Under review as a conference paper at ICLR 2024

META-LEARNING STRATEGIES THROUGH VALUE
MAXIMIZATION IN NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Biological and artificial learning agents face numerous choices about how to learn,
ranging from hyperparameter selection to aspects of task distributions like curricula.
Understanding how to make these ‘meta-learning’ choices could offer normative ac-
counts of cognitive control functions in biological learners and improve engineered
systems. Yet optimal strategies remain challenging to compute in modern deep net-
works due to the complexity of optimizing through the entire learning process. Here
we theoretically investigate optimal strategies in a tractable setting. We present a
learning effort framework capable of efficiently optimizing control signals on a
fully normative objective: discounted cumulative performance throughout learning.
We obtain computational tractability by using average dynamical equations for
gradient descent, available for simple neural network architectures. Our framework
accommodates a range of meta-learning and automatic curriculum learning meth-
ods in a unified normative setting. We apply this framework to investigate the effect
of approximations in common meta-learning algorithms; infer aspects of optimal
curricula; and compute optimal neuronal resource allocation in a continual learning
setting. Across settings, we find that control effort is most beneficial when applied
to easier aspects of a task early in learning; followed by sustained effort on harder
aspects. Overall, the learning effort framework provides a tractable theoretical test
bed to study normative benefits of interventions in a variety of learning systems,
as well as a formal account of optimal cognitive control strategies over learning
trajectories posited by established theories in cognitive neuroscience.

1 INTRODUCTION

Deploying a learning system requires making many considered decisions about hyperparameters,
architectures, and dataset properties. As learning systems have grown more complex, so have
these decisions about how to learn. One approach to managing this complexity is to place these
decisions under the control of the agent and meta-learn them. Building on this strategy, a range
of meta-learning algorithms have been developed that are capable of fast adaptation to new tasks
within a distribution (Finn et al., 2017; Nichol et al.,|2018)), continual learning (Parisi et al., 2019),
and multitasking (Crawshaw|, [2020). Meta-learning methods target diverse aspects of a learning
system: they can adapt hyperparameters (Franceschi et al., 2018} Baik et al., 20205 [Zucchet &
Sacramento, [2022)); learn weight initializations well-suited to a task distribution (Finn et al., [2017;
Baik et al.| [2020); manage different modules or architectural components (Andreas et al., [2017);
enhance exploration (Gupta et al., 2018} |[Liu et al.| 2021)); and order tasks into a suitable curriculum
(Stergiadis et al.,|2021; Zhang et al.,|2022). While this prior work has shown that meta-learning can
bring important performance benefits, algorithms are often hand-designed for a specific intervention
and a large gap remains in our theoretical understanding of how meta-learning operates (see App.[A).

The aim of this paper is to develop a normative framework for investigating optimal meta-strategies
in biological and artificial agents. A core difficulty in computing optimal strategies is the complexity
of optimizing through the learning process. To tackle this problem, we simplify the inner-loop
learning dynamics using simpler tractable network models. We specifically study meta-learning
dynamics in deep linear networks, which exhibit complex non-linear dynamics (Saxe et al., [2019;
Braun et al.|[2022)). Examining this problem in a reduced setting, we derive optimal meta-learning
strategies under various control designs and meta-learning scenarios. We concentrate on questions
that are pertinent to the cognitive control literature, such as learning effort allocation, task switching,
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Figure 1: Learning effort framework. A neural network is under the influence of a control signal g(t).
This control signal is optimized iteratively by initializing g(t), then: (1) Solving learning dynamics
in Eq. equation |1} (2) Computing the performance P(t); (3) Integrating performance and control
cost to compute the exact cumulative return V' in Eq. [} (4) Taking the gradient of V' with respect
to the control signal g(¢) and update as in Eq. 3} then go back to (1). (b): Multi-step MAML. (c):
Learning rate optimization as in Bilevel Programming. (d): Task engagement, where the control
signal determines the optimal amount of engagement through time to multiple regression tasks.
(f): Category assimilation, where a model is trained to learn a classification task and can control
the engagement on each class c throughout training. (e): Effort allocation, where the control signal
(gain modulation of weights) is computed to maximize value throughout the learning of a single
task. (g): Task switching, where the gain modulation model is trained to switch tasks repeatedly
and the control signal is computed throughout the switches.

and attention to multiple tasks. The Expected Value of Control Theory (EVC, (Shenhav et al.l 2013}
2017; Musslick et al.| 2020; Masts et al., |2021))) has proposed answers to these questions. It posits
that higher-level areas in the brain perform executive functions (cognitive control) over lower-level
areas to maximize the cumulative return. The framework we present is a formal and computationally
tractable example of the EVC theory that takes into account the impact of the control signal on the
learning dynamics (see Appendix [E)).

Main contributions

* We develop a computationally tractable learning effort frameworkﬂ to study diverse and complex
meta-learning interventions that normatively maximize value throughout learning.

» We fully solve learning dynamics as a function of control variables for simple models, and use this to
derive efficient optimization procedures that maximize discounted performance throughout learning.

* We express meta-learning algorithms such as Model Agnostic Meta-Learning (Finn et al., 2017)
and Bilevel Programming (Franceschi et al., 2018) in our framework, studying the impact of approxi-
mations on their performance.

* We compute optimized control strategies for a range of settings spanning continual learning,
multi-tasking, and curriculum learning, and examine these normative strategies.

* Due to this framework’s normative goal of maximizing expected return, we draw qualitative
connections to phenomena in cognitive neuroscience such as task engagement, mental effort, and
cognitive control (Shenhav et al., 2013} [2017; [Lieder et al., 2018 |Masis et al., [2021).

2 LEARNING EFFORT FRAMEWORK

We start by defining our framework in a general abstract way before turning to a simple example in
Section[2.1] The generality of this description allows the framework to apply to a variety of different
settings of interest spanning machine learning (Sectiond)) and cognitive control (Sections [5|and[6).
Consider a learning model trained on a task 7 for a period of time 7. Two equations define the
learning model. We define the input-output mapping f and learning dynamics h as

N dw(t

¥ = f(Kw).00), 7 = w00, 7) m

! Anonymized Python package at https://anonymous . 4open.science/r/neuromod-6A3C/

for reproducibility.
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respectively. In the first equation, f is a continuously differentiable function, X the input, and Y
the output. Here w(t) are the parameters of the learning model (e.g. weights in a neural network)
during training with 7" > ¢ > 0. We introduce g(t) as an effort signal (or control signal) that crucially
will be chosen by the meta-learning system. This vector of control signals can model a number of
interventions in the learning system, and will be chosen to maximize cumulative learning performance.
The learning dynamics equation describes the evolution of the parameters during training and is given
by a differential equation over the parameters of the learning model, h is a continuously differentiable
function, and the evolution of the learned parameters w(t) (starting at w(0)) may depend on the
control signal and task parameters 7.

Given this setup, we can understand the control signal g(t) as a free parameter that can be chosen
in different ways, and which influences the network’s input-output map and learning behavior. In
practice, this could take the form of controlled attention or neural activity modulation. To determine
how we choose g(t), we define a task performance metric during the learning period P(t) (e.g.
mean squared error during regression). Further, we assume that using the control signal g(t) is
costly, according to a cost function C(g()), as commonly used in control theory to describe, for
instance, energy resource needed to exert control, or mental effort allocated to produced sustained
engagement on a task. At any time during the learning of the task 7 we consider an instant reward
rate R(t) = n’P(t), where 7 is a constant that converts performance on the task P(t) to reward/time
units. We define the instant net reward rate as the difference between scaled performance and the cost
of control v(t) = R(t) — C(g(t)). The expected return or value function at the start of training can
then be written as the cumulative discounted reward from learning and performing the task from time
t =0tot =T, with a discount factor 1 > v > 0,

T T
V= / dtr'o(t) = / dir' [P() — C(g(1))]. @

We emphasize this value function measures performance across the whole learning period. Finally,
we posit that the goal of meta-learning is to choose g(¢) to maximize the value function in equation
To find an approximately optimal g(t), we take gradient steps
av
t) =gi(t) + ag——. 3
Ir+1(t) = gr(t) + gdg(t) 3
for every 0 > t > T, k being the iteration index. The optimal g(¢) thus depends on a complex
interplay of past and future values of the control signal, and how these interact with the whole
trajectory of learning. Indeed, computing the gradient in equation [3]is computationally intractable
in general. In the remainder of the paper, we carefully choose learning models and settings with
rich dynamics but for which we have partial analytical tractability of the learning dynamics, such
that efficient computation of the full control signal through time is possible. Further details on the
algorithm implemented and estimation of involved quantities can be found in App.[C|and D}

By appropriate choice of how ¢(t) influences the network and learning dynamics, this general frame-
work can accommodate a variety of possible interventions on a learning system. Some interventions
correspond to other meta-learning algorithms such as Multi-Step MAML and Bilevel Programming
(Fig.[Ib and c). The results in subsequent sections investigate several scenarios illustrated in Fig. [Td
to g. All of these experiments are variations on the influence of the control signal over the learning
dynamics, keeping the rest of the framework as is.

2.1 SINGLE NEURON EXAMPLE

Having described the general framework, we now turn to a simple case to illustrate it, yet with complex
emergent solutions. We consider a single neuron learning model trained on a two-Gaussians regres-
sion task where the control signal acts as a weight gain modulation. This case offers insights regarding
the dependence of the optimal control signal on task parameters and learning model hyperparameters.

Two Gaussians regression task: A dataset of examples¢ = 1,--- , P is drawn as follows: A label y;
is first sampled as either 41 or —1 with probability 1/2. The input z; is then sampled from a Gaussian
i ~ N(y; - p, og). The task is to predict y; from the value of x;. The intrinsic difficulty of the task
is controlled by how much the Gaussians overlap, controlled by the relative value of p, and o,

Single neuron learning model: The input-output mapping of our single neuron model is
i = x; - w(t) [1 4+ g(t)], w(t) is our learned weight parameter, and g(t) is the control signal which
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Figure 2: Results in single neuron model throughout the learning period 0 > ¢ > T'. (a) Instant net
reward v(t). (b) Loss (L£(t)) for theoretical predictions (solid) and simulations using SGD (shaded).
(c) Optimal control signal decreases through learning (Baseline g(t) = 0). (d) Weight w(t) through
learning for control and baseline case, w(t) = w(t) - (1 + g(¢)). Dependence of optimal control
signal on task parameters. (e) and (g): optimal ¢(t) when varying discount factor v and noise level o,
respectively. (f) and (h): Difference between instant net rewards v(¢) between control and baseline
when varying v and o, respectively. Longer time horizons and less noisy tasks recruit more control.

acts as a multiplicative gain. The learning dynamics of w(t) are given by gradient descent on the loss
function £ = %(yz —9:)% + %w(t)Q. Taking the gradient flow limit (small learning rate (Saxe et al.,
2019 [Elkabetz & Cohenl [2021))), we find average learning dynamics for the weight described by

dw oL _ -

e <8w> = () — w(t) ((s2) 2(2) + 3) @
where g(t) = 1 + g(t), (-) denotes expectation over the data distribution, and 7,, is the learning time
scale of the weight. This gradient depends on g(t), making the learning dynamics of w(¢) dependent
on the control signal. For the single neuron model, we can find a closed form expression for w(t) as
a function of the control signal g(t), giving us an expression for (£(t)) as well (see App.[G.1). This
tractability allows us to compute average dynamics and the necessary gradient efficiently.

Control signal optimization: As a performance and control measure for this model we use
P(t) = — (L(t)), C(g(t)) = Bg(t)? respectively, meaning smaller loss leads to better performance
and exerting control has a cost that is monotonic in the control signal magnitude with cost per unit
of control 8. Note that if g(t) = 0 for all T > ¢ > 0, then C(g(¢)) = 0, and §; = z; - w(t),
which means that the weight is learned purely by gradient descent with no influence from the control
signal. This is the Baseline model. Having P(¢) and C(g(t)), we can compute the value function in
equation [2|and find the optimal g(t) by gradient ascent following equation [3|(algorithm described in
App. D). In essence, this setting considers a simple learning scenario in which an agent can adjust the
gain of the weights in a neural network that otherwise learns via gradient descent.

