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Abstract

Molecular property prediction (MPP) is a fun-001
damental and crucial task in drug discovery.002
However, prior methods are limited by the003
requirement for a large number of labeled004
molecules and their restricted ability to gen-005
eralize for unseen and new tasks, both of which006
are essential for real-world applications. To007
address these challenges, we present Molecu-008
larGPT for few-shot MPP. From a perspective009
on instruction tuning, we fine-tune large lan-010
guage models (LLMs) based on curated molec-011
ular instructions spanning over 1000 property012
prediction tasks. This enables building a versa-013
tile and specialized LLM that can be adapted014
to novel MPP tasks without any fine-tuning015
through zero- and few-shot in-context learning016
(ICL). MolecularGPT exhibits competitive in-017
context reasoning capabilities across 10 down-018
stream evaluation datasets, setting new bench-019
marks for few-shot molecular prediction tasks.020
More importantly, with just two-shot examples,021
MolecularGPT can outperform standard super-022
vised graph neural network methods on 4 out of023
7 datasets. It also excels state-of-the-art LLM024
baselines by up to 16.6% increase on classi-025
fication accuracy and decrease of 199.17 on026
regression metrics (e.g., RMSE) under zero-027
shot. This study demonstrates the potential of028
LLMs as effective few-shot molecular property029
predictors. Our model and curated instruction030
set will be open-sourced.031

1 Introduction032

The discovery of molecules with desired func-033

tional properties is crucial for advancements in034

fields such as medicine (Stokes et al., 2020; Wong035

et al., 2024; Koscher et al., 2023; Abramson et al.,036

2024) and material (Merchant et al., 2023; Kang037

et al., 2023). Molecular property prediction (MPP),038

which employs deep learning techniques to pre-039

dict molecules’ functional properties, has proven040

effective in accelerating the drug discovery process041

and reducing associated costs (Wong et al., 2024; 042

Merchant et al., 2023; Kang et al., 2023). 043

Among them, graph neural networks (GNNs)- 044

based methods (Velickovic et al., 2017; Xu et al., 045

2019; Kipf and Welling, 2017; Gilmer et al., 2017; 046

Hamilton et al., 2017) have achieved state-of-the- 047

art results in the past few years. However, these 048

methods (Li et al., 2022; Liu et al., 2022; Stärk 049

et al., 2022) are limited in supervised settings, 050

contradicting with practical needs as annotating 051

molecules is both expensive and time-consuming. 052

Furthermore, the task-specific supervised learning 053

process may hurdle the model’s adaptation to new 054

tasks, limiting its generalization ability in open- 055

world scenarios. 056

Inspired by this, several recent endeavors have 057

aimed to enable zero-shot reasoning for MPP (Seidl 058

et al., 2023; Zhao et al., 2024) by integrating both 059

natural language and molecular representations. 060

CLAMP (Seidl et al., 2023) is a text-molecule 061

model that aligns pairs of chemical text (e.g., de- 062

scriptions of molecular properties) and molecule 063

graphs through contrastive learning. Subsequently, 064

the bioactivity of a query molecule is classified by 065

measuring the similarity between its molecular rep- 066

resentation and corresponding bioassay description. 067

While effective, CLAMP is limited to classification 068

tasks and is not a generative model. 069

In contrast, another line of research in 070

LLMs (Zhao et al., 2024) integrates molecule 071

graphs and task descriptions into a unified genera- 072

tive LLM. This approach enables zero-shot reason- 073

ing for molecular property prediction across both 074

classification and regression tasks. However, the 075

inclusion of an additional architectural design re- 076

stricts it from performing few-shot molecular prop- 077

erty predictions, a capability naturally supported 078

by standard LLMs. 079

To date, there’s no LLM-based method in the 080

molecular domain fully inherits the generalization 081

and ICL abilities of LLMs as seen in the NLP field, 082
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which raises a research question: Can LLMs be083

