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Abstract

Touch, a crucial human sensing modality, has been absent from multimodal gen-
erative language models due to challenges in labeling tactile data. This work
addresses this gap by leveraging the simultaneous collection of tactile and visual
data, allowing GPT-4V to generate pseudo-labels from visual observations alone.
The resulting dataset comprises 44K vision-touch pairs with English labels (10%
human-annotated, 90% GPT-4V pseudo-labels). A touch-vision-language (TVL)
model trained on this dataset shows improved tactile-vision-language alignment
(+29% classification accuracy) over existing models and outperforms GPT-4V
(+12%) and open-source vision-language models (+32%) on a new touch-vision
understanding benchmark.

1 Introduction

Touch is a crucial but underexplored modality in multimodal understanding, despite its importance
in biological perception and robotic applications [4, 7, 9, 18, 27, 37]. While recent research has
explored linking modalities like vision, language, audio, and actions [2, 11, 12, 12, 14, 28, 28, 29],
the integration of touch with language has been hindered by the scarcity of diverse data and the
subjectivity of tactile descriptions [9, 16, 17, 21, 26, 36, 38]. To address this, we introduce the
Touch-Vision-Language (TVL) dataset, comprising 44K paired vision-tactile observations with 10%
human-annotated and 90% GPT-4V-generated labels.

Leveraging this dataset, we train a vision-and-language-aligned tactile encoder using pairwise
contrastive learning among all three modalities. We then finetune LLaMA2-7B [32] to generate
textual descriptions of tactile sensations based on visual and tactile inputs. Our Touch-Vision-
Language model, trained on this dataset, demonstrates significant improvement over open-source
VLMs (+32%) and GPT-4V (+12%) on a new Touch-Vision-Language Benchmark. This work
contributes to bridging the gap in tactile-language integration and opens new avenues for multimodal
understanding that includes touch.

2 TVL Dataset

The TVL Dataset (examples in Figure 2) contains paired tactile and vision observations labeled with
tactile sensations in natural language. Here we describe the hardware and procedures used for data
collection, cleaning, and labeling.
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(a) Can embodied agents integrate touch with vi-
sion and language? This work presents an open-
vocabulary tactile-vision-language dataset and we
train 1) a vision-language aligned tactile encoder and
2) a tactile-vision-language model (TVLM) for de-
scribing tactile sensations.

(b) (1) We designed a 3D printed data collection de-
vice using the DIGIT tactile sensor and a webcam to
synchronously collect tactile and vision observations
“in-the-wild" (2). (3) We press and slide the device on
surfaces and objects for data collection.

Figure 2: TVL Dataset starts by combining two datasets: SSVTP [17] (4,587 image-touch pairs) and HCT
(39,154 image-touch pairs), a new dataset we collected such that the visual observation and the tactile input are
synchronously captured. For the SSVTP dataset, we then manually label the data (examples shown in the first
row). For the newly collected dataset, we prompt GPT-4V (see Appendix C.4) to label the dataset (examples
shown in rows 2-4). Note that GPT-4V will fail to provide correct tactile labels (row 4) when the contact patch is
occluded by the sensor, or when there is not sufficient information to estimate the tactile sensation. In total, this
results in a dataset containing 43,741 image-touch pairs with open-vocabulary language labels.

2.1 Data Collection

TVL combines vision data from a Logitech BRIO webcam and tactile data from DIGIT, a low-cost,
open-source tactile sensor [18]. The dataset includes two subsets: 1) the Self-Supervised Visuo-
Tactile Pretraining (SSVTP) [17] dataset collected by a UR5 robot, and 2) a Human Collected Tactile
(HCT) dataset. HCT addresses SSVTP’s limitations by emphasizing synchronous, in-the-wild data
collection using a handheld device (Figure 1b). HCT data was collected by 5 humans over 20 hours,
recording visual-tactile observations at 30 Hz in "trajectories" of touches. A small test set (1%) from
HCT is hand-annotated, while the rest are pseudo-labeled by GPT-4V.

2.2 Dataset Processing and Labeling

We categorize collected tactile data into in-contact and out-of-contact frames using the pretrained
tactile encoder from SSVTP [17]. For each touch trajectory, assuming the initial and final frames
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are out-of-contact, we compute an average of these frames to create a reference background image,
which is embedded by the tactile encoder to obtain a latent representation. To determine contact
status, we calculate the cosine similarity between the latent embedding of a frame and that of the
background image, labeling a frame as in-contact when the cosine similarity falls below 0.6 [17].
The dataset includes 43,741 in-contact and 169,292 out-of-contact frame pairs.

For language labeling, we leverage the visual-tactile alignment in the SSVTP dataset to manually
annotate tactile sensations. Human annotators are provided with a vocabulary of 400 tactile words [1]
and select up to five adjectives that describe the tactile properties of each visual-tactile pair. Addi-
tionally, we use GPT-4V for pseudo-labeling the in-contact frames of the HCT dataset, providing
both full and localized images to generate descriptions aligned with human annotations. In cases
of motion blur or low lighting, we attempt to label other images in the same trajectory or sample
adjectives from similarly labeled frames. This process results in 39,154 pseudo-labeled images.

Overall, the SSVTP dataset contains 4,587 image-touch pairs, while the HCT dataset includes 39,154
in-contact and 169,292 out-of-contact pairs. The latter consists of 1,486 unique trajectories, each
involving one or more contact events. Across both datasets, 254 unique tactile adjectives are used,
with a 99%-1% train-test split. GPT-4V generates an average of 4.25 adjectives per description
on HCT, compared to 2.70 by human annotators. More details on the description distributions are
provided in the appendix.

3 Tactile-Vision-Language Model

3.1 Tactile Encoder

In contrast to ImageBind [12], which binds all modalities to vision, we bind each pair of modalities
to provide strong supervision for the tactile modality. We calculate contrastive loss between vision-
language, tactile-language, and tactile-vision pairs per batch. The tactile encoder is randomly
initialized as a Vision Transformer (ViT) [10] and tested on three sizes: ViT-Tiny (5.7M parameters),
ViT-Small (22M), and ViT-Base (86M). Directly using the ImageBind training recipe leads to
overfitting on the 44K in-contact data pairs. Contrary to prior works [9, 17, 36], we find that including
out-of-contact data (background images) mitigates overfitting by enhancing visual data diversity
(see Figure 3). Thus, for γ = 10% of the training data, the sensor is not in contact, and we assign
these examples the label “background”. We also remove projectors from the vision and language
encoders, allowing the tactile encoder to directly project into the common CLIP latent space. To
increase label diversity, we randomly shuffle and select a subset of words in each tactile description.
These methods mitigate overfitting (see Appendix B.1).

