
Under review as a conference paper at ICLR 2023

CURRICULUM REINFORCEMENT LEARNING VIA
MORPHOLOGY-ENVIRONMENT CO-EVOLUTION

ABSTRACT

Throughout long history, natural species have learned to survive by evolving their
physical structures adaptive to the environment changes. In contrast, current
reinforcement learning (RL) studies mainly focus on training an agent with a fixed
morphology (e.g., skeletal structure and joint attributes) in a fixed environment,
which can hardly generalize to changing environments or new tasks. In this paper,
we optimize an RL agent and its morphology through “morphology-environment
co-evolution (MECE)”, in which the morphology keeps being updated to adapt to
the changing environment, while the environment is modified progressively to bring
new challenges and stimulate the improvement of the morphology. This leads to a
curriculum to train generalizable RL, whose morphology and policy are optimized
for different environments. Instead of hand-crafting the curriculum, we train two
policies to automatically change the morphology and the environment. To this end,
(1) we develop two novel and effective rewards for the two policies, which are
solely based on the learning dynamics of the RL agent; (2) we design a scheduler to
automatically determine when to change the environment and the morphology. We
find these two designs are critical to the success of MECE, as verified by extensive
ablation studies. In experiments on two classes of tasks, the morphology and RL
policies trained via MECE exhibit significantly better generalization performance
in unseen test environments than SOTA morphology optimization methods. Our
ablation studies on the two MECE policies further show that the co-evolution
between the morphology and environment is the key to the success.

1 INTRODUCTION

Deep Reinforcement learning (RL) has achieved unprecedented success in some challenging tasks (Lil-
licrap et al., 2016; Mnih et al., 2015). Although current RL can excel on a specified task in a fixed
environment through massing training, it usually struggles to generalize to unseen tasks and/or adapt
to new environments. A promising strategy to overcome this problem is to train the agent on multiple
tasks in different environments (Wang et al., 2019a; Portelas et al., 2019; Gur et al., 2021; Jaderberg
et al., 2017) via multi-task learning or meta-learning (Salimans et al., 2017; Finn et al., 2017). How-
ever, it increases the training cost and the space for possible environments/tasks can be too large to be
fully explored by RL. So how to select the most informative and representative environments/tasks
to train an RL agent to evolve generalizable skills becomes an critical open challenge. Curriculum
learning (Narvekar et al., 2020) for RL aims at developing a sequence of tasks for RL to progressively
improve its generalization performance through multiple training stages. However, the curriculum
usually relies more on human heuristics, e.g., moving from easy environments to hard ones, chasing
the ones with the greatest progress, while lacking sufficient innate incentives from the agent itself to
drive the changes towards improving the learning process.

Unlike RL agents that do not actively seek new environments to improve their learning capability,
natural species have full motivations to do so to survive in the competitive world, and one underlying
mechanism to drive them is evolution. Evolution is a race with the changing environment for every
species, and a primary goal is to accelerate its adaptation to new environments. Besides merely
optimizing its control policy, evolution more notably changes the morphology of species, i.e., the
skeletal structure and the attributes for each part, in order to make them adapt to the environment. In
fact, the improvement on morphology can be more critical because there could exist a variety of actions
or skills an agent cannot do (no matter how the control policy is optimized) without certain structures,
e.g., more than one leg, a long-enough limb, or a 360-degree rotation joint. For RL, we claim
that A good morphology should improve the agent’s adaptiveness and versatility, i.e., learning
faster and making more progress in different environments. From prehistoric person to modern
Homo sapiens, there is a definite association between the rise of civilization and the Homo sapiens’

1

Under review as a conference paper at ICLR 2023

optimization of their physical form for improved tool use. Unfortunately, the morphology in many RL
researches are pre-defined and fixed so it could be sub-optimal for the targeted environments/tasks
and may restrain the potential of RL. Although morphology can be optimized using RL (Sims, 1994;
Wang et al., 2019b; Kurin et al., 2021; Yuan et al., 2022) to improve the final performance for a
specific task or environment, it was not optimized for the adaptiveness to varying environments.
Moreover, instead of re-initializing the control/RL policy after every morphology modification or
environment change, the millions of years of evolution demonstrate the effectiveness of continual and
progressive learning of the control policy over generations of morphology evolution along with a
sequence of varying environments. How to optimize the morphology and control policy of an RL
agent for the above goal is still an underexplored problem.

(b) Main structure of Transform2Act

(a) Main structure of ES-based methods (c) Co-evolution in MECE

Environment Et

Sequence of
actions

Exploration

πm
reward Rm

πe

Environment
rewards

re
wa

rd
 R

e

Environment Et+1

reward Rmπ+ π+

Exploration
Environment
rewards

πe

re
wa

rd
 R

e

-Morphology policy

-Environment policy πe

πm

π -Control policy

Fixed Environment

Sequence of
actions

Environment
rewards

πT2A -Transform2Act policy

Exploration

π+

Environment
rewardsExploration

π+

π+

Each agent
takes actions to
explore

Environment
rewards

Elimination
& random
mutation

Agents set

π+

π+

π+

π+

Fixed Environment

Agents set

π+

π+

π+

Each agent
takes actions to
explore

Environment
rewards

πmπm

πT2A πT2A πT2A

Figure 1: MECE vs. previous methods. (a) Evolution strategy (ES)-based method for morphology optimiza-
tion. It starts from agents with different morphology, eliminates those with poor performance, and then applies
random mutation to the survivors. (b) Transform2Act, which trains an RL policy to modify the morphology of
an agent in a fixed environment. (c) MECE (ours). We train two policies to optimize the morphology and change
the environment to form a curriculum over the course of training a control policy.

Given that the agent has the freedom to improve its morphology and control policy for faster
adaptation to different environments/tasks, the remaining question is: what environment can improve
this learning process and incentivize the agent to keep finding better morphology (rather than staying
with the same one)? The learning environment plays an essential role in RL since it determines the
data and feedback the agent can collect for its training. In this paper, we adopt a simple criterion: A
good environment should accelerate the evolution of the agent and help it find better morphology
sooner, which will enhance the agent’s adaptiveness and versatility over new environments/tasks.