Results: In Fig. [2h, we show the difference in instant net reward v(t) for the baseline (g(t) = 0 for
every t) and the control case (optimizing ¢(t)). The optimal meta-learning strategy that maximizes
expected return in equation [2]invests more control at the start (Fig. 2p) of the learning period at the
cost of some instant reward, with the result of faster learning (demonstrated in the lower loss for the
control case in Fig. ). The control signal ¢(t) influences the instant net reward rate both at present
t and future ¢’ > ¢. The instant change in net reward rate v(¢) will be caused by both the instant
change on w(t) = w(t) - (1 + g(t)) (Fig.2d) and C(g(t)), making the effective weight @ (t) closer
to the solution at early stages. As expected, increasing the discount factor -y leads to higher levels of
control, since future net reward will contribute more to the cumulative expected return, compensating
the cost of increasing g(t) (Fig. ,f). Increasing the intrinsic noise of the task o, reduces the overall
optimal control (Fig. 2lg,h). Because it is not possible to overcome this noise, the use of control
will generate a cost that cannot be compensated by boosting learning. This inter-temporal choice
of allocating effort based on the prospect of future reward has been widely studied in psychology
and neuroscience (Masis et al.| [2021}; [Keidel et al.l [2021; [Fromer et al., [2021; [Masis et al., [2023)
(App. [A), and naturally arises from maximizing the discounted cumulative performance in Eq. 2]
For more parameter variations see Fig.[T0]in App.
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3 BASELINE DEEP LINEAR NETWORKS AND DATASETS

We now generalize the single neuron approach to more complex neural networks. In the case of
a two-layer linear neural network, the corresponding input-output mapping in Eq. equation [I] is
Y = Wo(t)Wi(8)X, where X € RI, Y € RO, Wy (t) € REXI and Wy(t) € RO*H are the first
and second layer weights. Training a two-layer network to minimize MSE with weight regularization
and taking gradient flow limit yields the learning dynamics equations (Saxe et al.,|2019; Braun et al.|
2022)

% = W5 (S1, - WaW15,) — AW, Tw% = (ZL, - WaWiSe) W =AW, (5)
where Egy = <X YT>, Eg = <X X T>, Ty 18 a learning time-scale of the weights, and )\ controls the
weight regularization (see App. . Learning is completely defined by the initial weights W7(0),
W5(0), the task at hand and the hyperparameters, it follows non-linear dynamics due to weight
coupling and a non-convex loss landscape while keeping computational tractability. With the general
framework and tractable models in hand, we now turn to probe the behavior in a variety of settings.
First, in Section[d we draw out implications for standard meta-learning algorithms. Next, in Section
[5| we turn to aspects of curriculum learning and the choice of which tasks to engage with. Finally, in
Section [6] we study control interventions in the form of gain modulation throughout a network, of
relevance to theories in neuroscience. In all of these sections, we compose meta-learning tasks from a
base set of three datasets: (1) Correlated Gaussian regression, (2) Semantic Tasks with hierarchical
concepts, and (3) MNIST (Details in App. [J), from which we can determine the statistics needed to
compute the learning dynamics (e.g. X, and ¥.y).

Tw

4 RELATION TO META-LEARNING ALGORITHMS IN MACHINE LEARNING

The normative objective in Eq. equation [2]and ) (b)
the way it is maximized through gradient steps g 8
on the control signal g(t) can describe other = -] R 50074 \k
meta-learning algorithms. Here we show the 2 " elstep MAML '§ &
connections to two well-established algorithms, = 0.16{ *° 340 steps MAML 8 0.061 :
Model Agnostic Meta-Learning (MAML 0 Ootimi 23“ Y al traimiee
(Finn et al, 2017)) and Bilevel Programming g () primized steps (d) val training steps
(Franceschi et al., 2018). = 0.008] — 0 0 0001
MAML is an instance of our framework where £ |7/ e @\”0
the initial weights W;(0) and W3(0) in our ﬁ:_o'“% k 0.0054 =
deep linear network are the control signal g(t). © 0 10000 0 10000

Task time Task time

By defining the performance as the average
loss per task indexed by 7, P(t) = >._ (L, (t)), Figure 3: (a): Single step MAML loss V' = P(dt)
this becomes the meta-objective in MAML when considering more steps in the learning dy-
when considering only one step ahead in the namics. (b): Resulting learning dynamics from
value function, this is Vijyam = P(dt) with initial parameters found with Multi-Step MAML.
Jt being the time after one gradient update on (c¢) and (d): Optimal learning rate when varying
g(t) (See App , Our framework can also discount factor « and cost coefficient 3.

optimize performance after multiple gradient

steps, therefore obtaining Multi-Step MAML in a computationally tractable setting (Fig.[Ip). We
used the two-layer linear network (Section [3) and a set of 5 binary regression tasks with different
pairs of digits from MNIST (App. [EI) to simulate Multi-Step MAML. Results in Fig.[3p and b show
that the standard MAML loss ViamL changes depending on how many steps ahead are considered
during the initial weights optimization. Wyamr decreases when considering a few steps ahead,
increasing the capacity to optimize the dynamics. After a certain number of steps considered in the
optimization, VyamL increases, sacrificing immediate performance to optimize the dynamics in steps
further away, as shown in Fig. [3p. These multi-step results are only possible due to the tractability
of our setting. We see that one-step MAML can substantially underperform Multi-Step MAML.

We also optimized hyperparameters of the network throughout training. Bilevel Programming
optimization can compute this, with the main distinction being the reverse-hypergradient method
used to update the meta-parameters (control signal) (Franceschi et al., 2017} [2018). We extend



Under review as a conference paper at ICLR 2024

these methods by adding features with intuitive meaning under our normative frameworks, such
as the discount factor ~y and control cost C' (App. [F.2). We optimized the learning rate throughout
time to maximize the cumulative reward in equation |2} and varied ~ and 3 as in the single neuron
example to illustrate the normative meaning in a hyperparameter optimization context (Fig. [Tk).
We observed qualitatively similar behavior as in the single neuron model, longer time horizons and
less cost of increasing the learning rate recruit more control. We provide an additional example of
meta-learning the learning rule using our framework in App.[F3] Our work provides further utility
to these meta-learning algorithms by interpreting them under a normative value-based framework.

5 ENGAGEMENT MODULATION

Next we turn to the question of which tasks among many to engage with over time. We provide the
model control over its engagement on a set of available tasks, or class in a classification problem
during learning. Selecting the optimal control signal in this setting involves improving multi-task
capabilities and estimating optimal curriculum. Consider a set of N, datasets, and a loss function
L’()A/T, Y. ), where Y, is the estimation of a model and Y is the required target for dataset 7. The

average loss for a set of datasets is £ = ZJTV;I L(Y;,Y;) + R(W) which is used to measure the
performance P(t) = — (L(t)) only, and we assume that weights are updated via gradient descent on
the auxiliary loss Lyx = E]TV:TI U () L(Y;,Y;) + R(W), where 1), (t) are control signals we call
engagement coefficients, and R(W) is a weight decay regularizer. Assuming the network receives
inputs from all of the datasets at the same time (concatenated in X') and has specific outputs allocated
to each dataset (concatenated in Y') as schematized in Fig. [Id, we can derive the learning dynamics
equations for the weights as a function of v, (¢) giving

dW
T = e OWE (ST~ Wa i)~

YT

AW
Twﬁ = ET: Gr(t) (BT = War W1 5,) W — AW, (6)

where W, denotes the weights of the neurons for the output to dataset 7 and X, is (XY,7), both
padded with zeros to preserve dimension (see App. . Each of the 1) (¢) modulates the amount of
learning of each dataset. The auxiliary loss to get a learning dynamics is to avoid the trivial solution
of 1, = 0 to minimize the loss. We can find the optimal 1)+ (¢) throughout learning by computing
P(t), using C(¢(t)) = Bllpy — w(@)||* @ = (1(t), ¥=2(t), ...)), then taking gradient steps on 1, (t)
to maximize V. Taking p,, = 0 means that to learn a dataset 7 (1, (t) > 0) the agent must pay a cost.
We call this case active engagement. For i, = 1, the agent must pay a cost to increase or suppress the
learning signal from a specific dataset relative to a baseline. We call this case attentive engagement.
In these cases, each of the elements in t)(¢) are forced to stay in a certain range independently. Finally,

we can force t)(t) to be of a fixed norm by making the cost C(¢(t)) = 8 (|4 (t)]|* — \IJ)Q, such that
there is a fixed overall amount of engagement to distribute. We call this case vector engagement. For
category engagement, which is focusing on particular subclasses in a classification problem, a similar
set of equations can be derived (see App.[H.3)), where the engagement on class c through learning is
denoted by ¢.(¢) (Fig. . The meta-learning tasks used to train this model are the following.

Task engagement: Given a set of NV, datasets, and a total training period of T, we trained the
engagement modulation model described in Section[5] The idea of this task is to estimate the optimal
learning curriculum (order of datasets presented in the neural network training) that maximizes
expected return V' during the time period 7. In this task, three binary MNIST classification datasets
were used, specifically the digits (0,1), (7,1) and (8,9) ordered by difficulty (easier to harder
according to linear separability, see App.[H.2).

Category engagement: For a classification task, there might be a better set of classes to learn during
different stages of training. We trained the category engagement modulation model (described in
Section [5]and App. [H.3) to estimate the optimal engagement or attention to each of the categories in
a classification task (Semantic and MNIST datasets) through learning. In addition, we trained the
gain modulation model (next Section) in this same setting using a neuron basis (see App. [H.I).
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Figure 4: Results for task engagement experiment. (a), (c) and (e): £(t) for baseline and control
case for Attentive, Active and Vector engagement. (b), (d) and (f): Engagement coefficients 1, (t)
for each of the binary classification tasks Attentive, Active and Vector engagement. Mean and
standard deviations from 5 independent trainings. (h) and (j): Results for category engagement task,
improvement in the loss function when using control for MNIST and Semantic dataset respectively.
(i) and (k): Optimal category engagement coefficients for MNIST and Semantic datasets. (I): Class
proportion experiment. Uniform: Loss when using uniform distribution for the abundance of classes
in each batch. Balanced: Loss on a balanced batch, but using the inferred curriculum of classes in
the batch to train. Curriculum: Loss on curriculum batch when using the curriculum. (m): Loss per
class using control (solid lines) and baseline (dashed lines).

5.1 RESULTS

Task engagement: We simultaneously gave the neural network inputs and targets for three datasets,
as described in Section[5] each of them a different binary regression problem from MNIST. Each
dataset used was chosen to vary on the level of difficulty to learn: the pair of numbers (0, 1) is easier to
classify than (7, 1) and (8, 9) (based on the lowest loss achievable with linear regression in App. [K.4).
We computed the engagement coefficients 1, (t), one per dataset, that maximizes the expected return
in Eq. 2] Learning curves and the evolution of engagement coefficients are depicted in Fig. [} the
baseline case corresponds to simultaneous training on all datasets at the same time (¥ () = 1 and
C(y(t)) = 0). In the artentive engagement agent, where j,(t) = 1 (shown in Fig. [#a and#p), the
agent just needs to pay a cost to either amplify or suppress engagement on a dataset. In this setting,
the agents amplify the engagement of all of the datasets, effectively increasing the learning rate per
dataset, and achieving a lower L (t) compared to £p(¢). The order of learning each of the datasets
goes from easier to harder, it is in the same order as in the active engagement and vector engagement,
and none of the datasets are engaged with ¢ () < 1, presumably to avoid forgetting of early
amplified datasets. In the case of active engagement, where p, = 0in C(¢(t)) = By — ¥(1)]|?
(shown in Fig. 4c and ), the agent must pay a cost to learn any of the tasks (¢, (¢) > 0). By
distributing the learning between the tasks, the agent is capable of reaching L (t) close to Lg(t) as
shown in the top panel of Fig.[d] without the need of fully engaging on all of the datasets at every time
step. None of these datasets are fully disengaged at any point, possibly to avoid catastrophic forgetting
of datasets previously engaged during training. The engagement coefficients in the vector case behave
similarly. Since the control signal in this case is forced to keep a constant size of ¥, the agent is
not able to fully engage in all of the datasets, and distributes this attention resource on each dataset
from easier to harder, as in the active case. The meta-learning strategy found in our setting of keep
re-visiting previous tasks to keep performance is well studied in psychology (Ericsson & Harwell,
2019; Eglington & Pavlik Jr,2020), and it is also related to memory replay theories as a value-based
mechanism that avoids catastrophic forgetting (Mattar & Daw}, 2018};|Agrawal et al.| 2022).

Category engagement: In some classification tasks, it might be better to learn some categories first
and others later during training. We trained the engagement modulation model to control engagement
or attention on categories of a classification dataset. In Fig. ] we show the results of this model trained
on the Semantic dataset, and MNIST dataset classifying all digits. The engagement coefficients ¢..(t)
describe the focus on class c in the classification problem, which basically scales the error signal for
that specific class through training (see App. [H.3). Fig. [fh and [ show the improvement in the loss
when optimizing for categoric assimilation coefficients for both datasets. Fig. dj and[dk depict the
engagement coefficients per class ¢.(¢). In the Semantic task, the basis coefficients are clustered
depending on the level of the hierarchy for the respective output. Higher coefficients are spent on
categories in higher levels of the hierarchy, as well as earlier during learning. Because we kept 3 high
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for this experiment (5 = 5.0), the cost of deviating from a control vector of size C'is high (where C'
is the number of classes); therefore the amplification of engagement in some categories goes along
with suppression for other categories to keep the control with constant size C'. For the MNIST dataset,
each ¢.(t) corresponds to a specific digit, and the order of assimilation that maximizes value shows a
consistent order of digits among different runs, being ordered as (0, 1,7,6,4,2,3,9,8,5), which is
roughly the same as the average linear separation per digit (see App.[K.4). As in the task engagement
results, we found that it is optimal to assimilate easier elements first, allocating higher ¢.(t) and
more concentrated in the early stages of learning. More difficult categories are assimilated later,
allocating a smaller maximum ¢.(t) compared to easier classes, but with sustained engage over time.
The benefits of learning from easier to harder aspects of tasks have been shown in cognitive science
(Krueger & Dayan, 2009; |Wilson et al.| [2019) and machine learning (Parisi et al., 2019 [Saglietti
et al.} 2022 |Zhang et al.,[2022), and we are able to reproduce this finding in the task engagement and
category engagement experiments within our normative framework. The engagement level per class
amplifies the error signal of learning a particular class through time, which can be roughly controlled
by modifying the proportion of classes in the batch through training. To show this, we trained
the baseline network on MNIST (no control, only backpropagation), and used ¢.(t) to modify the
proportion of classes in the batch throughout the training (App. [H.3). This gives a better curriculum
than sampling each class uniformly to populate the batch, as shown in Fig. 4] and @jm.

