VIPO-R1: CULTIVATING VIDEO REASONING IN MLLMs via Verifier-Guided Iterative Policy Optimization

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011 012

013

014

016

018

019

021

024

025

026

027

028

029

031

034

037

040

041

042

043

044

046

047

048

050 051

052

ABSTRACT

Applying Reinforcement Learning (RL) to Multimodal Large Language Models (MLLMs) shows significant promise for complex video reasoning. However, popular Reinforcement Fine-Tuning (RFT) methods, such as outcome-based Group Relative Policy Optimization (GRPO), are limited by data preparation bottlenecks (e.g., noise or high cost) and exhibit unstable improvements in the quality of long chain-of-thoughts (CoTs) and downstream performance. To address these limitations, we propose VIPO-R1, a Verifier-guided Iterative Policy Optimization method designed to gradually enhance MLLMs' ability to generate long-term reasoning chains for challenging VideoQA. The core component is the Rollout-Aware Verifier, positioned between the GRPO and Direct Preference Optimization (DPO) training phases to form the GRPO-Verifier-DPO training loop. This verifier leverages small LLMs as a judge to assess the reasoning logic of rollouts, enabling the construction of high-quality contrastive data, including reflective and contextually consistent CoTs. These curated preference samples drive the efficient DPO stage (7x faster than GRPO), leading to marked improvements in reasoning chain quality, especially in terms of length and contextual consistency. This training loop benefits from GRPO's expansive search and DPO's targeted optimization. Experimental results demonstrate: 1) Faster and more effective optimization compared to standard GRPO variants, yielding superior performance; 2) Our trained models exceed the direct inference of large-scale instruction-tuned Video-LLMs, producing long and contextually consistent CoTs on diverse video reasoning tasks; and 3) Our model with one iteration outperforms powerful MLLMs (e.g., Kimi-VL) and thinking models (e.g., Video-R1), highlighting its effectiveness and stability.

1 Introduction

Complex reasoning problems across various domains are often effectively tackled by large models via generating long Chain-of-Thoughts (CoTs) (Wei et al., 2023; Zhang et al., 2024d; Zelikman et al., 2022; Li et al., 2025e), which has demonstrated considerable success in multimodal settings, particularly for challenging tasks like visual math and complex image-text reasoning (Wang et al., 2025d; Dong et al., 2025; Team et al., 2025; Wu et al., 2025; Xu et al., 2025; Xiang et al., 2024). The capacity of Large Multimodal Models (LMMs) for long-form CoT reasoning is largely driven by Reinforcement Fine-Tuning (RFT), which integrates Supervised Fine-Tuning (SFT) with long-form CoT data and employs online reinforcement learning algorithms (Tan et al., 2025; Schulman et al., 2017; Rafailov et al., 2024; Yu et al., 2025; Gupta et al., 2025; Wu et al., 2024b; Tang et al., 2025; Team, 2025), such as the Group Relative Policy Optimization (GRPO) (Shao et al., 2024) method. Inspired by the success of DeepSeek-R1 (DeepSeek-AI et al., 2025), Skywork R1V (Chris et al., 2025), and Vision-R1 (Huang et al., 2025), researchers (Li et al., 2025b; Feng et al., 2025; Zhang et al., 2025c) are actively exploring effective strategies to enable Multimodal Large Language Models (MLLMs) to generate coherent and extensive reasoning chains for challenging VideoQA tasks.

However, activating the long-form reasoning of MLLMs for video understanding faces challenges:

Data Preparation Bottleneck: Employing Long-CoTs video datasets for cold starting (e.g., Video-R1) is hindered by the high cost of manual annotation and noise from automatic methods.

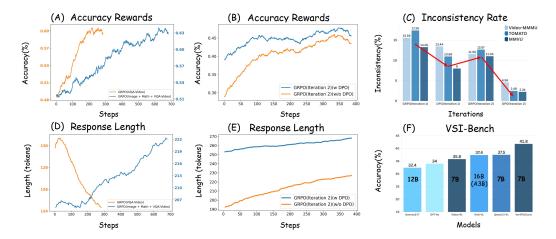


Figure 1: Figures (A, D): Initial GRPO training with different data types shows only utilizing Video-QA data decreases response length. Figures (B, E): Continual GRPO training with/without Verifier-guided DPO (VIPO-R1) demonstrates VIPO-R1 improves accuracy and response length. Figure (C): Inconsistency rate (thinking vs. final answer) at different stages reveals our method lowers contextual inconsistency of long CoTs while GRPO increases it. Figure (F): Performance on challenging video reasoning dataset VSI-Bench (Yang et al., 2024) shows VIPO-R1 (trained with Qwen2.5-VL-7B) outperforms strong LMMs including GPT-4o (Hurst et al., 2024), Video-R1 (Feng et al., 2025), and Kimi-VL (Team et al., 2025).

- *Unstable performance improvement*: GRPO training on video datasets can easily lead to decreases in reasoning length (Figure (D)) and model performance (Video-R1 vs. Qwen2.5-VL in Figure (F)). The model after GRPO training often performs worse than the original direct-answer model.
- Inconsistency between reasoning and answers: GRPO training often results in a misalignment between the reasoning chain and the final answer, leading to logically inconsistent outcomes such as "correct answers derived from flawed reasoning", as illustrated in Figure (C). This issue, which undermines interpretability and limits performance, stems from GRPO's reliance on final answer-based rewards without intermediate supervision.

To address these limitations, we propose VIPO-R1, an online rollout-aware Verifier-guided Iterative Policy Optimization algorithm designed to progressively enhance the long-form reasoning capability of MLLMs on video understanding tasks. Unlike methods that rely on large-scale Long-CoTs video datasets for cold-start training, VIPO-R1 employs reinforcement learning to incrementally cultivate extended reasoning skills in MLLMs. A central component of our framework is the rollout-aware Verifier, which bridges the GRPO and DPO training phases to form a closed-loop GRPO-Verifier-DPO cycle. This verifier utilizes small LLMs to evaluate the reasoning quality and contextual coherence of generated CoTs from the online RL stage. Based on this assessment, it intelligently selects high-quality contrastive samples from online rollouts to construct logically consistent and reflective reasoning chains. These samples are then used in an efficient DPO stage, which we empirically found to be 7x faster than GRPO (see Section C.1) and more effective at refining reasoning paths. Additionally, the verifier progressively prunes simple examples that the model has already mastered, which accelerates training and ensures a focus on more challenging instances. This filtering mechanism allows the policy optimization to effectively combine the targeted refinement of DPO with the broad exploration capability of GRPO. To further diversify the logical reasoning paths learned by the model, our training incorporates a mixture of diverse VideoQA datasets, supplemented with high-quality image and textual math datasets during the initial phase.

We conduct extensive experiments on five video reasoning and long video understanding benchmarks, e.g., VSI-Bench (Yang et al., 2024) and Video-MME (Fu et al., 2024). Our experimental results show that VIPO-R1 achieves consistent and significant performance improvements and outperforms larger MLLMs and powerful RFT models Video-R1 and Kimi-VL-Thinking (Team et al., 2025). It highlights the effectiveness and stability of VIPO-R1 in cultivating the long-form video reasoning ability of MLLMs. Compared to RFT with the long-CoTs dataset as a cold start, our approach consistently generates longer responses and improves the quality of generated long CoTs, e.g., contextual consistency and low repetition. Our contributions can be summarised as follows:

- We propose VIPO-R1, a novel Verifier-guided Iterative Policy Optimization algorithm designed
 to improve the long-form reasoning capability of MLLMs. The method enhances rollout data
 utilization via the embedded Verifier system and efficient DPO, enabling the model to realize
 improvement via effective learning from its online running experience.
- The rollout-aware Verifier analyzes and refines generated rollout data into high-quality, reflective contrastive samples, which are essential for continuously improving the model's long-form reasoning capability and logical consistency during the DPO training stage.
- Experimental results demonstrate that VIPO-R1 significantly improves long-form reasoning performance on challenging video QA tasks. Our trained models consistently generate long and accurate reasoning chains, outperforming direct-answer models (like Qwen2.5-VL-7B), GRPO baseline and RL-trained thinking models (including Video-R1, Kimi-VL-Thinking-16A3B) gaining +4.0% on VSI-Bench over Qwen2.5-VL-7B and +3.6% on TOMATO over GRPO baseline.