The interplay between morphology and environment has lasted for billions of years. In the endless
game, species which find the appropriate environments to evolve its morphology and policy may
survive and keep being improved via adaptation to new environments/tasks. Inspired by this, we
propose an morphology-environment co-evolution (MECE) scheme that automatically generates a
curriculum of varying environments to optimize the agent’s morphology and its RL policy so they can
be generalized to unseen environments and adapted to new morphology, respectively. In MECE, we
train two RL policies to modify the morphology and change the environment, which create a sequence
of learning scenarios to train the control policy continuously. This differs from previous work that
select the morphology or the environment from a pre-defined set of candidates. Specifically, unlike
zeroth-order optimization approaches (Wang et al., 2019b; Hejna et al., 2021; Wang et al., 2018), a
morphology policy network can generate modifications based on all the morphology evaluated in
diverse environments from history. On the other hand, an environment policy can produce a sequence
of progressively modified environments instead of randomly selected or sampled ones (Portelas et al.,
2019; Wang et al., 2019a). In Fig. 1, we illustrate the co-evolution process of MECE and compare
it with evolution-strategy (ES) based method (Wang et al., 2019b) and Transform2Act (Yuan et al.,
2022), which uses RL to optimize the morphology in a fixed environment.

Inspired by the former discussion of “good morphology” and “good environment”, we optimize the
morphology policy to improve the agent’s adaptiveness+versatility and optimize the environment
policy to improve the morphology’s evolution. To this end, we design two rewards for the two policies
based on the learning progress of the control policy, which is estimated by comparing its concurrent

2

Under review as a conference paper at ICLR 2023

performance on a validation set and its historical trajectories. Therefore, the three policies are
complementary and mutually benefit each other: (1) the morphology and environment policies create
a curriculum to improve generalizability of the control policy; (2) the environment policy creates a
curriculum to optimize the morphology policy; (3) the control policy provides rewards to train the
other two policies. In MECE, we train the control policy and automatically determine when to apply
the other two policies to modify the morphology or change the environment: they are triggered by
the slow progress on the current morphology and environment, respectively. In experiments over
different tasks, the morphology and control policy learned through MECE significantly outperforms
the existing method in new environments. Moreover, MECE exhibits much faster-learning speed than
baselines. We further provide an extensive ablation study to isolate each main component of MECE’s
contribution and compare it with other options.

2 RELATED WORK

Continuous Design Optimization. A line of research in the community has studied optimizing an
agent’s continuous design parameters without modifying its skeletal structure, and they commonly
optimize on a specific kind of robots. Baykal & Alterovitz (2017) studies an annealing-based
framework for cylindrical robots optimization. Ha et al. (2017); Desai et al. (2017) optimize the
design of legged robots by trajectory optimization and implicit function. Applying deep RL into
design optimization becomes more popular recently. Chen et al. (2020) uses computational graphs to
model robot hardware as part of the policy. CMA-ES (Luck et al., 2019) optimizes robot design via a
learned value function. Ha et al. (2017) proposes a population-based policy gradient method. Another
line of work (Yu et al., 2019; Exarchos et al., 2021; Jiang et al., 2021) search for the optimal robot
parameters to fit an incoming domain by RL. Different from the prior works, our approach learns
to find the most general skeleton of an agent while maintaining its continuous design parameters
optimization to diverse environments or tasks.

Combinatorial morphology Optimization. One closely related line of work is the design of modular
robot morphology spaces and developing algorithms for co-optimizing morphology and control (Sims,
1994) within a design space to find task-optimized combinations of controller and robot morphology.
When the control complexity is low, evolutionary strategies have been successfully applied to find
diverse morphologies in expressive soft robot design space (Cheney et al., 2013; 2018). For more
expressive design spaces, GNNs have been leveraged to share controller parameters (Wang et al.,
2019b) across generations or develop novel heuristic search methods for efficient exploration of the
design space (Zhao et al., 2020). In contrast to task specific morphology optimization, Hejna et al.
(2021) propose evolving morphologies without any task or reward specification. Hejna et al. (2021)
employ an information-theoretic objective to evolve task-agnostic agent designs.

Generalization to environments. Several recent works (Wang et al., 2019a; Portelas et al., 2019;
Gur et al., 2021) show that the efficiency and generalization of RL can be improved by training the
policy in different environments. By sampling the parameters of environmental features, they Portelas
et al. (2019); Wang et al. (2019a) teach the RL agent using a curriculum of various environments. To
estimate the distribution of environments, however, requires evaluating the RL policy on numerous
sampled environments, which might be expensive and inaccurate for intricate ones. The modified
environments may also be unfeasible or too difficult for RL exploration. In MECE, we train an
environment policy to change the environments adaptive to the evolved agent’s learning progress,
and it is possible to regulate the level of difficulty of the modified environments.

3 FORMULATIONS OF THE THREE POLICIES IN MECE

In MECE, we have three RL policies, a control policy π that learns to control the agents of evolved
morphology, a morphology policy πm that learns to modify the agent’s morphology for better robust-
ness in diverse environments, and an environment policy πe that learns to change the environment
to boost the morphology evolution. During the training phase, πm and πe are alternately applied to
evolve the agent’s morphology and the training environment, respectively. Taking into account that π
might require various environment steps for training in distinct morphologies or environments, we
propose a dynamic time-scaling for πm and πe that is adaptive to π’s learning process.

