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Abstract
Domain generalization (DG) focuses on transferring domain-invariant knowledge
from multiple source domains (available at train time) to an a priori unseen target
domain(s). This task implicitly assumes that a class of interest is expressed in mul-
tiple source domains (domain-shared), which helps break the spurious correlations
between domain and class and enables domain-invariant learning. However, we
observe that this results in extremely poor generalization performance for classes
only expressed in a specific domain (domain-linked). To this end, we develop a
contrastive and fairness based algorithm – FOND – to learn generalizable repre-
sentations for these domain-linked classes by transferring useful representations
from domain-shared classes. We perform rigorous experiments against popular
baselines across benchmark datasets to demonstrate that given a sufficient number
of domain-shared classes FOND achieves SOTA results for domain-linked DG.

1 Introduction
Domain generalization (DG) aims to learn discriminative representations that can generalize to
data distributions (domains) different from those observed during training, i.e. out-of-distribution.
Specifically, here the target domain is assumed to be unseen during training. Given this goal, the
guiding principle in modern DG algorithms is to learn representations that are invariant to source
domains, and hence generalizable to unseen targets [Ye et al., 2021].

As a result, recent works aim to explicitly reduce the representation discrepancy between multiple
source-domains [Zhou et al., 2023]. However, these methods rely on classes being observed in
multiple source-domains and/or focus only on the overall accuracy. In the real-world however, classes
of interest may often be observed in a specific domain (domain-linked, YL), setting it apart from
those observed in multiple domains (domain-shared, YS).These lead to generalization challenges
in applications including, healthcare [Chen et al., 2021], autonomous driving [Piva et al., 2023],
and fraud detection [Ataabadi et al., 2022], where classes/anomalies of interest may only have been
observed in particular demographics, regions etc.

Models which aim to utilize domain-linked data often encounter spurious correlations between
the domain and the class [Lynch et al., 2023, Zhang et al., 2022a]. Unsurprisingly, existing DG
approaches yield large performance discrepancies between YL and YS classes; see Fig. 1. Therefore,
we seek to specifically improve the generalizability of domain-linked classes. This task, to the best of
our knowledge has not been extensively studied in the literature.

Notwithstanding these challenges, recent advances in real-world machine learning draw from the
success of pretraining with classes/objectives different from downstream tasks [He et al., 2022].
This begs the question – can we transfer useful representations from domain-shared classes to
domain-linked classes? We answer this in the affirmative and propose FOND, (Fair and cONtrastive
Domain-linked learning). Specifically, we draw insights from recent works on fairness [Pham et al.,
2023, Makhlouf et al., 2021, Wang et al., 2020] to learn generalizable representations from YS for
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Figure 1: Performance discrepancies between domain-linked and domain-shared classes. Values
are averaged across datasets (PACS, OfficeHome, VLCS) and shared-class settings (High, Low).
YL classes. Note that this is different from the goal of classic DG fairness – achieve similar outcomes
across protected attributes (e.g., gender). On the contrary, we use fairness to ensure that the model
can be moved away from learning domain-specific features that can lead to spurious correlations for
YL. To complement this objective, we develop a contrastive learning objective that regularizes the
relationships between same-class-inter-domain and different-class-intra-domain training samples.

We rigorously evaluate FOND on three standard DG benchmark datasets – PACS [Li et al., 2017],
VLCS [Fang et al., 2013], and, OfficeHome [Venkateswara et al., 2017] – across ten DG baselines,
include the SOTA [Wang et al., 2023, Eastwood et al., 2022]. We find that indeed domain-linked
class performance improves with the presence of a high enough number of domain-shared classes,
thus accomplishing domain-invariant representation learning. We observe that that ERM is still a
strong baseline, but FOND achieve a remarkable overall performance improvement of +9.3 over ERM
on an average (26.9% improvement), with a gain of 39.2% on VLCS. This demonstrates that even
observing other classes in diverse domains can immensely help domain-linked classes!

2 Related works
We briefly introduce DG works related to this paper and identify the addressable research gap.

Data manipulation techniques primarily focus on data augmentation and generation techniques.
Typical augmentations include affine transformations in conjunction with additive noise, cropping
and so on [Shorten and Khoshgoftaar, 2019]. Other methods include simulations [Yue et al., 2019,
Tremblay et al., 2018], gradient-based perturbations like CrossGrad [Shankar et al., 2018], and image
mixing [Mancini et al., 2020, Zhang et al., 2018, Shu et al., 2021]. Furthermore, generative models
are also popular techniques for diverse data generation [Zhou et al., 2020, Somavarapu et al., 2020].
Since a model’s generalizability is a function of training data diversity [Vapnik, 2000], FOND and
other approaches should be used in conjunction.