fine-tuned for generic MPP, enabling the resultant084

model to generalize to a variety of unseen tasks085

and inherit LLMs’ few-shot ICL ability?086

In this work, we aim to bridge the gap and087

present MolecularGPT, the first instructionally088

tuned LLM that can generalize to a variety of novel089

MPP tasks while retaining its zero-shot and few-090

shot in-context reasoning abilities. Specifically,091

MolecularGPT adopts the SMILES (Weininger,092

1988) representation of molecules as a unified093

graph-to-string transformation for instruction con-094

struction, as it precisely translates molecules’095

chemical structures into a string of atomic sym-096

bols and chemical bonds based on a set of rules.097

To fully utilize the graph structures in molecules,098

we introduce structure-aware few-shot instructions,099

which incorporate the top-k neighbors, globally re-100

trieved based on their similarities, of each molecule101

as complementary information for instruction de-102

sign. This design aligns the instruction tuning and103

inference prompt format of MolecularGPT, making104

it naturally applicable for few-shot ICL. Addition-105

ally, to balance zero-shot and few-shot reasoning106

capabilities, we explore various combination op-107

tions and empirically find that a hybrid instruction108

set, including both zero-shot and few-shot instruc-109

tions, enables MolecularGPT to perform well in110

both zero-shot and few-shot property predictions.111

Our main contributions are summarized below:112

• We study how to adapt pre-trained LLMs to113

molecular field, enabling effective few-shot MPP114

in the ICL fashion. Specifically, we propose115

MolecularGPT, the first instructionally fine-tuned116

LLM that supports few-shot property prediction117

on unseen tasks without any fine-tuning.118

• We introduce the concept of structure-aware few-119

shot instruction to better adapt LLMs with molec-120

ular field. Unlike existing efforts (Seidl et al.,121

2023; Zhao et al., 2024; Zhang et al., 2023) that122

focus on fusing graph structures and SMILES123

representations in a model-centric perspective,124

we maliciously combine them in a data-centric125

manner by constructing global structure-aware126

few-shot demonstrations.127

• We devise a hybrid instruction set to inherit the128

few-shot ICL capability of LLMs. This set is a129

mix of both few-shot and zero-shot instructions130

that span over 1000 MPP tasks including both131

classification and regression tasks across biologi- 132

cal, chemical, and quantum mechanical domains, 133

resulting in 3.5GB training tokens. This diversi- 134

fied instruction set has been empirically proved 135

to be effective in adapting LLMs for MPP tasks. 136

• We extensively experimented on 10 molecular 137

property benchmarks across different scales and 138

tasks to validate the effectiveness of Moelcu- 139

larGPT. Our empirical results demonstrate that 140

MoelcularGPT outperforms the leading LLM 141

baselines (e.g., GIMLET, LLaMA-7b (Touvron 142

et al., 2023), and LLaMA-13B (Touvron et al., 143

2023)), with up to an average 16.6% improve- 144

ment across all classification tasks. Additionally, 145

with just two-shot examples, MolecularGPT sur- 146

pass standard supervised GNN methods on 4 out 147

of 7 datasets, setting new benchmarks for few- 148

shot molecular property tasks. 149

2 Related work 150

GNNs-based MMP GNNs (Velickovic et al., 151

2017; Xu et al., 2019; Kipf and Welling, 2017; 152

Stärk et al., 2022) perform MPP tasks by construct- 153

ing models between molecular graphs and proper- 154

ties. Though have achieved great success (Gilmer 155

et al., 2017; Hamilton et al., 2017; Li et al., 2022; 156

Liu et al., 2022), these supervised models solely uti- 157

lize structure information, neglecting the wealthy 158

knowledge contained in texts derived from wet lab 159

experiments. More importantly, they are implic- 160

itly trained for each task without explicit natural 161

language instructions, which can not directly gen- 162

eralize to new tasks. 163

Pretrain-finetune based molecular language 164

models To utilize the chemical knowledge in 165

texts, molecular language models (Liu et al., 2023b; 166

Edwards et al., 2022; Pei et al., 2023; Zhang et al., 167

2023; Liu et al., 2023d) aim to integrate natural 168

language and molecular representations for joint 169

reasoning. These models (Su et al., 2022; Zeng 170

et al., 2022; Liu et al., 2023c, 2024; Li et al., 2024) 171

involve two stages: pre-training and fine-tuning. 172

The pre-training phase primarily focuses on learn- 173

ing molecular representations and their associated 174

textual descriptions through masked language mod- 175

eling, contrastive learning or next token prediction. 176

However, they still require fine-tuning on particu- 177

lar MPP downstream tasks, thereby limiting their 178

generalization abilities to new tasks. 179
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Figure 1: The proposed MolecularGPT framework. To instructionally fine-tune LLMs for MPP tasks, we construct
a hybrid instruction set that includes both zero-shot and few-shot instructions across more than 1000 property
tasks. Each few-shot instruction adaptively selects the query molecule’s top-k neighboring molecules as labeled
demonstrations for prompt design.

Instruction tuning based molecular language180

models To address this, recent efforts in molecu-181

lar language modeling (Fang et al., 2023; Zhao182

et al., 2024) aim to explicitly align molecular183

graphs with their properties through instruction184

tuning (Longpre et al., 2023). For instance, GIM-185

LET (Zhao et al., 2024) integrates molecular graphs186

with instruction languages for fine-tuning LLMs.187

GIMLET achieves effective zero-shot ICL for new188

tasks but lacks few-shot ICL capability due to189

its generalized position embedding and decoupled190

attention designs. Mol-Instructions (Fang et al.,191

2023) is a close work to us, but it fine-tunes LLMs192

with only three properties tasks and neglects inter-193

molecular correlations, significantly limiting its194

zero-shot and few-shot ICL performances. In con-195

trast, we curate a diverse instruction set covering196

1000 property tasks and introduce structure-aware197

few-shot instructions to significantly enhance the198

zero-shot and few-shot reasoning capabilities of199

LLMs in MPP tasks. More details about these200

property tasks can be found in Appendix A.1201

3 Method202

In this section, we present the proposed Molecu-203

larGPT, as shown in Fig. 1. First, we discuss the204

general instructional fine-tuning pipeline to adapt205

LLMs for MPP tasks (in Section 3.1). Next, we206

elaborate on a structure-aware few-shot instruc-207

tion design strategy to effectively incorporate graph208

structures among molecules (in Section 3.2). Fi-209

nally, we illustrate a hybrid instruction tuning ap- 210

proach that enhances both the zero-shot and few- 211

shot reasoning capabilities of LLMs for MPP tasks 212

(in Section 3.3). 213

Notations and Problem Formulation. Given a 214

set of n molecular graphs D = {(Gi, yi)|i ∈ 215

1, 2, ..., n}, where Gi = (V, E) represents the i- 216

th molecule and yi is the ground-truth property 217

(e.g., categorical label or numerical score). Here, 218

V and E denote the node set and edge set, respec- 219

tively. The goal of molecular instruction tuning 220

is to fine-tune a LLM model fθ by fitting a set of 221

training instructions SD (i.e., (input, output) pairs) 222

constructed from D, so that the fine-tuned LLM 223

can be directly applied to make property predic- 224

tions for unseen tasks or molecules, i.e., Dtest = 225

{(Gj , yj)|j = 1, 2, ...,m} with D ∩Dtest = ∅. 226

While conceptually simple, successfully achiev- 227

ing molecular instruction tuning involves address- 228

ing several research challenges. C1: how can we 229

unify molecules of varying sizes, densities, and 230

domains into a consistent format, ensuring that im- 231

portant molecular information in D and Dtest is 232

consistently incorporated? C2: given that graph 233

structures are crucial for molecular analysis, as 234

verified in GNN studies, how can we effectively 235

include these structures in molecular instruction 236

tuning? C3: considering that molecule annota- 237

tion is notoriously expensive and time-consuming, 238

how can we enable the fine-tuned LLM to benefit 239

from few-shot scenarios where only a few labeled 240
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molecules are available in real-world applications?241