3

Under review as a conference paper at ICLR 2023

Agent control. The problem of controlling an agent can be modeled as a Markov decision process
(MDP), denoted by the tuple {S,A, p, r, p}, where S and A represent the set of state space and action
space respectively, p means the transition model between states, and r is the reward function. An
agent of morphology mi ∈ M in state st ∈ S at time t takes action at ∈ A and the environment
returns the agent’s new state st+1 according to the unknown transition function p(st+1|st, at,mi),
along with associated reward rt = r(st, at). The goal is to learn the control policy π∗ : S → A
mapping states to actions that maximizes the expected return E[Rt], which takes into account reward
at future time-steps J(π) = E[Rt] = E

[∑H
t=0 γ

trt

]
with a discount factor γ ∈ [0, 1], where H is

the variable time horizon.

Morphology evolution. We model the morphology evolution as an MDP problem, denoted by
the tuple {Sm,B, pm, rm, ρ}. Sm represents the set of state space, and a state smαt ∈ Sm at time-
step αt is defined as smαt = Gαt, where Gαt is the skeleton structure of agent. The action bαt
sampled from the set of action space B can modify the topology of the agent, that has three choices
in {AddJoint,DelJoint,NoChange}. The transition dynamics pm(smαt+1|smαt, bαt) reflects the
changes in state and action. We define the reward function for πm as the average improvement of
training π with the current evolved morphology in different environments. The reward rm at time-step
αt is denoted as

rmαt =
1

|E|
∑

θE∈E

(
R(H, θE , Gαt)−R(H, θE , Gαt−1)

)
− λ∥amαt∥22, (1)

note that the first term in Eq. 1 indicates the average performance of the current morphology in
diverse environments, and the second term is a cost for each action taken by πm that modifies the
morphology of the agent. E is the set of environments used for evaluation.

Environment evolution. We model environment evolution as an MDP problem, denoted by the
tuple {Se, C, pe, re, ρ}. The state seβt = (Gβt, θ

E
βt) in the set of state space Se includes the agent’s

topology Gβt = (Vβt, Eβt) and the parameter of environment θE ∈ ΘE . The transition dynamics
pe(s

e
βt+1|seβt, cβt) reflects the changes in the state by taking an action at time-step βt. We define the

reward for πe as the learning progress of multiple morphologies in the current environment. Thus,
training πe will encourage πm to optimize the morphology of better generalization sooner. The
reward re at time-step βt is denoted as

rEβt = Pβt − Pβt−1, where Pβt = R(H, θEβt, Gβt)−R(H, θEβt−1, Gβt). (2)

in Eq. 2, Pk is the learning progress of the RL agent in an environment defined on R(H, θEβt, Gβt),
which denotes the expected return of the RL agent Gβt of H time-steps evaluated in environment θEk .

Short evaluation window. Since rm and re are respectively based on the training process of π on
different morphologies or environments, it is cost but necessary to rollout π periodically to collect
data. However, Hejna et al. (2021) demonstrates that evaluating with short horizon is enough to
provide informative feedback to reflect the training process of the current policy. In light of this, we
run a short evaluation window for π after every period of environment steps taken by the agent. In
each evaluation window, we rollout multiple morphologies of the best performance by π in several
most recent environments, and then we can calculate rm and re based on the evaluation results. More
details refer to Appendix. C.

In this paper, we use a standard policy gradient method, PPO (Schulman et al., 2017), to optimize
these three policies.

4 ALGORITHM OF MECE

In MECE, we need jointly train three policies: control policy π learns to complete tasks, morphology
policy πm learns to evolve the agent’s morphology to be more adaptive to diverse environments, and
environment policy πe learns to modify the training environments more challenging. At first glance,
training a single RL policies may appear more difficult than training a single RL policy, as it needs the
collection of additional data via interaction. However, MECE enables three policies to help in each
other’s training through the co-evolving mechanism, where each policy is trained on a curriculum
of easy-to-hard tasks utilizing dense feedback from the training experience of other policies. By

4

Under review as a conference paper at ICLR 2023

iterating this co-evolution process, MECE considerably improves the training efficiency of each
policy, resulting in an RL agent of morphology that is more generalizable across environments.

Algorithm 1 MECE
1: Initialize: control policy π, morphology policy πm, envi-

ronment policy πe, dataset D ← ∅, initial agent morphol-
ogy m0, initial environment parameter θE0 ;

2: while Not reaching max iterations do
3: for t = 0, 1, · · · , τmax do ▷ RL exploration
4: Sample control action at ∼ π;
5: st+1 ← T (st+1|st, at);
6: rt ← environment reward;
7: mt+1 ← mt, θEt+1 ← θEt ;

8: Store (st, rt, at, st+1,mt, θ
E
t) into D;

9: end for
10: Update π with PPO using samples in D;
11: (mt+1, θ

E
t+1) = CO-EVO(mt, π, θ

E
t);

12: end while

In each episode, the control policy π starts
from training on an initial agent in a
randomly sampled environment (refer to
Line.3-9 in Alg. 1). This initial agent’s
skeleton structure is relatively simple and
is easy to learn according to its naive mor-
phology. Even though the naive agent is not
generalized due to its constrained morphol-
ogy, it can initially provide dense feedback
for training πm and πe. On the other hand,
beginning from an agent with a random
morphology is theoretically feasible but in-
efficient when initializing a complicated
morphology that is difficult to learn to con-
trol and yields uninformative feedback for
training the other policies.

Algorithm 2 CO-EVO
1: Input: Current morphology mαt, control policy π, train-

ing environment θEβt, dataset D.
2: Procedure CO-EVO(mαt, π, θ

E
βt):

3: Evaluate π with morphology mαt in θEβt;
4: Calculate reward rm and re following Eq. 1 and Eq. 2;
5: if rm ≤ δm then ▷ Modify the agent’s morphology
6: Apply πm to modify mαt to mαt+1;
7: Update πm with PPO using samples in D;
8: else
9: if re ≤ δe then ▷ Modify the training environment

10: Apply πe to modify θEβt to θEβt+1;
11: Update πe with PPO using samples in D;
12: end if
13: end if
14: Return (mαt+1, θ

E
βt+1)

We assume that the control policy is now
mature on the current morphology after
training. Then MECE proceeds to a se-
ries of co-evolution phases, where a phase
is associated with achieving robustness
across the evolved morphologies and en-
vironments (refer to Line.11 in Alg. 1). In
each phase, as shown in Line.3-4 of Alg. 2,
we first evaluate the control policy to col-
lect rewards for training πm and πe. Note
that this step is not cost, as the RL agent ex-
ecutes environment steps with a short hori-
zon. After that, we alternately apply πm

and πe to co-evolve the agent’s morphol-
ogy and the training environments based on
two criteria of rm and re (refer to Line.5
and 9 in Alg. 2).