Multi-domain feature alignment techniques primarily align features across source-domains through
explicit feature/distribution alignment [Wang et al., 2023, Rame et al., 2022, Eastwood et al., 2022,
Chevalley et al., 2022, Sun and Saenko, 2016, Peng et al., 2019, Hu et al., 2019, Zhou et al., 2021,
Wang et al., 2021]. Other approaches perform domain-discriminative adversarial training [Zhu
et al., 2022, Yang et al., 2021, Shao et al., 2019, Li et al., 2018b, Gong et al., 2018]. Additionally,
meta-learning approaches improve find success imitating the generalization tasks through meta-train
and meta-test objectives [Qin et al., 2023, Zhang et al., 2021a,b, Zhong et al., 2022].

Contrastive learning methods aim to learn representations, such that similar samples are embedded
close to each other while distancing dissimilar samples [Huang et al., 2020, Ruan et al., 2022,
Kim et al., 2021, Khosla et al., 2020, Chen et al., 2020b]. These methods focus on multi-domain
comparisons to identify domain-invariant representations [Zhou et al., 2023].

Fairness notions in DG [Makhlouf et al., 2021] involve reducing the performance discrepancy
between protected attributes (e.g. gender) [Pham et al., 2023, Wang et al., 2020]. While the goals may
be different, fairness offers an avenue to learn useful representations from domain-shared classes.
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Research Gap. Existing DG approaches presuppose all classes are expressed in multiple domains
and/or seek to maximize average generalization; thus ignoring the large performance discrepancies
between domain-linked and domain-shared classes. Since these domain-linked classes may be of
interest in real-world settings, there is a need to understand the factors that impact their performance,
and to build models which can generalize to unseen domains.

3 Problem formulation
We formalize some definitions for the purposes of the paper. First, we define a domain as follows.
Definition 3.1 (Domain). Let X denote an nonempty input space (e.g. images, text, etc) and Y an
output label space. We denote as specific domain as S = {(xj , yj)}nj=1 ∼ DS : XS × YS , where
x ∈ XS ⊆ Rd and y ∈ YS ⊂ Z.
Given this definition of a domain, the DG task – which entails learning representations from multiple
source-domains to generalize to unseen target-domain(s) – can be formalized as shown below.
Definition 3.2 (Domain generalization). Given K training (source) domains S = {Si | i = 1, ...,K}
where Si = {(xi

j , y
i
j)}

ni
j=1 denotes the i-th source domain with ni samples, and the joint distributions

between each pair of domains are different: DSi ̸= DSj

: 1 ≤ i ̸= j ≤ K. Then the goal is to learn
a predictive function from S for reliable performance on an unseen, out-of-distribution target-domain
T ∼ DT : X T × YT (i.e. DT ̸= DSi

for i ∈ {1, ...,K}).

We evaluated methods for closed-set domain generalization (i.e. YT =
⋃K

i=1 YSi

) where no source-
domain expresses all target classes. During training there exists a set of classes expressed in only one
source-domain (i.e. domain-linked classes YL) and in multiple domains (i.e. domain-shared classes
YL). Note, YT = YL ∪ YS and YL ∩ YS = ∅.

4 Methodology

We now introduce the FOND objective, which learns domain-invariant representations to improve
domain-linked YL class generalization. We achieve this by minimizing the following objective:

LFOND = Ltask + λxdom · Lxdom + λfair · Lfair. (1)

Here, Lxdom encourages domain-invariant representation learning by focusing on negative (different-
class) intra-domain comparisons (β), and positive inter-domain pairwise comparisons (α):

Lxdom =
∑

i∈I
−1

|P (i)|
∑

p∈P (i) log
α·exp(zi·zp/τ)∑

j∈I\{i} β · exp(zi · zj/τ)
, (2)

α =

{
a, S(zi) ̸= S(zp), where a ≥ 1

1, otherwise
, β =

{
b, S(zi) = S(zj), yi ̸= yj , where b ≥ 1

1, otherwise

FOND introduces α which is motivated from works which aim to maximize mutual information
between positive (same-class) inter-domain samples guides domain-invariant learning [Chen et al.,
2020a, Ren et al., 2023]. While β encodes “hard negative mining” which has found success in
representation learning [Robinson et al., 2021, Zhang et al., 2022b, Liu et al., 2023]. Here, S(zi)
denotes the domain S ∈ S that zi belongs to, and a, b are hyper-parameters.