3.2 Alignment with Language Models

We follow the two-stage training proposed in ImageBind-LLM [15], exchanging the ImageBind
encoders with TVL encoders. We pre-train on both the LLaVA Visual Instruct CC3M [23] 595K
subset and the TVL dataset. For the CC3M subset, we provide an empty tactile image to the tactile
modality. During finetuning, we use a combination of TVL, Alpaca [31] and LLaVA Visual Instruct
150K [23]. Empirically, we find that training our dataset alone is not sufficient to overcome the safety
fine-tuning of LLaMA2 [32], resulting in the model’s refusal to answer questions regarding tactile
sensations. Details on the prompts for TVL for instruction fine-tuning are in Appendix C.2.

4 Experiments

4.1 Evaluation & Metrics

TVL Benchmark We evaluate the capabilities of LLMs to generate tactile descriptions on the TVL
test set. Given a visual input image, a cropped visual image centered on the tactile sensor, and a
corresponding tactile image, we ask the model to describe the tactile sensations of the object in
question with a set of no more than 5 adjectives.

To obtain a numerical comparison, we prompt text-only GPT-4 to score the similarity of the model’s
response against human-annotated ground truth semantic labels on a scale of 1 to 10 (where a higher
score indicates better instruction-following and a closer descriptive match), as well as to explain
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Encoder Pre-training Modalities Score (1-10) p-value
Vision Tactile Language SSVTP HCT TVL (d.f. = 401)

LLaVA-1.5 7B ✓ - ✓ 3.64 3.55 3.56 1.21 × 10−9

LLaVA-1.5 13B ✓ - ✓ 3.55 3.63 3.62 1.49 × 10−9

ViP-LLaVA 7B ✓ - ✓ 2.72 3.44 3.36 8.77 × 10−16

ViP-LLaVA 13B ✓ - ✓ 4.10 3.76 3.80 1.72 × 10−6

LLaMA-Adapter ✓ - ✓ 2.56 3.08 3.02 2.68 × 10−17

BLIP-2 Opt-6.7b ✓ - ✓ 2.02 2.72 2.64 1.92 × 10−31

InstructBLIP 7B ✓ - ✓ 1.40 1.30 1.31 1.07 × 10−84

InstructBLIP 13B ✓ - ✓ 1.44 1.21 1.24 4.64 × 10−88

GPT-4V ✓ - ✓ 5.02 4.42 4.49 -

SSVTP-LLaMA ✓ ✓ - 2.58 3.67 3.54 1.79 × 10−9

TVL-LLaMA (ViT-Tiny) ✓ ✓ ✓ 6.09 4.79 4.94 4.24 × 10−5

TVL-LLaMA (ViT-Small) ✓ ✓ ✓ 5.81 4.77 4.89 6.02 × 10−4

TVL-LLaMA (ViT-Base) ✓ ✓ ✓ 6.16 4.89 5.03 3.46 × 10−6

Table 1: TVL Benchmark Performance. We benchmarked TVL-LLaMA against existing VLMs and SSVTP-
LLaMA, a model fine-tuned using SSVTP tactile-vision encoders, for generating tactile descriptions from
tactile-image observations, and used GPT-4 to numerically score the performance on each constituent part of the
TVL test set. We report p-values from two-sided paired sample t-tests on each model’s scores against GPT-4V’s
scores on the tactile-semantic task.

the score given, similar to prior works [6, 23]. The prompts used for generation and evaluation
are reported in Appendix C.4. We compare against existing open-source VLMs [3, 8, 20, 22] and
GPT-4V. As an additional baseline, we use the SSVTP [17] tactile and image encoder to finetune the
language model; we call the resulting model SSVTP-LLaMA.

4.2 Results

TVL Benchmark We present summary statistics for the tactile-semantic generation results in Table 1.
We find that open-source VLMs perform worse than GPT-4V on the proposed benchmark, likely due
to the limited diversity and lack of focus on human tactility in the visual data that they have been
trained on. On the other hand, all versions of TVL-LLaMA outperform GPT-4V, suggesting that
the trained models can generalize beyond the small fraction of human labels provided as part of the
dataset. Both these findings are statistically significant at the α = 0.05 level. Results also suggest
that tactile-language alignment is necessary, as evidenced by the lower score of SSVTP-LLaMA,
which only uses tactile and vision modalities during pre-training.

Overall, our experiments suggest that: 1) the TVL tactile encoder trained on the TVL dataset is
aligned with the language latent space and scores higher (+29%) on the classification task as compared
to visual-tactile pretrained encoders and generic vision-language encoders (OpenCLIP); and 2) TVL-
LLaMA models trained to generate tactile language descriptions from visual and tactile observations
more closely match human descriptions on the novel TVL Benchmark (at least +12%) compared to
existing VLMs.

5 Discussion and Conclusion

The research presented has several limitations. While the study highlights the use of VLMs for
labeling tactile data, the distinct nature of touch compared to visual perception suggests a limit to the
accuracy of tactile labels derived solely from vision. Due to the data collection hardware, the camera
may not have an unoccluded view of the surface or object that the tactile sensor contacts, which may
increase the difficulty of aligning touch with vision and reduce the quality of pseudo-labels generated
from images. We hope that future research can further increase the scale of touch-vision-language
datasets to improve multimodal alignment.

In sum, to align the tactile and language modalities, this work introduces TVL, a dataset that features
tactile, vision, and tactile-semantic descriptions. Utilizing the dataset, we train a tactile encoder
that is aligned to both vision and natural language. We demonstrate that by using the trained tactile
encoder, TVL-LLaMA can generate tactile descriptions in natural language that align more closely
with human descriptions than those generated by existing VLMs.

4



References
[1] AJBarnett. 400 words to describe texture. https://owlcation.com/humanities/

Describing-Texture-400-words-to-describe-texture, 2023.