3.1 SMILES-based Molecular Instruction242

Tuning: A Unified Step243

To improve the generalization capability of fine-244

tuned LLM for MPP tasks (C1), prior models245

often utilize GNNs (Seidl et al., 2023) or graph246

transformer (Zhao et al., 2024) as encoders to247

map molecular graphs into hidden representations.248

When a graph encoder is well-trained, it can be249

used to map molecules in D or Dtest into a shared250

hidden space, providing a unified hidden expres-251

sion. However, as discussed above, this assumption252

may not hold in practice, as training a unified graph253

encoder for cross-domain molecules still remains254

an open-question (Liu et al., 2023a).255

To address this, we aim to employ the well-256

known graph-derived linear strings (Weininger,257

1988; Krenn et al., 2020) of molecular graphs,258

such as SMILES (Weininger, 1988), for instruc-259

tion tuning. Unlike GNN encoders, SMILES trans-260

lates molecules’ chemical structure into a string of261

atomic symbols and chemical bonds (single, dou-262

ble, or triple) based on a set of rules (Qian et al.,263

2023). This precise translation not only accounts264

for the graph structure within each molecular graph,265

but also generalizes readily to arbitrary molecular266

graphs, providing a universal expression founda-267

tion for different types of molecules. Following268

standard instruction tuning protocol (Christofidel-269

lis et al., 2023; Fang et al., 2023; Zhang et al., 2023;270

Liu et al., 2024; Li et al., 2024), the molecular in-271

struction set SD can be generated by the following272

prompt template T = {Q, I,R} based on D, re-273

garding as a zero-shot instruction template.274

### Instruction: {instruction}275

### Input: {inputs}276

### Response: {output}.277

Here, the instruction question Q, SMILES278

strings of query molecule I , and property label279

R are mapped to the {instruction}, {inputs}, and280

{output} components, respectively.281

3.2 Structure-Aware Molecular Instruction282

Tuning: Graph Structure Matters283

So far, we have illustrated how to incorporate graph284

structure within each molecule into instruction via285

the zero-shot instruction template T . However, this286

approach may result in subpar prediction perfor-287

mance due to the neglect of correlations between288

molecules. To address this, we introduce structure- 289

aware instruction tuning (C2), which aims to incor- 290

porate inter-molecular structures into the prompt 291

template. The high-level idea is to utilize simi- 292

lar molecules as demonstrations to enhance LLM 293

reasoning. 294

To achieve this, given a query molecule Gi ∈ D, 295

we identify its top-K nearest molecules in D based 296

on the following retrieval module. 297

NGi = topK(Gi, D,K), (1) 298

where NGi is the retrieved neighborhood set with 299

K molecules. topK() is a search algorithm based 300

on the similarity between molecules. Specifically, 301

we estimate the similarity between molecules by 302

calculating their Tanimoto coefficient (Tanimoto, 303

1958) based on their MACCS Keys (Durant et al., 304

2002). Notably, MACCS Keys, comprising 166 bi- 305

nary keybits, provides a unified representation for 306

molecules and has been widely adopted in many 307

molecule retrieval systems, such as USearch (Var- 308

danian, 2023). 309

Utilizing NGi , we can transform the zero- 310

shot template into a few-shot version Tshot = 311

{C, I,R}, where C represents the k-shot instruc- 312

tion question, extending Q with structurally simi- 313

lar molecule demonstrations extracted from NGi . 314

Specifically, let (mi, yi) represents the i-th simi- 315

lar molecule-property pairs in NGi . Additionally, 316

considering that the order of demonstrations may 317

significant impact prompt design (Mosbach et al., 318

2023), we arrange these k demonstrations in a de- 319

scending order based on their similarity scores. The 320

C is formally expressed as: 321

C = {Q, ((m1, y1), ..., (mi, yi), ..., (mk, yk))}.
(2) 322

Similar to T , the extended question C in the few- 323

shot instruction template Tshot will correspond to 324

the {instruction} of the template in Section 3.1. In 325

experiments, we empirically observed that includ- 326

ing the target property of molecular neighbors as 327

input in few-shot scenarios improves performance. 328

This approach is reasonable because Tshot serves as 329

a few-shot in-context prompt, akin to those widely 330

used in the NLP domain, where the most similar 331

neighbors are selected as demonstrations. 332

3.3 Hybrid Molecular Instruction Tuning: 333

Better Few-Shot Learner 334

Given the advanced structure-aware instruction 335

template Tshot, one can easily construct the in- 336

struction training set SD by applying Tshot on each 337

4



Figure 2: The performance on Cyp450 test dataset.