6 GAIN MODULATION

Motivated by studies of neuromodulation (Lindsay & Miller, [2018; [Ferguson & Cardinl 2020), we
finally address a neuroscience inspired model (Shenhav et al., [2013;2017) where the learning effort
control signals G1(t) € R¥*! and Go(t) € RY** modulate the gain of each layers weights as
Wi(t) = (1 + G4(t)) o W;(t) = G;(t) o W;(t) where o denotes element-wise multiplication. This
control signal will modify the input-output mapping of the network to Y = Wy ()W, (t) X . Given
the control signals, we assume the weights are learned using gradient descent, yielding the learning
dynamics equations

Tw% = (WIS, o G — (WE Wl s,) o G — AW,
Tw% = (22,07 0 G — (WallAS,WT) 0 G — AW, )

The control signal G;(t) effect is similar to a time-varying learning rate, except (1) it is
weight specific (i.e. with coupling between the elements of the control matrix), (2) it does not
change the weight decay rate which is originally controlled by A and 7, and (3) G;(t) also
changes the input-output mapping. Solving the learning dynamics gives P(t) = — (L(t)), using
C(G(t)) = exp (B (|G1(®)1% + |G2(t)[|%)) — 1, to then estimate dV/dG;(t) as in App. (C} and
find the control trajectory that maximizes cumulative reward in Eq. [2] (More details in App.

we provide an exact solution of the learning dynamics in a single-layer network given a control
signal G(t) in App. . In addition, we simulated this model in a non-linear network using
approximations (see App.[l). The meta-learning tasks used to train this model are the following.

Effort Allocation: We train the gain modulation model separately on each of the three datasets for a
time period of 7', and estimate the control signal that maximizes the expected return V' in Eq.

Task Switch: We defined two different Gaussian datasets (App. [LJ). We sequentially train the network
on each dataset for a time period Ts. The expected reward V' is computed for the whole training
period T' > Ty of the gain modulation model, and maximized through gradient updates on G ().

6.1 RESULTS

Effort Allocation: This setting is similar to the single neuron setting of Section [2.1] but with a two
layers network instead of just one neuron, where every weight in the network has its own gain signal
as described in Eq.[7]and schematized in Fig.[Tg. The results of the baseline training and controlled
training using gain modulation are presented in Fig.[5] In the gain modulation model, we can see
the same qualitative behavior as in the single-neuron model when varying parameters of the learning
model and control optimization. The control signal that maximizes expected return reduces the
instant net reward rate by the use of control in the early stages of learning, to get better performance
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Figure 5: Results of the gain modulation model trained on an MNIST classification task. (a): Instant
net reward v(¢), baseline vs controlled. (b): L1 and L2 norms of the weights. (c): Loss L(t)
throughout learning. (d): normalized d;L(t), and normalized L2 norm of the control signal G (t)
and G'2(¢). (e): Results on the task switch meta-task. Comparison of £(¢) for the baseline and control
case. (f): Values of £(¢) at switch times, along with the normalized cost of control C(t) at switch
times (green line). (g): Zoom of £(t) in the top panel, along with the normalized cost of control.

later as shown in the lower loss for the controlled case (Fig.[Sh and b). Through both optimizing the
learning and minimizing C'(G(t)) at the same time, the gain modulation is not only more efficient
by getting a more sparse solution (L; norm in Fig.[5p), using fewer weights than when no control
is used, it also learns faster (Fig. [5t, more details in App. [K.2). There are times during learning when
it is more effective to apply control. As can be seen in the Lo norm of the control matrices G'; (¢) and
G2(t), and the absolute value of the time derivative of the loss d; L(t) = |dL(t)/dt| for the baseline
and control case (Flg ), the control signal is larger early in training and near the stages of learning
when the increase in performance (d;£(t)) is larger (Fig. l) The control signal shifts the peaks
in d;L(t) earlier in learning, leading to better performance and higher reward earlier, compensating
for the momentarily increased cost of control. Similar results are obtained when training on the
other two datasets (see Fig.[I3]and[T4]in App. [K.2). Neuromodulators are known to be involved in
high-level executive tasks such as engagement in learning (Shenhav et al.l 2013} 2017 |Lieder et al.,
2018}, |(Grossman et al.| [2022), and some of them are believed to act as gain modulation (Lindsay
et al., [2020; [Ferguson & Cardin| [2020) (App.[A). We provide a testable and tractable setting where
neuromodulators could manage performing and learning tasks to maximize cumulative reward.

Task Switch: The task is schematized in Fig. [Tg. In Fig. 5k, each peak in the loss is a task switch
(every 1800 time steps), and as expected, the baseline loss £ (¢) is higher than the loss with control
L (t) almost at every point throughout learning. After each switch, the control signal manages to
iteratively drive the learning dynamics to places in parameter space W where each switch is less costly
(Fig.[5b). Since the linear network is over-parametrized, the drive to adjust for the next task can be done
without meaningfully changing the solution for the current task. The control signal starts acting before
the switch (Fig. [5g) to amortize the loss peak at the time of the switch, and to speed up the approach
of the weight to the solution, skipping the plateau in the loss. In addition, the sparsity of the weights is
higher compared to the baseline case, the cost of using control to switch is transferred to the size of the
weights , making it easier to move the effective weight 1/ (t) by a large amount when changing G(t)
(See App. [K3). This setting poses meta-learning and gain modulation as a neural implementation
of task/context switching in real scenarios (Puigbo et al.[2020; Ben-Iwhiwhu et al.|2022).

7 DISCUSSION

We present a flexible computationally tractable learning effort framework to study optimal
meta-learning with neural network dynamics in a variety of settings. Our framework optimizes
control signals on a fully normative objective: discounted cumulative performance throughout
learning. Our goal is to provide formal underpinnings for cognitive control theories in neuroscience,
and aid the evaluation of possible interventions in engineered systems (see App.[B). While a limitation
of this work is its use of linear network models, we study the dynamics of non-linear networks in
App. obtaining similar results as the ones found using linear networks. We hope our work will
contribute to a greater understanding of how agents should act to maximize their learning abilities.
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A FURTHER RELATED WORK

In recent years, several meta-learning algorithms have been proposed to solve a variety of meta-
learning tasks, such as fast-adaptation (Finn et al.,|2017;|Nichol et al., 2018)), continual-learning (Parisi
et al.,|2019), and multi-tasking (Crawshawl [2020; Sagiv et al., [2020; Ravi et al.; 2021 [Musslick et al.,
2020). Because these tasks have different goals, the specific design of the meta-learning algorithm
used to solve each task differs.

One popular application for meta-learning algorithms is reinforcement learning (RL). RL agents
use a policy to choose actions to maximize the expected return. The policy is usually based on a
value function (or action-value), linking particular actions to values, that agents learn to estimate
through experience (Mnih et al.,|2015; Wang et al.,|2017). For the agent to act optimally, the policy
requires a good estimation of the value function. For single tasks, this is typically not hard, but agents
struggle when they must solve more than one task. To aid this difficulty, researchers implement
meta-learning strategies, such as enhancing exploration (Gupta et al., 2018 |Liu et al., 2021)), re-using
experiences through a memory buffer (Ritter et al.| [2018)), exposing the agent to a large number of
tasks from a task distribution (Wang et al., 2017; Team et al., 2021}, and choosing the order of those
tasks carefully (Stergiadis et al.| 2021;|Zhang et al., |2022) with the hope that the agent performs well
on each of these tasks in the task distribution. Indeed, several techniques improve the performance
of reinforcement learning agents (Hessel et al., 2017} |Obando-Ceron & Castro, 2021} [Kanervisto
et al.| [2021), but there are two main issues with these approaches. First, these techniques are usually
designed manually and specifically for the tasks at hand. Second, how the learning dynamics depend
on these techniques remains unclear. The combined effects of the agent-environment interaction
dynamics and the value estimation during training make analyzing learning dynamics on these models
remarkably challenging. A technique that could autonomously generate a meta-learning strategy a
priori by leveraging analysis of the learning dynamics would address these issues and potentially
improve the understanding, performance, and flexibility of these types of models.

Learning dynamics has been widely studied in the context of neural network training, where the
goal in these cases is to minimize a loss function. In particular, deep linear networks (Saxe et al.|
2019;|Zenke et al.l 2017;Li & Sompolinskyl 2021} Braun et al.| 2022]), gated linear networks (Saxe
et al.,[2022; [Li & Sompolinsky} [2022)), have been useful to analyze learning dynamics, due to their
mathematical tractability and still complex (non-linear) learning dynamics. Having access to the
learning dynamics allows us to test the learning system under different conditions (tasks, architectures,
hyperparameters, etc) and draw conclusions, either from mathematical analysis or simulations on
how these conditions affect learning during the training period. Further techniques to describe
learning dynamics exist, which have their drawbacks in terms of mathematical and computational
tractability, or required limits in input or hidden dimensionality to obtain closed-form differential
equations describing the dynamics. Some of these frameworks are the teacher-student settings (Goldt
et al.,[2019; |Ye & Bors| 2022), and mean-field theory for neural networks (Mignacco et al., [2020;
Bordelon & Pehlevan, [2022)), recently applied to temporal difference learning (Bordelon et al., 2023).
These methods present a promising direction to extend our framework to non-linear networks and
reinforcement learning dynamics.

In this work, we propose a new framework called learning effort, where we combine the goal of
maximizing value, with neural network learning dynamics, by making the regression loss during
training proportional to the reward of the learning system (in this case, a neural network). This has
several advantages. First, in practice, this choice makes the problem of estimating value equivalent to
estimating the learning dynamics. Because the loss function during training can be obtained from fully
solving the learning dynamics, then the reward throughout training is also solved (similar to|Zenke
et al.|2017). Second, taking advantage of the partial tractability of linear networks, and approximating
non-linear network dynamical equations, we are able to draw conclusions on how some parameters
interact with the learning dynamics when maximizing the value. Using this framework, we define a
control signal, that at a cost, can modify the learning dynamics to maximize value during training.
Furthermore, any network parameter that is not subject to the learning dynamics could be chosen as
this control signal to maximize value. Previous work has addressed these questions by assuming a
learning trajectory, where the functional form is fixed, hence not considering possible changes in the
trajectory due to the time-varying control (Son & Sethil 2006;[2010). Other work along these lines
improves this by training complex learning systems and learning the value function to estimate the
optimal control signal (Musslick et al.; [Lieder et al.,[2018]). Some meta-learning algorithms such as
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MAML (Finn et al., 2017) and bilevel optimization methods (Franceschi et al.|[2018; |Andreas et al.|
2017) can be encapsulated under our framework as explained in Sectiond]in the main manuscript.
For further meta-learning-related work and formal links to our framework see Appendix [F

We used this framework to investigate different kinds of intervention of the control signal in the
learning process, finding what are optimal strategies when facing a meta-learning task, including
when the use of the control signal is costly. Using this setting, we can ask questions such as how
to optimally allocate control to speed up learning while minimizing the use of it, how to train the
network to switch tasks quickly, or what is the optimal level of attention to a set of tasks, or even if it
is worth to learn a specific task given the cost of engaging on learning it, all by maximizing value
during learning. Related work has used similar bi-level optimization, but with different loss functions
on each optimization level (Zucchet & Sacramento} 2022). We provide the implementation for the
work presented here in https://anonymous.4open.science/r/neuromod—6A3Ck

We further suggest that this same framework could be useful to analyze phenomena in cognitive
neuroscience, and that there is a correspondence of our learning effort framework and the Expected
Value of Control Theory (Shenhav et al.|2013; Musslick et al., 2020; [Masis et al.| |2021). We provide
an extended discussion referring to the links to cognitive neuroscience literature in App. [B]

B EXTENDED DISCUSSION

In this extended discussion, we further consider emerging principles from our results and the utility
of our framework for theories of cognitive control in neuroscience. This learning effort framework
is flexible enough to pose different questions about meta-learning strategies by slightly varying the
original setting, and keeping the conceptual framework fixed. The main connection is through the
expected value of control theory (Shenhav et al., 2013} |[Keidel et al.,|2021; [Fromer et al., 2021} Masis
et al,[2023)), formally explained in App. [E] It is also proposed that the dorsal anterior cingulate cortex
(dACC) is involved in the integration and computation of most of the quantities needed in the EVC
theory, which is also supported by some neuroimaging experiments (Botvinick et al.,[2001)) and it
is consisting with other theories (Botvinick & Cohen, [2014). With our framework, it is possible
to compute optimal solutions to the EVC problem efficiently, with the additional feature of
considering the impact of control in complex learning dynamics throughout the entire training.

