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ABSTRACT

Applying Reinforcement Learning (RL) to Multimodal Large Language Models
(MLLMs) shows significant promise for complex video reasoning. However, pop-
ular Reinforcement Fine-Tuning (RFT) methods, such as outcome-based Group
Relative Policy Optimization (GRPO), are limited by data preparation bottlenecks
(e.g., noise or high cost) and exhibit unstable improvements in the quality of long
chain-of-thoughts (CoTs) and downstream performance. To address these limi-
tations, we propose VIPO-R1, a Verifier-guided Iterative Policy Optimization
method designed to gradually enhance MLLMs’ ability to generate long-term rea-
soning chains for challenging VideoQA. The core component is the Rollout-Aware
Verifier, positioned between the GRPO and Direct Preference Optimization (DPO)
training phases to form the GRPO-Verifier-DPO training loop. This verifier lever-
ages small LLMs as a judge to assess the reasoning logic of rollouts, enabling the
construction of high-quality contrastive data, including reflective and contextually
consistent CoTs. These curated preference samples drive the efficient DPO stage
(7x faster than GRPO), leading to marked improvements in reasoning chain quality,
especially in terms of length and contextual consistency. This training loop benefits
from GRPO’s expansive search and DPO’s targeted optimization. Experimental re-
sults demonstrate: 1) Faster and more effective optimization compared to standard
GRPO variants, yielding superior performance; 2) Our trained models exceed the
direct inference of large-scale instruction-tuned Video-LLMs, producing long and
contextually consistent CoTs on diverse video reasoning tasks; and 3) Our model
with one iteration outperforms powerful MLLMs (e.g., Kimi-VL) and thinking
models (e.g., Video-R1), highlighting its effectiveness and stability.

1 INTRODUCTION

Complex reasoning problems across various domains are often effectively tackled by large models
via generating long Chain-of-Thoughts (CoTs) (Wei et al., 2023; Zhang et al., 2024d; Zelikman
et al., 2022; Li et al., 2025e), which has demonstrated considerable success in multimodal settings,
particularly for challenging tasks like visual math and complex image-text reasoning (Wang et al.,
2025d; Dong et al., 2025; Team et al., 2025; Wu et al., 2025; Xu et al., 2025; Xiang et al., 2024). The
capacity of Large Multimodal Models (LMMs) for long-form CoT reasoning is largely driven by
Reinforcement Fine-Tuning (RFT), which integrates Supervised Fine-Tuning (SFT) with long-form
CoT data and employs online reinforcement learning algorithms (Tan et al., 2025; Schulman et al.,
2017; Rafailov et al., 2024; Yu et al., 2025; Gupta et al., 2025; Wu et al., 2024b; Tang et al., 2025;
Team, 2025), such as the Group Relative Policy Optimization (GRPO) (Shao et al., 2024) method.
Inspired by the success of DeepSeek-R1 (DeepSeek-AI et al., 2025), Skywork R1V (Chris et al.,
2025), and Vision-R1 (Huang et al., 2025), researchers (Li et al., 2025b; Feng et al., 2025; Zhang
et al., 2025c) are actively exploring effective strategies to enable Multimodal Large Language Models
(MLLMs) to generate coherent and extensive reasoning chains for challenging VideoQA tasks.

However, activating the long-form reasoning of MLLMs for video understanding faces challenges:

• Data Preparation Bottleneck: Employing Long-CoTs video datasets for cold starting (e.g., Video-
R1) is hindered by the high cost of manual annotation and noise from automatic methods.
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Figure 1: Figures (A, D): Initial GRPO training with different data types shows only utilizing
Video-QA data decreases response length. Figures (B, E): Continual GRPO training with/without
Verifier-guided DPO (VIPO-R1) demonstrates VIPO-R1 improves accuracy and response length.
Figure (C): Inconsistency rate (thinking vs. final answer) at different stages reveals our method
lowers contextual inconsistency of long CoTs while GRPO increases it. Figure (F): Performance on
challenging video reasoning dataset VSI-Bench (Yang et al., 2024) shows VIPO-R1 (trained with
Qwen2.5-VL-7B) outperforms strong LMMs including GPT-4o (Hurst et al., 2024), Video-R1 (Feng
et al., 2025), and Kimi-VL (Team et al., 2025).

• Unstable performance improvement: GRPO training on video datasets can easily lead to decreases
in reasoning length (Figure (D)) and model performance (Video-R1 vs. Qwen2.5-VL in Figure
(F)). The model after GRPO training often performs worse than the original direct-answer model.

• Inconsistency between reasoning and answers: GRPO training often results in a misalignment
between the reasoning chain and the final answer, leading to logically inconsistent outcomes
such as “correct answers derived from flawed reasoning", as illustrated in Figure (C). This issue,
which undermines interpretability and limits performance, stems from GRPO’s reliance on final
answer-based rewards without intermediate supervision.

To address these limitations, we propose VIPO-R1, an online rollout-aware Verifier-guided Iterative
Policy Optimization algorithm designed to progressively enhance the long-form reasoning capability
of MLLMs on video understanding tasks. Unlike methods that rely on large-scale Long-CoTs
video datasets for cold-start training, VIPO-R1 employs reinforcement learning to incrementally
cultivate extended reasoning skills in MLLMs. A central component of our framework is the
rollout-aware Verifier, which bridges the GRPO and DPO training phases to form a closed-loop
GRPO–Verifier–DPO cycle. This verifier utilizes small LLMs to evaluate the reasoning quality
and contextual coherence of generated CoTs from the online RL stage. Based on this assessment,
it intelligently selects high-quality contrastive samples from online rollouts to construct logically
consistent and reflective reasoning chains. These samples are then used in an efficient DPO stage,
which we empirically found to be 7× faster than GRPO (see Section C.1) and more effective at refining
reasoning paths. Additionally, the verifier progressively prunes simple examples that the model has
already mastered, which accelerates training and ensures a focus on more challenging instances. This
filtering mechanism allows the policy optimization to effectively combine the targeted refinement of
DPO with the broad exploration capability of GRPO. To further diversify the logical reasoning paths
learned by the model, our training incorporates a mixture of diverse VideoQA datasets, supplemented
with high-quality image and textual math datasets during the initial phase.