molecule in D. Then, we fine-tune a pre-trained338

LLM by optimizing the following training loss:339

L(θ) =
∑

(Ci,Ii,Ri))∈SD

− log fθ(Ri|Ci, Ii). (3)340

Here, fθ is a pre-trained LLM with parameter θ. In341

practice, we initialize fθ as LLaMA2-7b-chat (Tou-342

vron et al., 2023) and adopt QLoRA (Dettmers343

et al., 2024) to speedup the training.344

While Tshot appears effective, it may degrade345

the zero-shot reasoning capability of fine-tuned346

LLM due to the explicit graph structures among347

molecules. To verify this, we conducted a toy ex-348

ample by fine-tuning LLaMA2-7b-chat on different349

K-shot instruction sets. Specifically, Fig. 2 reports350

the zero-shot and one-shot inference results on the351

CYP450 dataset for K = 0 and K = 4.352

In Fig. 2, we can observe an obvious trade-off353

between zero-shot and one-shot performance with354

respect to the instruction set. For example, when355

fine-tuning LLaMA2 on the 0-shot instruction set356

constructed using the T template, the resulting357

0-shot_tuning model performs well in zero-shot358

scenarios but underperforms in one-shot scenarios.359

Conversely, when fine-tuning on the 4-shot instruc-360

tion set constructed using Tshot with K = 4, the361

resulting 4-shot_tuning model excels in one-shot362

settings but underperforms in zero-shot cases.363

This observation motivates us to introduce a hy-364

brid instruction set Sh
D, combining the strengths365

of both the zero-shot instruction template T and366

the few-shot instruction template Tshot. Specifi-367

cally, Sh
D is derived from a combination of 0, 1, 2,368

3, and 4-shot instruction templates. In Fig. 2, we369

can see that our hybrid instruction tuned models,370

0&4-shot_tuning and 0-4-shot_tuning, consistently371

outperforms others in both zero-shot and one-shot372

scenarios. Further details can be found in Sec-373

tion 4.3.374

4 Experiment 375

In our experimental framework, we aim to an- 376

swer three primary research questions: RQ1: Can 377

MolecularGPT effectively and robustly handle new 378

property prediction tasks through zero- and few- 379

shot ICL? RQ2: What is the optimal design for in- 380

context instruction set to improve MolecularGPT’s 381

generalization and ICL abilities during tuning? 382

RQ3: How does the number, order, and diversity 383

of in-context examples affect the performance of 384

MolecularGPT? 385

4.1 Experimental Setup 386

Datastes Consistent with the GIMLET setting, 387

we employ the MoleculeNet benchmark (Wu et al., 388

2018) and CYP450 (Li et al., 2018) datasets as 389

our downstream datasets, totally 657 MMP tasks. 390

More details about datasets can be found in Ap- 391

pendix A.1. We employ ROC-AUC as the evalua- 392

tion metric for classification tasks, while the Root 393

Mean Square Error (RMSE) for regression tasks. 394

Baselines Our baseline selection aligns with 395

the approach used in GIMLET (Zhao et al., 396

2024), which can be categorized into two pri- 397

mary types: language models for directly infer- 398

ence and graph representation models totally fine- 399

tuned on downstream tasks. The language models 400

include XVPLM (Zeng et al., 2022), MoMu (Su 401

et al., 2022), Galactica-125M (Taylor et al., 2022), 402

Galactica-1.3B (Taylor et al., 2022), and GIM- 403

LET. And the finetuned molecular representa- 404

tion models comprise GCN (Kipf and Welling, 405

2017), GAT (Velickovic et al., 2017), GIN (Xu 406

et al., 2019), Graphormer (Ying et al., 2021), and 407

Graphormer-p, which is pretrained on Graphormer 408

using datasets in GIMLET. We present the zero- 409

shot results of these language models and the fine- 410

tuned results of supervised models from GIMLET. 411

Additionally, we consider general large language 412

models: LLaMA-chat-7B and LLaMA-chat-13B as 413

our baselines, which demonstrate ICL capabilities. 414

4.2 Performance Evaluation 415

As the results presented in Tab. 1, 2 respectively, 416

MolecularGPT can achieve competitive perfor- 417

mance on classification and regression tasks under 418

both zero-shot and few-shot settings. We answer 419

the RQ1 with more details as follows. 420

① The MolecularGPT demonstrates superior 421

performance compared with other language 422

models in zero-shot learning. In comparison 423
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Table 1: Performance over Bio-activity, Toxicity, and Pharmacokinetic classification tasks. Highlights are the first,
second, and third best results of zero- and few-shot performances. In supervised finetuned models, we also mark
the highest and lowest results.

Method Model Size Type BACE HIV MUV Avg.bio Tox21 ToxCast Avg.tox BBBP CYP450 Avg.pha

XVPLM 110M 0.5126 0.6120 0.6172 0.5806 0.4917 0.5096 0.5007 0.6020 0.5922 0.5971
MoMu 113M 0.6656 0.5026 0.6051 0.5911 0.5757 0.5238 0.5498 0.4981 0.5798 0.5390
Galactica-125M 125M 0-Shot 0.4451 0.3671 0.4986 0.4369 0.4964 0.5106 0.5035 0.6052 0.5369 0.5711
Galactica-1.3B 1.3B 0.5648 0.3385 0.5715 0.4916 0.4946 0.5123 0.5035 0.5394 0.4686 0.5040
GIMLET 64M 0.6957 0.6624 0.6439 0.6673 0.6119 0.5904 0.6011 0.5939 0.7125 0.6532

0-shot 0.4911 0.6060 0.5554 0.5508 0.5481 0.4693 0.5087 0.3671 0.4198 0.3935
1-shot 0.4911 0.6060 0.5554 0.5508 0.5481 0.4954 0.5218 0.3671 0.4198 0.3935