One of the emergent solutions we found is that, it is generally better to allocate resources in the
early stages of learning to harvest higher rewards later. This inter-temporal choice of allocating
effort based on the prospect of future reward has been widely studied in psychology and neuroscience
(Masis et al., 2021; Keidel et al., 2021; Fromer et al.,|2021; Masts et al.| 2023)) (App. @ One example
is (Masis et al.} 2023) where it is observed that rats somehow manage their reaction times to improve
learning speed on a classification task. Longer reaction times in leary stages of learning lead to
less instant reward rate, but speed up the performance through sessions, and get a higher cumulated
reward throughout the entire learning process (see Figure 5, panel (e), (f) and (g) from (Masis et al.}
2023). This looks qualitatively similar to our single neuron example, gain modulation experiments,
and task engagement experiments). This phenomenon is a form of a dynamic marshmallow test
experiment (Mischell 2014), where kids face a decision of eating a marshmallow now, or waiting 20
minutes more to get a second marshmallow, which needs some amount of self-control. The main
feature of our setting is the effect the control signal in this decision affects learning dynamics through
the task, which adds an extra level of abstraction on meta-cognition about the learning capabilities of
the agents taking the decision (Son & Sethi, [2006} 2010} Musslick et al.|, [2020)).

Another emergent solution is that easier tasks/categories should get more resources in the early
stages of learning compared to the harder ones, which sustained effort through training. As
mentioned in the main text, this strategy has been shown in cognitive science (Krueger & Dayan,
2009} Wilson et al.|[2019)) and machine learning (Parisi et al., 2019} Saglietti et al.|[2022;Zhang et al.|
2022). One possible reason for not disengaging in a task or category at any point could be to avoid
catastrophic forgetting or interference between tasks/categories, since they are all sharing the hidden
layer. We hypothesize this phenomenon can be posed as a memory replay system, and we provide a
framework where this is a value-based mechanism, as indicated by other work (Mattar & Daw,, 2018},
Agrawal et al., [2022).
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In addition, the fact that increasing the cost of control reduces control allocation has also been
observed in cognitive science and it is denoted as avoidance of cognitive demand (Kool et al.| 2010;
Kool & Botvinick} 2014; |Westbrook & Braver, 2015). For instance, strategies that require high
cognitive demand (our cost term C' in our framework) will be naturally avoided even if this strategy
is optimal to solve the task. However, as shown in Experiment number 6 in (Kool et al.| 2010), the
subjects will engage in the optimal high cognitive demand strategy if they get paid to solve the task
efficiently. This is, in an abstract way, increasing 7 in our framework, which is equivalent to decrease
5. We observe higher engagement in control when [ is decreased as shown in this experiment, and
it has been described in (Kool & Botvinickl 2014 as a labor leisure trade-off. Our framework can
potentially explain cognitive fatigue and boredom from a normative perspective of maximizing value,
which has been theorized in (Agrawal et al.| [2022).

Possible neural implementations of a control signal in our framework are gain modulation (Section[6)
and error modulation (named engagement modulation in our work, Section [5)). Neuromodulators are
known to be involved in high-level executive tasks such as engagement in learning (Shenhav et al.,
2013;2017; [Lieder et al.l 2018; |Grossman et al.| [2022), and some of them act as gain modulation
(Lindsay et al.,[2020; |Ferguson & Cardin,2020) (App.@). Previous work has attempted to improve the
learning of artificial agents using gain modulation, such as the Stroop model (Cohen et al.,|1990;2004)
or attention mechanisms (Lindsay et al.|[2020). Another prominent approach to neuromodulators and
cognitive control is Kenji Doja’s theory of neuromodulation as a meta-learning mechanism (Doyal
2002), where each neuromodulator is assigned to a specific function in a reinforcement learning
setting. Dopamine (Westbrook & Braver;,2016) is proposed to be the error signal in reward prediction
(perhaps tasks engagement modulation .- (t)), serotonin is the time scale of reward prediction (the
discount factor «y in our setting), noradrenaline (Cohen et al.| |[1990; |/Aston-Jones & Cohenl 2005}
Shenhav et al.| [2013)) controls randomness in action selection (also believed to activate different
neural paths as in (Cohen et al.l |2004), as our gain modulation setting), and acetylcholine (Yu &
Dayan, |2005; Ren et al.||2022)) controls the speed of updates (as learning rate, which we optimized
in Sectiond]and Appendix [F.2)). In summary, we believe our framework could be tested against
neural recordings to validate normative theories of neuromodulators such as the one described
here (Doya), [2002; Shenhav et al.,|[2013).

All our work as been simulated in linear networks. We provide a first approach to non-linear
network control (App.|l) by approximating the gradient flow of a non-linear network using first-order
Taylor expansion around the mean of the data distribution, then maximizing reward using the gain
modulation model. Since the network dynamics of the non-linear network are approximately linear
for small weights (and tanh(-) non-linear activation function), the control obtained when optimizing
expected return still speeds up learning in the non-linear network. Given the necessary equations from
the learning model, further analysis can be done on, for example, linear recurrent networks, which can
be used for complex decoding depending on the properties of the recurrent connections (Bondanelli
& Ostojicl 2020). Closed form non-linear dynamics approaches such as the teacher-student settings
(Goldt et al. |2019; |Ye & Bors| [2022)), and mean-field theory (Mignacco et al., 2020; Bordelon &
Pehlevan 2022 [Bordelon et al.,|2023)) are promising direction to extend our framework to non-linear
networks and reinforcement learning dynamics.

B.1 PURPOSE OF THE CONTROL COST

Adding a control cost term to the optimization is standard in control theory literature to describe, for
example, energy consumption or depletion of some resource when applying control, and in general,
this cost is minimized. In our work, the control cost serves other purposes as well.

First, it limits the space of control signals to avoid trivial solutions. For example, taking C' = 0 when
optimizing the learning rate in the single neuron case, gives the trivial solution of choosing such that
the weight reaches the solution after one step. In the case of MAML, C' = 0 is required to show
the equivalence to our framework (See Sectiond] and Appendix[FI). Another case of C' = 0 giving
useful control signals is in the gain modulation case. Intuitively, because the gain modulation speeds
up learning, the optimal thing to do would be to use an extremely large gain to arrive at the solution
weights fast, but the value of the control signal also changes the prediction in Y = f(X; w(t), g(t))
potentially increasing the loss. We ran simulations to verify this (not included) in the same setting
as the one in effort allocation in Section [6] except that C' = 0 and with no restrictions on the size
of GG. The resultant gain modulation is qualitatively similar to the case when C' # 0 but is much
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more concentrated and less smooth (figure not included). In this case, the cost is not beneficial to the
performance, but our goal is to study the nature of these solutions under different cost assumptions,
for example, as in the task engagement case in Section[6] where the cost function has a big impact in
the optimal control signal.

The second function of the cost is to describe mental effort when doing cognitively demanding tasks.
The control cost introduced in our framework is meant to account for this limited attention or sense of
fatigue. We are not assuming a meaning of the control cost yet, but some theories of the effort feeling
are metabolic resource depletion (which is a quite controversial hypothesis (Hagger et al.|[2016;
Randles et al|2017), the opportunity cost of performing another task in the environment (Agrawal
et al., [2022)), reflecting a bottleneck on information processing in the brain (Musslick et al., 2020), or
computation time in presence of uncertainty (Gershman & Burke, [2023)). Links to these theories can
be directly tested using our framework.

C CONTROL GRADIENT

Given the set of equations given in the general setting in Section 2} here we provide a way to compute
the gradient dV/dg(t) in equatlonl 3|to estimate the optimal control signal. We first estimate the value
function in equation [2Jusing a Riemann sum to approximate the integral as

N

Va Yoty [nP(ti) — Clg(ti)] ®)

=0

where 6t is a small time constant (in practice equal to the learning rate of the weights SGD trained in
the deep linear network), ¢; are the bin values for the time span (g = 0, ty = T, and t; 1 = t; + 6t).
The performance in our case is a function of the loss (£(t)), which depends on the parameters at
each time step w(t) and the control signal g(¢) from the input-output in equation |1} The parameters
themselves evolve depending on the control signal according to the learning dynamics in equation
discretizing this differential equation we can write

dw (ti—l)
dt

where the last term in rhs depends on the control signal g(¢;) as well. Given these equations, we can
explicitly write the dependencies of the parameters and loss function as

w(t;) = w(g(ti-1),9(ti—2), ... 9(to), w(to)) (10)
(L(t:)) = L(w(t:), g(t:))- (11)
Making these dependencies explicit in equation [§] and replacing P(t;) = —L(w(t;), g(t;)), we

compute the gradient of the approximated integral with respect to g(¢;) giving

[=nL(w(ts), g(t:)) — Clg(ta))], (12)
[ OL(w(t;), 9(t5)) 00 L(w(ti), g(t:)) dw(ti)

_ _6t'yt] |:77 J J 6t’yt177 .
dg(t;) _ZJ;FI Qw(t;)  Og(t;)
instant variation future variation

(13)
Finally, the optimal control signal can be found by computing
dv
Jk+1 (tz) = gk(ti) + CYgdthi) (14)

for every ¢« = 0,1,...IN, where k is the iteration index. Note that, the optimal g*(tj) such that
dV/dg(t;) = 0 will depends on every other g*(¢;;). Because the entire control signal g(t) is
planned at time step ¢ = 0, then for -y = 0 the integral only considers the term v(0)d¢ leading to no
control. This is different from what is expected from an agent in common settings of reainforcement
learning, where the agent makes a decision at each time step, and v = 0 is equivalent to maximizing
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each v(t) independently. In our setting, v > 0 small is virtually equivalent to maximizing instant
net reward. From equation [T3]it is direct that v — 0 makes the sum (future variations ¢; with
1 > j + 1) vanish, therefore leaving the gradient only as a function of the loss and control cost at
time ¢; (meaning maximizing instant reward rate v(t)), however, the learning dynamics of w is still
depending on g, therefore the optimal g*(¢;) will depend on ¢*(¢;) with ¢ < j, which can be solved
using dynamic programming (Bertsekas), [ 2012).

D LEARNING EFFORT ALGORITHM

The following algorithm is the one implemented to optimize the learning effort or control signal g(t).
Time was discretized following Appendix [C]

Algorithm 1 Learning Effort Optimization

Input: A learning system (a input-output mapping equation, and a learning dynamics equation as
in equation , a task 7, learning period T, initialize go(¢;) for every i = 0, ..., N (with tg = 0
and ty = T), reward conversion 7, control cost C(g(t)), parameters w(t(), number of gradient
updates on the control signal Vi, control learning rate c.
for £ = 0 to N do
setV =0
fori =0to N do
Compute w(t;) for every ¢ using the parameters updates in equations @
Compute ¥; = f(X;w(t:), gi(t:))
Compute P(t;), and R(t;) = nP(t;) (e.g P(ti) = — (L(t:)) xy)
Compute v(t;) = R(t;) — C(gx(t:))
V(—V-F’U(ti) - 0t
end for
for i = 0to N do

g1 (ti) = gr(t:) + ag gy
end for
end for

Output: Optimized control signal gy, .

E RELATION TO THE EXPECTED VALUE OF CONTROL (EVC) THEORY

In EVC theory (Shenhav et al., [2013)), the authors proposed a model that accounts for cognitive
control allocation by estimating the action-value function (or signal-value in this case) for each
possible control signal, making explicit the cost of taking an action. It also suggests that the dorsal
anterior cingulate cortex (dACC) is the part of the brain responsible for integration and computation
of all of most quantities needed in the EVC theory, which are the expected payoff of a controlled
process, amount of control needed and the cost associated to executing control.

The EVC is posed in a reinforcement learning setting where the control cost is made explicit, and the
EVC quantity is the action-value (Q-value function). Let’s start from the bellman equation for ¢, as

tx(s,0) =Y p(s',rls,a) [T+ w(d|s)ga(s',a)) ], (15)

where s denotes the current state, a the action taken 7 = r — C'(a) with C'(a) the control cost (a being
the control signal), r the reward received from the environment (see equation 1 and 2 in (Shenhav,
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et al.,2013)), and 7 a given policy (which will end up being our control signal g(¢) later on), then

= X p(sorls.a) | = Cla) v K alale ol a>],
s'r

(16)

EVC(state = s,signal = a) = ¢ (s,a) Zp (s',r|s,a) T-i—’}/z (a'|s")g=(s",a")| — C(a).

