adversarial perturbations [23]], while RobustBench and AutoAttack standardize
adversarial attacks and evaluation protocols [24] 23]

- Training dynamics. Mean field theory, neural tangent kernel, and tensor program analyses characterize
networks in the infinite-width limit, yielding insight and claims about training dynamics [26} 27,28} 29} 30].

- Task and benchmark predictability. Other work studies how to predict performance on new tasks or
benchmarks from few-shot samples or related evaluations [33]).

These examples highlight the diversity of theoretical claims that could be made. Although heterogeneous
in form, they share a common structure: assumptions, a predicted guarantee, and a measurable outcome.
MAGNET’s proposed evaluation cards (described in more detail in Section[d) aim to capture this structure,
enabling such claims to be tested using standardized evaluation protocols.

3 DARPA AI Quantified (AIQ) Program Overview

The DARPA Artificial Intelligence Quantified (AIQ) program operates on the core hypothesis that math-
ematical foundations, combined with advances in measurement and modeling, will allow guaranteeing
what capabilities an AT model has, when they will or will not manifest, and why [[7]. While recent years
have seen dramatic advances in large language and multimodal models, their behavior remains difficult
to predict in ways that can ensure performance in high-stakes applications. AIQ addresses this gap by



organizing a coordinated research effort to develop mathematical theories of generalization (Technical
Area 1, TA1) and build infrastructure to empirically test these theories at scale (Technical Area 2, TA2).

Capability levels. AIQ formalizes its objectives around three nested capability levels. At the most basic
level, specific problems, the question is whether a system gives the correct answer for an individual input—
output pair (e.g. multiple-choice question answering). At the second level, classes and compositions
of problems, the goal is to determine whether performance transfers to similar inputs or structured
compositions of tasks—for instance, whether success on one reasoning step implies success on multi-step
compositions. At the third level, natural classes of problems, the program seeks to identify families of
problems implicitly supported by a given model architecture. Examples include convolutional networks
naturally aligning with translation-invariant tasks in the image domain or transformers with long-range
sequence dependencies. Together, these three levels provide a useful “what, when, and why”” framing:
what problems a model is able to solve, when those solutions generalize to related cases, and why certain
inductive biases emerge from architectural design.

Evaluation domains. To operationalize these capability levels, AIQ also defines a set of evaluation
domains to help ground the development of mathematical theories around concrete model behaviors.
The current domains include: (i) training-time dynamics, which focus on learning curves, optimization
trajectories, and scaling laws; (ii) text generation, which encompasses reasoning, factuality, and robustness
of language models; and (iii) text-to-image generation, which targets compositional fidelity and robustness
in generative vision models. These domains provide a structured setting in which TA1 theories can be
instantiated and tested against real-world model behaviors, with new domains possibly added in the future.

TA1: theories and guarantees. TAI1 teams bring a wide range of theoretical and mathematical approaches
to AIQ, drawing from tools in analysis, geometry, algebra, probability, information theory, and scaling.
Recent examples include scaling-limit analyses of residual networks [29], statistical consistency results
for kernel embeddings [22], and spectral perspectives on heavy-tailed self-regularization [21]. These
seemingly heterogeneous approaches share a common goal: to move beyond empirical heuristics toward
more formal guarantees of model behavior. However, this diversity of approaches also highlights the need
for empirical evaluations to accommodate each approach and its assumptions.

TA2: evaluation and verification. In parallel, TA2 teams are developing the software and compute
infrastructure required to test and validate TA1 theories under realistic conditions and at scale. A core
requirement is to reduce the friction from a new mathematical proposal to a falsifiable empirical test,
ensuring reproducibility and comparability across different theories. MAGNET, our proposed TA2 effort,
is designed to meet this need by providing a theoretical claim-aware evaluation framework that encodes
theoretical statements as structured evaluation cards, routes them to the appropriate benchmark tasks and
datasets, and produces standardized outputs that help verify or falsify a particular claim.

Program goals. The AIQ program ultimately aims to deliver mathematically rigorous methods for
quantifying AI model generalization, providing a basis for safe and reliable deployment in high-stakes
settings. By integrating TA1’s theoretical advances with TA2’s evaluation infrastructure, the program
seeks to create a virtuous cycle: theories can be rapidly tested and refined, empirical results can inspire
new theory, and standardized output formats ensure that progress is cumulative. Next, we discuss how the
MAGNET system fits into this broader vision by translating theoretical claims into empirical evidence.

4 MAGNET System Overview

MAGNET (Mathematical Assurance of Generative Al Network Evaluation Toolkit) is our proposed
system that implements theoretical claim evaluation. Unlike conventional benchmarks which measure
model performance, MAGNET is designed to fest theoretical guarantees themselves. The system accepts
structured evaluation cards, maps them to available models and datasets, enforces constraints, executes
experiments, and produces standardized outputs. Figure 2] summarizes the system architecture.