LLaMA2-chat-7B 7B 2-shot 0.6930 0.6587 0.5085 0.6201 0.6052 0.5010 0.5531 0.5459 0.5807 0.5633
4-shot 0.7685 0.6781 0.4685 0.6384 0.6199 0.5025 0.5612 0.5423 0.6092 0.5758
6-shot 0.7180 0.7058 0.5133 0.6457 0.6334 0.5228 0.5781 0.5161 0.6145 0.5653

0-shot 0.6561 0.6797 0.4924 0.6094 0.5178 0.5382 0.5280 0.5630 0.4716 0.5173
1-shot 0.7534 0.6419 0.4828 0.6260 0.6011 0.5591 0.5801 0.5372 0.5995 0.5684

LLaMA2-chat-13B 13B 2-shot 0.7454 0.6694 0.4886 0.6345 0.5907 0.5371 0.5639 0.4633 0.5784 0.5209
4-shot 0.7471 0.7235 0.4792 0.6499 0.5750 0.5489 0.5620 0.5276 0.5555 0.5416
6-shot 0.7412 0.6911 0.5267 0.6530 0.5650 0.5527 0.5589 0.5669 0.5787 0.5728

0-Shot 0.6212 0.7128 0.6253 0.6531 0.5893 0.5669 0.5781 0.6373 0.8031 0.7202
1-Shot 0.7520 0.7172 0.6327 0.7006 0.6529 0.5968 0.6249 0.6999 0.8229 0.7614

MolecularGPT(ours) 7B 2-Shot 0.7218 0.7204 0.6338 0.6920 0.6573 0.5945 0.6259 0.7260 0.8275 0.7768
4-shot 0.7228 0.6893 0.6419 0.6847 0.6577 0.5978 0.6278 0.7168 0.8252 0.7710
6-shot 0.7181 0.6554 0.6561 0.6765 0.6629 0.5965 0.6297 0.7139 0.8289 0.7714

GCN 0.5M 0.736 0.757 0.732 0.742 0.749 0.633 0.691 0.649 0.8041 0.7266
GAT 1.0M 0.697 0.729 0.666 0.697 0.754 0.646 0.700 0.662 0.8281 0.7451

GIN 1.8M Finetuned 0.701 0.753 0.718 0.724 0.740 0.634 0.687 0.658 0.8205 0.7392
Graphormer 48M 0.7760 0.7452 0.7061 0.7424 0.7589 0.6470 0.7029 0.7015 0.8436 0.7725
Graphormer-p 48M 0.8575 0.7788 0.7480 0.7948 0.7729 0.6649 0.7189 0.7163 0.8877 0.8020

to language models under zero-shot inference,424

our model demonstrates enhanced performance425

across classification and regression tasks. In terms426

of GIMLET, MolecularGPT surpasses it in HIV,427

BBBP, and CYP450 classification datasets as well428

as in FreeSolv and Lipo regression datasets under429

zero-shot condition. Compared to the LLaMA-7B430

and LLaMA-13B, our models exhibit a significant431

improvement, an average improvement of 16.6%432

and 9.9% in ROC-AUC across all classification433

tasks and average decrease of 5.96 and 199.17 in434

RMSE across all regression tasks correspondingly,435

indicating the chemical knowledge have been ef-436

fectively imbued into LLaMA through our tuning.437

② MolecularGPT establishes a new bench-438

mark in few-shot ICL across all tasks and out-439

performs the SOTA supervised models in cer-440

tain conditions. When compared to the zero-shot441

learning, MolecularGPT demonstrates an average442

enhancement of 4.6% in ROC-AUC across all clas-443

sification tasks under one-shot condition. Com-444

pared to GIMLET, MolecularGPT exhibits an av-445

erage improvement of 5.5% and 5.8% on classifi-446

cation tasks under one-shot and two-shot settings447

respectively. Even by one-shot ICL, MolecularGPT448

displays comparable performance with GCN and449

Figure 3: Standard deviation for GIMLET and Molecu-
larGPT in response to 5 types of instructions.

GIN on 3 out of 7 classification datasets. By two- 450

shot ICL, MolecularGPT matches the performance 451

of GAT on 4 out of 7 classification datasets. Re- 452

markably, MolecularGPT even outperforms the 453

highest-performing finetuned model, Graphormer- 454

p, on BBBP dataset under two-shot condition with 455

ROC-AUC of 0.7260 compared to 0.7163. 456

③ The exceptional robustness of Molecu- 457

larGPT is validated across different tasks. Given 458

the diversity and flexibility of natural language, we 459

aim to evaluate the robustness of MolecularGPT 460

against various instructions. Adhering to the down- 461

stream datasets used in GIMLET, which provides 462

five distinct types of instructions. We calculate 463

the standard deviation of the ROC-AUC or RMSE 464
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Table 2: Performance on Physicalchemical regression
tasks. The highlight style is the same as Tab. 1

Method Type ESOL FreeSolv Lipo Avg.phy

XVPLM - - - -
MoMu 0-Shot - - - -
GIMLET 1.132 5.103 1.345 2.527

0-shot 7.227 15.912 2.329 8.489
1-shot 1.819 525.478 1.204 176.167

LLaMA2-chat-7B 2-shot 3.856 41.168 1.128 15.384
4-shot 5.940 66.593 1.112 24.548
6-shot 7.569 55.933 1.112 21.538

0-shot 281.617 321.313 2.194 201.708
1-shot 9.405 11.356 1.427 7.396

LLaMA2-chat-13B 2-shot 27.717 39.254 1.420 22.797
4-shot 643.408 9.589 1.462 218.153
6-shot 6.481 154.635 1.363 54.160