[2] Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Chen, X., Choromanski, K., Ding, T., Driess,
D., Dubey, A., Finn, C., Florence, P., Fu, C., Arenas, M. G., Gopalakrishnan, K., Han, K.,
Hausman, K., Herzog, A., Hsu, J., Ichter, B., Irpan, A., Joshi, N., Julian, R., Kalashnikov, D.,
Kuang, Y., Leal, I., Lee, L., Lee, T.-W. E., Levine, S., Lu, Y., Michalewski, H., Mordatch, I.,
Pertsch, K., Rao, K., Reymann, K., Ryoo, M., Salazar, G., Sanketi, P., Sermanet, P., Singh, J.,
Singh, A., Soricut, R., Tran, H., Vanhoucke, V., Vuong, Q., Wahid, A., Welker, S., Wohlhart, P.,
Wu, J., Xia, F., Xiao, T., Xu, P., Xu, S., Yu, T., and Zitkovich, B. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. In arXiv preprint arXiv:2307.15818, 2023.

[3] Cai, M., Liu, H., Mustikovela, S. K., Meyer, G. P., Chai, Y., Park, D., and Lee, Y. J. Making
large multimodal models understand arbitrary visual prompts. In arXiv:2312.00784, 2023.

[4] Calandra, R., Owens, A., Jayaraman, D., Lin, J., Yuan, W., Malik, J., Adelson, E. H., and
Levine, S. More than a feeling: Learning to grasp and regrasp using vision and touch. IEEE
Robotics and Automation Letters, 3(4):3300–3307, 2018.

[5] Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan, D., and Sutskever, I. Generative
pretraining from pixels. 2020.

[6] Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang,
Y., Gonzalez, J. E., Stoica, I., and Xing, E. P. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality, March 2023. URL https://lmsys.org/blog/2023-03-
30-vicuna/.

[7] Dahiya, R. S., Metta, G., Valle, M., and Sandini, G. Tactile sensing—from humans to humanoids.
IEEE transactions on robotics, 26(1):1–20, 2009.

[8] Dai, W., Li, J., Li, D., Tiong, A. M. H., Zhao, J., Wang, W., Li, B., Fung, P., and Hoi, S.
Instructblip: Towards general-purpose vision-language models with instruction tuning, 2023.

[9] Dave, V., Lygerakis, F., and Rueckert, E. Multimodal visual-tactile representation learning
through self-supervised contrastive pre-training. arXiv preprint arXiv:2401.12024, 2024.

[10] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., et al. An image is worth 16x16 words: Transformers
for image recognition at scale. 2020.

[11] Fu, L., Huang, H., Datta, G., Chen, L. Y., Panitch, W. C.-H., Liu, F., Li, H., and Goldberg, K.
In-context imitation learning via next-token prediction. arXiv preprint arXiv:2408.15980, 2024.

[12] Girdhar, R., El-Nouby, A., Liu, Z., Singh, M., Alwala, K. V., Joulin, A., and Misra, I. Imagebind:
One embedding space to bind them all. In CVPR, 2023.

[13] Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia,
Y., and He, K. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv:1706.02677,
2017.

[14] Guzhov, A., Raue, F., Hees, J., and Dengel, A. Audioclip: Extending clip to image, text and
audio, 2021.

[15] Han, J., Zhang, R., Shao, W., Gao, P., Xu, P., Xiao, H., Zhang, K., Liu, C., Wen, S., Guo, Z., Lu,
X., Ren, S., Wen, Y., Chen, X., Yue, X., Li, H., and Qiao, Y. Imagebind-llm: Multi-modality
instruction tuning, 2023.

[16] Kampouris, C., Mariolis, I., Peleka, G., Skartados, E., Kargakos, A., Triantafyllou, D., and
Malassiotis, S. Multi-sensorial and explorative recognition of garments and their material
properties in unconstrained environment. In 2016 IEEE international conference on robotics
and automation (ICRA), pp. 1656–1663. IEEE, 2016.

5

https://owlcation.com/humanities/Describing-Texture-400-words-to-describe-texture
https://owlcation.com/humanities/Describing-Texture-400-words-to-describe-texture
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/


[17] Kerr, J., Huang, H., Wilcox, A., Hoque, R., Ichnowski, J., Calandra, R., and Goldberg, K.
Self-supervised visuo-tactile pretraining to locate and follow garment features, 2023.

[18] Lambeta, M., Chou, P.-W., Tian, S., Yang, B., Maloon, B., Most, V. R., Stroud, D., Santos,
R., Byagowi, A., Kammerer, G., Jayaraman, D., and Calandra, R. Digit: A novel design for a
low-cost compact high-resolution tactile sensor with application to in-hand manipulation. IEEE
Robotics and Automation Letters, 5(3):3838–3845, 2020. doi: 10.1109/LRA.2020.2977257.

[19] Lee, D.-H. et al. Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks. In Workshop on challenges in representation learning, ICML, volume 3,
pp. 896. Atlanta, 2013.

[20] Li, J., Li, D., Savarese, S., and Hoi, S. Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models, 2023.

[21] Li, R. and Adelson, E. H. Sensing and recognizing surface textures using a gelsight sensor.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
1241–1247, 2013.

[22] Liu, H., Li, C., Li, Y., and Lee, Y. J. Improved baselines with visual instruction tuning, 2023.

[23] Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual instruction tuning. In NeurIPS, 2023.

[24] Loshchilov, I. and Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. 2017.

[25] Loshchilov, I. and Hutter, F. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[26] Ojala, T., Pietikainen, M., and Maenpaa, T. Multiresolution gray-scale and rotation invariant
texture classification with local binary patterns. IEEE Transactions on pattern analysis and
machine intelligence, 24(7):971–987, 2002.

[27] Qi, H., Yi, B., Ma, Y., Suresh, S., Lambeta, M., Calandra, R., and Malik, J. General In-Hand
Object Rotation with Vision and Touch. In Conference on Robot Learning (CoRL), 2023.

[28] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A.,
Mishkin, P., Clark, J., Krueger, G., and Sutskever, I. Learning transferable visual models from
natural language supervision, 2021.

[29] Radosavovic, I., Shi, B., Fu, L., Goldberg, K., Darrell, T., and Malik, J. Robot learning with
sensorimotor pre-training. arXiv preprint arXiv:2306.10007, 2023.