2 RELATED WORK

Large Multimodal Models for Video Reasoning Video reasoning is the core capability of Large Multimodal Models (LMMs), enabling understanding of interactions, dependencies, and inference over dynamic content (Li et al., 2024c; 2025d; Zhang et al., 2025c; Zheng et al., 2025). Specifically, spatial reasoning models object relationships and scene layouts within frames, while temporal reasoning captures motion, causality, and sequence across frames (Ouyang, 2025; Daxberger et al., 2025; Ray et al., 2025; Liu et al., 2025b). Early Video-LLMs focused on short videos using pre-trained image (Dosovitskiy et al., 2021; Oquab et al., 2024; Radford et al., 2021) or video encoders (Arnab et al., 2021; Liu et al., 2021; Neimark et al., 2021) with frozen language models (Dai et al., 2023; Li et al., 2022; 2024b; Maaz et al., 2024; Zhang et al., 2023). Recent efforts target long-form video understanding with complex temporal and multimodal reasoning (Fei et al., 2024; Feng et al., 2025; Zhang et al., 2025c; Zheng et al., 2025; Liu et al., 2025a; Chen et al., 2025c; Liu et al., 2025d). To handle long contexts, methods adopt hierarchical temporal attention and larger context windows (Liu et al., 2025a; Wei et al., 2025), or compress visual inputs via event-level abstraction (Zhang et al., 2025c; Chen et al., 2024). Recent multimodal fusion integrates audio and motion cues for improved understanding in videos (Chen et al., 2025c; Zhao et al., 2025a; Liu et al., 2025e). Reinforcement learning guides perception and reasoning, aiding in interpretability and intent modeling (Deng et al., 2025; Liu et al., 2025d;c). Recent work explores structured outputs, intention-driven attention, and stepwise reasoning (Chen et al., 2025c; Yang et al., 2025; Huang et al., 2025; Peng et al., 2025) for fine-grained grounding and spatiotemporal segmentation.

Reinforcement Learning for Multimodal Reasoning Reinforcement learning (RL) has become a pivotal approach for aligning LLMs and LMMs with complex reasoning objectives. Foundational policy optimization algorithms, such as Proximal Policy Optimization (PPO), Direct Preference Optimization (DPO), and Group Relative Policy Optimization (GRPO), have been instrumental in this domain (Schulman et al., 2017; Rafailov et al., 2024; Shao et al., 2024). Further advancements have enhanced training stability and efficiency (Yu et al., 2025; Gupta et al., 2025; Wu et al., 2024b; Tang et al., 2025). A critical challenge in popular RL training is the "cold start" problem, where initializing models without prior guidance can lead to suboptimal performance. To mitigate this, Reinforcement Fine-Tuning (RFT) has been proposed, wherein models undergo preliminary SFT on curated datasets to stabilize subsequent RL training phases (Liu et al., 2025e; Zhang et al., 2024c; Tan et al., 2025; Shi et al., 2025; Chen et al., 2025a; Li et al., 2025b; Wang et al., 2025b; Luo et al., 2025; Wang et al., 2025d; Xing et al., 2025). Additionally, some verifiers, designed to assess and guide the quality of generated outputs, have proven beneficial. These verifiers assist in filtering and selecting high-quality training samples, thereby enhancing the efficiency and effectiveness of the training process (Chen et al., 2025c; Zhao et al., 2025a; Sun et al., 2025; Wang et al., 2024).

3 PRELIMINARY

Direct Preference Optimization (DPO) DPO (Rafailov et al., 2024) optimizes a policy π_{θ} to prefer a response y_+ over y_- for a given input x, with regularization from a reference model π_{ref} . The core loss function is:

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_{+}, y_{-}) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_{+} \mid x)}{\pi_{\text{ref}}(y_{+} \mid x)} - \beta \log \frac{\pi_{\theta}(y_{-} \mid x)}{\pi_{\text{ref}}(y_{-} \mid x)} \right) \right], \quad (1)$$

where $\sigma(\cdot)$ is the sigmoid function, $\beta > 0$ is a temperature parameter, and $\mathcal{D} = \{(x, y_+, y_-)\}_{i=1}^N$ is a static dataset of comparisons sampled from human preference distribution. This can be interpreted as minimizing the binary cross-entropy between a pairwise preference label and the log odds induced by the policy relative to the reference. This approach is a *targeted and fast* optimization for models.

Group Relative Policy Optimization (GRPO) For a given input q, the model generates a group of G responses $\{y_1, y_2, \ldots, y_G\}$ sampled from the current policy π_θ . Each response y_i is assigned a reward $r(y_i)$, typically derived from human feedback or automated evaluation metrics. Following outcome supervision method, the group mean reward μ and standard deviation σ are computed to obtain the advantage score:

$$\mu = \frac{1}{G} \sum_{i=1}^{G} r(y_i), \quad \sigma = \sqrt{\frac{1}{G} \sum_{i=1}^{G} (r(y_i) - \mu)^2}, \quad \hat{A}_{i,t} = \frac{r(y_i) - \mu}{\sigma}.$$
 (2)

With the score computed, GRPO (Shao et al., 2024) updates the policy by maximizing the following objective:

$$\mathcal{L}_{\text{Advantage}}(\pi_{\theta}) = \mathbb{E}_{q \sim \mathcal{P}(Q), \{y_i\}_{i=1}^G \sim \pi_{\theta_{\text{ref}}}(y_{i,t}|q, y_{i, < t})}$$

$$\frac{1}{G} \sum_{i=1}^{G} \frac{1}{|y_{i}|} \sum_{t=1}^{|y_{i}|} \left\{ \min \left[\frac{\pi_{\theta}(y_{i,t} \mid q, y_{i, < t})}{\pi_{\theta_{\text{ref}}}(y_{i,t} \mid q, y_{i, < t})} \hat{A}_{i,t}, \operatorname{clip} \left(\frac{\pi_{\theta}(y_{i,t} \mid q, y_{i, < t})}{\pi_{\theta_{\text{ref}}}(y_{i,t} \mid q, y_{i, < t})}, 1 - \epsilon, 1 + \epsilon \right) \hat{A}_{i,t} \right] \right\}$$
(3)

$$\mathcal{L}_{GRPO}(\pi_{\theta}) = \mathcal{L}_{Advantage}(\pi_{\theta}) - \beta D_{KL} \left[\pi_{\theta} \| \pi_{ref} \right]$$
(4)

where ϵ is a hyperparameter controlling the clipping range, β is the temperature parameter, and $\pi_{\theta_{\text{ref}}}$ is the policy before the update. This approach allows the model to focus on generating responses that are relatively better within a group, promoting *wide yet slow* exploration in the generation space.

4 VIPO-R1: VERIFIER-GUIDED ITERATIVE POLICY OPTIMIZATION

4.1 OVERVIEW

We introduce VIPO-R1, an iterative policy optimization approach specifically designed to enhance the long reasoning capability of Video-LLMs. The method follows an iterative process: 1) *Initial Policy Exploration:* We first apply GRPO to the instruction-tuned Qwen2.5-VL, utilizing diverse accuracy rewards tailored for various video task output formats. 2) *Sample Curation with Verifier:* A Verifier component analyzes the GRPO rollouts to produce high-quality, long reasoning paths that lead to accurate answers as positive (chosen) samples. It also selects challenging, incorrect reasoning paths as hard negative (rejected) samples. 3) *Policy Refinement with DPO:* These curated contrastive samples are then used to fine-tune the model via DPO. The DPO efficiently refines the model's policy, encouraging the generation of better reasoning paths in a controllable direction.

4.2 GRPO

Following the GRPO algorithm from DeepSeek-R1 (DeepSeek-AI et al., 2025), we employ two types of rewards: accuracy and format. The accuracy reward r_a is scaled within the range [0,1], while the format reward r_f is bounded within [0,0.5]. The calculation of accuracy reward r_a depends on the type of question posed in the input prompt. For mathematical questions, we employ Math-Verify¹ to parse the answer from the model's output and compare it against the ground truth GT, yielding a binary reward (1 for correct, 0 for incorrect). Similarly, for multiple-choice questions, r_a is assigned a value of 1 if the model's selected option aligns with the ground truth GT and 0 otherwise. As for distance estimation tasks, we utilize the Mean Relative Accuracy (MRA) metric, as proposed in VSI-Bench (Yang et al., 2024), which provides a continuous reward value between 0 and 1. The

¹https://github.com/huggingface/Math-Verify

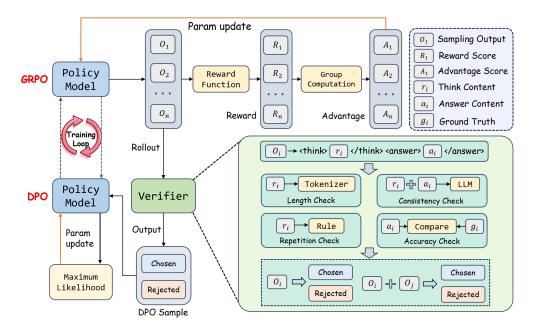


Figure 2: Overview of VIPO-R1 workflow. This training loop is guided by the Verifier's continuous evaluation and selection of training samples. The optimization process progressively improves the model's long reasoning capability by learning from high-quality and informative reasoning examples. format reward r_f is binary (0.5 for adherence, 0 for non-adherence), contingent upon whether the model's response conforms to the predefined < think> ... < /think> < answer> ... < /answer> structure. The accuracy rewards are presented as

$$r_a = \begin{cases} 1 & \text{if } Q_{type} \in \{\text{Math, MC}\} \text{ and Answer matches } GT \\ 0 & \text{if } Q_{type} \in \{\text{Math, MC}\} \text{ and Answer does not match } GT \\ MRA(Output, GT) & \text{if } Q_{type} = \text{Distance Estimation} \end{cases}$$
 (5)

To broaden the model's exploration capabilities and enhance learning flexibility, we remove the KL divergence during the GRPO training process. Furthermore, we encountered an empirical observation consistent with findings reported in DAPO (Yu et al., 2025). As training progressed, the number of samples with an accuracy of 1 continually increased. These samples have an advantage of 0 and result in no gradient for policy updates, which suppressed the gradient signals during the model's training process. To mitigate this phenomenon and maintain robust gradient flow, we integrate the online filter strategy (Meng et al., 2025) to exclude zero-advantage samples from the training batches.