Claim-aware evaluation cards. Evaluation cards encode a theoretical claim in both natural and formal
representations, together with assumptions, datasets, model families, metrics, and constraints. Cards may
state, for example, that scaling from a 100M to a 1B parameter model should yield a predictable accuracy
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Figure 2: MAGNET system architecture. Evaluation cards encode theoretical claims and capture critical
metadata in a human-readable and machine-computable format. The evaluation router and validator
transform evaluation cards into executable evaluations, mapping them onto relevant benchmarks. Finally,
benchmark generation leverages scalable compute infrastructure to carry out tests, with the outputs being
structured reports and AIQ program metrics. Gray boxes indicate theoretical inputs or output metrics.

change, or that performance on one benchmark predicts another. We provide key desiderata for evaluation
cards in Appendix [B.T|and an example mock evaluation card in Appendix [B.3]

Evaluation routing and execution. The evaluation router determines how to instantiate tests for a
theoretical claim, identifying which parts can be satisfied with existing benchmarks (e.g. HELM [6]],
BIG-bench [5]]) and which require new experiments. Constraints — such as data contamination checks,
model licensing, or compute budgets — are enforced by an evaluation validator. For claims that may
require extensive compute, the router can generate executable pipelines up to full pre-training jobs (e.g.
using the Marin platform [36]]), even if they are not run immediately, providing cost estimates alongside
execution plans. We also provide key desiderata for the evaluation router in Appendix[B.2]

Standardized reporting. Outputs of an evaluation are returned as structured reports that include key
metrics. Each report compares theoretical predictions against empirical results, with standardized outputs
and verdicts on theoretical claims (e.g. VERIFIED, FALSIFIED, INCONCLUSIVE). Reports may also include
uncertainty and power estimates, enabling comparison across different approaches.

Open implementation. MAGNET will be implemented as an open-source framework, with reproducibil-
ity as a first-class principle. All cards, benchmarks, and results are versioned and shareable, allowing the
community to propose new claims and extend the system beyond the AIQ program.

5 Conclusion

The AIQ program is an ambitious effort to bring mathematical rigor to the evaluation of modern Al
systems. TA1 teams are developing diverse theoretical approaches, while TA2 systems such as MAGNET
provide the infrastructure to test and evaluate these theories empirically. What makes AIQ distinctive is
that it evaluates theories, not just models. The challenge is to map heterogeneous theoretical claims—from
scaling laws to spectral weight properties—into concrete, falsifiable tests, while respecting the assumptions
and constraints each theory imposes. This requires reusing existing benchmarks when possible, running
new experiments where necessary, and producing standardized outputs that allow for comparison across
approaches. Importantly, one limitation we note is that our work is still at an early stage: the architecture
is defined, evaluation cards are prototyped, and initial routing mechanisms are being designed.



MAGNET is being developed as an open-source framework, with all software, evaluation cards, and
generated benchmarks intended for public release. By lowering the barrier between theoretical ideas
and empirical validation, we hope to foster a broad research community that can propose, test, and
refine theories on model generalization at scale. The AIQ program has just begun, but its vision is clear:
to establish a principled, reproducible pathway for connecting theories with the measured behavior of
foundation models. We invite workshop participants to contribute new theoretical claims as evaluation
cards, helping to shape an open and shared testbed for theory-driven evaluation and benchmarking.
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A Broader Impact

The main positive impact of MAGNET, if successful, is to provide a principled foundation for confidently
deploying Al systems in high-stakes scenarios by grounding decisions in verified theoretical guarantees.
The main negative risk is that these guarantees could be misinterpreted or used improperly as justification
to deploy systems before they are truly ready, leading to overconfidence and potential failures. We
therefore emphasize that all evaluations are explicitly conditioned on stated assumptions, and that proper
interpretation of guarantees is as important as their formal validation.

B MAGNET System Design

This appendix expands on the technical design of MAGNET. In particular, we sketch the structure of an
evaluation card and outline how a router might map a card to available benchmarks and new experiments.

B.1 Desiderata for Evaluation Cards

An evaluation card should serve as a standardized container that bridges theoretical claims and empirical
tests. We identify several desiderata:

* Human- and machine-readable. Claims should be expressible in natural language, but also
convertible into formal logic (e.g. a Python function or a Lean 4 proposition [37]) suitable for
programmatic validation.

* Cryptographic attestations. Conversions between natural and formal statements should be
accompanied by verifiable attestations to ensure trust and auditability.

* Content-addressability. All datasets, splits, models, and checkpoints should be referenced via
hashes or unique IDs to guarantee reproducibility.