Reward criteria. As mentioned in section 3, rm and re indicate the learning progress of the
current morphology in the training environment respectively. In particular, a nominal value of rm
corresponds to the adaptability of the current morphology to different environments and indicates that
training with the current morphology cannot significantly increase π’s performance. In this instance,
we should apply πm to optimize the morphology to increase its generalization to environments.
Similarly, a minor re indicates that modifying the agent’s morphology will have a negligible effect
on its performance in the current environment, and the environment should be modified to be more
challenging to boost the morphology evolution. As a result, we propose two independent criteria for
rm and re, which allows MECE to adapt to the learning progress of morphology and environment
and apply πm or πe to produce corresponding evolution and alterations.

We now have an agent of newly evolved morphology or a modified training environment, and then
forward to the next iteration of training the control policy π on them. Using rm and re, MECE has
achieved the alternating evolution of morphology and environment. MECE not only improves the
robustness of the morphology to various environment, but also improves the learning efficiency of the
policies through the use of dense feedback.

5 EXPERIMENTS

We design our experiments to answer the following questions: (1) Given dynamic environments, does
our method outperform previous methods in terms of convergence speed and final performance? (2)
Does our method create agents of better generalization to diverse environments?

5

Under review as a conference paper at ICLR 2023

5.1 ENVIRONMENTS SETUP

Diverse environments have vary features that require the agent to evolve out different morphologies,
e.g., a bipedal agent has too short legs to go across a high obstacle, or a agent of four legs navigate
on rough road more smoothly than one of one/two legs. In our experiments, we conduct three
environments that requires various morphologies to complete the tasks. We use a tuple θE of
environment parameters to denote the possible physical features of environments.

In experiments, we have three types of environments: (1) 2d locomotion: In the 2D locomotion
environment, agents are limited to movement in the X-Z plane. The state sT is given by the final
(x, z) positions of the morphology joints. We evaluate morphologies on three tasks: running forwards,
running backwards, and jumping. Environment policy πe takes actions to change the roughness of
terrains, that is controlled by θE . (2) 3d locomotion: where a 3D agent’s goal is to move as fast
as possible along x-axis and is rewarded by its forward speed along x-axis. Environments have a
fixed number of obstacles and terrains of different roughness which are controlled by θE . πe can not
only change the roughness of terrains in the environments, also learns to modify the average distance
between obstacles. (3) Gap crosser: Gap Crosser, where a 2D agent living in an xz−plane needs to
cross periodic gaps and is rewarded by its forward speed. The width of the gap is controlled by πe.
In order to avoid unlearnable environments, the upper and lower limits of the gap width are limited.
More details refer to Appendix. A.

Baselines. We compare our method with the following baselines that also optimize both the skeletal
structure and joint attributes of an agent. (1)Neural Graph Evolution (NGE)(Wang et al., 2019b),
which is an ES-based method that uses GNNs to enable weight sharing between an agent and its
offspring. (2) Transform2Act (Yuan et al., 2022), that optimizes an RL policy to control the evolution
of agents. Note that both baselines do not have diverse environments in the original code. For a
fair comparison, we apply an environment set randomly sampled from a uniform distribution in the
training and test phase for them.

5.2 MAIN RESULTS

In Fig. 2(a)-(c), we report the MECE and all baseline method performance on test environments for
three environments. In terms of the learning efficiency and final performance, MECE outperforms
baseline methods in all environments. The results show that while Transform2Act’s final performance
can be improved by periodically changing the training environments, MECE’s learning efficiency
is still notably higher than that of Transform2Act. The best morphologies found by each approach
are listed in Fig. 2(d)-(f) for easier comparison. For 2d locomotion MECE develops a morphology
that resembles a crawling animal that can move fast over terrain. In 3D locomotion, MECE has
developed a spider-like framework. MECE evolves a more streamlined structure in comparison to
Transform2Act so that it can more possibly avoid obstacles. Finally, the Hopper-like agents developed
by Transform2Act and MECE are comparable in the Gap crosser that can jump across gaps. Overall,
MECE-optimized morphologies have superior structural symmetry and are more consistent with the
characteristics of biological evolution in various environments.

5.3 ABLATION STUDY AND ANALYSIS

We product out a series of ablation studies to prove the effectiveness of each part in MECE. We
list the introduction information of each ablation study in Tab. 1, and report the results in Fig. 3. Note
that in each ablation study, we only change one part of MECE and maintain the other parts the same
as the original MECE, and all results are the test performance evaluated on the same environment
set in Fig. 2 (b).

Ablation Study I. In this ablation study, we focus on the effectiveness of πe for the training and
report the results in Fig. 2(a). Note that the initial environment is relatively simple, while the final
environment that evolved by πm is more challenging. The results show that the evolved morphology
and control policy trained in the diverse environments are more general than trained in the fixed
environment, no matter the environment is simple or not. On the other hand, compare the performance
of MECE with MECE (periodic envs), we can find that πe helps the training in terms of the efficiency
and the final performance. This is because training in the environment modified by πe, compared to

6

Under review as a conference paper at ICLR 2023

(a) 2d-locomotion (b) 3d-locomotion (c) Gap-crosser

(d) Evolved Morphology (2d) (e) Evolved Morphology (3d) (f) Evolved Morphology (Gap)

Figure 2: Baselines comparison and optimized morphology. In Fig.(a)-(c), we report the evaluation results of
MECE and baseline methods in three environments, and we plot the accumulated rewards (mean± std averaged
over 6 random seeds) against the number of simulation steps for all methods. For fair comparison, we add
periodically changing environments that randomly sampled from a fixed distribution in the training of baseline
methods. MECE has better learning efficiency and final performance than all baseline methods. In Fig.(d)-(f), we
list the optimal morphology that evolved by each method. Intuitively, the structural symmetry and environmental
adaptability of the MECE-optimized morphology is better. Especially in 3d locomotion, the agent developed by
MECE is better at navigating terrain and avoiding obstacles.