4.3 ROLLOUT-AWARE VERIFIER

To address the limitation of outcome-based GRPO in optimizing reasoning paths, we introduce a rollout-aware Verifier that analyzes online rollouts to generate high-quality preference data, continuously guiding the model to generate long-form, high-quality reasoning paths. As shown in Figure 2, for a given rollout o_i , we employ regular expressions to extract both the thought content r_i and answer a_i . The verifier encompasses four-aspect quality assessment to select high-quality long-CoT samples:

Accuracy Check. Given an answer a_i , we use the same formula 5 as in the calculation of accuracy reward to compute accuracy. For the MRA metric, we set the threshold to 0.6.

Consistency Check. Given a rollout o_i , we divide it into the reasoning content r_i and answer a_i . For multiple-choice questions and numerical questions, we design different system prompts—denoted uniformly as s_i for simplicity. The formal answer is then obtained as: $a_i' = \text{LLM}(s_i, q_i, r_i)$, where q_i is the original question corresponding to the rollout. We then determine the consistency of the response by checking whether a_i and a_i' are the same. Specifically, for numerical questions, we use the Math-Verify library for verification.

Repetition Check. Given a reasoning content r_i , we first divide it into a sequence of sentences $S = s_1, s_2, \ldots, s_m$. The segmentation is performed using regular expressions that match Chinese

and English punctuation marks. To remove mathematical formulas or short sentences, we compute the word count $w(s_i)$ for each sentence s_i , and we retain only those sentences whose word count exceeds a threshold θ_w : $S' = s_i \in S \mid w(s_i) > \theta_w$. For each pair of sentences $s_i, s_j \in S'$, we compute the Levenshtein distance $d(s_i, s_j)$, and the normalized similarity is defined as $\sin(s_i, s_j) = 1 - \frac{d(s_i, s_j)}{\max(|s_i|, |s_j|)}$, where $|s_i|$ denotes the length of sentence s_i . A higher similarity score indicates greater sentence redundancy. Then we cluster sentences by comparing each new sentence s_i to existing clusters C_1, C_2, \ldots, C_k . A sentence is added to a cluster C_l if there exists any sentence $s_j \in C_l$ such that: $\sin(s_i, s_j) \geq \theta_s$, where $\theta_s \in [0, 1]$ is a similarity threshold. If no such cluster exists, a new cluster is created with s_i as its initial member. Finally, we identify repetition by examining whether any cluster contains at least θ_c sentences. Using a dataset constructed from 50 duplicate samples and 50 non-duplicate samples, we determine the thresholds by exhaustive search as: $\theta_w = 5, \theta_s = 0.9, \theta_c = 6$.

Length Check. Given a rollout o_i , we divide it into the reasoning content r_i and answer a_i . We input r_i into the tokenizer to obtain the token length: length = len(tokenizer(r_i))

Following this selection, we construct contrastive pairs for DPO training. Samples are initially categorized based on their average accuracy reward $R_a^{avg} = \frac{1}{N} \sum_{i=1}^N R_{ai}$, where N refers to the number of sampling per query. This classification guides the data construction process. For training samples where the model consistently produces incorrect rollouts ($R_a^{avg} = 0$), their high-quality long-form reasoning is generated using Gemini-2.5-Flash. These will help models explore deep reasoning for challenging questions. Conversely, rollouts with perfect accuracy ($R_a^{avg} = 1$) are regarded as simple samples and generally excluded from preference pairs during the DPO stage. Then, the contrastive preference dataset is constructed as the following formula:

$$\begin{cases} p_c = o_j | o_j \in S_c \& \forall o_i \in S_c, \ len(o_j) \geq len(o_i); p_r = o_i | o_i \in S_e & \text{for Single Turn} \\ p_c = o_j | o_j \in S_c \& \forall o_i \in S_c, \ len(o_j) \geq len(o_i); p_r = o_i | repeat(o_i) = 1 & \text{for Repetition} \\ p_c = o_i | o_i \in S_c; p_r = o_i | inconsistency(o_i) = 1 & \text{for Consistency} \\ p_c = c(o_i, o_j) | i \neq j \& o_i \in S_e, o_j \in S_c; p_r = c(o_i, o_j) | i \neq j \& o_i, o_j \in S_e & \text{for Reflection} \end{cases}$$

In the formula, p_c represents a positive example in a preference pair, and p_r represents a negative example in a preference pair. S_c is the set of all samples that have undergone Repetition Check, Consistency Check, and Accuracy Check. S_e is the set of samples that have not undergone Accuracy Check. $len(\cdot)$ denotes the length calculated for the corresponding rollout in the Length Check, $repeat(\cdot)$ corresponds to the Repetition Check, $inconsistency(\cdot)$ corresponds to the Consistency Check, and $c(o_i, o_j)$ represents the semantic concatenation of the reasoning processes of o_i and o_j , with reflective prompts inserted in between.

If a sample has multiple rollouts that satisfy the conditions, we randomly select one. In this way, we construct four types of DPO Preference Pairs: Single-Turn Preference Pairs, Repetition Penalty Pairs, Inference Consistency Pairs, and Reflective Preference Pairs (using reflective phrases to simulate refined reasoning). These are used to enhance the model's general reasoning ability, eliminate repetitive reasoning patterns, improve the logical consistency of the model, and encourage reflection during the reasoning process. This multi-faceted checking and data construction pipeline yields a rich and diverse preference dataset, specifically engineered to support robust and fast DPO training focused on improving the model's reasoning length, self-reflection, and logical consistency.

4.4 TRAINING LOOP

Based on the model from the previous GRPO round, DPO training is performed on contrastive data generated by the rollout-aware verifier. The visual encoder is kept frozen throughout this process, and further training parameter configurations are detailed in Table 1.

The training loop follows a curriculum learning approach to gradually activate the LMMs' long-form reasoning ability in video. This begins with simple-modality data (text-only or image QA) for initial reasoning activation with GRPO, followed by the GRPO training using image and video QA data, as shown in Table 1. Then, the whole GRPO-Verifier-DPO pipeline continuously enhances the model's long-form reasoning capability and gradually stabilizes its performance on video reasoning, iteratively pushing towards the model's inherent reasoning limit. During the iterative process, we will gradually discard 80% of the simple examples ($R_a^{avg} = 1$) from the previous GRPO training

Table 1: Training data and hyperparameters across different stages.

Stage	Reasoning Activation	Group-Slow-Search	Pair-Fast-Align	Group-Slow-Search
Algorithm	GRPO	GRPO	DPO	GRPO
Data	Long Document (1k) Math-Text (30k) Reasoning-Image (39K)	Science-Image (4K) Spaital-Image (9k) General-Image (10K) VQA-Video (24k)	Rollouts of VQA-Video from GRPO	Filtered VQA-Video
Gloabl Batch Size	128	64	32	64
Rollout Batch Size	64	64	-	64
Learning Rate	1e-6	1e-6	5e-7	5e-7
Rollout Responses per Query	8	8	-	8
Sampling Temperature	1.0	1.0	-	1.0
DPO Beta (β)	-	-	0.1	-
Time Cost(Hours)	38.2	31.5	2.0-3.2	15.3-18.1

process to reduce the training time of models. The entire training process equips LMMs with robust long-chain reasoning ability with slow-search GRPO and fast-align DPO. Compared to continuous GRPO training after reasoning activation, our approach reduces training time from 63 hours to 49 hours and produces reasoning chains of higher quality.

5 EXPERIMENT

5.1 EXPERIMENT SETUP

Baseline. We compare VIPO-R1 against various SFT and RL baselines. Direct-answer models (SFT, size > 7B) respond without an explicit reasoning process, while reasoning-answer models generate a reasoning process before answering. Direct-answer baselines include SOTA models like Kimi-VL-A3B (Team et al., 2025), InternVideo2.5 (Wang et al., 2025c), Qwen2.5-VL-Instruct (Bai et al., 2025), and others. Reasoning-answer baselines include Kimi-VL-A3B-Thinking (Team et al., 2025), Video-R1 (Feng et al., 2025), TW-GRPO (Dang et al., 2025) and others.

Training Details. Our GRPO algorithm is implemented using the OpenRLHF framework, and DPO training uses the TRL framework with a β value of 0.1. Based on Qwen2.5-VL-7B, we conduct experiments on eight NVIDIA A800-80G GPUs with a maximum of 64 frames and 128*28*28 resolution. The global training batch size is set to 64, with a rollout training batch size of 64 and 8 rollout responses per query, the sampling temperature is fixed at 1.0, and the maximum output length is 4096 tokens. The learning rate is set to 1e-6. Detailed settings are shown in Table 1 and C.3.