* Free-variable binding. Formal claims are expressed as functions with free variables; the card
must specify how these are bound to experimental artifacts such as dataset splits or model
checkpoints.

 Constraints and assumptions. Cards should encode auxiliary assumptions (e.g. compute budget,
contamination exclusion, licensing, privacy) that must hold for the claim to be valid.

* Metrics and verdicts. Cards should specify measurable outcomes, tolerances, and confidence
thresholds, together with standardized verdicts (VERIFIED, FALSIFIED, INCONCLUSIVE).

These desiderata aim to ensure that evaluation cards are flexible enough to capture heterogeneous claims,
yet strict enough to support reproducible, auditable testing.

B.2 Desiderata for the Router

The router is the mechanism that interprets an evaluation card and generates an executable plan. Its design
should satisfy several desiderata:

* Manual-first, automation-ready. A fully manual mapping path must always be available, even
if tedious, to ensure the framework is usable during early development and for complex edge
cases. Automation (e.g. LLM-assisted codification of claims) can be introduced gradually as the
framework matures.

* Deterministic and auditable. Routing decisions should be deterministic given the same inputs
and accompanied by logs or attestations that can be verified post hoc.

* Benchmark awareness. The router should identify which parts of a claim can be satisfied by
existing benchmark results (e.g. HELM, BIG-bench) and which require new experiments.

* DAG construction. When new experiments are required, the router should generate a directed
acyclic graph (DAG) of tasks specifying model runs, dataset splits, and evaluation metrics.
For large-scale claims, the router should always resolve to a concrete sequence of executable
commands—such as training runs on platforms like Marin [36]. Even if resources are unavailable
to execute the pipeline, MAGNET can still expose what would need to be done and estimate the
associated cost.



¢ Constraint checking. Routing must respect the constraints encoded in the card, such as compute
budgets, contamination exclusions, or dataset licensing.

* Extensibility. The router should support plug-in modules for new tasks, metrics, or backends
without requiring redesign of the core schema.

B.3 Mock Evaluation Card

An evaluation card encodes a theoretical claim, the assets required to test it, and the rules for returning a
verdict. The card must be both human-readable and machine-checkable, allowing natural language claims
to be translated into formal propositions and bound to experimental data. Figure [3|shows a mock card in
YAML format.

Our initial card design contains several key components:

¢ Claim. A falsifiable statement, ideally encodable as a Lean 4 proposition [37] (although any
programming language would work). Cards may include both a natural-language version and
a formal version, with cryptographic attestations certifying the mapping (e.g. with OpenPGP
signatures [38]).

¢ Datasets. Content-addressable identifiers (or with SHA-256 hashes) for admissible datasets and
splits, ensuring reproducibility.

* Models. References to model families, checkpoints, and training recipes.

* Constraints. Assumptions such as compute budgets, contamination exclusion, privacy, and
licensing requirements.

¢ Metrics. Quantities to be measured or bounded, with thresholds for success/failure.
¢ Symbols. A table binding free variables in the formal claim to datasets, models, or metrics.

¢ Outputs. Standardized verdicts (VERIFIED, FALSIFIED, INCONCLUSIVE) and report formats.

B.4 Routing a Claim

Given a card, MAGNET must route it to available benchmarks and determine what additional experiments
are required. For example, observational scaling laws can be partially tested using precomputed results
in HELM [39], with missing points filled by running new evaluations. Routing thus involves matching
the schema in the card (datasets, models, metrics, constraints) to available assets, prioritizing which
dataset+model combinations to actually run, constructing a directed acyclic graph of tasks to execute, and
binding experimental outputs back to the free variables in the claim.

Early in the program, this routing will be performed manually. Over time, we plan to semi-automate it:
parsing natural-language claims with LLMs, generating formal propositions, and validating each step
with cryptographic attestations. This approach ensures that routing decisions are both interpretable and
auditable, and that evaluation can proceed even while the system is under construction.

B.5 Summary

The evaluation card provides a standardized container for claims, assets, and verdicts. The router turns
this specification into an executable pipeline that either leverages existing benchmark results or launches
new experiments. Together, these components embody MAGNET’s goal of reducing friction from theory
to empirical validation.