Ablation Study Definition of Legends

Ablation study-I for πe.
Fig. 3(a)

original: Periodic environments generated by πe.
periodic envs-random: Periodic environments of randomly sampled.
fixed envs-initial: Initial and easy environment.
fixed envs-final: Fixed environment generated by πe.

Ablation study-II for πm.
Fig. 3(b)

original: Dynamic morphology evolved by πm.
random morph: Randomly mutate the morphology.
fixed morph-initial: Fixed agent of the initial morphology.
fixed morph-final: Fixed agent of the final morphology evolved by πm.

Ablation study-III for
dynamic update window.
Fig. 3(c)

Original: Dynamic evaluation window.
fixed update window: Update πe and πm at a fixed frequency.

Ablation study-IV for rm
and re. Fig. 3(d)

original: Follow the reward setting of πm (πe) in Eq. 1 (Eq. 2).
reward-i: Remove the reward for πm.
reward-ii: change rm to Eq. 1.
reward-iii: change re to Eq. 2.

Table 1: List of ablation studies. This list includes definitions for each set of controls as well as the objectives
of ablation study I-IV. Since we only validated one design of MECE in each ablation study, only one design
from each control group was different from MECE (original).

7

Under review as a conference paper at ICLR 2023

(a) Ablation - envs (c) Ablation - exploration windows (d) Ablation - reward(b) Ablation - morphs

Figure 3: Ablation study. We design four ablation studies to illustrate the advantages of each part in MECE.
The results of ablation study I and II show the effectiveness of πe and πm on the learning efficiency and
generalization. Ablation study III proves that applying πe and πm adaptive to the training process of the control
policy can improve its robustness. In ablation study IV, we try different setting of the reward function of πe and
πm, and the results prove that the original reward setting is optimal. More details of each ablation study can be
found in Tab. 1.

the randomly generated one, avoids the learning gap between two extremely different environments,
and is smoother for π and πm to learn. On the other hand, πe learns to generate environment to
accelerate the learning progress of π and πm, which is shown clearly in the learning curves of 10 - 20
million simulation steps in Fig. 3(a).

Ablation Study II. The purpose of this ablation study is to demonstrate how πm can produce
morphology that is more adaptable to diverse environments and increase learning effectiveness. The
results are shown in Fig. 3(b). When comparing the learning curves for MECE (random morph)
and MECE (original), the former has a far higher early learning efficiency than the latter. This
is due to πe remaining constant and the environment not changing significantly, which prevents
the morphology from being adequately adapted to a variety of habitats, even some comparable
environments. Theoretically, the "fixed morph-final" morphology should be able to be more adaptive
to environments and, with training, reach competitive performance. Although it performs better than
"random morph" and "fixed morph-initial," "MECE(original)" is still far behind. This is because that
the final morphology is more complicated and therefore directly teaching its control policy to adapt
to various environments would be more challenging.

Ablation Study III. Through a co-evolutionary process of adaptive criterion on rm and re, πm

and πe learn to evolve the morphology and environment. To determine whether this design is
effective, we perform an ablation experiment. The results are shown in Fig 3(c). For “MECE (fixed
evaluation window)”, every fixed number of environment steps, πm and πe take actions to change the
agent’s morphology and environment. The results indicate that by removing the dynamic window,
MECE’s learning effectiveness has drastically decreased. It is challenging to coordinate the training
developments of the three policies, particularly the control policy, without a dynamic evaluation
window. Only a somewhat steady control policy, as was already mentioned, can give the other two
reliable feedback for training. Moreover, the performance of Transform2Act is taken into account for
easy comparing. Even though "MECE(fixed evaluation window)" is less effective, a competitive final
performance to Transform2Act is still feasible.

Ablation Study IV. We designed this ablation investigation to verify the reward of πm and πe in
MECE, and the findings are displayed in Fig. 3(d). Note that just one incentive is altered in each
scenario in this experiment; all other rewards remain unchanged. We explore two scenarios for πm:
the first involves removing the reward (“MECE (reward-i)”), same to the setting of transform2Act),
and the second involves substituting the formal of re (“MECE (reward-ii)”), i.e., accelerating learning
progress. We take into account employing learning progress (in the form of rm, “MECE (reward-iii)”)
for πe. The results show that the original design has obvious advantages in both learning efficiency
and final performance. For the issues addressed by MECE, πm can be thought of as the meta learner
of π, whereas πe is the meta learner of the latte. In order to help π perform better on various tasks,
πm learns to modify the agent’s morphology during training, and πe speeds up both of their learning
processes. Therefore, in both theoretical and practical tests, the original design is the most logical.

5.4 CASE STUDY: CO-EVOLUTION BETWEEN MORPHOLOGY AND ENVIRONMENT

To further comprehend the co-evolution of morphology and environment in MECE, we perform a
case study in 2d locomotion and present results in Fig. 4. The y-axis of the point plot indicates the
ratio of the training environment’s roughness to the current morphology’s height. Fig. 4(a)-(f) are
schematic descriptions of the current morphology and the training environment corresponding to it.