0-Shot 1.471 4.975 1.157 2.534
1-Shot 1.496 5.248 1.058 2.601

MolecularGPT(ours) 2-Shot 1.489 5.226 1.015 2.577
4-Shot 1.535 5.375 1.045 2.652
6-Shot 1.465 5.046 1.023 2.511

GCN 1.331 2.119 0.760 1.403
GAT 1.253 2.493 0.770 1.505
GIN Finetuned 1.243 2.871 0.781 1.632
Graphormer 0.901 2.210 0.740 1.284
Graphormer-p 0.804 1.850 0.675 1.110

metrics derived from these five instruction datasets.465

Comparative results with GIMLET is presented in466

Fig. 3. It is evident that our model exhibits supe-467

rior robustness compared to GIMLET across most468

tasks. This indicts the robustness of MolecularGPT469

that it genuinely comprehends complex instructions470

and can handle a range of property prediction tasks471

without requiring task-specific prompt designs.472

4.3 Tuning on Hybrid Instruction Set473

To investigate the RQ2, we conduct experiments to474

study the effect of hybrid instruction tuning set as475

presented in Fig. 4 and 5.476

④ Tuning on property descriptions without477

demonstrations can improve the zero-shot per-478

formance. As shown in the 0-shot_tuning in479

Fig. 4, 5, the model performed satisfactorily on480

some tasks under zero-shot inference but poorly481

on many tasks under few-shot inference. We spec-482

ulated that the zero-shot instruction set imparts483

some knowledge to LLaMA without significantly484

enhancing the model’s ICL ability.485

⑤ Providing the model with rich retrieved486

demonstrations would significantly improve its487

ICL ability. To test this, we fine-tuned the model488

on a 4-shot instruction dataset, represented by the489

4-shot_tuning in Fig. 4 and 5. The results indi-490

cate an improvement in the model’s ICL ability.491

However, the model’s zero-shot generalization re-492

mained subpar on many tasks. We surmise that the493

Figure 4: The performance of MolecularGPT on clas-
sifcation tasks tuning with different types of instruction
datasets. We inference them with 0, 1, and 2-shot ex-
amples. (0&4-shot indicates hybrid of 0 and 4-shot.
0-4-shot indicates mix of 0,1,2,3,4-shot. tuning_double
indicates double the instruction set size.)

Figure 5: The performance of MolecularGPT on re-
grassion tasks tuning with different types of instruction
datasets. The setting is same as in Fig. 4.

model may learn shortcuts from the label words of 494

the reference molecules rather than extracting the 495

true relationships between the molecular represen- 496

tations and their properties. 497

⑥ Mixed-shot instruction sets are promising 498

to optimize both zero-shot generalization and 499

ICL abilities. We developed two mixed instruction 500

datasets: a combined 0&4-shot and a comprehen- 501

sive mix of 0, 1, 2, 3, 4-shot (0-4-shot) instruction 502

datasets. As shown in 0&4-shot_tuning and 0-4- 503

shot_tuning in Fig. 4 and 5, models fine-tuned on 504

mixed-shot instruction datasets demonstrate a sig- 505

nificant performance improvement compared to 506

those fine-tuned on 0-shot or 4-shot instruction sets. 507

This trend is consistently observed across various 508

tested scenarios, indicating that our model derives 509

the most benefit from mixed-shot instruction sets. 510

⑦ Tuning on larger instruction set have ex- 511

hibited superior performance across different 512

tasks under both zero and few shot learning. 513

Models trained with larger datasets have exhibited 514

superior performance on multi functional tasks, as 515

evidenced by the improvements from GPT-2 (Rad- 516
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Figure 6: The performance of MolecularGPT on Classifcation (Cls) and Regrassion (Reg) tasks with different
in-context inference strategies. To show our model’s remarkable capability, we also add the performance of the
finetuned model, GAT.