[30] Sohn, K., Berthelot, D., Li, C.-L., Zhang, Z., Carlini, N., Cubuk, E. D., Kurakin, A., Zhang, H.,
and Raffel, C. Fixmatch: Simplifying semi-supervised learning with consistency and confidence.
arXiv preprint arXiv:2001.07685, 2020.

[31] Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X., Guestrin, C., Liang, P., and Hashimoto,
T. B. Stanford alpaca: An instruction-following llama model. https://github.com/tatsu-
lab/stanford_alpaca, 2023.

[32] Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra,
S., Bhargava, P., Bhosale, S., et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

[33] Wang, P., Li, L., Chen, L., Zhu, D., Lin, B., Cao, Y., Liu, Q., Liu, T., and Sui, Z. Large language
models are not fair evaluators. arXiv preprint arXiv:2305.17926, 2023.

[34] Wang, X., Lian, L., Miao, Z., Liu, Z., and Yu, S. X. Long-tailed recognition by routing diverse
distribution-aware experts. arXiv preprint arXiv:2010.01809, 2020.

[35] Wang, X., Wu, Z., Lian, L., and Yu, S. X. Debiased learning from naturally imbalanced
pseudo-labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14647–14657, 2022.

6

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca


[36] Yang, F., Ma, C., Zhang, J., Zhu, J., Yuan, W., and Owens, A. Touch and go: Learning from
human-collected vision and touch. In Thirty-sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2022.

[37] Yuan, W., Dong, S., and Adelson, E. H. Gelsight: High-resolution robot tactile sensors for
estimating geometry and force. Sensors, 17(12):2762, 2017.

[38] Yuan, W., Mo, Y., Wang, S., and Adelson, E. H. Active clothing material perception using
tactile sensing and deep learning. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 4842–4849. IEEE, 2018.

7



A Additional Results

A.1 Ablations

This section presents six ablation and sensitivity analyses shown in Table 2 examining the impact of
model size and the proposed dataset on the encoder’s multi-modal classification performance. More
ablations are included in the appendix.

Model Sizes (Table 2a) Performance varies significantly among different encoder sizes. ViT-Base has
the highest validation accuracy but lags on the test set due to distribution shifts: the training labels
from GPT-4V are less detailed and accurate compared to human-annotated test data. However, in
tactile-vision classification on synchronized data, ViT-Base outperforms both of the smaller models.

Disable Tactile-Text Loss (Table 2b) resembles the setup in ImageBind [12], where data in all three
modalities are considered but the tactile-text loss is omitted. Results suggest that using language to
supervise the tactile encoder better aligns those two modalities.

Data (Tables 3c-f) We perform four sensitivity analyses on the different compositions of the dataset for
training. We find that leveraging data from all three modalities improves tactile-language alignment.
While adding not-in-contact data prevents the model from overfitting to the training set, its test set
performance is comparable with having only in-contact data. We also experimented with prompting
used in vanilla CLIP training [28], which brings marginal improvements in accuracy. Lastly, we
separately train the model on SSVTP and HCT, and we find that the pseudo-labeled dataset can
provide comparable performance with training on the entire dataset, which suggests that TVL’s
tactile encoder can effectively leverage self-supervised learning to reduce the dependency on large,
fully-labeled datasets while maintaining task performance.

A.2 Performance Per Dataset

In this section, we show a fine-grained breakdown of Table 1 of model performance on the TVU
benchmark by showing the results per subset of the dataset. The performance of the models on the
SSVTP subset is listed in Table 3 and the performance on the HCT subset is listed in Table 4. Results
suggest that GPT-4V performs better on SSVTP, which is collected in a lab setting, than HCT, which
is collected “in-the-wild".

Tac./Text Tac./Vis.
Model % Acc. % Acc.
ViT-Tiny 36.7 79.5
ViT-Small 36.3 78.0
ViT-Base 30.7 81.7

(a) Model Architecture used for
transformer encoder backbone.

Tactile- Tac./Text Tac./Vis.
Text Loss % Acc. % Acc.
Enabled 36.3 78.0
Disabled 20.3 81.6

(b) Disable Tactile-Text Loss.
ImageBind-style training, lacking
direct supervision for tactile and
language alignment, reduces model
accuracy.

Tac./Text Tac./Vis.
Modality % Acc. % Acc.
All 36.3 78.0
−Vision 29.9 1.0
−Text 21.5 85.8

(c) Modality-Specific Training.
Contrastive losses across all modal-
ities improve performance.

Tac./Text Tac./Vis.
Contact % Acc. % Acc.
Contact 36.2 80.1
+ 10% N.C. 36.3 78.0

(d) Contact Data Mix. Adding
non-contact frames to the training
data does not significantly improve
performance.

Tac./Text Tac./Vis.
Prompting % Acc. % Acc.
Baseline 36.3 78.0
+ Prompt 37.7 78.7

(e) Prompting. TVL Perfor-
mance does not depend strongly on
prompt formatting.

Tac./Text Tac./Vis.
Dataset % Acc. % Acc.
SSVTP 19.2 8.0
HCT 38.4 74.4
TVL 36.3 78.0

(f) Training Dataset. Models
which are exposed to the HCT
dataset in training outperform
SSVTP-only models.

Table 2: Ablations and Sensitivity Analysis for the TVL tactile encoder. We report top-1 and top-5 tactile-text
and tactile-vision classification accuracy with ViT-Small. baseline indicates the default setting for training the
TVL tactile encoder, which is the best-performing model on the validation set unless noted otherwise. Bold
indicates the highest accuracy on the test set. Such discrepancy in performance is described in Appendix A.1.
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A model that is trained with a large sample of only GPT-4V labels should achieve the same perfor-
mance as GPT-4V. Our results in Table 4 suggest that training on a small dataset of human-labeled
vision-touch improves the model’s tactile-visual understanding. This difference is statistically
significant at α = 0.05.