7)

The expected value of control EVC is the action-value function when writing the cost of taking
actions (control) is explicit. We now show that quantity is equivalent to the cumulative reward
shown in equation [Z] in the main text under certain conditions. We first index the state s with time,
taking a non-stochastic policy of the control signal at each state a = g(¢) for that particular state,
from one step to another there is a small change in time 0t (making state transition deterministic,
p(s’ =t + dt|]s =t) = 1), we also re-define reward and cost as a reward/time units, giving

EVC(s=t,a=g(t)) = Zp(r\t,g(t)) [rét + VEEVC(s =t 4+ 0t,a = g(t + 6t))] — C(g(t))dt

(18)
=0t (E[r|t, g(t)] — Cg(t)) +*EVC(s =t + 6t,a = g(t + 6t))
(19)
=6t (B[rlt,g(t)] — C(g(t))) +7°*ot (E[r|t + 6t, g(t + 6t) — C(g(t + 6t))])
+y¥TEVC (s =t + 26t,a = g(t + 26t)). (20)

We can keep unrolling the EV C term in the previous equation until the termination of the task at
time 7', where » = 0 for any ¢ > T, indexing time as t) = 0, ¢ty =T, and t;11 = t; + 6t

EVC =Y dtr' [E[rft, g(t)] — Clg(t:))] @D

=0

which is equation[8] Then, taking the limit 6t — 0 we recover the integral form in equation[2} For
further discussion about the cognitive neuroscience literature see App.[B]

F RELATION TO META-LEARNING ALGORITHMS IN MACHINE LEARNING

Our optimization framework is related to other meta-learning algorithms in the machine learning
literature. Here we provide a formal description of the relation between our framwork and two well-
established meta-learning algorithms, Model-Agnostic Meta-learning for Fast Adaptation of Deep
Networks (MAML (Finn et al.} 2017)) and Bilevel Programming for Hyperparameter Optimization
and Meta-Learning (Franceschi et al.||[2018), as well as simulations details of the results shown in
Figure[3]in Section 4]

We highlight that there are scalable meta-learning algorithm methods in the literature (Rajeswaran
et al.,[2019; Deleu et al.,[2022) which are able to meta-learn variables in state-of-the-art architectures.
However, these methods rely on simplifying the meta objective, restricting the meta-variables (making
them smaller for tractability), or using extra iterative processes to approximate gradients. This is
fundamentally different from what we are able to achieve in our framework. In most experiments
of our paper, each step in our outer loop considers the entire inner loop learning trajectory and
computes the gradient of the meta-loss at all time steps to capture the effect of the meta-parameters
across the entire learning trajectory, not just the last step as in the referenced work. In addition, our
meta-parameters can be as complex as the (size of the network) times (inner loop training iterations),
in other words, our meta-variables also depend on time, increasing the complexity of the optimization
problem. We are solving the full complex meta-learning problem (which is the desired target in
both references), by considering a simpler model, instead of approximating our computation. This
will provide insight on the ideal meta-objective in complex non-linear learning dynamics which is
intractable in large state-of-the-art learning architectures.
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F.1 MODEL AGNOSTIC META-LEARNING

The formal description of MAML is as follows. Consider a set of tasks 7;, and a function fy
parametrized by 0. For each 7;, there is a loss function specific for task ¢ denoted as L., (fp). They
denote the parameters after one gradient step following the loss on one specific task as

9; =60- Ong[:n (fg) (22)
with « being the learning rate of the inner loop. Then, the meta-objective is
min Y L, (for) = min Lyaw, (23)
Ti~p(T)

which is minimized by stochastic gradient descent on the model parameters

0=60—ayVy Z Lo, (for)s 24
Ti~p(T)

with a7 being the learning rate of the outer loop or meta-iteration. This optimization is minimizing
the loss function of next update steps across all available tasks, leading to a set of parameters 6 that can
rapidly be adapted to solve a specific task within the task distribution. Now, we adjust the parameters
of our framework to fit the description of MAML. First, we set our control signal g = 6, which in the
two-layer linear network corresponds to the initial weights g = 6 = (W1 (¢t = 0), W5 (¢ = 0)). Then,
we define the performance of the network as

Plt:)=— D (Lr(t)) (25)

Ti~p(T)

where (L, (t;)) is the loss function at time ¢; after just training the initial parameters under the task
T;. Then we can write our cumulative reward as

N
VR Y6ty [P (t:) — Clg)]. (26)

i=1

Making n = 1,y = 1, C' = 0 for any g, we recover Multi-Step MAML (Ji et al.|[2020)), and taking
N =1 (this is considering one step) we recover standard MAML optimization

maxV = —=P(t;) = — Z (L, (t1)) = —LmamL (27)
g Ti~p(T)

where at t; we are considering one update step only from the initial parameters g = (W3 (¢t =
0), Wa(t = 0)). Finally, maximizing the value in the previous equation using algorithm [D| is
equivalent to optimizing standard MAML, considering more time-steps as in equation 26| we recover
multi-step MAML. The simulation results are shown in Figure[6|and[7] and works as follows: We
created a set of tasks 7; with pairs of MNIST numbers, (0, 1), (7, 1), (8, 9), (3, 8) and (5, 3) (see
App. [I). Then we picked a range of time-steps to consider during the optimization of the initial
weights g (control signal) made with a from a 1inspace starting from 1 to 340 (including) every
20 steps (except between 1 to 20 where there is a difference of 19), we call these Optimized steps
as in Figure[6]and [7] We evaluate how good is the loss dynamics starting from the optimized initial
conditions g throughout 8000 updates steps on each task as shown in Figure [6]and[7] as eval steps.
We obtain the cumulative loss eval steps in Figure [7|by integrating these dynamics throughout the
evaluation time after optimizing initial conditions.

In Figure [f] it is shown that considering more time-steps in the optimization (Optimized steps) is
beneficial for the resulting dynamics. The more steps are considered, the faster the learning after
optimizing for initial parameters. Something important to note is that there is a qualitative difference
in the optimization when considering 1 steps, vs considering multiple steps. As mentioned in
Section[]in the main text, considering only one step ahead is a myopic optimization initial condition.
Immediately after considering a few steps ahead, the loss dynamics in the evaluation steps is improve
very quickly (Figure[7), and the one step ahead loss (the one considered when optimizing only one
step) is reduced even more after considering a few more optimized steps, as shown in Figure [6],
presumably because the gradient over the initial parameters can see the dynamics after one step ahead,
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Figure 6: Simulating multi-step MAML with the learning effort framework: The first row is the loss
dynamics evaluated through 8000 updates steps, starting from the optimized parameters found by
MAML, the color code shows the number of optimized steps considered in the meta-objective (1 step
is standard MAML). The second row shows the one step ahead when considering different number of
optimized steps (same color code), in other words, it is the first loss value from the curves in the first
row. From (a) to (e) columns, the results for the binary regression tasks for MNIST pairs (0, 1), (7,
1), (8,9), (3, 8) and (5, 3) is shown respectively, with the last column (f) being the average across
tasks Lysanr-
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Figure 7: Optimization results on Multi-step MAML. (a): Cumulative loss eval steps (integral of
curves in Figure[6)) evaluated on training and test sets in MNIST pairs. (b): Actual loss considered
during the optimization vs control iterations (finding the best initial conditions W7 (0) and W5(0)).
(c): Same as (b) but normalized by its maximum for visualization purposes.

perhaps finding better solutions through looking at more steps ahead. Then, there is a transition,
where after considering around 180 steps ahead (Figure[6]), the one-step ahead loss increases while
improving the loss dynamics in the evaluation steps even more, sacrificing immediate loss for a
better overall cumulative dynamics. This hypothesis is supported by looking at Figure [7c where
optimizing one step ahead converges in a few iterations over the initial parameters g. In contrast,
when considering more steps, the optimization goes beyond this plateau and the speed at which this
plateau is skipped increases with the number of optimized steps considered. The myopic solution
is not able to optimize further since it doesn’t have information of the learning dynamics, which is
provided when considering multiple steps as shown by these results. In Table[2] we summarize the
parameters used for the simulation.

F.2 BILEVEL PROGRAMMING

In Bilevel Programming (Franceschi et al., 2018)) which unifies gradient-based hyperparameter
optimization and meta-learning algorithms. They show an approximated bilevel programming
method and the conditions to guarantee convergence to the exact problem. The setting described in
this work show meta-learning problems as an inner and outer objective L and E(w, \) respectively,
where w are the parameters of the model and A are the hyperparameters (equations 3 and 4 in
(Franceschi et al., [2018))), and the approximated problem corresponds to doing a few update steps
only in the inner objective, meaning the loss of the inner loop is not fully minimized. The first
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difference between our setting and Bilevel Programming is the method they use to optimize the
meta-parameters called reverse-hypergradient method (Franceschi et al.l[2017). Another difference,
is that we extend the bilevel optimization setting to have a normative meaning through the inclusion
of a control cost, discount factor and we further simplify it by using the average learning dynamics
obtained from using the gradient flow limit in the two-layer linear network. As an example of this,
we find the optimal learning rate «(t) throughout learning that maximizes the value function for the
semantic task, to give more intuition on the impact of learning rate changes for complex step-like
learning curves. In our implementation, we find the optimal learning rate using a surrogate variable
p(t) that facilitates the optimization. We use the learning effort framework to train a two layer linear
network on the semantic dataset, just by modifying the learning dynamics as

d

ro T = (14 o) [WF (ST, — WaWi ) — AW 28)
d

ro 2 = (14 (1) [(SF, — WaWhB) WT = W] 29)

We define p(t) = g(t) as our control signal (effort signal), therefore with p = 0 we recover the
baseline learning dynamics of a network trained with SGD, and the effective learning rate is «(t) =
(14 p(t))a with « the baseline learning rate. We set 7 = 1 and the cost C(p(t)) = 3 (p — offset)”.
The optimal learning rates «(¢) and average training loss resulting from the control signal are depicted
in Figure 8]
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Figure 8: Learning rate optimization. Top row: Optimal learning rates «(¢). Bottom row: Resulting
average dynamics. (a), (b), (¢) and (d): results when varying v, (a) and (b) when the offset = 0
(baseline dynamics has 0 cost), (¢) and (d) when the offset= -1 (any dynamics is costly). (e), (f), (g)
and (h): Results for varying 3.

As mentioned in Section[d]in the main text, the control signal as the learning rate presents qualitatively
the same behavior as in the single neuron case as shown in Flgure [§] More control is allocated when
~ increases due to pay off in the future, and more control is used when g is decreased. The step-like
shape in these plots is from learning each step in the hierarchy of the semantic task. Something
important to notice is the results in the last column of Figure[8] where depending on the cost of using
control, the optimal solution is to learn some, but not all of the levels of the hierarchy. A higher cost
of control leads to fewer levels learned in the hierarchy, meaning that deeper and harder levels in
the structure might not be worth it if it is too costly for learning effort. The parameters used for this
simulation are shown in Table[3l

F.3 META-LEARNING THE LEARNING RULE

Another way to use our framework is to find optimal learning rules that maximize value. To show
this, we trained a neural network where the learning rules are parametrized, and we optimized these
parameters as being the control signal in our framework. We implemented a model by |Cao et al.
(2020), where the plasticity rule is a function of two parameters v and 1 (which are not the same as
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the quantities defined in Sec. [2|for our framework), giving update rules of the form:
AWy = AW (v) + AW (), AWz = AWS () (30)

where W denotes a contrastive Hebbian plasticity update, and W denotes a Hebbian update,
which are controlled by « and n respectively. These rules are described by

AW (y) = oWy (y — §)a” 31)
AW (v) = (y — 9)a" W +v(yy”™ — 957 )Wa (32)
(33)

for the contrastive Hebbian, with o being the learning rate, and

n(Wiz)(i) (:vT — (W) iy WA (i, ;)T) , ifn>0

e, . (34)
n(Wix),y /(1 + [[Wi(i,:)" [5), otherwise

where (i, :) denotes row 4. Depending on the values of «y and 1), the learning rules changes as depicted
in Figure Ok, spanning Contrastive Hebbian learning, gradient descent, Quasi-predictive coding,
Hebbian and Anti-Hebbian learning (see |Cao et al.| (2020) for more details). Assuming a linear
network, and taking the gradient flow limit (as done in all of the other settings), we can write the
average learning dynamics equations as

(AWE (), = oWy (55, — Wal13,) (35)
(AWE (7)), =a (SL, = WoW135,) Wi + ay (S, W W] — WaWi S, W W)W, (36)

and

z,Y

n [lez — (Wfdiag(Em)) o Wl] (i) ifn >0

AWH ()T > - . G37)
< (MG z,y n(WiXe) i,/ (1 + W1 (i, H712), otherwise

We can define 7)(t) and v(t) as the control signals, and find the optimal learning rules through time
using our framework by updating the control signal by

E+10p\ — o k(y, dv k4103 — ~k(q. av

n () = 0" (t) + oy i) (i) =" (t:) + oy PNTAE (38)
using algorithm|[I] The results of this simulation are simulated below in Figure[9} and the hyperpa-
rameters of the model are the same as in [Cao et al| (2020). Figure [Op shows the improvement in
dynamics after optimizing the learning rules, and the improvement in minimizing the negative value
function —V in Figure [9b. We initialized 7(¢) = 0 and (¢) = 0 which is equivalent to stochastic
gradient descent. By updating these control signals using equation[38] we obtained a mix between
contrastive Hebbian and standard Hebbian rules (blue dot in Figure[9), which is consistent with the
results found by [Cao et al.|(2020). We bounded the solution to —0.2 < < 0.2and —1 < v < 1,
so the optimal control is a fixed value in the upper-right corner as shown in Figure[9] No cost was
imposed on the control signal.