Our system is currently under active development and is hosted on GitHub at https://github.com/
ATQ-Kitware/aiq-magnet. We remind the reader that our starting point is to manually make the connec-
tions between a theory and its empirical validation, with the goal of building up automations as the system
matures.
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# Truncated mock evaluation card for scaling-law prediction

version: 0.2

id: scaling-law-toy-001

title: "Power-law extrapolation of accuracy from small to large scale”

claim:
natural: |
For family F on dataset D (HELM:MMLU@test), there exist parameters a,b,o>0
such that A(N)=a-b*N~{-a} interpolates accuracies at NE{10M,100M} and its
extrapolation at N=1B differs from the sequestered accuracy by = T.
leand: |
def within tol params
(A10 A100 A1B_true N10 N100 N1B t a b o : R) : Prop :=
Al0 = a - b*N1® ~ (-a) A
Al00 = a - b*N10O ~ (-a) A
|(a - b*N1B ~ (-a)) - AlB true| = T
attestations:
- source: "llm-parser-v2”
validator: "human-itl-review-chain:2e81...5e764010"”
status: "pending”

datasets:
- id: helm:MMLU@test
sha256: "6a09e6...c67178f2"

models:
family: "Pythia”
checkpoints:

- name: "pythia-16M"
sha256: "e3bOc4...abbcboba”
constraints:
compute_budget: { measurable: "gpu hours”, threshold: 200 }
metrics:
- name: "accuracy”
tolerance: 0.02
confidence: 0.95
outputs:
verdict: [Verified, Falsified, Inconclusive]

Figure 3: Mock evaluation card in YAML format. Cards include natural and formal claims, datasets,
models, constraints, metrics, and outputs. The exact form of the formal claim is simplified and symbol
mappings are excluded for clarity.

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes] .

Justification: This is a position paper, and we make it clear that much of what we describe is
speculative. To account for this we describe success criteria and what we hope to accomplish by
publishing this paper.

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims made in
the paper.

* The abstract and/or introduction should clearly state the claims made, including the contri-
butions made in the paper and important assumptions and limitations. A No or NA answer
to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?



Answer: [Yes]

Justification: The main limitation is that this is a speculative system, which we attempt to make
abundantly clear.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate ’Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

¢ The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and

how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address

problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best judgment
and recognize that individual actions in favor of transparency play an important role
in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA]
Justification: No theoretical results are included.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

¢ All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not include experiments, but the described system is being developed
in a way to ensure reproducibility.
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Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good way
to accomplish this, but reproducibility can also be provided via detailed instructions for
how to replicate the results, access to a hosted model (e.g., in the case of a large language
model), releasing of a model checkpoint, or other means that are appropriate to the research
performed.

While NeurIPS does not require releasing code, the conference does require all submissions

to provide some reasonable avenue for reproducibility, which may depend on the nature of

the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: There are no experiments to reproduce, but the we link to an anonymized repository
where we are developing the system.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/,
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/quides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).
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* Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [NA]

Justification: This paper does not include experiments, but we do mention that datasets used
in our evaluation cards and router will ideally be content addressable or at the very least hash
verifiable to ensure consistent reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: There are no experiments, but our system’s validation criteria will evaluate claims
at a confidence level, which will require that our system be capable of reporting error bars and
estimating statistical significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

e Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis of Normality
of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [NA]

Justification: This paper is a speculative position paper, and does not include experiments. We
do make mention that the experiments our router selects will be “compute-aware” and be subject
to a compute budget. As such, recording of the context in which experiments take place will be
a priority of the system.

Guidelines:
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* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

¢ The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We do not see any ethical concerns in this work. Our evaluation cards will ensure
and check that privacy and license restrictions are met.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]
Justification: We include a broader impact statement in the appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

« If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

13


https://neurips.cc/public/EthicsGuidelines

Answer: [NA]

Justification: The paper does not pose such risks. We seek to empirically validate claims made
about existing data / models.

Guidelines:

* The answer NA means that the paper poses no such risks.

¢ Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.
12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: The current paper does not use any existing assets, but as we develop the system
we will make use of pre-existing HELM results and we cite the paper appropriately and only
used official distribution mechanisms to access third party work.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We link to the github where we are developing the system. It is initial, but we are
developing it with professional software engineering practices, which includes documentation
and unit testing for the limited features that currently exist.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

¢ The paper should discuss whether and how consent was obtained from people whose asset
is used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects

15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]
Justification: There is no research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA] .
Justification: There is no research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLMs were not used to develop any ideas. We made use of GPTS to organize
existing ideas, the authors did all final proof-reading and polishing. We do envision LLMs as a
component of mapping natural language claims into formal programmatic expressions and are
using the idea of cryptographic attestations and chains of trust to validate those mappings. We
also note that while this novel use of LLMs could be a component of our framework, it is an
optional component and our envisioned system does not depend on them.

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLM:s as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

15


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	DARPA AI Quantified (AIQ) Program Overview
	MAGNET System Overview
	Conclusion
	Broader Impact
	MAGNET System Design
	Desiderata for Evaluation Cards
	Desiderata for the Router
	Mock Evaluation Card
	Routing a Claim
	Summary