We conduct extensive experiments on five video reasoning and long video understanding benchmarks,
e.g., VSI-Bench (Yang et al., 2024) and Video-MME (Fu et al., 2024). Our experimental results
show that VIPO-R1 achieves consistent and significant performance improvements and outperforms
larger MLLMs and powerful RFT models Video-R1 and Kimi-VL-Thinking (Team et al., 2025). It
highlights the effectiveness and stability of VIPO-R1 in cultivating the long-form video reasoning
ability of MLLMs. Compared to RFT with the long-CoTs dataset as a cold start, our approach
consistently generates longer responses and improves the quality of generated long CoTs, e.g.,
contextual consistency and low repetition. Our contributions can be summarised as follows:
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• We propose VIPO-R1, a novel Verifier-guided Iterative Policy Optimization algorithm designed
to improve the long-form reasoning capability of MLLMs. The method enhances rollout data
utilization via the embedded Verifier system and efficient DPO, enabling the model to realize
improvement via effective learning from its online running experience.

• The rollout-aware Verifier analyzes and refines generated rollout data into high-quality, reflec-
tive contrastive samples, which are essential for continuously improving the model’s long-form
reasoning capability and logical consistency during the DPO training stage.

• Experimental results demonstrate that VIPO-R1 significantly improves long-form reasoning perfor-
mance on challenging video QA tasks. Our trained models consistently generate long and accurate
reasoning chains, outperforming direct-answer models (like Qwen2.5-VL-7B), GRPO baseline and
RL-trained thinking models (including Video-R1, Kimi-VL-Thinking-16A3B) - gaining +4.0% on
VSI-Bench over Qwen2.5-VL-7B and +3.6% on TOMATO over GRPO baseline.

2 RELATED WORK

Large Multimodal Models for Video Reasoning Video reasoning is the core capability of Large
Multimodal Models (LMMs), enabling understanding of interactions, dependencies, and inference
over dynamic content (Li et al., 2024c; 2025d; Zhang et al., 2025c; Zheng et al., 2025). Specifically,
spatial reasoning models object relationships and scene layouts within frames, while temporal
reasoning captures motion, causality, and sequence across frames (Ouyang, 2025; Daxberger et al.,
2025; Ray et al., 2025; Liu et al., 2025b). Early Video-LLMs focused on short videos using pre-trained
image (Dosovitskiy et al., 2021; Oquab et al., 2024; Radford et al., 2021) or video encoders (Arnab
et al., 2021; Liu et al., 2021; Neimark et al., 2021) with frozen language models (Dai et al., 2023;
Li et al., 2022; 2024b; Maaz et al., 2024; Zhang et al., 2023). Recent efforts target long-form video
understanding with complex temporal and multimodal reasoning (Fei et al., 2024; Feng et al., 2025;
Zhang et al., 2025c; Zheng et al., 2025; Liu et al., 2025a; Chen et al., 2025c; Liu et al., 2025d). To
handle long contexts, methods adopt hierarchical temporal attention and larger context windows (Liu
et al., 2025a; Wei et al., 2025), or compress visual inputs via event-level abstraction (Zhang et al.,
2025c; Chen et al., 2024). Recent multimodal fusion integrates audio and motion cues for improved
understanding in videos (Chen et al., 2025c; Zhao et al., 2025a; Liu et al., 2025e). Reinforcement
learning guides perception and reasoning, aiding in interpretability and intent modeling (Deng et al.,
2025; Liu et al., 2025d;c). Recent work explores structured outputs, intention-driven attention, and
stepwise reasoning (Chen et al., 2025c; Yang et al., 2025; Huang et al., 2025; Peng et al., 2025) for
fine-grained grounding and spatiotemporal segmentation.

Reinforcement Learning for Multimodal Reasoning Reinforcement learning (RL) has become a
pivotal approach for aligning LLMs and LMMs with complex reasoning objectives. Foundational
policy optimization algorithms, such as Proximal Policy Optimization (PPO), Direct Preference
Optimization (DPO), and Group Relative Policy Optimization (GRPO), have been instrumental in
this domain (Schulman et al., 2017; Rafailov et al., 2024; Shao et al., 2024). Further advancements
have enhanced training stability and efficiency (Yu et al., 2025; Gupta et al., 2025; Wu et al., 2024b;
Tang et al., 2025). A critical challenge in popular RL training is the “cold start" problem, where
initializing models without prior guidance can lead to suboptimal performance. To mitigate this,
Reinforcement Fine-Tuning (RFT) has been proposed, wherein models undergo preliminary SFT on
curated datasets to stabilize subsequent RL training phases (Liu et al., 2025e; Zhang et al., 2024c;
Tan et al., 2025; Shi et al., 2025; Chen et al., 2025a; Li et al., 2025b; Wang et al., 2025b; Luo et al.,
2025; Wang et al., 2025d; Xing et al., 2025). Additionally, some verifiers, designed to assess and
guide the quality of generated outputs, have proven beneficial. These verifiers assist in filtering and
selecting high-quality training samples, thereby enhancing the efficiency and effectiveness of the
training process (Chen et al., 2025c; Zhao et al., 2025a; Sun et al., 2025; Wang et al., 2024).