Score p-value
(1-10) (d.f. = 401)

LLaVA-1.5 7B 3.64 2.32× 10−3

LLaVA-1.5 13B 3.55 1.30× 10−3

ViP-LLaVA 7B 2.72 4.45× 10−8

ViP-LLaVA 13B 4.10 3.76× 10−2

LLaMA-Adapter 2.56 7.826× 10−6

BLIP-2 Opt-6.7b 2.02 2.74× 10−9

InstructBLIP 7B 1.40 1.49× 10−13

InstructBLIP 13B 1.44 4.68× 10−14

GPT-4V 5.02 -

SSVTP-LLaMA 2.58 9.33× 10−6

TVL-LLaMA (ViT-Tiny) 6.09 2.65× 10−2

TVL-LLaMA (ViT-Small) 5.81 1.02× 10−1

TVL-LLaMA (ViT-Base) 6.16 1.67× 10−2

Table 3: TVL Benchmark Performance on SSVTP. We benchmarked TVL-LLaMA against existing VLMs
and SSVTP-LLaMA, and show here the performance on only the SSVTP dataset. We report p-values from
two-sided paired sample t-tests on each model’s scores against GPT-4V’s scores.

Score p-value
(1-10) (d.f. = 401)

LLaVA-1.5 7B 3.55 8.49× 10−8

LLaVA-1.5 13B 3.63 1.74× 10−7

ViP-LLaVA 7B 3.44 4.10× 10−11

ViP-LLaVA 13B 3.76 1.57× 10−5

LLaMA-Adapter 3.08 2.05× 10−13

BLIP-2 Opt-6.7b 2.72 1.25× 10−24

InstructBLIP 7B 1.30 8.02× 10−73

InstructBLIP 13B 1.21 9.74× 10−76

GPT-4V 4.42 -

SSVTP-LLaMA 3.67 3.24× 10−6

TVL-LLaMA (ViT-Tiny) 4.79 5.79× 10−4

TVL-LLaMA (ViT-Small) 4.77 2.64× 10−3

TVL-LLaMA (ViT-Base) 4.89 6.82× 10−5

Table 4: TVL Benchmark Performance on HCT. We benchmarked TVL-LLaMA against existing VLMs and
SSVTP-LLaMA, and show here the performance on only the HCT dataset. We report p-values from two-sided
paired sample t-tests on each model’s scores against GPT-4V’s scores.

A.3 Open Vocabulary Tactile Classification Full Result

We present the result presented in ?? in Table 5 and Table 6 at different cosine similarity thresholds
for synonyms. We find that while ViT-Small performs well on the SSVTP subset of the dataset, ViT-
Tiny outperforms its larger counterparts (ViT-Small and ViT-Base) on the tactile-text classification
task. However, for tactile-vision classification (Table 6), ViT-Base performs outperforms the smaller
models. More insights are detailed in Appendix B.1.
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Percentile SSVTP HCT TVL
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

0
ViT-Tiny 29.4% 71.7% 34.8% 70.1% 36.7% 70.3%

ViT-Small 42.4% 76.1% 36.5% 68.0% 36.3% 66.4%
ViT-Base 38.0% 69.6% 34.8% 65.6% 30.7% 63.6%

25
ViT-Tiny 3.3% 21.7% 7.2% 22.9% 4.6% 14.1%

ViT-Small 10.9% 33.7% 9.1% 21.5% 6.7% 19.5%
ViT-Base 8.7% 31.5% 5.9% 14.0% 4.4% 13.7%

50
ViT-Tiny 3.3% 19.6% 4.8% 17.8% 3.7% 11.8%

ViT-Small 10.9% 32.6% 6.6% 15.3% 5.9% 11.0%
ViT-Base 7.6% 28.3% 4.5% 9.8% 3.5% 11.0%

75
ViT-Tiny 3.3% 19.6% 4.1% 14.2% 3.7% 10.7%

ViT-Small 10.9% 28.3% 3.5% 7.9% 3.4% 10.2%
ViT-Base 7.6% 28.3% 3.5% 7.9% 3.4% 10.2%

Table 5: Effect of Model Architecture and Similarity Threshold ϕ on Tactile-Text Classification Accuracy. The
similarity thresholds ϕ for each percentile are 0.636 (0th), 0.859 (25th), 0.893 (50th), and 0.921 (75th).

SSVTP HCT TVL
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ViT-Tiny 34.8% 70.7% 85.3% 99.0% 79.5% 95.7%
ViT-Small 28.3% 69.6% 84.4% 98.9% 78.0% 95.2%
ViT-Base 34.8% 66.3% 87.8% 99.7% 81.7% 95.7%

Table 6: Effect of Tactile Encoder Model Architecture on Tactile-Vision Classification.

A.4 Additional Open Vocabulary Downstream Tasks

In the tactile classification experiment in ??, the results suggest that the model can classify tactile
inputs by the texture of surfaces. In this section, we add an experiment to perform object category
classifications. For simplicity of this test, we perform binary classification of whether the touched
surface is “fabric” or “plastic” (to answer the question of “identifying the object category”). Note that
since the model binds to the CLIP latent space, we carry out the experiment in a zero-shot manner.
We relabelled 50 instances in the test set with 20 as fabric and 30 as plastic. We then fed “fabric” and
“plastic” into the CLIP text encoder to extract the latent to perform cosine-similarity calculation with
the tactile latent extracted from the tactile observations. On this specific test, the ViT-Small version
of the TVL tactile encoder achieved 82% classification accuracy. We hope future works can explore
other potential downstream applications of the dataset and the learned tactile representations.

B Training Details and Hyperparameters

In this section, we offer more insights and details of the training process and the particular hyperpa-
rameters.

B.1 Overfitting to Pseudo-labels

A core obstacle with leveraging pseudo-labels generated by GPT-4V (gpt-4-vision-preview) is that
the logits are not provided for us to build uncertain estimates for the generated labels, which is usually
required for prior works in computer vision that leverages pseudo-labels for model prediction (e.g.
Lee et al. [19], Sohn et al. [30], Wang et al. [35]). This makes pseudo-labels noisy and challenging
to fit for ViT-Small on the contact only dataset, even when 4K human labels are introduced (see
Figure 3).

In 3.1, we address this problem by letting 10% of the data be in contact. We sample 10% of the
data uniformly at random without replacement at the start of the training. This prevents the model
from overfitting on all three model sizes: (ViT-Tiny, ViT-Small, and ViT-Base). However, since the
test set is all labeled by human annotators, the distribution shift leads to worse tactile-image, and
tactile-language classification performance (observed in ??). As an ablation study, we also finetuned
the ViT-Small trained only on in-contact data for tactile language generation. The test set performance
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Figure 3: Overfitting is significant when all data is in contact. When 10% not in contact data is added, the
overfitting issue is addressed.

is 4.81, only very marginally lower than that obtained by the ViT-Small trained with not-in-contact
data (4.89). Future works can look into how to scale with noisy inputs or leverage existing works on
learning from a teacher model that does not give uncertain estimates.