F.4 META-LEARNING BEYOND CONTROL

Our framework is based on the fact that we have at least one free parameter that does not evolve
according to a given learning rule, described by the learning dynamic in equation [/} To the best of
our knowledge, we think we can adapt our framework to learn any free parameters not governed by
the learning dynamics, such as control signals or hyperparameters to maximize value. Still, there is
an important part of the literature on meta-learning, where no parameters are explicitly trained to
learn an outer loop loss or meta-learning goal, but rather, it emerges from training on a large task
distribution or a large number of tasks (Wang et al., 2017; Team et al.| 2021). In these cases, there is
no control signal or set of parameters that are explicitly optimized in an outer loop, all parameters
are trained in all of the tasks, giving rise to a solution that can perform one-shot learning in unseen
tasks. The reasoning for this is that, in order to solve a distribution of tasks with the same set of
parameters available to the agent, the agent must find strategies that work for all tasks simultaneously,
therefore giving rise to “meta-solutions” that can generalize well, or that can be learned within a few
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Figure 9: Optimal learning rule optimization. (a): Learning dynamics comparing baseline (y(¢) = 0
and n(t) = 0) vs optimized. (b) Improvement in maximizing V' (minimizing —V). (c¢) The optimal
regime for learning rules (blue dot) that maximize value V. CH: Contrastive Hebbian, SGD: Gradient
descent, QPC: Quasi-predictive coding, H: Hebbian, AH: Anti Hebbian.

trials. Another set of meta-learning algorithms is “memory-based” meta-learning (Ritter et al., 2018
Genewein et al.,[2023). These models use stored memory of past experiences to perform tasks (see
“Neural Episodic Control”, Pritzel et al.|(2017)). The meta-learning part also emerges from training
by using memory, and it is not explicitly controlled as in our case. Also, learning dynamics for neural
networks learning action-value, or value-functions are not easy to describe (Bordelon et al.,[2023) as
in the regression problem we are solving in our paper. We could adapt our framework to account for
these types of models in the future. Our framework is likely to be most insightful in cases where a
subset of parameters are optimized toward a distinct meta-learning objective in an outerloop.

G LEARNING DYNAMICS SOLUTIONS

G.1 SINGLE NEURON MODEL

Here we provide the learning dynamics solution for the single-neuron model given a learning effort
signal G(t). The input-output mapping of this network is

g =aw(t) - (1+g(t)) (39)
= zw(t)g(t) (40)

with §(t) = (1 + ¢(¢)), and the input samples z; carry information of its respective label y; as
x; ~ N(yiptz,02), withy; = (1 — 2£) and € ~ Bernoulli(1/2), g(t) is our learning effort signal
(gmax > g(t) > 0), and w(t) is the neuron weight. Using MSE loss and Lo regularization over the
weights, the complete loss function for this problem is

1 2 A o
L=_-ly— —w”. 41
5y =9 + 5w (41)
Learning the weight by gradient descent, by taking the derivative of the loss £ with respect to the
weights, we get

oc oy
F (y —9) 7w T Aw (42)
= 22w§? — yz§ + \w. (43)

Updating the weights using gradients steps (gradient step iteration index k, and sample index b from
a batch with size B) gives

B
LN~ 0Ly,
Wths1) = w(tper) — § yb 7). (44)
b:l

Taking the gradient flow limit o — 0, the number of samples given to the model per unit of time
goes to infinity, converting the average to an expectation over samples (Saxe et al., 2019} |[Elkabetz &
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Cohenl [2021)), we obtain

dw oL
Tw E = - <Z911)> (45)
= pg(t) —w(t) ((«*) §°(t) + 1) . (46)

here introducing 7, to control the time scale of the weight evolution. We can solve this differential
equation for w(t) for any unknown ¢(¢) using an integrating factor

M(t) = exp </Ot Wdt’) . 47)

Multiplying both sides of equation [46]
dw g

M(t)E + M(t)'w = M(t) - (48)
d Yy
g M) = M2, (49)
Integrating both sides and solving for w(t) we get
t ~(4/
w(t) = M~L(t) [ / dt’M(t')“i ) 4 o). (50)
0 w

G.2 SINGLE LAYER NETWORK

Here we provide the learning dynamics solution for a single-layer linear network given a learning
effort signal G(t). The input-output mapping of this network is

Yi(t) = (14 G(1) o W(1) X, (51)

= (G(t) o W (1) X:. (52)
where X; € R’ (i being sample index), W (t) € RO*I, G(t) = G(t) + 1, 1,G(t) € RO*! (1 isa

matrix with ones) and o denotes element-wise multiplication. Using mean square error as the loss
function, with Ly regularization on the weights

1 - A
Li(t) = 5lIYi — Yi(t)lI” + §||W(t)llfm (53)

with Y; being the target output of sample ¢. Taking the gradient flow limit of the batch updates as in
equations 4] and 5| we get

aw oL
det<8W>’ (54)
= 37,0 G(t) = [(W(1) 0 GO, | o Glt) - AW (@), (55)

with X, = <X YT> and ¥, = (XX t>. To solve this equation, we vectorize all the matrices, naming

vec(-) the vectorization operator, diag(v) € R™*™ converts a vector v € R™ into a diagonal matrix,
using vec(ABC) = (CT @ A)vec(B) property, where ® is the Kronecker product, then we denote

vec(W) = w, diag (VCC(G)) =g, vec(XL, 0 G) =w, (56)
we can rewrite the differential equation in[53]as
Tw% =w, — [(Z] 1) 5 + M w. (57)
Then, solving for w(¢) using the integrating factor trick
M(t)zexpm(/otit/[(Eg@])g??—%)\.f]), (58)
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denoting expm(-) as the matrix exponential function, we obtain the evolution of the weights given
any control signal G(t) described as

w(t) = M~(t) - (/Ot M () w,dt' + w(0)> . (59)

To find the optimal control signal G(t¢) (multiplication factor on weights) we used algorithm [1|to
maximize expected return in equation 2] by iterating

dav

GFl(t) = GR(t) + 9 I

(60)

with k the update iteration index, and a4 the control signal learning rate.

H TWO-LAYER LINEAR NETWORK

Taking Y = WoW; X, where X € RI, Y € RO, Wi (t) € REXT and Wy(t) € RO*H are the first
and second layer weights (dropping time dependency of the weights to simplify notation), the loss
function is

1 ; A
L=V =Y+ 5 (IWall7 + [W1l7) (61)
1 - ATY A
=5 Tr ((Y— v)(v-v) ) + 2 (W3 + IWA) (©2)
1 A
=5 [Tr (YYT) —2Tr (YXTW{WY) + Tr (WA XXTW] W] + 3 (W2l + (Wi ]|F) -

(63)

Taking the derivative of £ with respect to the weights 15 and W7, in general 53 O Ty (AWTB ) BA
and 52 Tr (AWBWTC) = ATCTW BT + C AW B, then we get

oL
= ~WIYXT + WIwoaw, X XT + AWy, (64)

1

oL
i = “YXTWTI + WoW X XTWT + AW, (65)

2

Updating the weights using gradients steps (layers ¢ = {1, 2}, gradient step iteration index k&, and
sample index b from a batch with size B) gives

oL( Y,X
Witisr) = Wiltepr) — BZ 2 ”. (66)

Taking the gradient flow limit o — 0, number of samples given to the model per unit of time goes to
infinity, converting the average to an expectation over samples (Saxe et al., 2019} Elkabetz & Cohenl

2021),
obtaining
Tw% =Wy (37, — WaWi5,) — AW, (68)
Tw% = (S5, — WaW13g) W — AW, (69)

Note that, both equations, the input-output mapping ant the learning dynamics are valid simul-
taneously, then describing the learning system as forward and backward happening at the same
time.
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H.1 GAIN MODULATION

In this model, all weights are multiplied by a gain term, which we will optimize to maximize
the expected return. The input-output equation of the neural network with gain modulation is

Y = (Wz o Gg) <W1 o Gl) X = WoW; X and G; = (1; + G;), where 1 is a matrix of ones,
and 1;, G; having the same shape as W (again dropping time dependence for weights and gain for
notation simplicity), then the loss is

1 < s .- o 1
£=3 {Tr (YYT) - 2Tr (YXTWITWZT) +Tr (W2W1XXTW1TW2TH + 5 (W2l + WA 15)

(70)
In general
P .
o I (AW B) = (BA) oG (71)
a T 1T _ T ~T Y1 T T
o I (AWBW C) - (A CTWB + CAWB ) el (72)

Following the same procedure as in Appendix [H] we can derive the learning dynamics equations for
the weights when using gain modulation:

dw; ~ ~ S p s ~
ot = (Wngy) en (Wgwgwlzx) oGy — AW,
dW: ~ ~ S - ~
o = (zfwa) oGy — (WQW@leT) oGy — A\Wa. (73)
The G4 and G that optimize value can be computed iterating
av
GFYt) = G (ty) + ag—o (74)
using algorithm T}

H.1.1 CONTROL BASIS

For a set of weights T;() € R"*", then G;(t) € R™>™ such that W;(t) = W;(t) o (1 + Gi(t)), we
can write the control signal as a projection on a basis

Gi(t) =) v (t)GY. (75)
b
Note that the time dependency of G (t) comes from v? which is the variable it is optimized, instead
of G;(t) directly.
Neuron Basis: Take b indexing a row (or column) of a matrix € R™*", then Gﬁ? has row (or column)

as 1s, and 0 everywhere else. For example, if b indexes the rows of Gﬁ?, then

'0 0 ()'
00 - 0
Gl=rowb— [1 1 - 1 (76)
0 0 0
00 - o

This is called neuron basis since ?(¢) will end up multiplying all of the weights connecting a specific

neuron b. For example, in the previous G® where the rows are 1s, using this gain modulation on the
second layer Wy, means that v/?(¢) will multiply the output b of the layer. Changing this by columns
means modulation of the input weights per each hidden unit. In this case, the iterations on the control
signal to maximize the expected return in equation 2] following algorithm [T]is

av

k+loe N — kg oy
Z/i (tl) =V (tl) + Oég dl/z(tz) . (77)
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This procedure was used in the category assimilation task on MNIST and the Semantic Datasetm
but with the specific restriction of using a neuron basis for Go(t) as in equation while keeping
G1(t) = 0 (no gain modulation on the first layer). The neuron basis on the output neurons allows
the control signal to change the gain on specific output neurons, therefore changing the gain of the
learning signal from a specific category in a classification task. See the results of this specific model
in Appendix

H.2 DATASET ENGAGEMENT MODULATION

In the engagement modulation, the auxiliary loss used to derive the learning dynamics equation, in
this case, is given by
N, A\
Loax = Zlbr(t)ﬁ(yﬁ YT) + 5 (HVVQH%7 + ”Wl”%‘) ’ (78)
T=1

where N is the number of available datasets, 1, (¢) are the engagement coefficients for dataset
7, Y, and Y; are the predictions and target for dataset 7. The network can simultaneously try to
solve all of the dataset at the same time since the inputs and outputs per task are concatenated
as XT = [X{,..,XT, XL ]eRland YT = [Y{',...,VT, . Y] € RO. Then, taking the
gradient with respect to the weights, and taking the gradient flow limit we obtain equation[6] In this
equation, X, = <X X T> can be expressed as the statistics of each tasks following

N o)t X)) (e )T
= | (X)) QX1>T ' %, ; (79)
(Xx,) (X1)" N

with X, = <XTXTT > Since the target Y. is only correlated to the input X, the input-output
correlation matrix g, € RIXO ig

0 ...0... (X\))" ...0...0

Ser=10 ...0... (xv))" ..0... 0]. (80)

0 ..0... (Xn ) (YT 0. 0

output size O
The rows of Wy, € RO*H are replaced with zeros for outputs not contributing to Y. From here, the
1, (t) that optimize value can be computed iterating

WE () = 9A(1) + g~

81
@ () ®1

using algorithm ]

H.3 CATEGORY ENGAGEMENT MODULATION

This derivation is similar to the engagement modulation, but the engagement coefficient scales the
error coming from each of the categories from a classification problem. The loss function is just the
mean square error between the labels and the output of the network. The auxiliary loss used to derive
the learning dynamics equations can be written as

c

1 . A
Lo =5 2 [6c(ve = 51 + 5 (IWallf + IW1l13) (82)
c=1
_1 A R 2 2
S [d@ @ =1)]+ 5 (IWalE + IWall3) (83)
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with d(¢) = diag(¢) and ¢ = [¢1, ..., de, ..., o] L. Then, deriving the learning dynamics equation
by learning the weights using backpropagation (as in Appendix [5)) we obtain

dW:
Tle = 2Td(¢)22;€y - ng(qS)QWQWl Ez - )\Wla
AWa _ oot o g T
rug = (@) ZL W — AP Wa W S W] — AW (84)

The reason for this slight variation compared to the task engagement model, is because for the category
engage case, we assume we do not have access to (X.X!') or (X.Y,) which are class-specific
quantities of the dataset. From here, the ¢.(t) that optimize value can be computed iterating

dv
k-+1 _ ik
ti) = o, (t;) + ag—— 85

¢c ( Z) ¢c( 1)+ gd¢c(tl) ( )
using algorithm
Class proportion experiment: We trained a neural network (same architecture as in this section),
and modifying the proportion of classes through time using the category engagement inferred from
the optimization. The number of elements per class b..(¢;) in a batch of size B used in this experiment
is

be(t;) = 22 (86)

with ¢ indexing the SGD iteration on training the weights WW; and Ws.