3 PRELIMINARY

Direct Preference Optimization (DPO) DPO (Rafailov et al., 2024) optimizes a policy πθ to
prefer a response y+ over y− for a given input x, with regularization from a reference model πref.
The core loss function is:
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LDPO(πθ;πref) = −E(x,y+,y−)∼D

[
log σ

(
β log

πθ(y+ | x)
πref(y+ | x)

− β log
πθ(y− | x)
πref(y− | x)

)]
, (1)

where σ(·) is the sigmoid function, β > 0 is a temperature parameter, and D = {(x, y+, y−)}Ni=1 is
a static dataset of comparisons sampled from human preference distribution. This can be interpreted
as minimizing the binary cross-entropy between a pairwise preference label and the log odds induced
by the policy relative to the reference. This approach is a targeted and fast optimization for models.

Group Relative Policy Optimization (GRPO) For a given input q, the model generates a group of
G responses {y1, y2, . . . , yG} sampled from the current policy πθ. Each response yi is assigned a
reward r(yi), typically derived from human feedback or automated evaluation metrics. Following
outcome supervision method, the group mean reward µ and standard deviation σ are computed to
obtain the advantage score:

µ =
1

G

G∑
i=1

r(yi), σ =

√√√√ 1

G

G∑
i=1

(r(yi)− µ)2, Âi,t =
r(yi)− µ

σ
. (2)

With the score computed, GRPO (Shao et al., 2024) updates the policy by maximizing the following
objective:

LAdvantage(πθ) = Eq∼P(Q),{yi}G
i=1∼πθref (yi,t|q,yi,<t)

1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

{
min

[
πθ(yi,t | q, yi,<t)

πθref(yi,t | q, yi,<t)
Âi,t, clip

(
πθ(yi,t | q, yi,<t)

πθref(yi,t | q, yi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

]}
(3)

LGRPO(πθ) = LAdvantage(πθ)− βDKL [πθ∥πref] (4)

where ϵ is a hyperparameter controlling the clipping range, β is the temperature parameter, and πθref

is the policy before the update. This approach allows the model to focus on generating responses that
are relatively better within a group, promoting wide yet slow exploration in the generation space.

4 VIPO-R1: VERIFIER-GUIDED ITERATIVE POLICY OPTIMIZATION

4.1 OVERVIEW

We introduce VIPO-R1, an iterative policy optimization approach specifically designed to enhance
the long reasoning capability of Video-LLMs. The method follows an iterative process: 1) Initial
Policy Exploration: We first apply GRPO to the instruction-tuned Qwen2.5-VL, utilizing diverse
accuracy rewards tailored for various video task output formats. 2) Sample Curation with Verifier: A
Verifier component analyzes the GRPO rollouts to produce high-quality, long reasoning paths that
lead to accurate answers as positive (chosen) samples. It also selects challenging, incorrect reasoning
paths as hard negative (rejected) samples. 3) Policy Refinement with DPO: These curated contrastive
samples are then used to fine-tune the model via DPO. The DPO efficiently refines the model’s policy,
encouraging the generation of better reasoning paths in a controllable direction.

4.2 GRPO

Following the GRPO algorithm from DeepSeek-R1 (DeepSeek-AI et al., 2025), we employ two types
of rewards: accuracy and format. The accuracy reward ra is scaled within the range [0, 1], while the
format reward rf is bounded within [0, 0.5]. The calculation of accuracy reward ra depends on the
type of question posed in the input prompt. For mathematical questions, we employ Math-Verify1 to
parse the answer from the model’s output and compare it against the ground truth GT , yielding a
binary reward (1 for correct, 0 for incorrect). Similarly, for multiple-choice questions, ra is assigned
a value of 1 if the model’s selected option aligns with the ground truth GT and 0 otherwise. As
for distance estimation tasks, we utilize the Mean Relative Accuracy (MRA) metric, as proposed
in VSI-Bench (Yang et al., 2024), which provides a continuous reward value between 0 and 1. The

1https://github.com/huggingface/Math-Verify
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Figure 2: Overview of VIPO-R1 workflow. This training loop is guided by the Verifier’s continuous
evaluation and selection of training samples. The optimization process progressively improves the
model’s long reasoning capability by learning from high-quality and informative reasoning examples.
format reward rf is binary (0.5 for adherence, 0 for non-adherence), contingent upon whether the
model’s response conforms to the predefined <think>...</think><answer>...</answer> structure.
The accuracy rewards are presented as

ra =


1 if Qtype ∈ {Math, MC} and Answer matches GT
0 if Qtype ∈ {Math, MC} and Answer does not match GT
MRA(Output,GT ) if Qtype = Distance Estimation

(5)

To broaden the model’s exploration capabilities and enhance learning flexibility, we remove the KL
divergence during the GRPO training process. Furthermore, we encountered an empirical observation
consistent with findings reported in DAPO (Yu et al., 2025). As training progressed, the number of
samples with an accuracy of 1 continually increased. These samples have an advantage of 0 and
result in no gradient for policy updates, which suppressed the gradient signals during the model’s
training process. To mitigate this phenomenon and maintain robust gradient flow, we integrate the
online filter strategy (Meng et al., 2025) to exclude zero-advantage samples from the training batches.

4.3 ROLLOUT-AWARE VERIFIER

To address the limitation of outcome-based GRPO in optimizing reasoning paths, we introduce a
rollout-aware Verifier that analyzes online rollouts to generate high-quality preference data, continu-
ously guiding the model to generate long-form, high-quality reasoning paths. As shown in Figure 2,
for a given rollout oi, we employ regular expressions to extract both the thought content ri and answer
ai. The verifier encompasses four-aspect quality assessment to select high-quality long-CoT samples:

Accuracy Check. Given an answer ai, we use the same formula 5 as in the calculation of accuracy
reward to compute accuracy. For the MRA metric, we set the threshold to 0.6.