Training Dataset. Our experiments involve multiple training stages (Table 1). The first stage mainly activated model reasoning using data from long documents (QuALITY (Pang et al., 2022)), text mathematics (DAPO-Math (Yu et al., 2025)), and image reasoning (ViRL-39K (Wang et al., 2025a)). The second stage focuses on image and video data. To mitigate the scarcity of high-quality video data, a filtered subset of diverse video benchmarks, carefully checked for leakage with evaluation datasets, is incorporated. Image data includes subsets from ViRL-39K (Science-Image, Spatial-Image), SPAR-Bench (Zhang et al., 2025b) (Spatial-Image), and MME-RealWorld (Zhang et al., 2024a) (General-Image). Video data utilizes several benchmarks: MVBench (Li et al., 2023), TempCompass (Liu et al., 2024), LongVideoBench (Wu et al., 2024a), HourVideo (Chandrasegaran et al., 2024), MLVU (Zhou et al., 2024), STI-Bench (Li et al., 2025c), and VideoVista-CulturalLingo (Chen et al., 2025b), along with a filtered 5K data of LLaVA-Video-178K (Zhang et al., 2024b).

Benchmark. We adopt four video reasoning benchmarks: VSI-Bench (Yang et al., 2024), TOMATO (Shangguan et al., 2024), VideoMMMU (Hu et al., 2025), MMVU (Zhao et al., 2025b) and one long video understanding benchmark Video-MME (Fu et al., 2024). Specifically, VSI-Bench evaluates spatial reasoning, TOMATO assesses temporal reasoning, and VideoMMMU/MMVU tests domain-specific knowledge from multi-discipline videos. Video-MME is a general benchmark for comprehensive long video understanding. The detailed evaluation setting of our experiment is in C.4 and evaluation prompt is in C.2

5.2 RESULTS AND ANALYSIS

Table 2: Model performance on video reasoning and long video understanding benchmarks. Models with grey backgrounds have >11B parameters; those with green backgrounds are based on Qwen2.5-VL-7B. **Bold** values indicate the best performance, and <u>underlined</u> values indicate the second best.

Model	Params	Video Reasoning				Long Video Understanding	Avg.
		VSI-Bench	VideoMMMU	MMVU (mc)	TOMATO	Video-MME (w/o sub)	
GPT-40 (Team et al., 2024b)	-	34.0	61.2	-	37.7	71.9	-
Gemini 1.5 pro (Team et al., 2024a)	-	45.4	53.8	-	36.1	75.0	-
LLaVA-Video (Zhang et al., 2024b)	7B	35.6	36.1	-	-	63.3	-
LLaVA-OneVision (Li et al., 2024a)	7B	32.4	33.8	49.2	-	58.2	-
VideoLLaMA3 (Zhang et al., 2025a)	7B	-	47.0	-	-	66.2	-
InternVL2 (Team, 2024)	8B	34.6	37.4	39.0	21.7	54.0	38.1 -
InternVL2.5 (Chen et al., 2025d)	8B	-	-	-	-	64.2	-
InternVideo2.5 (Wang et al., 2025c)	8B	-	43.0	-	-	65.1	-
Kimi-VL (Team et al., 2025)	16B (A3B)	37.4	52.6	-	31.7	67.8	-
DeepSeek-VL2 (Wu et al., 2024c)	28B (A4B)	21.7	-	-	27.2	-	-
TinyLLaVA-Video-R1(Zhang et al., 2025c)	3B	-	-	46.9	-	46.6	-
ReFoCUS (Lee et al., 2025)	8B	-	52.1	-	-	66.0	-
Kimi-VL-Thinking (Team et al., 2025)	16B (A3B)	32.2	-	56.8	20.6	-	-
MiMo-VL-Thinking (Xiaomi, 2025)	7B	-	43.3	-	-	<u>67.4</u>	-
Video-R1 (Feng et al., 2025)	7B	35.8	52.3	64.3	-	59.3	-
VideoChat-R1 (Li et al., 2025a)	7B	-	-	64.2	-	52.4	-
TW-GRPO (Dang et al., 2025)	7B	-	-	65.8	-	55.1	-
Qwen2.5-VL (Bai et al., 2025)	7B	<u>37.5</u>	<u>54.3</u>	67.2	29.3	66.2	<u>46.6</u>
Qwen2.5-VL (thinking) (Bai et al., 2025)	7B	23.8	46.8	63.0	25.8	60.4	37.4
GRPO	7B	33.4	54.0	66.1	28.6	64.7	44.1
VIPO-R1	7B	41.3	56.8	<u>66.7</u>	32.2	67.2	49.3

Table 3: Accuracy, Consistency and Acc-Cons. during training. **Consistency** refers to the proportion of responses in which the reasoning process and the final answer are consistent. **Acc-Cons.** indicates the answer is correct and also consistent with the right reasoning process. The value of Acc-Cons. shows a continual improvement with iterative policy refinement.

Model	VSI-Bench			VideoMMMU			TOMATO		
	Accuracy	Consistency	Acc-Cons.	Accuracy	Consistency	Acc-Cons.	Accuracy	Consistency	Acc-Cons.
Baseline + GRPO	33.4	84.1	30.7	54.0	84.7	49.9	28.6	82.0	25.6
VIPO-R1 (GRPO-Iteration1)	41.8	83.1	38.4	56.2	84.3	51.2	31.4	82.6	26.5
VIPO-R1 (DPO-Iteration1)	41.8	85.8	38.7	56.2	86.6	52.0	31.6	89.0	28.7
VIPO-R1 (GRPO-Iteration2)	41.1	85.5	38.3	56.7	88.4	53.3	32.7	87.3	29.1
VIPO-R1 (DPO-Iteration2)	41.0	94.5	39.4	56.9	94.8	55.1	31.5	97.5	31.0
VIPO-R1 (GRPO-Iteration3)	41.1	95.1	39.9	57.0	94.1	55.3	31.9	97.3	31.0
VIPO-R1 (DPO-Iteration3)	41.3	95.8 (↑ 11.7)	40.1 (↑ 9, 4)	56.8	95.0 (↑ 10.3)	55.4 (↑ 5.5)	32.2	97.5 (↑ 15.5)	31.3 (↑ 5.7)

Main Results. In Table 2, we present a comparison between VIPO-R1 iteration and several baseline models, including Qwen2.5-VL and Kimi-VL, across five benchmarks. It can be observed that VIPO-R1 demonstrates better performance on the video reasoning benchmarks VSI-Bench, VideoMMMU, and TOMATO compared to base model Qwen2.5-VL, or with GRPO and powerful thinking models. For complex reasoning, e.g., VideoMMMU and VSI-Bench, we can see large performance increases compared to these models, e.g., ↑ 7.9% than GRPO on VSI-Bench, ↑ 5.6% than Video-R1 on VideoMMMU.

Table 4: Performance comparison across different training methods (SFT or Reasoning Activation).

transming micune as	(51 1 01 1.	• • • • • • • • • • • • • • • • • • •		
Method	VSI-Bench	VideoMMMU	TOMATO	
Qwen2.5-VL(w/o.t.)	37.5	54.3	29.3	
Direct GRPO				
+ GRPO	33.4	54.0	28.6	
+ DPO	33.9	54.2	28.2	
Cold Start (SFT) + G.	RPO			
+ SFT	33.8	53.4	26.8	
+ GRPO	36.6	55.0	29.8	
+ DPO	36.6	53.8	28.7	
Reasoning Activation	+ GRPO			
+ Activation	38.7	56.7	28.3	
+ GRPO	41.9	56.9	31.4	
+ DPO	41.8	56.2	31.6	

Training Time Analysis. We present the train-

ing time costs for each stage of VIPO-R1 in Table 1. Since Pair-Fast-Align and the final Group-Slow-Search require multiple iterations, the given time represents the range of time for all iterations. It can be observed that the training time cost of DPO is much lower than that of GRPO, and the time cost of a single round of GRPO+DPO training (e.g. 17.3h) is close to that of direct GRPO (e.g. 15.3h). It can also lower the next-step GRPO training costs. We also provide a detailed analysis of the training time differences between GRPO and DPO under similar sample sizes in the Appendix C.1.

Iterations of VIPO-R1. Table 3 presents Accuracy, Consistency, and Acc-Cons during the iterative training of VIPO-R1. It can be observed that as the iterations proceed, the VIPO-R1 algorithm effectively mitigates the logical inconsistencies introduced by the GRPO training process. The increase in Acc-Cons. reflects the model's enhanced real understanding of the problems, reducing cases where the model reasons incorrectly but still guesses the right answer.

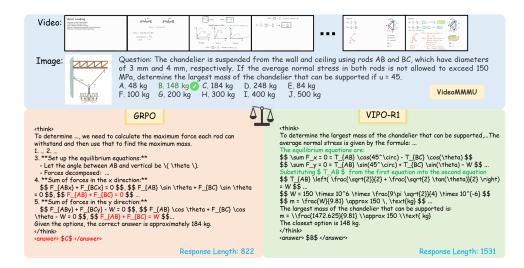


Figure 3: A case from VideoMMMU shows the performance gap between GRPO and VIPO-R1. Our method can generate longer CoTs with accurate and logical formulas to solve physical problems.