8

Under review as a conference paper at ICLR 2023

(a) (b)

(c) (d)

(e) (f)

(a)

(b)

(c)

(f)

(e)

(d)

Figure 4: Case study results. This figure more vividly illustrates a schematic diagram of the co-evolution
of morphology and environment during training. The ordinate in the illustration shows the proportion of the
environment’s roughness to the agent’s height. Since the deviation is minimal and the roughness of the training
environment produced by MECE is about similar to the agent’s height (the ratio is near to 1), it can be observed
from the pointplot that πe can not only guarantee challenging environments but also more stable than randomly
sampled. Fig.(a)-(f) compare the effectiveness of πe that correspond to changes in the training environments
(blue indicates original MECE, and orange indicates random environments). Contrarily, it is evident that no
πe is likely to result in exceptionally difficult environments (Fig.(d)), while the environment produced by πe is
challenging but learnable (Fig.(c)).

Generally, an effective training environment should meet two conditions simultaneously. The first is
learnable, and the RL agent can collect training data via exploration. The second factor is the level of
difficulty; environments that are either too easy or too challenging may reduce the learning efficiency
of the RL agent. Therefore, in 2D locomotion, a reasonable environment is one in which the environ-
ment’s roughness is quite large (challenging), but not so large as to render the agent unconquerable
(learnable) during exploration. Using the results of the pointplot, the environment policy can ensure
that the ratio of environmental unevenness during the training process to the height of the current
agent is approximately 1, which satisfies the training environment criteria. At contrast, despite the fact
that the randomly generated environment can ensure the ideal in some phases, it is extremely unstable
(the standard deviation is visibly high), which would undoubtedly lower the learning effectiveness.

Specifically, comparing Fig. 4(a) and (c), the environment generated by πe in the early stage of
training is unlearnable for the current agent, whereas in the middle stage of training, the training
environment is relatively flat, but challenging, especially in terms of the number of occurrences of a
particular feature. The roughness of the environment on the right fluctuates frequently. Note again
compared to Fig. 4(d) that the right side of the randomly produced environment is unlearnable for
the current agent in the middle of training. This phenomena does not occur in MECE because πe

modifies the environment to be morphology-adaptive. Comparing Figs. 4(e) and (f), the environment
formed by πe’s slope exhibits noticeable but relatively subtle alterations. This is due to the fact that
the existing morphology has a high degree of adaptation to varied contexts, and environments with
more extreme alterations have less effect on the morphology’s optimization. To better train the control
policy, an environment of moderate difficulty should be adopted.

6 CONCLUSION

In this paper, we offer a framework for morphology-environment co-evolution that evolves the
agent’s morphology and the training environment in alternation. Compared to previous morphology
optimization approaches, ours is more sample-efficient and learns to develop morphologies that are
more robust across diverse environments. Experiments demonstrate that our approach outperforms
baseline methods in terms of convergence speed and overall performance. In the future, we are
interested in using curriculum RL approaches to further improve the learning efficiency of our
approach so that it can adapt to more challenging environments and tasks.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Cenk Baykal and Ron Alterovitz. Asymptotically optimal design of piecewise cylindrical robots
using motion planning. In Robotics: Science and Systems, 2017.

Tianjian Chen, Zhanpeng He, and Matei T. Ciocarlie. Hardware as policy: Mechanical and computa-
tional co-optimization using deep reinforcement learning. In CoRL, 2020.

Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson. Unshackling evolution: evolving soft
robots with multiple materials and a powerful generative encoding. In GECCO ’13, 2013.

Nick Cheney, Josh C. Bongard, Vytas SunSpiral, and Hod Lipson. Scalable co-optimization of
morphology and control in embodied machines. Journal of The Royal Society Interface, 15, 2018.

Ruta Desai, Ye Yuan, and Stelian Coros. Computational abstractions for interactive design of robotic
devices. 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1196–1203,
2017.

Ioannis Exarchos, Yifeng Jiang, Wenhao Yu, and C. Karen Liu. Policy transfer via kinematic domain
randomization and adaptation. 2021 IEEE International Conference on Robotics and Automation
(ICRA), pp. 45–51, 2021.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. ArXiv,
abs/1903.02428, 2019.

Chelsea Finn, P. Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. ArXiv, abs/1703.03400, 2017.

Izzeddin Gur, Natasha Jaques, Kevin Malta, Manoj Tiwari, Honglak Lee, and Aleksandra Faust.
Adversarial environment generation for learning to navigate the web. ArXiv, abs/2103.01991,
2021.

Sehoon Ha, Stelian Coros, Alexander Alspach, Joohyung Kim, and Katsu Yamane. Joint optimization
of robot design and motion parameters using the implicit function theorem. Robotics: Science and
Systems XIII, 2017.

Donald J. Hejna, P. Abbeel, and Lerrel Pinto. Task-agnostic morphology evolution. ArXiv,
abs/2102.13100, 2021.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, and
Koray Kavukcuoglu. Population based training of neural networks. ArXiv, abs/1711.09846, 2017.

Yifeng Jiang, Tingnan Zhang, Daniel Ho, Yunfei Bai, C. Karen Liu, Sergey Levine, and Jie Tan.
Simgan: Hybrid simulator identification for domain adaptation via adversarial reinforcement
learning. 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 2884–
2890, 2021.

Vitaly Kurin, Maximilian Igl, Tim Rocktäschel, Wendelin Boehmer, and Shimon Whiteson. My body
is a cage: the role of morphology in graph-based incompatible control. ArXiv, abs/2010.01856,
2021.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. CoRR, abs/1509.02971, 2016.

Kevin Sebastian Luck, Heni Ben Amor, and Roberto Calandra. Data-efficient co-adaptation of
morphology and behaviour with deep reinforcement learning. In CoRL, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518:529–533, 2015.

10

Under review as a conference paper at ICLR 2023

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
ArXiv, abs/1810.02244, 2019.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. J. Mach. Learn.
Res., 21:181:1–181:50, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library. In NeurIPS, 2019.

Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms for
curriculum learning of deep rl in continuously parameterized environments. In CoRL, 2019.

Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. Evolution strategies as a scalable alternative
to reinforcement learning. ArXiv, abs/1703.03864, 2017.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and P. Abbeel. High-dimensional
continuous control using generalized advantage estimation. CoRR, abs/1506.02438, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv, abs/1707.06347, 2017.