Consistency Check. Given a rollout oi, we divide it into the reasoning content ri and answer ai. For
multiple-choice questions and numerical questions, we design different system prompts—denoted
uniformly as si for simplicity. The formal answer is then obtained as: a′i = LLM(si, qi, ri), where
qi is the original question corresponding to the rollout. We then determine the consistency of the
response by checking whether ai and a′i are the same. Specifically, for numerical questions, we use
the Math-Verify library for verification.

Repetition Check. Given a reasoning content ri, we first divide it into a sequence of sentences
S = s1, s2, . . . , sm. The segmentation is performed using regular expressions that match Chinese
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and English punctuation marks. To remove mathematical formulas or short sentences, we compute
the word count w(si) for each sentence si, and we retain only those sentences whose word count
exceeds a threshold θw: S′ = si ∈ S | w(si) > θw. For each pair of sentences si, sj ∈ S′, we
compute the Levenshtein distance d(si, sj), and the normalized similarity is defined as sim(si, sj) =

1 − d(si,sj)
max(|si|,|sj |) , where |si| denotes the length of sentence si. A higher similarity score indicates

greater sentence redundancy. Then we cluster sentences by comparing each new sentence si to
existing clusters C1, C2, . . . , Ck. A sentence is added to a cluster Cl if there exists any sentence
sj ∈ Cl such that: sim(si, sj) ≥ θs, where θs ∈ [0, 1] is a similarity threshold. If no such cluster
exists, a new cluster is created with si as its initial member. Finally, we identify repetition by
examining whether any cluster contains at least θc sentences. Using a dataset constructed from 50
duplicate samples and 50 non-duplicate samples, we determine the thresholds by exhaustive search
as: θw = 5, θs = 0.9, θc = 6.

Length Check. Given a rollout oi, we divide it into the reasoning content ri and answer ai. We input
ri into the tokenizer to obtain the token length: length = len(tokenizer(ri))

Following this selection, we construct contrastive pairs for DPO training. Samples are initially
categorized based on their average accuracy reward Ravg

a = 1
N

∑N
i=1 Rai, where N refers to the

number of sampling per query. This classification guides the data construction process. For training
samples where the model consistently produces incorrect rollouts (Ravg

a = 0), their high-quality
long-form reasoning is generated using Gemini-2.5-Flash. These will help models explore deep
reasoning for challenging questions. Conversely, rollouts with perfect accuracy (Ravg

a = 1) are
regarded as simple samples and generally excluded from preference pairs during the DPO stage.
Then, the contrastive preference dataset is constructed as the following formula:

pc = oj |oj ∈ Sc&∀oi ∈ Sc, len(oj) ≥ len(oi); pr = oi|oi ∈ Se for Single Turn
pc = oj |oj ∈ Sc&∀oi ∈ Sc, len(oj) ≥ len(oi); pr = oi|repeat(oi) = 1 for Repetition
pc = oi|oi ∈ Sc; pr = oi|inconsistency(oi) = 1 for Consistency
pc = c(oi, oj)|i ̸= j&oi ∈ Se, oj ∈ Sc; pr = c(oi, oj)|i ̸= j&oi, oj ∈ Se for Reflection

(6)

In the formula, pc represents a positive example in a preference pair, and pr represents a negative
example in a preference pair. Sc is the set of all samples that have undergone Repetition Check,
Consistency Check, and Accuracy Check. Se is the set of samples that have not undergone Accuracy
Check. len(·) denotes the length calculated for the corresponding rollout in the Length Check,
repeat(·) corresponds to the Repetition Check, inconsistency(·) corresponds to the Consistency
Check, and c(oi, oj) represents the semantic concatenation of the reasoning processes of oi and oj ,
with reflective prompts inserted in between.

If a sample has multiple rollouts that satisfy the conditions, we randomly select one. In this way, we
construct four types of DPO Preference Pairs: Single-Turn Preference Pairs, Repetition Penalty Pairs,
Inference Consistency Pairs, and Reflective Preference Pairs (using reflective phrases to simulate
refined reasoning). These are used to enhance the model’s general reasoning ability, eliminate
repetitive reasoning patterns, improve the logical consistency of the model, and encourage reflection
during the reasoning process. This multi-faceted checking and data construction pipeline yields a
rich and diverse preference dataset, specifically engineered to support robust and fast DPO training
focused on improving the model’s reasoning length, self-reflection, and logical consistency.

4.4 TRAINING LOOP

Based on the model from the previous GRPO round, DPO training is performed on contrastive data
generated by the rollout-aware verifier. The visual encoder is kept frozen throughout this process,
and further training parameter configurations are detailed in Table 1.

The training loop follows a curriculum learning approach to gradually activate the LMMs’ long-form
reasoning ability in video. This begins with simple-modality data (text-only or image QA) for initial
reasoning activation with GRPO, followed by the GRPO training using image and video QA data,
as shown in Table 1. Then, the whole GRPO-Verifier-DPO pipeline continuously enhances the
model’s long-form reasoning capability and gradually stabilizes its performance on video reasoning,
iteratively pushing towards the model’s inherent reasoning limit. During the iterative process, we
will gradually discard 80% of the simple examples (Ravg

a = 1) from the previous GRPO training

6
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Table 1: Training data and hyperparameters across different stages.
Stage Reasoning Activation Group-Slow-Search Pair-Fast-Align Group-Slow-Search
Algorithm GRPO GRPO DPO GRPO

Data
Long Document (1k)

Math-Text (30k)
Reasoning-Image (39K)