Cold Start or Reasoning Activation? We evaluate Cold Start (SFT) in RFT using the Video-R1-COT 165k dataset. Table 4 shows that while Cold Start training yields only marginal gains on metrics such as VideoMMMU, it leads to substantial degradation on general reasoning tasks, which subsequent VIPO-R1 training fails to remedy. By contrast, VIPO-R1 starting from Reasoning Activation not Cold Start, show more stable performance improvement across benchmarks. Compared with direct GRPO baseline, VIPO-R1 also has significant advantages.

Verfier in VIPO-R1. In Table 5, we conduct an ablation study on the verifier used in the DPO stage. The w/o.verifier version of the model relies solely on the accuracy reward to select positive and negative samples, which leads to a significant decrease in both Consistency and Acc-Cons. compared with the complete verifier. Meanwhile, removing any component of the verifier also results in a drop in model performance.

5.3 CASE STUDY

Based on Figure 3 (more cases in E), where red indicates error reasoning and green accurate reasoning, and previous experimental analysis, we observe VIPO-R1 enables models to generate longer and more accurate reasoning chains (sometimes with reflection) for challenging science, temporal grounding problems besides general reasoning tasks. In addition, we observe that utilizing textual or visual math in the reasoning activation stage aids logical reasoning

Table 5: Performance comparison across different Verfier in DPO stage. The reported metrics are the averages of VideoMMMU and TOMATO.

Method	Acc-Cons.	Consistency
VIPO-R1 (GRPO-Iteration1)	35.8	83.2
+DPO (w/o.verfier)	36.2	85.8
+DPO (verfier w/o.gemini anno.)	37.3	87.9
+DPO (verfier w/o.reflection)	37.0	88.2
+DPO (verfier w/o.consistency)	36.2	86.0
+DPO (verfier)	37.5	88.2

based on the reasoning process of GRPO and VIPO-R1 in science problems.

6 CONCLUSION

Addressing the challenge of long video reasoning in MLLMs, we propose **VIPO-R1**, a novel online rollout-aware **V**erifier-guided **I**terative **P**olicy **O**ptimization algorithm. This GRPO-Verifier-DPO loop employs a small LLM verifier to refine generated CoTs, cultivating reasoning capability efficiently without requiring large Long-CoT datasets as cold starts. VIPO-R1 significantly improves reasoning consistency, accuracy, and response length, outperforming larger and more powerful baselines on video benchmarks. While effective, *limitations* include potential verifier dependence and limited data size. *Future works* aims to address these by exploring verifier designs and leveraging GRPO exploration, targeted DPO, and strong SFT, towards achieving robust and long-form reasoning ability across omimodality. More dicussions are shown in Appendix D.

REFERENCES

- Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid. Vivit: A video vision transformer, 2021. URL https://arxiv.org/abs/2103.15691.
- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL https://arxiv.org/abs/2502.13923.
- Keshigeyan Chandrasegaran, Agrim Gupta, Lea M. Hadzic, Taran Kota, Jimming He, Cristobal Eyzaguirre, Zane Durante, Manling Li, Jiajun Wu, and Fei-Fei Li. Hourvideo: 1-hour video-language understanding. In *Advances in Neural Information Processing Systems*, volume 37, 2024.
- Tieyuan Chen, Huabin Liu, Tianyao He, Yihang Chen, Chaofan Gan, Xiao Ma, Cheng Zhong, Yang Zhang, Yingxue Wang, Hui Lin, and Weiyao Lin. Mecd: Unlocking multi-event causal discovery in video reasoning, 2024. URL https://arxiv.org/abs/2409.17647.
- Xiaxu Chen, Wei Li, Chunxu Liu, Chi Xie, Xiaoyan Hu, Chengqian Ma, Feng Zhu, and Rui Zhao. On the suitability of reinforcement fine-tuning to visual tasks, 2025a. URL https://arxiv.org/abs/2504.05682.
- Xinyu Chen, Yunxin Li, Haoyuan Shi, Baotian Hu, Wenhan Luo, Yaowei Wang, and Min Zhang. Videovista-culturallingo: 360° horizons-bridging cultures, languages, and domains in video comprehension, 2025b.
- Zhangquan Chen, Xufang Luo, and Dongsheng Li. Visrl: Intention-driven visual perception via reinforced reasoning, 2025c. URL https://arxiv.org/abs/2503.07523.
- Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye, Hao Tian, Zhaoyang Liu, Lixin Gu, Xuehui Wang, Qingyun Li, Yimin Ren, Zixuan Chen, Jiapeng Luo, Jiahao Wang, Tan Jiang, Bo Wang, Conghui He, Botian Shi, Xingcheng Zhang, Han Lv, Yi Wang, Wenqi Shao, Pei Chu, Zhongying Tu, Tong He, Zhiyong Wu, Huipeng Deng, Jiaye Ge, Kai Chen, Kaipeng Zhang, Limin Wang, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhai Wang. Expanding performance boundaries of open-source multimodal models with model, data, and test-time scaling, 2025d. URL https://arxiv.org/abs/2412.05271.
- Chris, Yichen Wei, Yi Peng, Xiaokun Wang, Weijie Qiu, Wei Shen, Tianyidan Xie, Jiangbo Pei, Jianhao Zhang, Yunzhuo Hao, Xuchen Song, Yang Liu, and Yahui Zhou. Skywork r1v2: Multimodal hybrid reinforcement learning for reasoning, 2025. URL https://arxiv.org/abs/2504.16656.
- Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models with instruction tuning, 2023. URL https://arxiv.org/abs/2305.06500.
- Jisheng Dang, Jingze Wu, Teng Wang, Xuanhui Lin, Nannan Zhu, Hongbo Chen, Wei-Shi Zheng, Meng Wang, and Tat-Seng Chua. Reinforcing video reasoning with focused thinking. *arXiv* preprint arXiv:2505.24718, 2025.
- Erik Daxberger, Nina Wenzel, David Griffiths, Haiming Gang, Justin Lazarow, Gefen Kohavi, Kai Kang, Marcin Eichner, Yinfei Yang, Afshin Dehghan, and Peter Grasch. Mm-spatial: Exploring 3d spatial understanding in multimodal llms, 2025. URL https://arxiv.org/abs/2503.13111.
 - DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, et al. Deepseek-r1: Incentivizing reasoning capability in Ilms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

- Huilin Deng, Ding Zou, Rui Ma, Hongchen Luo, Yang Cao, and Yu Kang. Boosting the generalization and reasoning of vision language models with curriculum reinforcement learning, 2025. URL https://arxiv.org/abs/2503.07065.
 - Yuhao Dong, Zuyan Liu, Hai-Long Sun, Jingkang Yang, Winston Hu, Yongming Rao, and Ziwei Liu. Insight-v: Exploring long-chain visual reasoning with multimodal large language models, 2025. URL https://arxiv.org/abs/2411.14432.
 - Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale, 2021. URL https://arxiv.org/abs/2010.11929.
 - Hao Fei, Shengqiong Wu, Wei Ji, Hanwang Zhang, Meishan Zhang, Mong-Li Lee, and Wynne Hsu. Video-of-thought: Step-by-step video reasoning from perception to cognition, 2024. URL https://arxiv.org/abs/2501.03230.
 - Kaituo Feng, Kaixiong Gong, Bohao Li, Zonghao Guo, Yibing Wang, Tianshuo Peng, Benyou Wang, and Xiangyu Yue. Video-r1: Reinforcing video reasoning in mllms, 2025. URL https://arxiv.org/abs/2503.21776.
 - Chaoyou Fu, Yuhan Dai, Yondong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation benchmark of multi-modal llms in video analysis. *arXiv preprint arXiv:2405.21075*, 2024.
 - Taneesh Gupta, Rahul Madhavan, Xuchao Zhang, Chetan Bansal, and Saravan Rajmohan. Ampo: Active multi-preference optimization, 2025. URL https://arxiv.org/abs/2502.18293.
 - Kairui Hu, Penghao Wu, Fanyi Pu, Wang Xiao, Yuanhan Zhang, Xiang Yue, Bo Li, and Ziwei Liu. Video-mmmu: Evaluating knowledge acquisition from multi-discipline professional videos, 2025. URL https://arxiv.org/abs/2501.13826.
 - Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models, 2025. URL https://arxiv.org/abs/2503.06749.
 - Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.
 - Hosu Lee, Junho Kim, Hyunjun Kim, and Yong Man Ro. Refocus: Reinforcement-guided frame optimization for contextual understanding. *arXiv preprint arXiv:2506.01274*, 2025.
 - Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer, 2024a. URL https://arxiv.org/abs/2408.03326.
 - Chenliang Li, Haiyang Xu, Junfeng Tian, Wei Wang, Ming Yan, Bin Bi, Jiabo Ye, Hehong Chen, Guohai Xu, Zheng Cao, Ji Zhang, Songfang Huang, Fei Huang, Jingren Zhou, and Luo Si. mplug: Effective and efficient vision-language learning by cross-modal skip-connections, 2022. URL https://arxiv.org/abs/2205.12005.
 - Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen, Ping Luo, Limin Wang, and Yu Qiao. Mybench: A comprehensive multi-modal video understanding benchmark, 2023.
 - KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang, and Yu Qiao. Videochat: Chat-centric video understanding, 2024b. URL https://arxiv.org/abs/2305.06355.
 - Xinhao Li, Ziang Yan, Desen Meng, Lu Dong, Xiangyu Zeng, Yinan He, Yali Wang, Yu Qiao, Yi Wang, and Limin Wang. Videochat-r1: Enhancing spatio-temporal perception via reinforcement fine-tuning. *arXiv* preprint arXiv:2504.06958, 2025a.