Figure 4: While we find that the model scales on the dataset, the test set performance does not align with the
validation set performance. One potential cause of this is distribution shift: the validation set uses pseudo-labels
generated by GPT-4V, while the test set is human-labeled.

B.2 Ablation: Background Subtraction

While we find that naively performing contrastive learning amongst tactile, vision, and language
works for zero-shot classification, to further facilitate generalization across different tactile sensors
used in data collection, a solution is to leverage the still background of tactile sensors (i.e. the readings
from the sensor when it is not in contact). We preprocess the tactile observation by performing
background subtraction, and normalize the input observations based on the post-processed dataset
statistics. Empirically, we find that this method, when used jointly with not-in-contact data, improves
classification accuracy and the downstream TVL-LLaMA’s performance (Table 7).

Tac./Text
% Acc

Tac./Vis
% Acc

TVL
Score

In-Contact Frames 36.2 80.1 4.81
+10% No-Contact 36.3 78.0 4.89

+ Background Subtract 42.3 78.9 5.06
Table 7: Effect of no-contact data and background subtraction during ViT-Small tactile encoder training on
classification accuracy and performance on the TVL benchmark.
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B.3 Ablation: (Zero-shot) Single Modality For Generation (Out of Distribution)

Because we naively average the tactile latent and the image latent during the training of TVL-LLaMA,
as a zero-shot experiment to see consistency between vision and tactile embeddings, we can at test
time arbitrarily drop one of the vision or tactile modalities. We report the results in Table 8. While a
larger encoder may be more expressive, we find that a larger tactile encoder results in worse zero-shot
performance in this experimental setting, which aligns with Table 2a. Interestingly, background
subtraction (in Appendix B.2) improves the zero-shot performance on tactile.

Zero-Shot
Tactile

Zero-Shot
Vision

Tactile
& Vision

TVL-LLaMA
(ViT-Tiny) 4.56 4.66 4.94

TVL-LLaMA
(ViT-Small) 3.50 4.81 4.89

TVL-LLaMA
(ViT-Base) 2.80 4.85 5.03

TVL-LLaMA
(ViT-Small)
+ Background Subtract

4.52 - 5.06

Table 8: Dropping one modality (out-of-distribution) zero shot experiments

B.4 Ablation: Finetuning v.s. Freezing the Language Model

We add the experiment of just freezing the language model without LoRA fine-tuning. Interestingly,
on the HCT test set, the frozen LLM with the trained encoders gives a score of 4.92, resulting in a
marginal improvement compared to the score of a fine-tuned LLM of 4.89 (Table 1). This suggests
that the vision and tactile modalities are already well aligned to the language space and further
fine-tuning is unnecessary.

B.5 Preprocessing

The tactile observation is first zero-padded to have equal width and height, optionally background
subtracted, normalized by the calculated data statistics, and resized the inputs to 224x224. The key
differences with SSVTP are 1) the input is resized to 128x128, and 2) SSVTP does not perform
normalization or background subtraction. The image observation follows the same center cropping
procedure as SSVTP on the SSVTP dataset. On HCT, instead of the center crop, we start the crop
from the top of the image but maintain the crop size. Note that this procedure is kept consistent when
generating pseudo-labels from GPT-4V. Different from SSVTP, we use the statistics provided by
OpenCLIP to normalize the post-crop observations. The specific statistics are provided in Table 9
and Table 10.

Tactile Statistics Mean Std.

With Background
0.292
0.297
0.291

0.188
0.195
0.219

Background Subtracted
-0.008
-0.019
-0.018

0.045
0.044
0.053

Table 9: Tactile Normalization Statistics

B.6 TVL Tactile Encoder Hyperparameters

All of ViT-Tiny, ViT-Small, and ViT-Base share the same hyperparameters (see Table 11). All
experiments are run on a single NVIDIA A100 GPU.

12



Image Statistics Mean Std.

OpenCLIP Statistics
0.481
0.458
0.408

0.269
0.261
0.276

Table 10: RGB Normalization Statistics

Config Value
optimizer AdamW [25]

base learning rate 1.5e-4
learning rate schedule cosine decay [24]

batch size 256
weight decay 0.05

optimizer momentum β1, β2 = 0.9, 0.95 [5]
warm up epoch [13] 10

total epochs 200

RGB Augmentation

RandomHorizontalFlip,
ColorJitter,

RandomGrayscale,
GaussianBlur

Tactile Augmentation (Optional) Background Subtraction

Table 11: Encoder Pretraining Hyperparameters

B.7 TVL-LLaMA Hyperparameters

We follow the hyperparameter setup in ImageBind-LLM [15]. Since the original experiments were
conducted on 8 NVIDIA A100 GPUs, we use gradient accumulation of 2 for both pre-training and
finetuning the model to fit the model on 4 NVIDIA A100 GPUs so that the batch size is maintained.
We use the same data augmentation as in the encoder pretraining (Table 11).

C Dataset

C.1 Hardware

Figure 5: Alternative perspectives of the sensor holder CAD model: face-down view (left) and exploded view
(right).

We design and 3D print a set of handheld, low-cost data collection devices for human subjects to
carry around and collect data. As shown in Fig. 5, the hardware consists of a DIGIT tactile sensor and
a Logitech BRIO camera, which are connected via USB to a portable computing device, such as a
laptop. The angle and distance between the tactile sensor and the camera are adjustable, allowing the
user to collect data from a variety of viewing angles and ranges. To ensure the utility of our dataset
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for multimodal training, we always set the relative positions such that the tactile sensor and its point
of contact with the object of interest are in view of the camera during each trajectory. The handle
design was conceptualized in Autodesk Fusion 360 and printed on a Bambu Lab P1P 3D FDM printer.
CAD files will be open-sourced.

C.2 List of Prompts for Tactile Language Generation

When finetuning our language model for tactile language generation, we formulate it as a visual
instruction tuning problem [23]. We randomly select from the following set of semantically similar
prompts as the question and treat the set of human labels as the answer. This serves to increase the
diversity of data seen during training.