We propose to leverage Lfair to encourage the model to learn YS features from classes that are
also generalizable for YL classes. Specifically, we aim to make the prediction error rate between
domain-linked and domain-shared classes similar. We accomplish this by penalizing the violation of
the the absolute difference between their classification losses as follows, where Ltask is cross-entropy,

Lfair = |LL
task − LS

task|, where, Ltask = E(x,y)∼S [−y · log (M(x))] . (3)

5 Experiments
We specifically focus on analyzing domain-linked class performance under varying 1) shared-class
distribution settings (Sec. 5), 2) inter-domain variation types, and 3) number of classes. For rigorous,
fair and reproducible evaluation, we mirrored the DomainBed [Gulrajani and Lopez-Paz, 2021]
test-bed to be consistent with the experimentation in DG literature.
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Table 1: High setting out-of-distribution test accuracy (%) for YL classes.

Algorithm VLCS PACS OfficeHome Average % Improvement
ERM 51.8 ± 3.3 14.7 ± 2.2 37.5 ± 0.6 34.6 (0.0%)
CORAL [Sun and Saenko, 2016] 49.8 ± 4.2 13.7 ± 1.0 38.9 ± 0.2 34.1 (-1.4%)
MLDG [Li et al., 2018a] 45.2 ± 3.4 13.8 ± 0.5 37.4 ± 0.7 32.1 (-7.2%)
ARM [Zhang et al., 2021b] 49.0 ± 1.4 16.2 ± 2.9 38.4 ± 0.2 34.5 (-0.3%)
SelfReg [Kim et al., 2021] 41.9 ± 0.2 13.4 ± 1.2 39.5 ± 0.6 31.6 (-8.7%)
CAD [Ruan et al., 2022] 51.7 ± 5.8 13.1 ± 0.7 36.4 ± 1.4 33.7 (-2.6%)
Transfer [Zhang et al., 2021a] 48.9 ± 3.0 16.0 ± 1.6 36.8 ± 0.2 33.9 (-2.0%)
CausIRL [Chevalley et al., 2022] 48.9 ± 2.5 13.3 ± 1.5 39.2 ± 0.2 33.8 (-2.3%)
EQRM [Eastwood et al., 2022] 45.4 ± 3.5 17.9 ± 2.0 37.8 ± 0.1 33.7 (-2.6%)
PGrad [Wang et al., 2023] 40.2 ± 1.8 12.6 ± 1.4 39.0 ± 0.8 30.6 (-11.6%)

FOND 72.1 ± 3.5 19.1 ± 0.6 40.6 ± 0.4 43.9 (+26.9%)

Table 2: Low setting out-of-distribution test accuracy (%) for YL classes.

Algorithm VLCS PACS OfficeHome Average % Improvement
ERM 50.7 ± 1.0 36.5 ± 0.5 38.5 ± 0.4 41.9 (0.0)
CORAL [Sun and Saenko, 2016] 45.5 ± 1.6 33.3 ± 0.8 40.7 ± 0.2 39.8 (-5.0)
MLDG [Li et al., 2018a] 50.8 ± 2.0 38.0 ± 0.1 38.1 ± 0.1 42.3 (+1.0)
ARM [Zhang et al., 2021b] 47.7 ± 0.9 36.8 ± 1.3 39.0 ± 0.1 41.2 (-1.7)
SelfReg Kim et al. [2021] 46.6 ± 1.2 32.4 ± 0.4 40.0 ± 0.3 39.6 (-5.5)
CAD [Ruan et al., 2022] 45.5 ± 1.5 33.0 ± 0.9 36.9 ± 1.2 38.5 (-8.1)
Transfer [Zhang et al., 2021a] 48.3 ± 0.6 36.4 ± 1.8 38.1 ± 0.3 40.9 (-2.4)
CausIRL [Chevalley et al., 2022] 45.8 ± 0.9 33.6 ± 0.9 40.9 ± 0.2 40.1 7 (-4.3)
EQRM [Eastwood et al., 2022] 49.1 ± 1.1 37.4 ± 0.7 39.9 ± 0.2 42.1 (+0.5)
PGrad [Wang et al., 2023] 49.0 ± 0.7 34.4 ± 0.5 39.0 ± 0.3 40.8 (-2.6)

FOND 48.0 ± 0.4 35.3 ± 1.2 40.3 ± 0.3 41.2 (-1.7)

Datasets. To evaluated YL performance with respect to inter-domain variations and the number of
classes, we required keeping consistent a) dataset sizes and b) number of domains. Therefore we
chose DG literature gold standard datasets [Zhou et al., 2023]: PACS, VLCS, and OfficeHome.

Defining Shared-Class Distribution Settings. We define two shared-class distribution settings –
Low and High – denoting the relative number of shared classes |YS | with respect to the total |YT |. In
the Low setting ∼ 1/3 of the classes are domain-shared; ∼ 2/3 in the High setting.