Science-Image (4K)
Spaital-Image (9k)

General-Image (10K)
VQA-Video (24k)

Rollouts of
VQA-Video
from GRPO

Filtered
VQA-Video

Gloabl Batch Size 128 64 32 64
Rollout Batch Size 64 64 - 64
Learning Rate 1e-6 1e-6 5e-7 5e-7
Rollout Responses per Query 8 8 - 8
Sampling Temperature 1.0 1.0 - 1.0
DPO Beta (β) - - 0.1 -
Time Cost(Hours) 38.2 31.5 2.0-3.2 15.3-18.1

process to reduce the training time of models. The entire training process equips LMMs with robust
long-chain reasoning ability with slow-search GRPO and fast-align DPO. Compared to continuous
GRPO training after reasoning activation, our approach reduces training time from 63 hours to 49
hours and produces reasoning chains of higher quality.

5 EXPERIMENT

5.1 EXPERIMENT SETUP

Baseline. We compare VIPO-R1 against various SFT and RL baselines. Direct-answer models
(SFT, size > 7B) respond without an explicit reasoning process, while reasoning-answer models
generate a reasoning process before answering. Direct-answer baselines include SOTA models like
Kimi-VL-A3B (Team et al., 2025), InternVideo2.5 (Wang et al., 2025c), Qwen2.5-VL-Instruct (Bai
et al., 2025), and others. Reasoning-answer baselines include Kimi-VL-A3B-Thinking (Team et al.,
2025), Video-R1 (Feng et al., 2025), TW-GRPO (Dang et al., 2025) and others.

Training Details. Our GRPO algorithm is implemented using the OpenRLHF framework, and DPO
training uses the TRL framework with a β value of 0.1. Based on Qwen2.5-VL-7B, we conduct
experiments on eight NVIDIA A800-80G GPUs with a maximum of 64 frames and 128*28*28
resolution. The global training batch size is set to 64, with a rollout training batch size of 64 and 8
rollout responses per query, the sampling temperature is fixed at 1.0, and the maximum output length
is 4096 tokens. The learning rate is set to 1e-6. Detailed settings are shown in Table 1 and C.3.

Training Dataset. Our experiments involve multiple training stages (Table 1). The first stage mainly
activated model reasoning using data from long documents (QuALITY (Pang et al., 2022)), text
mathematics (DAPO-Math (Yu et al., 2025)), and image reasoning (ViRL-39K (Wang et al., 2025a)).
The second stage focuses on image and video data. To mitigate the scarcity of high-quality video data,
a filtered subset of diverse video benchmarks, carefully checked for leakage with evaluation datasets,
is incorporated. Image data includes subsets from ViRL-39K (Science-Image, Spatial-Image), SPAR-
Bench (Zhang et al., 2025b) (Spatial-Image), and MME-RealWorld (Zhang et al., 2024a) (General-
Image). Video data utilizes several benchmarks: MVBench (Li et al., 2023), TempCompass (Liu et al.,
2024), LongVideoBench (Wu et al., 2024a), HourVideo (Chandrasegaran et al., 2024), MLVU (Zhou
et al., 2024), STI-Bench (Li et al., 2025c), and VideoVista-CulturalLingo (Chen et al., 2025b), along
with a filtered 5K data of LLaVA-Video-178K (Zhang et al., 2024b).

Benchmark. We adopt four video reasoning benchmarks: VSI-Bench (Yang et al., 2024),
TOMATO (Shangguan et al., 2024), VideoMMMU (Hu et al., 2025), MMVU (Zhao et al., 2025b)
and one long video understanding benchmark Video-MME (Fu et al., 2024). Specifically, VSI-Bench
evaluates spatial reasoning, TOMATO assesses temporal reasoning, and VideoMMMU/MMVU tests
domain-specific knowledge from multi-discipline videos. Video-MME is a general benchmark for
comprehensive long video understanding. The detailed evaluation setting of our experiment is in C.4
and evaluation prompt is in C.2

5.2 RESULTS AND ANALYSIS
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Table 2: Model performance on video reasoning and long video understanding benchmarks. Models
with grey backgrounds have >11B parameters; those with green backgrounds are based on Qwen2.5-
VL-7B. Bold values indicate the best performance, and underlined values indicate the second best.

Model Params Video Reasoning Long Video Understanding Avg.
VSI-Bench VideoMMMU MMVU (mc) TOMATO Video-MME (w/o sub)

GPT-4o (Team et al., 2024b) - 34.0 61.2 - 37.7 71.9 -
Gemini 1.5 pro (Team et al., 2024a) - 45.4 53.8 - 36.1 75.0 -

LLaVA-Video (Zhang et al., 2024b) 7B 35.6 36.1 - - 63.3 -
LLaVA-OneVision (Li et al., 2024a) 7B 32.4 33.8 49.2 - 58.2 -
VideoLLaMA3 (Zhang et al., 2025a) 7B - 47.0 - - 66.2 -
InternVL2 (Team, 2024) 8B 34.6 37.4 39.0 21.7 54.0 38.1 -
InternVL2.5 (Chen et al., 2025d) 8B - - - - 64.2 -
InternVideo2.5 (Wang et al., 2025c) 8B - 43.0 - - 65.1 -
Kimi-VL (Team et al., 2025) 16B (A3B) 37.4 52.6 - 31.7 67.8 -
DeepSeek-VL2 (Wu et al., 2024c) 28B (A4B) 21.7 - - 27.2 - -