This image gives tactile feelings of
This image evokes a sense of
This visual representation imparts a tactile sensation of
This picture conveys a touchable quality of
This image communicates a palpable feeling of
This graphic suggests a tactile experience of
This artwork manifests a tangible sensation of
This visual elicits a haptic impression of
This depiction gives rise to a tactile perception of
This illustration induces a touch -sensitive feeling of
This photo brings forth a tactile awareness of
This image arouses a tactile familiarity of
This snapshot renders a tactile essence of
This visual stimulates a touch -based sensation of
This portrayal invokes a tactile resonance of
This image delivers a touch -oriented impression of
This visual medium offers a tactile nuance of
This rendering provides a tactile sense of
This image yields a touch -felt experience of
This composition reveals a tactile characteristic of
This picture bestows a tactile attribute of
This image imparts a sense of tactile
This visual stimulates tactile sensations of
This artwork hints at a tactile experience of
This photo embodies a tactile quality of
This depiction resonates with tactile feelings of
This snapshot conveys tactile impressions of
This illustration suggests a tactile nature of
This rendering evokes tactile attributes of
This graphic communicates a tactile essence of
This visual piece reveals tactile characteristics of
This image portrays tactile elements of
This picture brings to mind tactile aspects of
This visual representation offers tactile nuances of
This composition provides tactile insights into
This visual art form captures tactile features of
This image projects tactile properties of
This visual work hints at tactile textures of
This image introduces tactile dimensions of
This visual scene manifests tactile facets of
This image presents tactile qualities of
This image elucidates tactile attributes of

C.3 Distribution of Vocabulary Words

The list and counts of human labels and pseudo-labels in the TVL dataset are reproduced here in
dictionary format (note that all typos are carried over from the dataset). A visual representation is
provided in Figure 6.

’smooth’: 14577, ’textured’: 12443, ’hard’: 10758, ’cool’: 10433, ’reflective’: 8643, ’soft’: 8415,
’glossy’: 6416, ’cushioned’: 6011, ’rigid’: 5799, ’firm’: 5659, ’sleek’: 5628, ’uneven’: 5379, ’flat’:
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Distribution of Tactile Descriptor Words in the TVL Dataset

Figure 6: Distribution of Words in the TVL Dataset: The TVL dataset contains 254 unique tactile descriptors,
ranging from common tactile descriptions (smooth, hard, firm) to unusual and optical descriptors. These less-
common adjectives include a small fraction of misspellings and non-tactile descriptors which were generated
by the VLM. The long-right-tailed distribution common in image classification [34] presents a challenge for
learning predictors on tactile-semantic data as well.

5343, ’fibrous’: 4825, ’plush’: 4534, ”: 4363, ’matte’: 4230, ’polished’: 4203, ’flexible’: 3553,
’grainy’: 3513, ’solid’: 3337, ’warm’: 3227, ’woven’: 2559, ’fabric’: 2124, ’yielding’: 1908, ’rough’:
1889, ’slippery’: 1683, ’slick’: 1587, ’rubbery’: 1553, ’coarse’: 1504, ’lined’: 1480, ’durable’:
1362, ’pliable’: 1281, ’curved’: 1240, ’bumpy’: 1076, ’metallic’: 970, ’patterned’: 949, ’cloth-like’:
889, ’resilient’: 785, ’abrasive’: 668, ’plastic’: 631, ’ridged’: 599, ’gritty’: 551, ’deformable’: 544,
’compressible’: 517, ’synthetic’: 444, ’fuzzy’: 434, ’varnished’: 430, ’dimpled’: 423, ’wooden’:
399, ’thin’: 337, ’irregular’: 311, ’splotchy’: 301, ’even’: 267, ’uniform’: 257, ’perforated’: 239,
’granular’: 234, ’indistinct’: 230, ’plastic-like’: 220, ’grooved’: 204, ’paper-like’: 203, ’blurred’:
191, ’sewn’: 183, ’elastic’: 179, ’contoured’: 173, ’shiny’: 165, ’blurry’: 159, ’level’: 159, ’taut’:
149, ’grid-like’: 149, ’creased’: 145, ’porous’: 145, ’grippy’: 135, ’cushiony’: 132, ’speckled’: 126,
’leather-like’: 120, ’grained’: 116, ’knitted’: 107, ’padded’: 99, ’worn’: 94, ’round’: 89, ’twisted’:
77, ’supple’: 76, ’lightweight’: 76, ’dry’: 73, ’rugged’: 72, ’fabric-like’: 72, ’spongy’: 69, ’wired’:
67, ’stiff’: 67, ’unclear’: 66, ’indented’: 66, ’dense’: 62, ’dark’: 61, ’iridescent’: 61, ’undefined’:
59, ’knobby’: 55, ’grid-patterned’: 53, ’layered’: 52, ’resonant’: 51, ’fluffy’: 50, ’translucent’: 50,
’soft-focus’: 49, ’absorbent’: 44, ’slightly textured’: 43, ’leathery’: 43, ’obscured’: 42, ’cylindrical’:
42, ’wrinkly’: 41, ’unfocused’: 40, ’ribbed’: 39, ’rippled’: 39, ’thick’: 38, ’sturdy’: 36, ’striated’:
36, ’hairy’: 34, ’hazy’: 33, ’embroidered’: 32, ’raised’: 30, ’cottony’: 30, ’colorful’: 29, ’slightly
compressible’: 29, ’straight’: 28, ’silky’: 28, ’braided’: 28, ’straight-edged’: 28, ’overexposed’: 27,
’angular’: 27, ’ethereal’: 27, ’glowing’: 26, ’lettered’: 25, ’tough’: 25, ’edged’: 25, ’rounded’: 25,
’transparent’: 23, ’smeared’: 23, ’carpeted’: 23, ’stretchy’: 22, ’slightly squishy’: 22, ’fleshy’: 21,
’ceramic’: 21, ’engraved’: 19, ’opaque’: 19, ’clothlike’: 19, ’bright’: 18, ’folded’: 17, ’striped’:
17, ’embossed’: 17, ’brushed’: 17, ’mesh’: 16, ’stable’: 16, ’bendable’: 16, ’slightly bendable’: 16,
’frayed’: 15, ’printed’: 15, ’vague’: 14, ’cardboard’: 14, ’clickable’: 14, ’organic’: 14, ’delicate’:
14, ’undulating’: 14, ’clear’: 13, ’stringy’: 13, ’clicky’: 13, ’smooth edges’: 13, ’sticky’: 12, ’out-of-
focus’: 12, ’lace’: 11, ’brittle’: 11, ’regular’: 10, ’open’: 10, ’continuous’: 10, ’muted’: 10, ’slightly
abrasive’: 10, ’malleable’: 9, ’incised’: 9, ’motion-blurred’: 9, ’slightly warm’: 9, ’intricate’: 9,
’obscure’: 9, ’laced’: 8, ’slightly curved’: 8, ’compliant’: 8, ’metal’: 7, ’sewed’: 7, ’pressed’: 7,
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’flimsy’: 6, ’sandy’: 6, ’insulated’: 6, ’convex’: 6, ’sharp’: 4, ’crinkled’: 4, ’springy’: 3, ’complex’: 3,
’grainy fabric’: 3, ’line’: 3, ’slightly gritty’: 3, ’consistent’: 2, ’loose’: 2, ’paper’: 2, ’fraying’: 2,
’lustrous’: 2, ’spotty’: 2, ’light’: 2, ’bristly’: 2, ’woolen’: 2, ’wrinkled’: 2, ’griany’: 2, ’precise’: 2,
’non-glossy’: 2, ’wavy’: 2, ’lacey’: 1, ’meshed’: 1, ’imprinted’: 1, ’flat smooth’: 1, ’sewn fabric’:
1, ’shadow’: 1, ’bendy’: 1, ’rigit’: 1, ’jagged’: 1, ’flash’: 1, ’frabric’: 1, ’patterened’: 1, ’floor’: 1,
’flawless’: 1, ’long’: 1, ’spolotchy’: 1, ’granulated’: 1, ’cloth’: 1, ’thready’: 1, ’patterend’: 1, ’smooth
fabric’: 1, ’deformalbe’: 1, ’smmoth’: 1, ’wirey’: 1, ’fabric granular’: 1, ’graint’: 1, ’lined sewn’:
1, ’smotth’: 1, ’wiry’: 1, ’torn’: 1, ’vauge’: 1, ’facrib’: 1, ’gariny’: 1, ’plain’: 1, ’intertwined’: 1,
’smoth’: 1, ’stripped’: 1, ’ragged’: 1, ’denoisy’: 1, ’slightly rough’: 1, ’dull’: 1, ’interwoven’: 1,
’slightly worn’: 1