I NON-LINEAR TWO-LAYER NETWORK

As a first approach to applying this same learning effort framework in non-linear networks, we
approximated the dynamics by Taylor expanding the non-linearities around the mean to get equations
depending on first and second moment of the data distribution. Consider a neural network of the
formY = Wy f (W1X) where f is a non-linear function (tanh(-) used in simulations). Following
the same setting and procedure as in Appendix [H] the loss function can be written as

L= % [Tr (YYT) = 2T (YT Wa f (W1X)) + Tr (F(W1X) W5 Waf (W1 X))] + % (IW2]7 + WA 7) -
(87)

Taking the derivative of £ with respect to W, updating by gradient descend and taking the gradient
flow limit as in equations [66]and [67] we obtain

Tw% = (YIWX)" = Waf Wi X)f (W1 X)T) oy — AW, (88)
Tw% = (diag(f)WS'Y X7 — (Wadiag(f))" (W2f(W1X))XT>XY — AW, (89)

with f' = f/(W; X) is the element-wise application of the non-linear function derivative on W1 X,
and diag(f’) a diagonal matrix with f’ in the diagonal. Now we take the Taylor expansion of f
around the mean of the data distribution,

F W X) & f (W1 (X)) + J(Wy (X))(X — (X)) with J =Widiag(f (W1 (X))).  (90)

Replacing this expansion in equationsand using f/ = f/(W; (X)) then taking the expectation
(-) xy We obtain

2 2 (Y) F O X)T + [T, 4 () ()] 7
— W [F 0 X) £ (WX)T + 757+ (X) ()T T7] = aws

Tw

awv,
=t ~diag(f) [W,}“ ST —WEWaf (WiX) XTWIWad S, W Wald (X) <X>T] WL
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In case of using gain modulation, Y = Wof (WX ) as in Section Executing same steps as

for the case without control (see Appendix [H.1)), the approximated learning dynamics for the gain
modulation case is

rw% ~ ((Y) f (Wlx)T + [z{,y (V) (X)J} ,]T> e
- (Wz [f (Wlx) f (Wlx)T IS, JT T (X)X JTD o Gy — AW,
T dgl ~ (diag( ) [WQT ST — Wi Waf (Wlx) XTWIWo S, WEWad (X) (X)TD o G1 — AW,

92)

where f' = f/(W, (X)) and J = W diag(f' (W, (X))). The G5 and G that optimize value can be
computed iterating
av

G () = GE () + agm (93)

using algorithm The obtained G;(t) from this optimization process are plugged into Y =

Wa f (V~V1 X ) , then trained using SGD to check how much of improvement we get using the computed

control signal inferred using the approximated dynamics. The results for this model are depicted in
Figure

J  DATASET DETAILS

Correlated gaussians: Toy dataset with correlated gaussian inputs. We sample y; as £1 with
probability 1/2. Then sample y2 = y;(1 — 2¢) with £ ~ Ber(p), if p = 1/2 then the labels are
independent. We generate the input x; ~ N (y; i, 02), then taking X = [z, 22]7 and Y = [y;,y2]7.
From this data distribution process, we can analytically compute ¥, = (XX7), ¥, = (XY7) as
Yy = <YYT>

s —| pi+ol u1u2(1—2p)]’ 5

M1 /~L1(1 - 217) _ 1
pape(l—2p)  pi+of and %, =

e [Mz(l - 2p) iz 1—2p
(94)

(X)=0and (Y) =0.

Hierarchical concepts: This is a semantic learning dataset used in (Saxe et al.,|2019j |Braun et al.,
2022) to study learning dynamics when learning a hierarchy of concepts. This task allows linear
neural networks to present rich learning (opposite to lazy learning, see (Chizat et al., |2020; [Flesch
et al.,|2022)) when using a small weight initialization. The rich regime shows a step-like learning
dynamics where each step represents a learning of a different hierarchy level. In this dataset, >, and
Y2y have a close form, for example, for a hierarchy of 3 levels,

1111
1100
0011

Se=1Is Sey=|1 0 0 0| and %, =X%] ¥, (95)
0100
0010
000 1

where 1, is the identity matrix of size n. (X), = 3 Y°1_; (Sa);; and (Y); = $ 30 (Zay) 10
Samples from this dataset are simply X as a random column from the identity matrix and Y as the
corresponding column from X,

MNIST: This is a classification task of hand-written digits (Deng| 2012). Images from this dataset

were reduced to 5 x 5 and flattened. We estimated the correlation matrices, X, 3, and f]y by taking
the expectation over the samples in the training set.
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K ADDITIONAL RESULTS

Here we present extra Figures and discussion to some of the results from the main text.

K.1 SINGLE NEURON MODEL

We did several runs varying some hyperparameters of the system to see the effect on the optimal
control signal and the improvement in the instant reward rate v(t).

o o

'S

control signal g(t)

(d) 0 200 400 600(e) 0 100 200 300000 025 050 075 100

0.00 0.00 -

—0.05 —0.054

d 200 400 600 (‘i 100 200 300 0.00 0.25 0.50 0.75 1.00
Task time Task time Normalized task time

Figure 10: Results of hyperparameter variations for the single neuron case. (a) and (d): optimal
control signal ¢(¢) and difference between instant net reward using control v (t) and the baseline
(no control) net reward vp(t), for the variations of the cost coefficient 3. Panels (b) and (e) and (c)
and (f) are same results but varying regularization coefficient A and available time to learn 7'.

In Figure [I0] we show the results for these runs varying the cost coefficient 3 (Figures[IOp and[T0d),
the regularization coefficient for the Lo norm of the weights A (Figures [I0p and [TOp), and different
available time to learn the task 7" (Figures and [10f). Increasing S leads to less control. Note
that for 3 = 0 the amount of control does not explode, since changing g(¢) after learning the task
will alter the input-output mapping function, leading to an increase in the loss. Increasing X leads
to an overall similar amount of control, but the control is sustained longer for higher ), this is due
to the high cost of increasing the size of the weight w(t), which is absorbed by g(t) to get closer
the optimal solution w*, by making w(t) = w(t)(1 + ¢(t)) closer to w*. To allow comparison, we
normalized the time axis for the variations of available time, this parameter does not seem to change
the control signal or instant reward rate within the time span to learn the task.

K.2 EFFORT ALLOCATION

Here we present results and analysis of the gain modulation model trained on single datasets. Figures
[[T] and [T2] depict the results of the effort allocation using gain modulation trained on the gaussian
and semantic datasets respectively. As mentioned in Section[6] in all cases the learning of the dataset
is speed up by the learning effort control signal. Most of the control is exerted in early stages of
learning (to compensate with reward in later high reward stages of training), with peaks around
times when the improvement in the loss is higher due to the weight learning dynamics, decaying
to zero at the end of the given time frame. The Lo norm of the weights is roughly higher when
using control throughout the training, but it converges to the same value for the baseline and control
case. Different are the trajectories for the L; norm (measuring sparsity), where the set of weights
gets more sparse when using control, to minimize the cost of using the control signal while keeping
the effect of it over the weights still high. This can be explicitly seen when training in all of the
dataset when inspecting the weights and control evolution through time, shown in Figures [I3] [T4]
and [I5] for the gaussian, semantic and MNIST datasets respectively. There is a cluster of weights
that move closer to zero compared to the baseline training, and a few weights (near the number of
non-zero gain coefficients in G;(t)) become larger with time. Given that the input-output mapping

is linear (Y = Wy ()W () X ) , the solution for the linear regression problem (taking A = 0 for
simplicity) is given by W* = Wy W = Eny; ! for both the baseline and the gain modulation case,
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and both cases reach the global solution for the linear regression problem (Fig.5). In the controlled
case, because the instant net reward v(¢) also considers the cost of having G(t) # 0, the purpose
of the control is to change the learning dynamics and reach a solution such that W* = W)W, and
G(t) = 0. Since regularization is considered in the backpropagation dynamics, the weights for the
baseline and controlled case reach the same Ly norm, but the weights when optimizing control are in
general more sparse, as shown in the Ly norms throughout learning in Fig.[5p. The reason for this
is the over-parametrized nature of the network, having more parameters I than the ones needed to
solve the linear regression.

(c) Weight norms (d) Normalized unit
0.20 e —Base dr/dr
- o7 — Ctrl dL/dt
0.15 ,,“‘— 0 —= Gi(t) size
—— (1) size
0.10 0.50
_ ) m— Ctrl L1 .
1.00 e Baseline 0.05 — Base 12 0.25
s Control \\
-1.25 = Crl L2
7 ‘ ‘ ‘ . 024 ‘ ‘ : . 0.004 : ‘ ‘ , 000 : ‘ ‘ ‘
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Task time Task time Task time Task time

Figure 11: Results of the gain modulation model trained on the gaussian dataset. (a): Instant net
reward v(t), baseline vs controlled. (b): Loss £(t) throughout learning. (c): L1 and L2 norms of the
weights. (d): normalized d;£(t), and normalized L2 norm of the control signal G (t) and G(¢).

In the particular case of the effort allocation model trained on the semantic dataset, we can see two
other extra features. First, because we initialized the network with small weights (~ 10*4), we can
see step-like transitions in the loss through time £(t), a regime known as rich learning (Chizat et al.,
2020; |[Flesch et al., 2022), where each step corresponds to learning one of the hierarchical concepts in
the dataset, from highest to lowest. In this regime, the control signal is able to skip the plateaus when
learning each level on the hierarchy. In addition, the control signal is the highest just the first step and
decays exponentially until the end of training. We infer that the effect on the dynamics by the control
signal is not merely scaling the learning rate, but since each neuron has its own independent gain
modulation, the control signal can guide the complex learning dynamics to avoid facing step-like
transitions in the loss function.

(a) v(t) (b) L(t) (c) Weight norms (d) Normalized unit
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Figure 12: Results of the gain modulation model trained on the semantic dataset. (a): Instant net
reward v(t), baseline vs controlled. (b): Loss £(t) throughout learning. (c): L1 and L2 norms of the
weights. (d): normalized d;£(t), and normalized L2 norm of the control signal G;(t) and G2(t).

K.3 TASK SWITCH

In Figures [I6] and [T7] additional results for the gain modulation model trained on the task switch
are presented. In Figure[T6] note that the weight norm for the controlled case through the switches
are larger. The cost of switching is transferred to the weights by making them larger, so the use
of the control signal is less costly when switching. This can also be seen in Figure [I7} where the
control signal is large only for a few weights, which in the long terms are the ones that become
larger, reducing also the size of control needed to change the effective input-output transformation
Y = W,oW; X. In addition, the weights when using control are grouped in two clusters, the ones
influenced by the control signal which have larger absolute values, and the rest are pushed near zero
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(a) Gi(t) (d) Ga(t)
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Figure 13: Weight and control signal evolution through training in the gaussian dataset using the
effort allocation task from Section @ (a): First layer weights W (t) (baseline and control training
depicted with solid and dashed lines respectively). (b): Second layer weights W5(t). (c): First layer
gain modulation G1(t). (d): Second layer gain modulation G5(t). Each color corresponds to a
specific weight, and colors match between plots of weights and the control signal.
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Figure 14: Weight and control signal evolution through training in the smantic dataset using the effort
allocation task from Section@ (a): First layer weights W1 (¢) (baseline and control training depicted
with solid and dashed lines respectively). (b): Second layer weights Ws(t). (c): First layer gain
modulation G (). (d): Second layer gain modulation G2(¢). Each color corresponds to a specific
weight, and colors match between plots of weights and the control signal.

(opposite to what is seen in the baseline case, with weights spread around zero). The gain modulation
allocates resources for every switch in only a few weights, while the rest of the weights are pushed
closer to zero to avoid interfering with the inference process through when switching.

K.4 TASK ENGAGEMENT

The set of datasets for the task engagement experiment was chosen based on how hard is to solve them
with linear regression. In Figure[T8h the best achievable loss when classifying MNIST digits using
linear regression is depicted for pairs of digits. The pairs used in the task engagement experiments,
(0,1), (7,1) and (8,9) have corresponding 0.02, 0.036, and 0.055 optimal loss L* respectively,
therefore ordered from easiest to harder according to this metric.

K.5 CATEGORY ASSIMILATION

By taking the average across columns of the matrix in Figure T8, we obtained the average minimum
loss per digit when compared to any other digit, shown in Figure [I8p (color bar with normalized
values). When training the engagement modulation on the category assimilation task (Results in
Section [5), the order of learning numbers is roughly the same as the difficulty in terms of linear
separability. The easiest digits are focused on first, then harder ones. According to the linear
separability metric, the order from easier to hardest are 0, 6, 1,4, 7,9, 2, 3, 8, 5, similar to what is
depicted in Figure 4]

In addition to the engagement modulation model trained on the category assimilation task, we trained
a restricted gain modulation model using the neuron base as described in Appendix [H.1.1] In this
model, the gain modulation for the first layer is disabled, then the only extra parameter adjusted to
maximize expected return in equation are the coefficients of the base /3. These coefficients scale
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Figure 15: Weight and control signal evolution through training in the MNIST dataset using the effort
allocation task from Section@ (a): First layer weights W (¢) (baseline and control training depicted
with solid and dashed lines respectively). (b): Second layer weights Ws(t). (c): First layer gain
modulation G (t). (d): Second layer gain modulation G(t). Each color corresponds to a specific
weight, and colors match between plots of weights and the control signal.
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Figure 16: Additional results of the gain modulation model trained on the Task Switch. (a): Instant
net reward v(t), baseline vs controlled. (b): Loss £(¢) throughout learning. (¢): L1 and L2 norms of
the weights. (d): normalized d;£L(t), and normalized L2 norm of the control signal G1(t) and Ga(t).

the response of output neurons in the second layer, scaling the error signal, but also the value of
the error signal itself (since it is changing the mapping as well). The results are similar in terms of
order of the order of digits engaged through learning as shown in Figure[T9] but the effect in the loss
function is smaller because of the influence on the error signal (the value itself, not the scaling). This
effect can be made explicit when deriving the learning dynamics equations for the weights (taking
G1(t) = 0) (for example for W5), giving

Tw% - {(Efy - VT/Qlex) W } o G (1) (96)