TinyLLaVA-Video-R1(Zhang et al., 2025c) 3B - - 46.9 - 46.6 -
ReFoCUS (Lee et al., 2025) 8B - 52.1 - - 66.0 -
Kimi-VL-Thinking (Team et al., 2025) 16B (A3B) 32.2 - 56.8 20.6 - -
MiMo-VL-Thinking (Xiaomi, 2025) 7B - 43.3 - - 67.4 -
Video-R1 (Feng et al., 2025) 7B 35.8 52.3 64.3 - 59.3 -
VideoChat-R1 (Li et al., 2025a) 7B - - 64.2 - 52.4 -
TW-GRPO (Dang et al., 2025) 7B - - 65.8 - 55.1 -

Qwen2.5-VL (Bai et al., 2025) 7B 37.5 54.3 67.2 29.3 66.2 46.6
Qwen2.5-VL (thinking) (Bai et al., 2025) 7B 23.8 46.8 63.0 25.8 60.4 37.4
GRPO 7B 33.4 54.0 66.1 28.6 64.7 44.1
VIPO-R1 7B 41.3 56.8 66.7 32.2 67.2 49.3

Table 3: Accuracy, Consistency and Acc-Cons. during training. Consistency refers to the proportion
of responses in which the reasoning process and the final answer are consistent. Acc-Cons. indicates
the answer is correct and also consistent with the right reasoning process. The value of Acc-Cons.
shows a continual improvement with iterative policy refinement.

Model VSI-Bench VideoMMMU TOMATO

Accuracy Consistency Acc-Cons. Accuracy Consistency Acc-Cons. Accuracy Consistency Acc-Cons.

Baseline + GRPO 33.4 84.1 30.7 54.0 84.7 49.9 28.6 82.0 25.6

VIPO-R1 (GRPO-Iteration1) 41.8 83.1 38.4 56.2 84.3 51.2 31.4 82.6 26.5
VIPO-R1 (DPO-Iteration1) 41.8 85.8 38.7 56.2 86.6 52.0 31.6 89.0 28.7
VIPO-R1 (GRPO-Iteration2) 41.1 85.5 38.3 56.7 88.4 53.3 32.7 87.3 29.1
VIPO-R1 (DPO-Iteration2) 41.0 94.5 39.4 56.9 94.8 55.1 31.5 97.5 31.0
VIPO-R1 (GRPO-Iteration3) 41.1 95.1 39.9 57.0 94.1 55.3 31.9 97.3 31.0
VIPO-R1 (DPO-Iteration3) 41.3 95.8(↑ 11.7) 40.1(↑ 9, 4) 56.8 95.0(↑ 10.3) 55.4(↑ 5.5) 32.2 97.5(↑ 15.5) 31.3(↑ 5.7)

Table 4: Performance comparison across different
training methods (SFT or Reasoning Activation).

Method VSI-Bench VideoMMMU TOMATO

Qwen2.5-VL(w/o.t.) 37.5 54.3 29.3

Direct GRPO
+ GRPO 33.4 54.0 28.6
+ DPO 33.9 54.2 28.2

Cold Start (SFT) + GRPO
+ SFT 33.8 53.4 26.8
+ GRPO 36.6 55.0 29.8
+ DPO 36.6 53.8 28.7

Reasoning Activation + GRPO
+ Activation 38.7 56.7 28.3
+ GRPO 41.9 56.9 31.4
+ DPO 41.8 56.2 31.6

Main Results. In Table 2, we present a com-
parison between VIPO-R1 iteration and several
baseline models, including Qwen2.5-VL and
Kimi-VL, across five benchmarks. It can be ob-
served that VIPO-R1 demonstrates better perfor-
mance on the video reasoning benchmarks VSI-
Bench, VideoMMMU, and TOMATO compared
to base model Qwen2.5-VL, or with GRPO and
powerful thinking models. For complex reason-
ing, e.g., VideoMMMU and VSI-Bench, we can
see large performance increases compared to
these models, e.g., ↑ 7.9% than GRPO on VSI-
Bench,↑ 5.6% than Video-R1 on VideoMMMU.

Training Time Analysis. We present the train-
ing time costs for each stage of VIPO-R1 in Table 1. Since Pair-Fast-Align and the final Group-Slow-
Search require multiple iterations, the given time represents the range of time for all iterations. It can
be observed that the training time cost of DPO is much lower than that of GRPO, and the time cost of
a single round of GRPO+DPO training (e.g. 17.3h) is close to that of direct GRPO (e.g. 15.3h). It
can also lower the next-step GRPO training costs. We also provide a detailed analysis of the training
time differences between GRPO and DPO under similar sample sizes in the Appendix C.1.

Iterations of VIPO-R1. Table 3 presents Accuracy, Consistency, and Acc-Cons during the iterative
training of VIPO-R1. It can be observed that as the iterations proceed, the VIPO-R1 algorithm
effectively mitigates the logical inconsistencies introduced by the GRPO training process. The
increase in Acc-Cons. reflects the model’s enhanced real understanding of the problems, reducing
cases where the model reasons incorrectly but still guesses the right answer.
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Figure 3: A case from VideoMMMU shows the performance gap between GRPO and VIPO-R1. Our
method can generate longer CoTs with accurate and logical formulas to solve physical problems.

Cold Start or Reasoning Activation? We evaluate Cold Start (SFT) in RFT using the Video-R1-COT
165k dataset. Table 4 shows that while Cold Start training yields only marginal gains on metrics such
as VideoMMMU, it leads to substantial degradation on general reasoning tasks, which subsequent
VIPO-R1 training fails to remedy. By contrast, VIPO-R1 starting from Reasoning Activation not
Cold Start, show more stable performance improvement across benchmarks. Compared with direct
GRPO baseline, VIPO-R1 also has significant advantages.