ford et al., 2019) to GPT3 (Brown et al., 2020) and517

LLaMA2 (Touvron et al., 2023) to LLaMA3 (Meta,518

2024). To further enhance MolecularGPT, we dou-519

ble the size of the 0&4-shot instruction sets. The520

results represented by the 0&4-shot_tuning_double521

in Fig. 4 and 5 suggest that expanding the data scale522

enhances the model’s performance across various523

tasks either by zero-shot or few-shot learning.524

4.4 Hyperparameter Sensitivity Analysis525

To fully utilize the ICL ability of MolecularGPT,526

we now pay attention to the impact of number, or-527

der and diversity of in-context demonstrations to528

discuss the RQ3. The results are depicted in Fig 6.529

⑧ MolecularGPT gains significant enhance-530

ment with up to 2 demonstrations, but the531

marginal benefit diminishes with additional re-532

trieval molecules. We investigate the impact of533

the number (Ye et al., 2024) of retrieval demon-534

strations, ranging from 0 to 8 examples based on535

similarity. The results indicate significant improve-536

ment when provided with up to 2 examples on537

many datasets. However, the performance does538

not get further improvement with more retrieval539

molecules. We hypothesize that: 1) More noise540

will be introduced with the increase of examples541

that has lower similarity with the query. 2) The542

maximum input length of 512 tokens with at most543

4 examples in instructions constrains the model’s544

capability while handling more examples.545

⑨ Ascending order of similarity for demon-546

strations is sub-optimal compared to descending547

order especially with more demonstrations. We548

arrange the demonstrations (Lu et al., 2022; Zhao549

et al., 2021) in a ascending order, placing the most550

similar examples at the end of k-shot instructions.551

The results in Fig. 6 show that the ascending order552

is sub-optimal comparing to descending order, es-553

pecially with more demonstrations which may be 554

constrained by the model’s long context capability. 555

We also assume the model is more adaptable to 556

reasoning with descending order by learning most 557

related knowledge first. 558

⑩ Similar retrieved molecule demonstra- 559

tions provides better performance than diverse 560

demonstrations. To increase the diversity, we re- 561

trieve equal number of molecules from each cat- 562

egory (Ma et al., 2024). When the same num- 563

ber of examples is provided within instructions, 564

the retrieval approach based on similarity con- 565

sistently outperforms the one based on diversity 566

across all classification tasks as shown in Fig. 6. 567

The similarity-based methodology tends to pro- 568

vide examples that align more coherently with the 569

query molecules. In contrast, the diversity-based 570

approach offers a mix of positive and negative ex- 571

amples, which potentially introduce noise and cre- 572

ate ambiguity perplexing the language models. 573

5 Conclusion 574

In this study, we aim to equip the LLMs, particu- 575

larly the LLaMA, with an expanded knowledge of 576

molecular properties, enabling it to generalize to 577

out-of-domain prediction tasks through zero-shot 578

and few-shot ICL. We introduce MolecularGPT, 579

a model that has been instruction tuned on over 580

1000 prediction tasks. Furthermore, we investigate 581

the most effective types of instruction datasets for 582

optimizing the model during both training and infer- 583

ence stages. Our findings demonstrate that Molecu- 584

larGPT consistently outperforms baseline language 585

models in few-shot scenarios and even surpasses 586

supervised models on multiple datasets. In future 587

work, we plan to incorporate additional molecular 588

modalities and expand into other molecular-related 589

tasks such as molecule captioning. 590
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6 Limitation591

In our research, we utilize SMILES strings to rep-592

resent molecules. However, while effective, this593

approach overlooks the geometric structure infor-594

mation of real-world molecules, such as the 3D595

spatial position of each atom in a molecule. This596

limitation hinders our model’s ability to represent597

molecular structures. Meanwhile, our work fo-598

cuses solely on property prediction tasks and does599

not consider foundational tasks such as molecule600

optimization, molecule generation, and molecule601

captioning. This may restrict the potential appli-602

cations of our model in practical settings. Lastly,603

although our model is compatible with supervised604

GNN models for classification tasks, we still have605

some gaps with them in regression tasks as directly606

generating numbers remains a challenge for nowa-607

days foundational LLMs.608
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A Datasets867

A.1 Details of datasets868

We adhere to the dataset selections as outlined869

in GIMLET (Zhao et al., 2024). Moreover, con-870

sidering the importance and extensive research in871

the field of quantum mechanical properties, we872

have included an additional two quantum mechani-873

cal properties: Highest Occupied Molecular Or-874

bital(HOMO) and Lowest Unoccupied Molecu-875

lar Orbital (LUMO), from the QM9 datasets (Ra-876

makrishnan et al., 2014) as our instruction tuning877

datasets. To construct the instructions for these ad-878

ditional datasets, we employed the method in Mol-879

Instructions (Fang et al., 2023) and GIMLET (Zhao880

et al., 2024). Initially, we write a property de-881

scription for each task according to Wikipedia and882

chemistry papers. Subsequently, we employ GPT-883

4.0 (OpenAI, 2023) to generate instructions based884

on these seed examples, resulting in various human885

question-framing styles instructions. The compre-886

hensive list of tuning and downstream tasks are887

summarized in Tab. 3.888

A.2 Details of instructions889

Our instruction tuning datasets comprise three com-890

ponents: instruction, input, and output. The instruc-891

tion component includes a description of the prop-892

erty along with some retrieval examples. The input893

is the SMILES string of the query molecule, while894

the output is the property label of query molecule.895

Here are a few examples of few-shot instructions896

from three tuning datasets: ChEMBL bioassay897

activity dataset, CHEMBL Property dataset, and898

QM9 dataset.899

A 1-shot instruction tuning sample from900

CHEMBL Property datasets:901

"### Instruction: Aromatic rings (also known as902

aromatic compounds or arenes) are hydrocarbons903

which contain benzene, or some other related ring904

structure. Here are some examples.905

SMILES: Cc1ccc2ccccc2n1906

label: 2907

Please count how many aromatic rings exist in this908

molecule.909

### Input: Cc1ccnc2ccccc12910

### Response: 2"911

912

A 3-shot instruction tuning sample from913

ChEMBL bioassay activity datasets:914

"### Instruction: The assay is PUB-915

CHEM_BIOASSAY: NCI human tumor cell916

line growth inhibition assay. Data for the DMS 273 917

Small Cell Lung cell line. (Class of assay: confir- 918

matory), and it is Target assigned is non-molecular. 919

The assay has properties: assay category is 920

confirmatory; assay cell type is DMS-273; assay 921

type description is Functional. Here are some 922

examples. 923

SMILES: CC(C)C(N)=O 924

label: No 925

SMILES: O=CNC=Cc1ccccc1 926

label: No 927

SMILES: COC(=O)C#CC(N)=O 928

label: No 929

Is the molecule effective to this assay? 930

### Input: CNC=O 931

### Response: No" 932

933

A 4-shot instruction tuning sample from QM9 934

datasets: 935

"### Instruction: Lumo is the Lowest unoccupied 936

molecular orbital energy. Here are some examples. 937

SMILES: CC 938

label: 0.1 939

SMILES: CC(C#C)C#CC#C 940

label: -0.02 941

SMILES: CC#CC#CC#C 942

label: -0.05 943

SMILES: CC(C#C)C#C 944

label: 0.03 945

What is Lumo value of this molecule? 946

### Input: C1CC1 947

### Response: 0.1" 948

B Training Setup 949

To efficiently finetune the LLaMA2-chat-7B, we 950

employed QLoRA (Dettmers et al., 2024) approach. 951

To enhance memory utilization and speed up the 952

training process, we incorporated Deepspeed ZeRO 953

stage 2 (Rasley et al., 2020), FlashAttention-2 (Dao, 954

2023), and BFloat16 mixed precision techniques. 955

We set the learning rate to 3e-4 and the maximum 956

inputs length to 512 tokens. All models were 957

trained on 4 Tesla A800-80G GPUs and inferenced 958

on 1 RTX 3090 GPU. 959

C Detailed Experiment Results 960

C.1 The robustness of MolecularGPT 961

To evaluate the robustness of MolecularGPT across 962

diverse instructional phrasings, we adopt the in- 963

struction datasets constructed in GIMLET (Zhao 964
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Table 3: The overview of datasets