Karl Sims. Evolving 3d morphology and behavior by competition. Artificial Life, 1:353–372, 1994.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O. Stanley. Paired open-ended trailblazer (poet):
Endlessly generating increasingly complex and diverse learning environments and their solutions.
ArXiv, abs/1901.01753, 2019a.

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning structured policy with
graph neural networks. In ICLR, 2018.

Tingwu Wang, Yuhao Zhou, Sanja Fidler, and Jimmy Ba. Neural graph evolution: Towards efficient
automatic robot design. ArXiv, abs/1906.05370, 2019b.

Wenhao Yu, C. Karen Liu, and Greg Turk. Policy transfer with strategy optimization. ArXiv,
abs/1810.05751, 2019.

Ye Yuan, Yuda Song, Zhengyi Luo, Wen Sun, and Kris M. Kitani. Transform2act: Learning a
transform-and-control policy for efficient agent design. ArXiv, abs/2110.03659, 2022.

Allan Zhao, Jie Xu, Mina Konakovic-Lukovic, Josie Hughes, Andrew Spielberg, Daniela Rus, and
Wojciech Matusik. Robogrammar: graph grammar for terrain-optimized robot design. ACM Trans.
Graph., 39:188:1–188:16, 2020.

11

Under review as a conference paper at ICLR 2023

A ENVIRONMENT DETAILS

In this part, we share further information about the three experiment environments. A simple skeleton
structure is used to initialize the agent. Each joint of the agent is connected to its parent joint via a
hinge. The environment state of each joint contains its joint angle and velocity. In addition to the
height, phase, and global velocity, we also include additional information for the root joint, such as
the phase and height. Zero padding is employed to ensure that the length of each joint state is same.
The attribute characteristic of each joint includes the bone vector, bone size, and motor gear value.
Using a loosely-defined attribute range, each attribute is normalized within the interval [−1, 1].

2d locomotion The agent in this environment lives inside an xz-plane with a terrain ground. Each
joint of the agent is allowed to have a maximum of three child joints. For the root joint, we add its
height and 2D world velocity to the environment state. The enviornment reward function is defined
as:

rt = |pxt+1 − pxt |/δt+ 1, (3)

where pxt denotes the x-position of the agent and δt = 0.008 is the time step. An alive bonus of 1 is
also used inside the reward. The episode is terminated when the root height is below 1.4.

3d locomotion The agent in this environment lives freely in a 3D world with an uneven ground.
There are a fixed number of obstacles randomly scattered on the surface. Each joint of the agent is
allowed to have a maximum of three child joints except for the root. For the root joint, we add its
height and 3D world velocity to the environment state. The reward function is defined as:

rt = |pxt+1 − pxt |/δt− ω · 1
J

∑
u∈Vt

∥au,t∥2, (4)

where ω = 0.0001 is a weighting factor for the control penalty term. u denotes the each node of the
skeleton structure Vt of the agent at time-step t. J is the total number of agent’s joints, and the time
step δt = 0.04.

Gap crosser The agent in this environment lives inside an xz-plane. The terrain of this environment
includes a periodic gap. The height of the initial terrain is at 0.2. The agent must cross these gaps to
move forward. Each joint of the agent is allowed to have a maximum of three child joints. For the
root joint, we add its height, 2D world velocity, and a phase variable encoding the periodic x-position
of the agent to the environment state. The reward function is defined as:

rt = |pxt+1 − pxt |/δt+ 0.1, (5)

where the time step δt = 0.08. An alive bonus of 0.1 is used inside the reward. The episode is
terminated with the root height is below 1.5.

Implementation of morphology poicy πm MuJoCo agents are specified using XML strings, during
the morphology modify phase, we represent each agent’s skeleton structure as an XML string and
modify its content based on the morphology actions. At the start of the RL exploration stage, the
modified XML string is used to reset the MuJoCo simulator and load the agent of newly-modified
morphology.

Implementation of environment policy πe Environment policy modify the training environment
by taking actions to change the environment parameters. For locomotion environments, we sample
terrain height maps using random Gaussian mixtures. There is an environment tuple of two parameters
to control the generation of terrains. The first environment parameter is the maximum height of
the terrain, which is limited to 2.4(2.7) in 2d (3d) locomotion. The second environment parameter
is to control the variance of the sampled environments, which is restricted in [2.4, 7.2] for 2d, and
[2.7, 5.4] for 3d. In 3d locomotion, we have one more environment parameter in the tuple to control
the averaging spacing between the obstacles, which is restricted in [1.6, 4.4].

12

Under review as a conference paper at ICLR 2023

B ADDITIONAL EXPERIMENTS RESULTS

To respond the request of reviewer QUPT, we report the changing environments and agent’s morphol-
ogy during the training in Fig. 5. The results show that when the evolved morphology is relatively
complex, the training environment focuses more on complex cases than the randomly sampled
training environments with environment generator. On the other hand, the prevalence of easy environ-
ments significantly decreases as morphology evolves (indicating a higher ability to move in different
environments).

(a) 2d-locomo�on (b) 3d-locomo�on (c) Gap-crosser

Figure 5: This figure shows the changing of the agent’s morphology and environments in the training phase.
The results illustrate that with the environment generator (πe), the training environment focuses more on complex
cases (higher roughness). The presence of agents with more complex morphologies is more noticeable among
them. Thus, the environment generator creates the training environment based on how the morphology changes
during training.

C SHORT EVALUATION WINDOW (SEW) IN MECE

In Alg. 2, we modify the agent’s morphology and the training environment based on the control
policy’s learning progress. In light of the previous method (Hejna et al., 2021), we construct a short
evaluation window (SEW) on π to collect data for computing rm and re. In accordance with Sec. 3,
we should evaluate the present morphology in many settings for rm in Eq. 1 and several morphologies
in the current training environment for re in Eq. 2. In this short evaluation phase, we therefore
maintain some of the most recent morphologies and training environments. We attempted to save
several combinations of morphology and number of contexts for this purpose. All experimental and
control data are provided under the assumption that the optimal combination exists. We list all tried
combination in Tab. 2.