Verfier in VIPO-R1. In Table 5, we conduct an ablation study on the verifier used in the DPO stage.
The w/o.verifier version of the model relies solely on the accuracy reward to select positive and
negative samples, which leads to a significant decrease in both Consistency and Acc-Cons. compared
with the complete verifier. Meanwhile, removing any component of the verifier also results in a drop
in model performance.

5.3 CASE STUDY

Table 5: Performance comparison across different
Verfier in DPO stage. The reported metrics are the
averages of VideoMMMU and TOMATO.

Method Acc-Cons. Consistency

VIPO-R1 (GRPO-Iteration1) 35.8 83.2
+DPO (w/o.verfier) 36.2 85.8
+DPO (verfier w/o.gemini anno.) 37.3 87.9
+DPO (verfier w/o.reflection) 37.0 88.2
+DPO (verfier w/o.consistency) 36.2 86.0
+DPO (verfier) 37.5 88.2

Based on Figure 3 (more cases in E), where
red indicates error reasoning and green accurate
reasoning, and previous experimental analysis,
we observe VIPO-R1 enables models to gener-
ate longer and more accurate reasoning chains
(sometimes with reflection) for challenging sci-
ence, temporal grounding problems besides gen-
eral reasoning tasks. In addition, we observe
that utilizing textual or visual math in the rea-
soning activation stage aids logical reasoning
based on the reasoning process of GRPO and VIPO-R1 in science problems.

6 CONCLUSION

Addressing the challenge of long video reasoning in MLLMs, we propose VIPO-R1, a novel online
rollout-aware Verifier-guided Iterative Policy Optimization algorithm. This GRPO-Verifier-DPO loop
employs a small LLM verifier to refine generated CoTs, cultivating reasoning capability efficiently
without requiring large Long-CoT datasets as cold starts. VIPO-R1 significantly improves reasoning
consistency, accuracy, and response length, outperforming larger and more powerful baselines on
video benchmarks. While effective, limitations include potential verifier dependence and limited
data size. Future works aims to address these by exploring verifier designs and leveraging GRPO
exploration, targeted DPO, and strong SFT, towards achieving robust and long-form reasoning ability
across omimodality. More dicussions are shown in Appendix D.
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A APPENDIX

B LLMS USAGE

Large Language Models (LLMs) are used to aid in the writing and polishing of the paper. Specifically,
we only use large language models to polish the English expressions in the paper to eliminate potential
grammatical errors, enhance the overall flow of the context, and enhance the readability of the article.

C DETAILED TRAINING AND EVALUATION ANALYSIS

C.1 COMPARISON OF TRAINING SPEED

In this section, we compare the training time of the GRPO and DPO algorithms, both based on a
single epoch of GRPO training.

For the first epoch of GRPO, the total dataset consists of approximately 47K samples. After discarding
80% of the simpler examples, the dataset for the second epoch is reduced to around 24,653 samples.
In contrast, the training data for DPO, after incorporating the Rollout-Aware Verifier, comprises
approximately 20,096 samples. The training process for both algorithms is conducted on 8 A800-80G
GPUs, with the corresponding training time summarized in Table 6. The table reports the total training
time in minutes, alongside the estimated average training time per sample, which is calculated by
dividing the total training time by the number of samples. The average training time is presented in
seconds.

From the results in Table 6, we observe that the average training time per sample for the GRPO
algorithm is approximately 7 times longer than that of the DPO algorithm.

Table 6: Training Time Comparison between DPO and GRPO.
Stage GRPO DPO
Framework OpenRLHF trl
Size of Training Dataset 24,653 20,096
Total Training Time (minutes) 1891 242
Sample-Level Training Time (seconds) 4.6 0.7
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C.2 COT PROMPT

We have designed our prompt template based on the format used in DeepSeek-R1, where the system
prompt explicitly defines the required output structure. This includes the use of <answer> tags to
separate the reasoning process from the final answer. Detailed prompt are presented in Table 7. The
table lists two distinct prompt formats: one for multiple-choice questions and the other for numerical
questions, where {question} represents the processed question.

Table 7: Prompt setting for training and evaluation
Prompt For Multi-Choices Question
SYSTEM: You should first thinks about the reasoning process in the mind and then
provides the user with the answer. Your answer must be in latex format and wrapped
in $...$.The reasoning process and answer are enclosed within <think> </think> and
<answer> </answer> tags, respectively, i.e., <think> Since ...., so the answer is B.
</think><answer> $B$ </answer>, which means your output should start with <think>
and end with </answer>.
USER: Question: {question}
Prompt For Numberic Question
SYSTEM: You should first thinks about the reasoning process in the mind and then
provides the user with the answer. Your answer must be in latex format and wrapped
in $...$.The reasoning process and answer are enclosed within <think> </think> and
<answer> </answer> tags, respectively, i.e., <think> Since ...., so the answer is 2.
</think><answer> $2$ </answer>, which means your output should start with <think>
and end with </answer>.
USER: Question: {question} You must provide the answer in the <answer> </answer>
tag, and the answer must be a number.

C.3 DETAILED TRAINING SETTING

During the training of Qwen2.5-VL-Instruct using the GRPO and DPO algorithms, we kept the visual
encoder frozen throughout, training only the parameters of the MLP and the language model. For
the GRPO training process, we utilized the Hybrid Engine to accelerate training. In the Reasoning
Activation phase, both the micro train batch size and micro rollout batch size were set to 2. In the
Group-Slow-Search phase, these values were reduced to 1 to accommodate the long video context
inputs.

C.4 DETAILED EVALUATION SETTING

When evaluating the Qwen2.5-VL-Instruct model, along with all models trained using reinforcement
learning based on this architecture, we set do_sample to False and used the default parameter settings
from the Qwen generation_config: repetition_penalty = 1.05, temperature = 1e-6, and top_p = 1.0.
The entire evaluation process is accelerated by leveraging VLLM for inference.