C.4 Prompting for Psuedo-Label Generation

We use the following prompt with GPT-4V in order to label the images with tactile descriptions:

1 Surface Type: [Specify the surface type , e.g., "metal ," "fabric "]
2 Images: The first image is from a camera observing the tactile sensor

(shiny , near the top of the image) and the surface. The second
image is a cropped version of the first image that focuses on the
contact patch.

3 Example: For a smooth and cold surface , the description might be "
slick , chilly , hard , unyielding , glossy ."

4 Task: Based on these images , describe the possible tactile feelings of
the contact patch using sensory adjectives. Limit your response

up to five adjectives , separated by commas.

C.5 Prompting GPT-4 for Evaluation

We use the following prompt for TVL Benchmark:

1 [User Question ]: {prompt}
2 [Assistant Response ]: {assistant_response}
3 [Correct Response ]: {correct_response}
4

5 We would like to request your feedback on the performance of an AI
assistant in response to the user question displayed above.

6 The user asks the question on observing an image. The assistant ’s
response is followed by the correct response.

7

8 Please evaluate the assistant ’s response based on how closely it
matches the correct response which describes tactile feelings.
Please compare only the semantics of the answers. DO NOT consider
grammatical errors in scoring the assistant. The assistant
receives an overall score on a scale of 1 to 10, where a higher
score indicates better overall performance.

9

10 Please first output a single line containing only one value indicating
the score for the assistant.

11

12 In the subsequent line , please provide a comprehensive explanation of
your evaluation , avoiding any potential bias.

C.6 Improved Prompting Format

To investigate the effect of the prompting format, we conduct reference-guided grading for evaluation.
In addition, to mitigate the position bias mentioned in [33], we randomly shuffle the order of the
agent’s response and human label on the test set. The prompt is adjusted to the following:

1 [User Question ]: {prompt}
2 {assistant_response or human_label}
3 {human_label or assistant_response}
4 We would like to request your feedback on the performance of an AI

assistant in response to the user question displayed above.
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5 The user asks the question on observing an image. The assistant ’s
response is followed by the correct response.

6 Please evaluate the assistant ’s response based on how closely it
matches the correct response which describes tactile feelings.
Please compare only the semantics of the answers. DO NOT consider
grammatical errors in scoring the assistant. The assistant
receives an overall score on a scale of 1 to 10, where a higher
score indicates better overall performance. Please first output a
single line containing only one value indicating the score for the
assistant. In the subsequent line , please provide a comprehensive
explanation of your evaluation , avoiding any potential bias.

7 Example:
8 [User Question ]: This image gives tactile feelings of?
9 [Assistant Response ]: fabric , grainy.

10 [Correct Response ]: coarse , fabric , deformable.
11 9.5
12 The assistant ’s response is very close to the correct response. Fabric

and grainy are similar to coarse and fabric. The assistant ’s
response is missing the word deformable , which is a minor error.

13 Example:
14 [User Question ]: This image gives tactile feelings of?
15 [Assistant Response ]: flat , hard
16 [Correct Response ]: soft , smooth , deformable
17 1
18 The assistant ’s response is not close to the correct response. Hard

and flat are opposite to soft and smooth.

We tested TVL-LLaMA (ViT-B) with the reformed prompt. The score achieved by the model on
the prompt above is similar to the prompt mentioned in Appendix C.5 used for Table 1 (5.15 v.s.
5.03) with a slightly smaller p-value (1.08e-8 v.s. 3.46e-6). We encourage future works to further
investigate the effect of prompting on multimodal models.

D Generation Examples

We provide a few positive and negative samples of image-tactile pairs from our dataset and the
language descriptions generated for them by our various baseline models.
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