- Xinhao Li, Ziang Yan, Desen Meng, Lu Dong, Xiangyu Zeng, Yinan He, Yali Wang, Yu Qiao, Yi Wang, and Limin Wang. Videochat-r1: Enhancing spatio-temporal perception via reinforcement fine-tuning, 2025b. URL https://arxiv.org/abs/2504.06958.
 - Yun Li, Yiming Zhang, Tao Lin, XiangRui Liu, Wenxiao Cai, Zheng Liu, and Bo Zhao. Sti-bench: Are mllms ready for precise spatial-temporal world understanding? *arXiv preprint arXiv:2503.23765*, 2025c.
 - Yunxin Li, Baotian Hu, Xinyu Chen, Lin Ma, Yong Xu, and Min Zhang. Lmeye: An interactive perception network for large language models. *IEEE Transactions on Multimedia*, 26:10952–10964, 2024c. doi: 10.1109/TMM.2024.3428317.
 - Yunxin Li, Shenyuan Jiang, Baotian Hu, Longyue Wang, Wanqi Zhong, Wenhan Luo, Lin Ma, and Min Zhang. Uni-moe: Scaling unified multimodal llms with mixture of experts. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 47(5):3424–3439, 2025d. doi: 10.1109/TPAMI. 2025.3532688.
 - Yunxin Li, Zhenyu Liu, Zitao Li, Xuanyu Zhang, Zhenran Xu, Xinyu Chen, Haoyuan Shi, Shenyuan Jiang, Xintong Wang, Jifang Wang, et al. Perception, reason, think, and plan: A survey on large multimodal reasoning models. *arXiv preprint arXiv:2505.04921*, 2025e.
 - Ye Liu, Kevin Qinghong Lin, Chang Wen Chen, and Mike Zheng Shou. Videomind: A chain-of-lora agent for long video reasoning, 2025a. URL https://arxiv.org/abs/2503.13444.
 - Yuanxin Liu, Shicheng Li, Yi Liu, Yuxiang Wang, Shuhuai Ren, Lei Li, Sishuo Chen, Xu Sun, and Lu Hou. Tempcompass: Do video llms really understand videos? *arXiv preprint arXiv:* 2403.00476, 2024.
 - Yuecheng Liu, Dafeng Chi, Shiguang Wu, Zhanguang Zhang, Yaochen Hu, Lingfeng Zhang, Yingxue Zhang, Shuang Wu, Tongtong Cao, Guowei Huang, Helong Huang, Guangjian Tian, Weichao Qiu, Xingyue Quan, Jianye Hao, and Yuzheng Zhuang. Spatialcot: Advancing spatial reasoning through coordinate alignment and chain-of-thought for embodied task planning, 2025b. URL https://arxiv.org/abs/2501.10074.
 - Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Segzero: Reasoning-chain guided segmentation via cognitive reinforcement, 2025c. URL https://arxiv.org/abs/2503.06520.
 - Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin transformer, 2021. URL https://arxiv.org/abs/2106.13230.
 - Zhiyuan Liu, Yuting Zhang, Feng Liu, Changwang Zhang, Ying Sun, and Jun Wang. Othink-mr1: Stimulating multimodal generalized reasoning capabilities via dynamic reinforcement learning, 2025d. URL https://arxiv.org/abs/2503.16081.
 - Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi Wang. Visual-rft: Visual reinforcement fine-tuning, 2025e. URL https://arxiv.org/abs/2503.01785.
 - Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1: A generalist r1-style vision-language action model for gui agents, 2025. URL https://arxiv.org/abs/2504.10458.
 - Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt: Towards detailed video understanding via large vision and language models, 2024. URL https://arxiv.org/abs/2306.05424.
 - Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng Han, Botian Shi, Wenhai Wang, Junjun He, Kaipeng Zhang, Ping Luo, Yu Qiao, Qiaosheng Zhang, and Wenqi Shao. Mm-eureka: Exploring the frontiers of multimodal reasoning with rule-based reinforcement learning, 2025. URL https://arxiv.org/abs/2503.07365.
 - Daniel Neimark, Omri Bar, Maya Zohar, and Dotan Asselmann. Video transformer network, 2021. URL https://arxiv.org/abs/2102.00719.

- Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision, 2024. URL https://arxiv.org/abs/2304.07193.
 - Kun Ouyang. Spatial-r1: Enhancing mllms in video spatial reasoning, 2025. URL https://arxiv.org/abs/2504.01805.
 - Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi, Nikita Nangia, Jason Phang, Angelica Chen, Vishakh Padmakumar, Johnny Ma, Jana Thompson, He He, and Samuel Bowman. QuALITY: Question answering with long input texts, yes! In *Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 5336–5358, Seattle, United States, July 2022. Association for Computational Linguistics. URL https://aclanthology.org/2022.naacl-main.391.
 - Yingzhe Peng, Gongrui Zhang, Miaosen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang, Xingzhong Xu, Xin Geng, and Xu Yang. Lmm-r1: Empowering 3b lmms with strong reasoning abilities through two-stage rule-based rl, 2025. URL https://arxiv.org/abs/2503.07536.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision, 2021. URL https://arxiv.org/abs/2103.00020.
 - Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model, 2024. URL https://arxiv.org/abs/2305.18290.
 - Arijit Ray, Jiafei Duan, Ellis Brown, Reuben Tan, Dina Bashkirova, Rose Hendrix, Kiana Ehsani, Aniruddha Kembhavi, Bryan A. Plummer, Ranjay Krishna, Kuo-Hao Zeng, and Kate Saenko. Sat: Dynamic spatial aptitude training for multimodal language models, 2025. URL https://arxiv.org/abs/2412.07755.
 - John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.
 - Ziyao Shangguan, Chuhan Li, Yuxuan Ding, Yanan Zheng, Yilun Zhao, Tesca Fitzgerald, and Arman Cohan. Tomato: Assessing visual temporal reasoning capabilities in multimodal foundation models, 2024. URL https://arxiv.org/abs/2410.23266.
 - Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.
 - Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement finetuning via adaptive curriculum learning, 2025. URL https://arxiv.org/abs/2504.05520.
 - Linzhuang Sun, Hao Liang, Jingxuan Wei, Bihui Yu, Tianpeng Li, Fan Yang, Zenan Zhou, and Wentao Zhang. Mm-verify: Enhancing multimodal reasoning with chain-of-thought verification, 2025. URL https://arxiv.org/abs/2502.13383.
 - Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan Lin, Pengwei Wang, Zhongyuan Wang, and Shanghang Zhang. Reason-rft: Reinforcement fine-tuning for visual reasoning, 2025. URL https://arxiv.org/abs/2503.20752.
 - Xiaohang Tang, Sangwoong Yoon, Seongho Son, Huizhuo Yuan, Quanquan Gu, and Ilija Bogunovic. Game-theoretic regularized self-play alignment of large language models, 2025. URL https://arxiv.org/abs/2503.00030.

- Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context, 2024a. URL https://arxiv.org/abs/2403.05530.
 - Kimi Team, Angang Du, Bohong Yin, Bowei Xing, et al. Kimi-vl technical report, 2025. URL https://arxiv.org/abs/2504.07491.
 - OpenAI Team, Aaron Hurst, Adam Lerer, Adam P. Goucher, et al. Gpt-4o system card, 2024b. URL https://arxiv.org/abs/2410.21276.
 - OpenGVLab Team. Vila: On pre-training for visual language models, 2024. URL https://internvl.github.io/blog/2024-07-02-InternVL-2.0/.
 - Qwen Team. Qwen3: Think deeper, act faster, April 2025. URL https://qwenlm.github.io/blog/qwen3/.
 - Haoran Wang, Aman Rangapur, Xiongxiao Xu, Yueqing Liang, Haroon Gharwi, Carl Yang, and Kai Shu. Piecing it all together: Verifying multi-hop multimodal claims, 2024. URL https://arxiv.org/abs/2411.09547.
 - Haozhe Wang, Chao Qu, Zuming Huang, Wei Chu, Fangzhen Lin, and Wenhu Chen. Vl-rethinker: Incentivizing self-reflection of vision-language models with reinforcement learning. *arXiv* preprint *arXiv*:2504.08837, 2025a.
 - Xiyao Wang, Zhengyuan Yang, Chao Feng, Hongjin Lu, Linjie Li, Chung-Ching Lin, Kevin Lin, Furong Huang, and Lijuan Wang. Sota with less: Mcts-guided sample selection for data-efficient visual reasoning self-improvement, 2025b. URL https://arxiv.org/abs/2504.07934.
 - Yi Wang, Xinhao Li, Ziang Yan, Yinan He, Jiashuo Yu, Xiangyu Zeng, Chenting Wang, Changlian Ma, Haian Huang, Jianfei Gao, Min Dou, Kai Chen, Wenhai Wang, Yu Qiao, Yali Wang, and Limin Wang. Internvideo2.5: Empowering video mllms with long and rich context modeling, 2025c. URL https://arxiv.org/abs/2501.12386.
 - Yibin Wang, Zhimin Li, Yuhang Zang, Chunyu Wang, Qinglin Lu, Cheng Jin, and Jiaqi Wang. Unified multimodal chain-of-thought reward model through reinforcement fine-tuning, 2025d. URL https://arxiv.org/abs/2505.03318.
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023. URL https://arxiv.org/abs/2201.11903.
 - Xilin Wei, Xiaoran Liu, Yuhang Zang, Xiaoyi Dong, Pan Zhang, Yuhang Cao, Jian Tong, Haodong Duan, Qipeng Guo, Jiaqi Wang, Xipeng Qiu, and Dahua Lin. Videorope: What makes for good video rotary position embedding?, 2025. URL https://arxiv.org/abs/2502.05173.
 - Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context interleaved video-language understanding, 2024a. URL https://arxiv.org/abs/2407.15754.
 - Peiran Wu, Yunze Liu, Miao Liu, and Junxiao Shen. St-think: How multimodal large language models reason about 4d worlds from ego-centric videos, 2025. URL https://arxiv.org/abs/2503.12542.
 - Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play preference optimization for language model alignment, 2024b. URL https://arxiv.org/abs/2405.00675.
- Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang Ma, Chengyue Wu, Bingxuan Wang, Zhenda Xie, Yu Wu, Kai Hu, Jiawei Wang, Yaofeng Sun, Yukun Li, Yishi Piao, Kang Guan, Aixin Liu, Xin Xie, Yuxiang You, Kai Dong, Xingkai Yu, Haowei Zhang, Liang Zhao, Yisong Wang, and Chong Ruan. Deepseek-vl2: Mixture-of-experts vision-language models for advanced multimodal understanding, 2024c. URL https://arxiv.org/abs/2412.10302.

- Kun Xiang, Zhili Liu, Zihao Jiang, Yunshuang Nie, Runhui Huang, Haoxiang Fan, Hanhui Li, Weiran Huang, Yihan Zeng, Jianhua Han, Lanqing Hong, Hang Xu, and Xiaodan Liang. Atomthink: A slow thinking framework for multimodal mathematical reasoning, 2024. URL https://arxiv.org/abs/2411.11930.
 - LLM-Core-Team Xiaomi. Mimo-vl technical report, 2025. URL https://arxiv.org/abs/2506.03569.
 - Zhenghao Xing, Xiaowei Hu, Chi-Wing Fu, Wenhai Wang, Jifeng Dai, and Pheng-Ann Heng. Echoink-r1: Exploring audio-visual reasoning in multimodal llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2505.04623.
 - Haotian Xu, Xing Wu, Weinong Wang, Zhongzhi Li, Da Zheng, Boyuan Chen, Yi Hu, Shijia Kang, Jiaming Ji, Yingying Zhang, Zhijiang Guo, Yaodong Yang, Muhan Zhang, and Debing Zhang. Redstar: Does scaling long-cot data unlock better slow-reasoning systems?, 2025. URL https://arxiv.org/abs/2501.11284.
 - Jihan Yang, Shusheng Yang, Anjali Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in Space: How Multimodal Large Language Models See, Remember and Recall Spaces. *arXiv* preprint arXiv:2412.14171, 2024.
 - Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng Yin, Fengyun Rao, Minfeng Zhu, Bo Zhang, and Wei Chen. R1-onevision: Advancing generalized multimodal reasoning through cross-modal formalization, 2025. URL https://arxiv.org/abs/2503.10615.
 - Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-source Ilm reinforcement learning system at scale, 2025. URL https://arxiv.org/abs/2503.14476.
 - Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with reasoning, 2022. URL https://arxiv.org/abs/2203.14465.
 - Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong Leng, Yuming Jiang, Hang Zhang, Xin Li, Peng Jin, Wenqi Zhang, Fan Wang, Lidong Bing, and Deli Zhao. Videollama 3: Frontier multimodal foundation models for image and video understanding, 2025a. URL https://arxiv.org/abs/2501.13106.
 - Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language model for video understanding, 2023. URL https://arxiv.org/abs/2306.02858.
 - Jiahui Zhang, Yurui Chen, Yanpeng Zhou, Yueming Xu, Ze Huang, Jilin Mei, Junhui Chen, Yujie Yuan, Xinyue Cai, Guowei Huang, Xingyue Quan, Hang Xu, and Li Zhang. From flatland to space: Teaching vision-language models to perceive and reason in 3d. *arXiv preprint arXiv:2503.22976*, 2025b.
 - Xingjian Zhang, Siwei Wen, Wenjun Wu, and Lei Huang. Tinyllava-video-r1: Towards smaller lmms for video reasoning, 2025c. URL https://arxiv.org/abs/2504.09641.
 - Yi-Fan Zhang, Huanyu Zhang, Haochen Tian, Chaoyou Fu, Shuangqing Zhang, Junfei Wu, Feng Li, Kun Wang, Qingsong Wen, Zhang Zhang, et al. Mme-realworld: Could your multimodal llm challenge high-resolution real-world scenarios that are difficult for humans? *arXiv preprint arXiv:2408.13257*, 2024a.
 - Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video instruction tuning with synthetic data, 2024b. URL https://arxiv.org/abs/2410.02713.
 - Yuxiang Zhang, Yuqi Yang, Jiangming Shu, Yuhang Wang, Jinlin Xiao, and Jitao Sang. Openrft: Adapting reasoning foundation model for domain-specific tasks with reinforcement fine-tuning, 2024c. URL https://arxiv.org/abs/2412.16849.

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal chain-of-thought reasoning in language models, 2024d. URL https://arxiv.org/abs/2302.00923.

Jiaxing Zhao, Xihan Wei, and Liefeng Bo. R1-omni: Explainable omni-multimodal emotion recognition with reinforcement learning, 2025a. URL https://arxiv.org/abs/2503.05379.

Yilun Zhao, Lujing Xie, Haowei Zhang, Guo Gan, Yitao Long, Zhiyuan Hu, Tongyan Hu, Weiyuan Chen, Chuhan Li, Junyang Song, Zhijian Xu, Chengye Wang, Weifeng Pan, Ziyao Shangguan, Xiangru Tang, Zhenwen Liang, Yixin Liu, Chen Zhao, and Arman Cohan. Mmvu: Measuring expert-level multi-discipline video understanding, 2025b. URL https://arxiv.org/abs/2501.12380.

Rongkun Zheng, Lu Qi, Xi Chen, Yi Wang, Kun Wang, Yu Qiao, and Hengshuang Zhao. Villa: Video reasoning segmentation with large language model, 2025. URL https://arxiv.org/abs/2407.14500.

Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang, Tiejun Huang, and Zheng Liu. Mlvu: A comprehensive benchmark for multi-task long video understanding. *arXiv preprint arXiv:2406.04264*, 2024.

A APPENDIX

B LLMs Usage

Large Language Models (LLMs) are used to aid in the writing and polishing of the paper. Specifically, we only use large language models to polish the English expressions in the paper to eliminate potential grammatical errors, enhance the overall flow of the context, and enhance the readability of the article.

C DETAILED TRAINING AND EVALUATION ANALYSIS

C.1 COMPARISON OF TRAINING SPEED

In this section, we compare the training time of the GRPO and DPO algorithms, both based on a single epoch of GRPO training.

For the first epoch of GRPO, the total dataset consists of approximately 47K samples. After discarding 80% of the simpler examples, the dataset for the second epoch is reduced to around 24,653 samples. In contrast, the training data for DPO, after incorporating the *Rollout-Aware Verifier*, comprises approximately 20,096 samples. The training process for both algorithms is conducted on 8 A800-80G GPUs, with the corresponding training time summarized in Table 6. The table reports the total training time in minutes, alongside the estimated average training time per sample, which is calculated by dividing the total training time by the number of samples. The average training time is presented in seconds.

From the results in Table 6, we observe that the average training time per sample for the GRPO algorithm is approximately 7 times longer than that of the DPO algorithm.

Table 6: Training Time Comparison between DPO and GRPO.

Stage	GRPO	DPO
Framework	OpenRLHF	trl
Size of Training Dataset	24,653	20,096
Total Training Time (minutes)	1891	242
Sample-Level Training Time (seconds)	4.6	0.7

C.2 COT PROMPT

We have designed our prompt template based on the format used in DeepSeek-R1, where the system prompt explicitly defines the required output structure. This includes the use of <answer> tags to separate the reasoning process from the final answer. Detailed prompt are presented in Table 7. The table lists two distinct prompt formats: one for multiple-choice questions and the other for numerical questions, where {question} represents the processed question.