For video sampling, we set the frame rate to 2.0 fps, configured the maximum number of sampled
frames per video to 128, and specified the maximum resolution per frame as 256×28×28. Both the
maximum number of sampled frames and the maximum resolution per frame were set to twice the
values used during training. Additionally, we conducted a comparative experiment on the MMVU
(mc) dataset and 300 long video samples sourced from Video-MME using the Qwen2.5-VL-Instruct
model, with a focus on the number of sampled frames and the maximum resolution. The results of
this experiment are presented in Table 8.

Table 8: Experiment about sampled frames and maximum resolution
Model FPS Frames Resolution MMVU (mc) Video-MME (Long-300)

Qwen2.5-VL-7B (w.t.) 1.0 64 128*28*28 57.9 54.0
Qwen2.5-VL-7B (w.t.) 2.0 64 128*28*28 59.5 54.0
Qwen2.5-VL-7B (w.t.) 2.0 64 256*28*28 61.0 49.7
Qwen2.5-VL-7B (w.t.) 2.0 128 128*28*28 61.0 51.3
Qwen2.5-VL-7B (w.t.) 2.0 128 256*28*28 63.0 53.0
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D DISCUSSION

Why do RL-trained LMRMs struggle to achieve consistent performance increase in all Video
tasks? 1) High-Quality and Diverse Video Reasoning Data (Verifiable Data): Training LMRMs with
RL requires vast amounts of high-quality data, particularly for video reasoning tasks that demand
strong reasoning abilities or involve long reasoning paths. Most existing video datasets are primarily
focused on simple recognition or short-term actions, lacking the complexity and scale needed for
robust RL training. 2) Model Capability Limitations in Video Understanding (Foundation Models):
The base model, upon which LMRMs are built, often relies on pre-training methodologies that are
not ideally suited for comprehensive video understanding, especially over long durations. While
these foundation models excel at learning powerful representations from vast amounts of image-text
pairs or short video clips, their pre-training objectives typically do not fully capture the nuances
of long-range temporal dependencies, event causality and sequence, and contextual consistency
over time. 3) Cold Start Problem (Data Quality): If RL is used for fine-tuning after a supervised
fine-tuning (SFT) phase, a poor initial SFT policy (especially for video) can hinder the RL agent’s
ability to explore effectively and find optimal policies.

Why do direct-answer models outperform long-thinking model variants? 1) Instability and
sensitivity of RL training: The inherent instability of RL can make “long-thinking" approaches
particularly challenging to optimize for long visual inputs (video). RL training for long-thinking
models is hampered by their expansive "action space", which makes efficient exploration difficult and
can lead to getting stuck in suboptimal solutions. This complexity also exacerbates hyperparameter
sensitivity, a common RL challenge, risking training instability. Direct-answer models benefit
from a smaller output space, simplifying both exploration. 2) Not all prompts require thinking
(Overthinking): The benefit of “long-thinking" is task-dependent. For many common prompts, a
direct answer is sufficient, and forcing a reasoning process can introduce unnecessary complexity,
computational overhead, and potential thinking errors. We should build LMRMs to perform adaptive
reasoning for different prompts. 3) RL data size is limited: The effectiveness of RL, especially for
complex generative tasks, is highly dependent on the quantity and quality of data. The limitations in
RL data directly impact the ability of long-thinking models to learn effectively.

How to build an LMRM with adaptive reasoning capability? 1) Reasoning activation for different
thinking patterns: The reasoning activation stage should use diverse data, including direct-answer
examples for conciseness, step-by-step reasoning examples for detailed thought processes, mixed
modality reasoning to handle various input types, and reasoning-on-demand examples that prompt
specific output styles. This multifaceted reasoning activation exposes the model to a range of
reasoning strategies, preventing it from being confined to a single, rigid approach. 2) Reward function
for adaptive reasoning: Effective RL fine-tuning for adaptive reasoning necessitates sophisticated
reward functions beyond answer and format accuracy, e.g., including short, middle, or long thinking
judge for different prompts. These should include composite rewards that value reasoning quality,
conciseness, and coherence; efficiency-aware rewards that penalize overthinking on simple problems;
and adaptive policy rewards that dynamically adjust based on problem complexity. Such nuanced
signals guide the model to select the appropriate depth and style of reasoning for different prompts. 3)
Iterative optimization enhancement strategy: The most effective development of adaptive reasoning in
an LMRM may occur through an iterative optimization loop. This loop strategically blends enforced
SFT, target-optimization DPO, and wide exploration GRPO, collectively allowing the model to
progressively refine its capacity for selecting and executing the optimal reasoning strategy tailored to
various video understanding tasks.

E QUALITATIVE ANALYSIS
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Figure 4: A case from VSI-Bench shows the comparative performance of GRPO and VIPO-R1. Our
method is capable of generating longer responses and employing self-validation to address spatial
reasoning tasks.

Figure 5: Another case from VSI-Bench shows the comparative performance of GRPO and VIPO-R1.
Our method is capable of generating longer responses and employing self-validation to address spatial
reasoning tasks.

Figure 6: A case from Video-MMMU shows the comparative performance of GRPO and VIPO-R1.
Our method can identify situations where the reasoning path is correct but an incorrect answer is
chosen, through reflection, then re-selects the correct option that aligns with the reasoning content.
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Figure 7: A case from Video-MME shows the comparative performance of GRPO and VIPO-R1.
Our method also demonstrates strong capabilities in reflection and reasoning on general-domain
question-answering tasks.

Figure 8: A case from TOMATO shows the comparative performance of GRPO and VIPO-R1. Our
method is capable of generating longer responses and performing accurate temporal reasoning by
self-validation.
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