Baselines. Baselines were selected to cover a variety of well represented DG methodologies, that
have been benchmarked against DomainBed [Gulrajani and Lopez-Paz, 2021].

Experimental results. We report the performance under the low-and high-shared setting in Table. 2
and Table. 1 respectively. The lack of domain-shared classes in the Low setting leads to poor
performance across the board. FOND still demonstrates top-4 performance in the Low setting. In
the High setting we observe that FOND consistently outperforms all baselines as shown in Table 1.
Strikingly, FOND results in a 39% performance improvement over the best baseline (ERM) for VLCS.
VLCS domains are real-world while for PACS and OfficeHome domain differences are more obvious.

6 Conclusion and Future Work
Domain generalization (DG) in real-world settings often suffers from data scarcity leading to classes
which are only observed in specific domains, i.e. they are domain-linked. DG efforts primarily focus
on improving the overall accuracy which can lead to critical failures in the real-world. Motivated
from this challenge, we focused on robust out-of-distribution generalization for domain-linked classes
and propose FOND; the first method for domain-linked domain generalization, which achieves state-
of-the-art performance as compared to the current SOTA DG approaches. For future work we would
like to theoretically analyze the factors impacting domain-linked class performances relative to
domain-shared. Additionally, we seek to analyze the effects of different distribution shift scenarios
and varying the absolute/relative number of domain-shared classes available. Developing methods
that address Low setting can also be an independent line of research. Enabling transfer from different
classes can help overcome the fundamental challenges of data scarcity and representation learning
that DG faces today, opening an exciting avenue of research.
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A Experimental setup
A.1 Implementation Details

For consistency, all algorithms have a fine-tuned ResNet-18 backbone [He et al., 2016] pre-trained
on ImageNet [Deng et al., 2009]. Additionally, the training data augmentations are: random size
crops and aspect ratios, resizing to 224 × 224 pixels, random horizontal flips, random color jitter,
and random gray-scaling. Our experiments ran on different GPUs: NVIDIA RTXA6000, NVIDIA
GeForce RTX2080.
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(a) VLCS (b) PACS (c) OfficeHome
Figure 2: Visualizing domains (rows) and classes (columns) for evaluation dataset. Note how
PACS and OfficeHome exhibit more obvious domain variations than VLCS.

A.2 Hyper-Parameter Search

For each algorithm we perform five random search attempts over a joint distributions of all their
hyper-parameters. The performance of each hyper-parameter is evaluated using the strategy outlined
in App. A.3. This is repeated for each of the five sets of hyper-parameters and the set maximizing the
average domain-linked YL accuracy is selected. This search is performed for across three different
seeds where all hyper-parameters are optimized anew for each algorithm, dataset and partial-overlap
setting. The hyper-parameter search space for each algorithm is provided in the attached code.

A.3 Model Selection

Given K domains, we train K models, sharing the same hyper-parameters θ, but each model holds
a different domain out. During the training of each model, 80% of the training data from each
domain is used for training and the other 20% is used to determine the version that will be evaluated.
We evaluate each model on its held-out domain data, and average the YL accuracy of these K
models over their held-out domains. This provides us with an estimate of the quality of a given
set of hyper-parameters. This strategy was chosen because it aligns with the goal of maximizing
expected performance under out-of-distribution domain-variation without picking the model using
the out-of-distribution data. The YL accuracy performance across held-out domains.

A.4 Datasets

PACS [Li et al., 2017] is a 9,991-image dataset consisting of four domains corresponding to four
different image styles: photo (P), art-painting (A), cartoon (C) and sketch (S). Each of the four
domains hold seven object categories; refer to Fig. 2b

VLCS [Fang et al., 2013] is a 10,729-image dataset consisting of four domains corresponding to four
different datasets: VOC2007 (V), LabelMe (L), Caltech101 (C) and SUN09 (S). Each of the four
domains hold five object categories: bird, car, chair, dog and person; refer to Fig. 2a

OfficeHome [Venkateswara et al., 2017] is a 15,588-image dataset consisting of images of everyday
objects organized into four domains; art-painting, clip-art, images without backgrounds and real-world
photos. Each of the domains holds 65 object categories; refer to Fig. 2c

Table 3: Domain-shared (YS) classes for each dataset and shared-class distribution setting. The
left table defines the number of YS classes and the right displays the corresponding YL classes.

|YS |/|YT |
Setting PACS OfficeHome VLCS

Low 3/7 25/65 2/5

High 5/7 50/65 4/5

YL

PACS OfficeHome VLCS
{0,1,3,5,6} {0-13, 30-34, 44-64} {0,1,4}

{1,6} {0-4, 44-64} {1}
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