Table 7: Prompt setting for training and evaluation

Prompt For Multi-Choices Question

SYSTEM: You should first thinks about the reasoning process in the mind and then provides the user with the answer. Your answer must be in latex format and wrapped in \$...\$. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> Since, so the answer is B. </think><answer> \$B\$ </answer>, which means your output should start with <think> and end with </answer>.

USER: Question: {question}

Prompt For Numberic Question

SYSTEM: You should first thinks about the reasoning process in the mind and then provides the user with the answer. Your answer must be in latex format and wrapped in \$...\$. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> Since, so the answer is 2. </think><answer> \$2\$ </answer>, which means your output should start with <think> and end with </answer>.

USER: Question: {question} You must provide the answer in the <answer> </answer> tag, and the answer must be a number.

C.3 DETAILED TRAINING SETTING

During the training of Qwen2.5-VL-Instruct using the GRPO and DPO algorithms, we kept the visual encoder frozen throughout, training only the parameters of the MLP and the language model. For the GRPO training process, we utilized the Hybrid Engine to accelerate training. In the Reasoning Activation phase, both the *micro train batch size* and *micro rollout batch size* were set to 2. In the Group-Slow-Search phase, these values were reduced to 1 to accommodate the long video context inputs.

C.4 DETAILED EVALUATION SETTING

When evaluating the Qwen2.5-VL-Instruct model, along with all models trained using reinforcement learning based on this architecture, we set do_sample to False and used the default parameter settings from the Qwen generation_config: repetition_penalty = 1.05, temperature = 1e-6, and top_p = 1.0. The entire evaluation process is accelerated by leveraging VLLM for inference.

For video sampling, we set the frame rate to 2.0 fps, configured the maximum number of sampled frames per video to 128, and specified the maximum resolution per frame as $256 \times 28 \times 28$. Both the maximum number of sampled frames and the maximum resolution per frame were set to twice the values used during training. Additionally, we conducted a comparative experiment on the MMVU (mc) dataset and 300 long video samples sourced from Video-MME using the Qwen2.5-VL-Instruct model, with a focus on the number of sampled frames and the maximum resolution. The results of this experiment are presented in Table 8.

Table 8: Experiment about sampled frames and maximum resolution

Model	FPS	Frames	Resolution	MMVU (mc)	Video-MME (Long-300)
Qwen2.5-VL-7B (w.t.)	1.0	64	128*28*28	57.9	54.0
Qwen2.5-VL-7B (w.t.)	2.0	64	128*28*28	59.5	54.0
Qwen2.5-VL-7B (w.t.)	2.0	64	256*28*28	61.0	49.7
Qwen2.5-VL-7B (w.t.)	2.0	128	128*28*28	61.0	51.3
Qwen2.5-VL-7B (w.t.)	2.0	128	256*28*28	63.0	53.0

D DISCUSSION

Why do RL-trained LMRMs struggle to achieve consistent performance increase in all Video tasks? 1) High-Quality and Diverse Video Reasoning Data (Verifiable Data): Training LMRMs with RL requires vast amounts of high-quality data, particularly for video reasoning tasks that demand strong reasoning abilities or involve long reasoning paths. Most existing video datasets are primarily focused on simple recognition or short-term actions, lacking the complexity and scale needed for robust RL training. 2) Model Capability Limitations in Video Understanding (Foundation Models): The base model, upon which LMRMs are built, often relies on pre-training methodologies that are not ideally suited for comprehensive video understanding, especially over long durations. While these foundation models excel at learning powerful representations from vast amounts of image-text pairs or short video clips, their pre-training objectives typically do not fully capture the nuances of long-range temporal dependencies, event causality and sequence, and contextual consistency over time. 3) Cold Start Problem (Data Quality): If RL is used for fine-tuning after a supervised fine-tuning (SFT) phase, a poor initial SFT policy (especially for video) can hinder the RL agent's ability to explore effectively and find optimal policies.

Why do direct-answer models outperform long-thinking model variants? 1) Instability and sensitivity of RL training: The inherent instability of RL can make "long-thinking" approaches particularly challenging to optimize for long visual inputs (video). RL training for long-thinking models is hampered by their expansive "action space", which makes efficient exploration difficult and can lead to getting stuck in suboptimal solutions. This complexity also exacerbates hyperparameter sensitivity, a common RL challenge, risking training instability. Direct-answer models benefit from a smaller output space, simplifying both exploration. 2) Not all prompts require thinking (Overthinking): The benefit of "long-thinking" is task-dependent. For many common prompts, a direct answer is sufficient, and forcing a reasoning process can introduce unnecessary complexity, computational overhead, and potential thinking errors. We should build LMRMs to perform adaptive reasoning for different prompts. 3) RL data size is limited: The effectiveness of RL, especially for complex generative tasks, is highly dependent on the quantity and quality of data. The limitations in RL data directly impact the ability of long-thinking models to learn effectively.

How to build an LMRM with adaptive reasoning capability? 1) Reasoning activation for different thinking patterns: The reasoning activation stage should use diverse data, including direct-answer examples for conciseness, step-by-step reasoning examples for detailed thought processes, mixed modality reasoning to handle various input types, and reasoning-on-demand examples that prompt specific output styles. This multifaceted reasoning activation exposes the model to a range of reasoning strategies, preventing it from being confined to a single, rigid approach. 2) Reward function for adaptive reasoning: Effective RL fine-tuning for adaptive reasoning necessitates sophisticated reward functions beyond answer and format accuracy, e.g., including short, middle, or long thinking judge for different prompts. These should include composite rewards that value reasoning quality, conciseness, and coherence; efficiency-aware rewards that penalize overthinking on simple problems; and adaptive policy rewards that dynamically adjust based on problem complexity. Such nuanced signals guide the model to select the appropriate depth and style of reasoning for different prompts. 3) Iterative optimization enhancement strategy: The most effective development of adaptive reasoning in an LMRM may occur through an iterative optimization loop. This loop strategically blends enforced SFT, target-optimization DPO, and wide exploration GRPO, collectively allowing the model to progressively refine its capacity for selecting and executing the optimal reasoning strategy tailored to various video understanding tasks.

E QUALITATIVE ANALYSIS



Figure 4: A case from VSI-Bench shows the comparative performance of GRPO and VIPO-R1. Our method is capable of generating longer responses and employing self-validation to address spatial reasoning tasks.

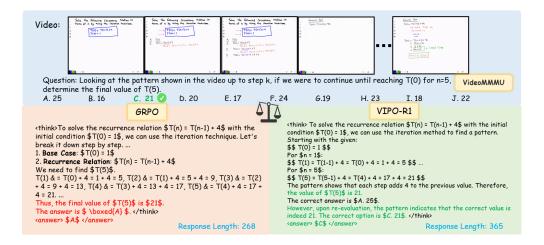


Figure 5: Another case from VSI-Bench shows the comparative performance of GRPO and VIPO-R1. Our method is capable of generating longer responses and employing self-validation to address spatial reasoning tasks.

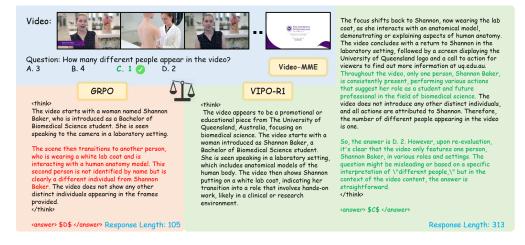


Figure 6: A case from Video-MMMU shows the comparative performance of GRPO and VIPO-R1. Our method can identify situations where the reasoning path is correct but an incorrect answer is chosen, through reflection, then re-selects the correct option that aligns with the reasoning content.

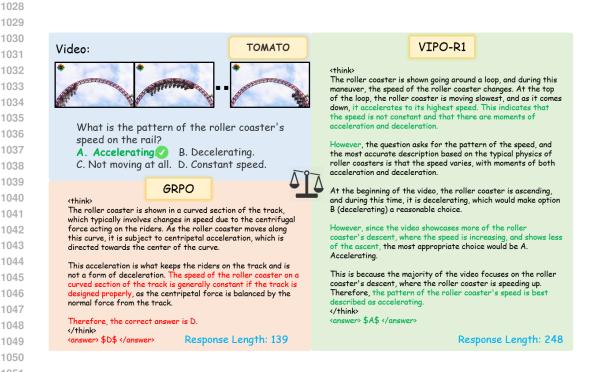


Figure 7: A case from Video-MME shows the comparative performance of GRPO and VIPO-R1. Our method also demonstrates strong capabilities in reflection and reasoning on general-domain question-answering tasks.

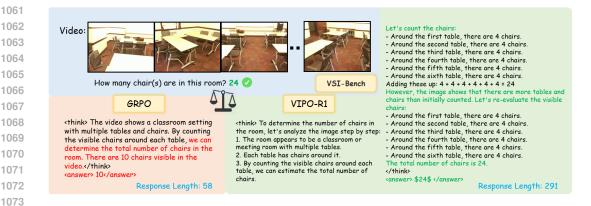


Figure 8: A case from TOMATO shows the comparative performance of GRPO and VIPO-R1. Our method is capable of generating longer responses and performing accurate temporal reasoning by self-validation.