D HYPERPARAMETERS AND TRAINING PROCEDURES

In this section, we present the hyperparameters searched and used for MECE in Tab. 2 and the
hyperparameters for baseline in Tab. 3 and Tab. 4. All models are implements by PyTorch (Paszke
et al., 2019). For control policy and morphology policy, we use the PyTorch Geometric package (Fey
& Lenssen, 2019) and GraphConv (Morris et al., 2019) as the GNN layer. When training the policy
with PPO, we adopt generalized advantage estimation (GAE) (Schulman et al., 2016). For the
baselines, we employ the released code of NGE and Transform2Act to build our version.

For fair comparison, we employ the same GNN architecture for MECE and baselines. In addition, we
ensure that the number of simulation steps used for optimization is the same for both the baseline
methods and ours. MECE and Transform2Act optimizes the policy with a batch size of 50000 for
1000 epochs, totaling 50 million simulation steps. NGE employs a population of 20 agents, and each
agent is trained with a batch size of 20,000 for 125 generations, totaling 50 million simulation steps.

13

https://github.com/WilsonWangTHU/neural_graph_evolution
https://github.com/Khrylx/Transform2Act

Under review as a conference paper at ICLR 2023

Hyperparameter Values Searched & Selected
Policy GNN Layer Type GraphConv
Number of morphologies in SEW 2,3, 4
Number of environments in SEW 2, 3,4, 5
GNN Size (πm) (32, 32, 32), (64, 64, 64), (128, 128, 128), (256,256,256)
GNN Size (π) (32, 32, 32), (64,64,64), (128, 128, 128), (256, 256, 256)
Hidden layers for πe network 2, 3, 4
Hidden units for πe network 200, 300, 400
Policy Learning Rate (π) 5e− 5, 1e− 4, 3e− 4
Policy Learning Rate (πm) 5e− 5, 1e− 4, 3e− 4
Policy Learning Rate (πe) 3e− 4, 5e− 4, 1e− 4
Value GNN Layer Type GraphConv
Value Activation Function Tanh
Value GNN Size (64,64,64), (128, 128, 128), (256, 256, 256)
Value MLP Size (256, 256), (512,256), (256, 256, 256)
Value Learning Rate 1e− 4,3e− 4
PPO clip ϵ Pize 0.2
PPO Batch Size 10000, 20000,50000
PPO Minibatch Size 512,2048
Num. of PPO Iterations Per Batch 1, 5,10
Num. of Training Epochs 1000
Discount factor γ 0.95
GAE λ 0.99, 0.995, 0.997, 0.999

Table 2: Hyperparameters searched and used by MECE. The bold numbers among multiple values
are the final selected ones.

Hyperparameter Values Searched & Selected
Num. of Skeleton Transforms Ns 3,5, 10
Num. of Attribute Transforms Nz 1, 3, 5
Policy GNN Layer Type GraphConv
JSMLP Activation Function Tanh
GNN Size (Skeleton Transform) (64, 64, 64), (128,128,128), (256, 256, 256)
JSMLP Size (Skeleton Transform) (256,256), (512, 256), (256, 256, 256)
GNN Size (Attribute Transform) (64, 64, 64), (128,128,128), (256, 256, 256)
JSMLP Size (Attribute Transform) (256,256), (512, 256), (256, 256, 256)
GNN Size (Execution) (64,64,64), (128, 128, 128), (256, 256, 256)
JSMLP Size (Execution) (128,128), (256, 256), (512, 256), (256, 256, 256)
Diagonal Values of Σz 1.0, 0.04,0.01
Diagonal Values of Σe 1.0, 0.04, 0.01
Policy Learning Rate 5e− 5
Value GNN Layer Type GraphConv
Value Activation Function Tanh
Value GNN Size (64,64,64), (128, 128, 128), (256, 256, 256)
Value MLP Size (256, 256), (512,256), (256, 256, 256)
Value Learning Rate 1e− 4,3e− 4
PPO clip ϵ Pize 0.2
PPO Batch Size 50000
PPO Minibatch Size 2048
Num. of PPO Iterations Per Batch 1, 5,10
Num. of Training Epochs 1000
Discount factor γ 0.95
GAE λ 0.995

Table 3: Hyperparameters searched and used by Transform2Act in our version. The bold numbers
among multiple values are the final selected ones.

14

Under review as a conference paper at ICLR 2023

Hyperparameter Values Searched & Selected
Num. of Generations 125
Agent Population Size 10,20, 50, 100
Elimination Rate 0.15, 0.2, 0.3, 0.4
GNN Layer Type GraphConv
MLP Activation Tanh
Policy GNN Size (32, 32, 32), (64,64,64), (128, 128, 128)
Policy MLP Size (128,128), (256, 256), (512, 256)
Policy Log Standard Deviation 0.0,−1.6
Policy Learning Rate 5e− 5
Value GNN Size (32, 32, 32), (64,64,64), (128, 128, 128)
Value MLP Size (128, 128), (256, 256), (512,256)
Value Learning Rate 3e− 4
PPO clip ϵ 0.2
PPO Batch Size 20000, 50000
PPO Minibatch Size 2048
Num. of PPO Iterations Per Batch 10
Discount factor γ 0.99,0.995
GAE λ 0.95

Table 4: Hyperparameters searched and used by NGE in our version. The bold numbers among
multiple values are the final selected ones.

15

	Introduction
	Related Work
	Formulations of the Three Policies in MECE
	Algorithm of MECE
	Experiments
	Environments Setup
	Main results
	Ablation Study and Analysis
	Case study: Co-evolution between morphology and environment

	Conclusion
	Environment Details
	Additional Experiments Results
	Short evaluation window (SEW) in MECE
	Hyperparameters and Training Procedures