=v || 2L, —vWaWiS, | W 97)
N—————

error signal
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Figure 17: Weight and control signal evolution through training in Task Switches. (a): First layer
weights W7 (¢). (b): Second layer weights Wa(t). (c): First layer gain modulation G1(t). (d): Second
layer gain modulation G2(t). Each color corresponds to a specific weight, and colors match between
plots of weights and the control signal.
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Figure 18: (a): Minimum error achievable £* when classifying between 2 digits (rows and columns)
using a linear classifier. (b): Average of minimum error achievable per digit across all digits (average
per row), color bar shows this normalized quantity.

where v is a diagonal matrix with the coefficients v/5(¢) in the diagonal. Both the learning rate per
output (the v outside the square parenthesis) and the error signal are influenced by these coefficients.
In the case of the engagement modulation explained in section [H.3] the coefficients just scale the
error signal in equation [83]

K.6 NON-LINEAR NETWORK
K.6.1 DYNAMICS APPROXIMATION

We used the gain modulation model (Effort Allocation experiment) to train a non-linear network
on the gaussian dataset. We used a Taylor expansion around the mean to obtain an approximated

38



Under review as a conference paper at ICLR 2024

(a) Semantic (b) 104 MNIST
R 15
=
<04
Q 1.0
|
= 029 0.5
s
0.0 0.0
(c) 0 5000 10000 (d) Q.19 2000 4000 6000
0.10 A\ L5 05
2 ARER - ;|
= 0.05
= 49
05 N
S
0.009 - = 0.04 . —
0 5000 10000 0 2000 4000 6000
Task time Task time

Figure 19: Results for category assimilation task using the neuron base when restricting the gain
modulation model. (a) and (b): Improvement in the loss function when using control for MNIST and
Semantic dataset respectively. (c¢) and (d): Optimal category engagement coefficients for MNIST
and Semantic respectively.

equation for the non-linear dynatmics as explained in Appendix [Il Because the non-linear function
chosen is tanh(-), and we initialize the network using small weights, the learning dynamics of the
non-linear network are near linear at the beginning of the training, so the estimated weights and the
real ones from SGD training are close as shown in Figure@(panels (©), (d), (g), (h)). This is useful
to estimate the control signal since most of the control is exerted in the early stages of learning, as
depicted in Figures [20j and [20j (and in all linear networks testes throughout this work). The obtained
control signal using the approximated dynamics is still able to improve training of the real non-linear
network using SGD and gain modulation as shown in Figures 20 and 20p.

K.6.2 NON-LINEAR NETWORK VS LINEAR NETWORK

To show the capacity of linear network dynamics to describe the dynamics of non-linear networks, we
trained a non-linear network using stochastic gradient descent by sampling batches on the semantic
task, we then optimized the category engagement control signal as in Section [5] and derived in
App.[H.3] The parameters are exactly the same as in the results shown in Figure @fh and i), except in
this case the dynamics are described by batch training, and the first layer has a non-linear function
tanh(-). These results suggest that linear network dynamics resembles the dynamics of non-
linear networks training, as well as the optimal meta-learned control signal. First, note that
the step-like evolution in the loss function is described by both, the linear and non-linear network
training (Figure[d|(h and i) and Figure[2Th). Second, the control signal (engagement per category in
the semantic task ¢.(t)) can improve learning in this non-linear network, in the same way as in the
linear network case. Third, the optimal engagement per attribute shown in Figure 2Tp follows the
same qualitative behavior as in the linear case. Attributes higher in the hierarchy in the semantic task
are focused first compared with lower ones in the hierarchy. Harder attributes are engaged later but
with more sustained effort in time. These are all found also in the linear network case as shown in the
results of Section[5] Both networks scale linearly in time with the number of iterations in the inner
loop dynamics, but the non-linear network optimization takes an order of magnitude more. In terms of
memory cost, the training for the non-linear network increases linearly with batch size. Increasing the
batch size facilitates the training of the meta-variables since it reduces the variance of the estimation
in the gradient, then obtaining a trade-off between the stability of the meta-optimization and batch
size when meta-optimizing control in a non-linear network by batch training. Further analysis should
be done to characterize the computational costs of each case.

On the other hand, writing closed-form ODEs available in linear networks (and the work referenced
in App[A]and [B)), allows for a compact description of the entire training of the network by using a few
carefully chosen summary statistics, instead of saving every data point. This is why the meta-learned
control signal acting on the ODEs allows for some mathematical and computational tractability.
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Figure 20: Results of the learning effort framework in a non-linear network using a linear approxima-
tion. (a) and (b): £(¢) and v(t) respectively. Solid lines are numerical solutions to the approximated
learning dynamic for the baseline case in equation 9] and the control case in equation [92] Sim-
ulation training the real non-linear network using SGD shown in shaded lines, using the inferred
gain modulation in the real non-linear network when using control. (c) and (d): W7 (t) and Wa(t)
respectively. In the baseline training, comparing the numerical solution of the approximated dynamics
in equation [91] (solid lines) with the weights from the simulation in the real non-linear network
trained using SGD (dashed lines). (e) and (f): L, and Lo norms of the weights through training.
Solid lines are numerical solutions to the approximated learning dynamic for the baseline case in
equation[9T]and the control case in equation[92] Simulation training the real non-linear network using
SGD shown in dashed lines, using the inferred gain modulation in the real non-linear network when
using control. (g) and (h): W7 (t) and W>(t) respectively. In the control case training, comparing
the numerical solution of the approximated dynamics in equation [02] (solid lines) with the weights
from the simulation in the real non-linear network trained using SGD and using the gain modulation
computed to maximize expected return (dashed lines). (i) and (j): Control signals for first and second
layer G1(t) and G(t) respectively.

Our goal is to show that this is a promising direction by exhibiting a large number of settings we
can accommodate with this framework while keeping some of the analytical tools. We believe that
this will motivate further mathematical analysis and techniques addressing the dynamics of optimal
meta-learning.
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Figure 21: Category engagement modulation in a non-linear network. Results here were obtained
with the same parameters as the one used for Figure {h and i). (a) Step-like learning dynamics of the
non-linear network, and optimized dynamics using category engagement ¢ (t) to maximize value V.
(b) Optimal category engagement per level in the hierarchy (as in Figure @(h and 1)).
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L SIMULATION PARAMETERS

Table 1: Optimization Parameters for the single neuron example in Section 2.1} shown in Figures 2]
and[I0] Every other variable is constant when varying each particular value of the parameter sweep.

PARAMETERS NOTATION VALUE
NETWORK LEARNING RATE [eY 0.001
REGULARIZATION COEFFICIENT A 0.1
CONTROL LOWER BOUND gMIN 0
CONTROL UPPER BOUND GMax 0.5
DISCOUNT FACTOR ¥ 0.99
REWARD CONVERSION n 1.0
CONTROL COST COEFFICIENT B 0.3
CONTROL LEARNING RATE ag 10.0
CONTROL GRADIENT UPDATES K 700
WEIGHT TIME SCALE Tw 1.0
AVAILABLE TIME (A.U.) T 600
MEAN OF GAUSSIANS N 2.0
INTRINSIC NOISE O 1.0
BATCH S1ZE B 128
Y VALUES SWEEP 10 *% (NP.LINSPACE (-8, 0, NuM=30, ENDPOINT=TRUE))

3 VALUES SWEEP NP.LINSPACE (1E-5, 2, NuM=30, ENDPOINT=TRUE)

0, VALUES SWEEP NP.LINSPACE (1E-5, 5, NuM=30, ENDPOINT=TRUE)

A VALUES SWEEP NP.LINSPACE (O, 5, NuM=30, ENDPOINT=TRUE)

T VALUES SWEEP

[200 + 1%50 FOR I IN RANGE (21)]

Table 2: Parameters used for MAML simulation in App.
MNIST pairs, (0, 1), (7, 1), (8,9), (3, 8) and (5, 3), see App.

distribution centered at O with standard deviation of 0.01

The distribution of tasks where 5
Weights initialized from a gaussian

PARAMETERS NOTATION VALUE
NETWORK LEARNING RATE « 0.005
HIDDEN UNITS H 40
REGULARIZATION COEFFICIENT A 0
CONTROL LOWER BOUND gmiN NOT BOUNDED
CONTROL UPPER BOUND ImAx NOT BOUNDED
DISCOUNT FACTOR ¥ 1.0
REWARD CONVERSION n 1.0
CONTROL COST COEFFICIENT B 0
CONTROL LEARNING RATE ag 0.005 wiTH ADAM
CONTROL GRADIENT UPDATES K 2000
WEIGHT TIME SCALE Tw 1.0
OPTIMIZED STEPS T FROM 1 TO 340 EVERY 20

Table 3: Parameters used for learning rate «/(¢) optimization in App. ~ and  where varied
independently, keeping the default values when varying the other.

PARAMETERS NOTATION VALUE
NETWORK LEARNING RATE el 0.005
HIDDEN UNITS H 40
REGULARIZATION COEFFICIENT A 0
CONTROL LOWER BOUND gmiN -1
CONTROL UPPER BOUND GMAX 1
REWARD CONVERSION n 1.0
CONTROL LEARNING RATE ag 0.005 wiTH ADAM
CONTROL GRADIENT UPDATES K 800
WEIGHT TIME SCALE Tw 1.0
AVAILABLE TIME (A.U.) T 18000
DEFAULT DISCOUNT FACTOR ¥ 1.0
DEFAULT COST COEFFICIENT B 1.0
-y VALUES SWEEP NP.LINSPACE (0.6, 1.0, nNuM=10, ENDPOINT=TRUE)

3 VALUES SWEEP NP.LINSPACE (1E-3, 2, NuM=10, ENDPOINT=TRUE)
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Table 4: Optimization Parameters for results in Section[5} Dataset parameters are the following: For
the Attentive, Active and Vector models, the three datasets used are MNIST digits, being (0, 1),
(7,1) and (8,9), each a binary classification task with a batch size of 256, images reshaped to (5 x 5)
and flattened. Eng. MNIST: all digits were used with a batch size of 256, images reshaped to (5 X 5)
and flattened. Eng. Semantic: Batch size of 32 and 4 hierarchy levels described in[J} For every
dataset, an extra 1 was concatenated to the input to account for the bias when multiplying by the
weights.

PARAMETERS NOTATION ATTENTIVE ~ ACTIVE  VECTOR  ENG MNIST  ENG SEMANTIC
NETWORK LEARNING RATE a 0.005 0.005 0.005 0.05 0.005
HIDDEN UNITS H 20 20 20 50 30
REGULARIZATION COEFFICIENT A 0.0 0.0 0.0 0.0 0.0
ENG. COEF. LOWER BOUND WnmiNs Pmin 0.0 0.0 0.0 0.0 0.0
ENG. COEE. UPPER BOUND Puax> Omax 2.0 1.0 2.0 2.0 2.0
DISCOUNT FACTOR ¥ 0.99 0.99 0.99 0.99 0.99
REWARD CONVERSION n 1.0 1.0 1.0 1.0 1.0
CONTROL COST COEFFICIENT B 0.1 0.1 0.1 5.0 5.0
CONTROL LEARNING RATE ag 1.0 1.0 1.0 1.0 1.0
CONTROL GRADIENT UPDATES K 800 800 800 600 600
WEIGHT TIME SCALE Tw 1.0 1.0 1.0 1.0 1.0
AVAILABLE TIME (A.U.) T 13000 13000 13000 30000 18000

Table 5: Optimization Parameters for results in Section [6]and Appendix [} Dataset parameters are the
following: MNIST: Batch size, 32; reshape size, (5 x 5); Digits, (1, 3). Gaussian and Non-linear:
Batch size, 32; u1 = 3, ue = 1,01 = 1, 00 = 1, p = 0.8. Semantic: Batch size, 32; hierarchy levels,
4. Task Switch: Gaussian 1: uy = 3, uo = 1,01 = 1, 02 = 1, p = 0.8; Gaussian 2: p; = —2,
we = 2,01 =1,09 =1, p = 0.2, switch every 1800 iterations. For every dataset, an extra 1 was
concatenated to the input to account for the bias when multiplying by the weights.

PARAMETERS NOTATION MNIST GAUSSIANS SEMANTIC TASK SWITCH NON-LINEAR
NETWORK LEARNING RATE « 0.005 0.005 0.005 0.005 0.001
HIDDEN UNITS H 50 6 30 8 8
REGULARIZATION COEFFICIENT A 0.01 0.01 0.01 0.001 0.0
CONTROL LOWER BOUND gmin -0.5 -0.5 -0.5 -0.5 -0.5
CONTROL UPPER BOUND gmiN 0.5 0.5 0.5 0.5 0.5
DISCOUNT FACTOR o 0.99 0.99 0.99 0.99 0.99
REWARD CONVERSION n 1.0 1.0 1.0 1.0 1.0
CONTROL COST COEFFICIENT B 0.3 0.3 0.3 0.3 0.3
CONTROL LEARNING RATE ag 10.0 10.0 10.0 1.0 10.0
CONTROL GRADIENT UPDATES K 1000 1000 1000 1000 500
WEIGHT TIME SCALE Tw 1.0 1.0 1.0 1.0 1.0
AVAILABLE TIME (A.U.) T 16000 16000 16000 23000 10000
RESULTS FIGURE FIGUREE FIGURE FIGURE FIGURE
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