Splitting Data Class Dataset No. of Molecules No. of Tasks Task Type

Bioactivity assay ChEMBL bioassay activity dataset 365065 1048 Classification
Tuning tasks Physico-chemical CHEMBL Property 365065 13 Regression

Quantum mechanical QM9 267770 2 Regression

Pharmacokinetic CYP inhibition 16896 5 Classification
BBBB Blood-brain barrier penetration 2039 1 Classification

MUV PubChem bioAssay 93087 17 Classification
Bio-activity BACE-1 benchmark set 1513 1 Classification

HIV replication inhibition 41127 1 Classification

Downstream tasks Toxicity Tox21Toxicology in the 21st century 7831 12 Classification
Toxcast 8598 617 Classification

ESOL Water solubility 1128 1 Regression
Physico-chemical FreeSolv Solvation free energy 642 1 Regression

Lipo Lipophilicity 4200 1 Regression

Table 4: The zero-shot inference results under different types of instructions: the original, detailed, expanded,
rewritten, and shortened instructions.

Classification (AUC-ROC) Regression (RMSE)

Instruction type BACE HIV MUV Tox21 ToxCast BBBP CYP450 ESOL FreeSolv Lipo

Original 0.6212 0.7128 0.6253 0.5893 0.5669 0.6373 0.8031 1.471 4.975 1.157
Detailed 0.6222 0.6754 0.6090 0.6047 0.5710 0.6600 0.8076 1.457 5.036 1.158

Expanded 0.6175 0.7134 0.6017 0.6110 0.5688 0.6511 0.8053 1.474 5.023 1.154
Rewritten 0.6351 0.6893 0.6172 0.5955 0.5666 0.6427 0.8050 1.457 5.018 1.157
Shortened 0.6409 0.6697 0.6348 0.5924 0.5692 0.5374 0.8032 1.462 6.258 1.158

Standard deviation 0.0090 0.0183 0.0117 0.0081 0.0016 0.0448 0.0016 0.0071 0.4984 0.0015

Table 5: The zero- and few-shot performances of model which was fine-tuned on 0-shot instruction datasets.

Tasks Classification (AUC-ROC) Regression (RMSE)

Method Type BACE HIV MUV Tox21 ToxCast BBBP CYP450 ESOL FreeSolv Lipo

0-Shot 0.6033 0.6028 0.6010 0.5824 0.5839 0.6521 0.7684 1.767 5.185 1.163
1-Shot 0.6297 0.4671 0.5740 0.6016 0.5886 0.6436 0.7667 1.442 5.324 1.032
2-Shot 0.5903 0.4006 0.5665 0.5956 0.5867 0.6166 0.7556 1.438 5.482 1.053

0_examples 3-Shot 0.5344 0.4151 0.5705 0.5974 0.5757 0.6032 0.7457 1.379 5.617 1.016
4-Shot 0.5334 0.4393 0.5675 0.5942 0.5828 0.6197 0.7367 1.249 5.555 1.010
6-Shot 0.5314 0.3784 0.5312 0.5843 0.5723 0.5767 0.7374 1.241 5.961 0.979
8-Shot 0.4388 0.3768 0.5637 0.5724 0.5672 0.5187 0.7050 1.131 5.852 0.984

Table 6: The zero- and few-shot performances of model which was fine-tuned on 4-shot instruction datasets.

Tasks Classification (AUC-ROC) Regression (RMSE)

Method Type BACE HIV MUV Tox21 ToxCast BBBP CYP450 ESOL FreeSolv Lipo

0-Shot 0.5446 0.5514 0.6406 0.5425 0.5588 0.4709 0.6282 2.703 4.620 1.144
1-Shot 0.6773 0.5135 0.6240 0.6911 0.6140 0.6342 0.8239 1.644 5.062 1.019
2-Shot 0.6860 0.5626 0.6203 0.7053 0.6163 0.6563 0.8420 1.278 4.942 0.949

4_examples 3-Shot 0.7315 0.5577 0.6269 0.7096 0.6220 0.6533 0.8479 1.277 4.734 0.949
4-Shot 0.7264 0.5624 0.6238 0.7233 0.6243 0.6644 0.8525 1.311 4.978 0.956
6-Shot 0.7294 0.5768 0.6115 0.7339 0.6268 0.6553 0.8523 1.284 4.941 0.974
8-Shot 0.7327 0.6234 0.6079 0.7396 0.6271 0.6430 0.8554 1.254 4.889 0.967
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et al., 2024), which utilizes GPT-3.5-turbo to gen-965

erate four distinct types of instructions based on966

the original instruction: detailed, expanded, rewrit-967

ten, and shortened instructions. We present the968

zero-shot inference results derived from these di-969

verse instructions and compute their ROC-AUC or970

RMSE standard deviation, as outlined in Tab. 4.971

Our findings suggest that MolecularGPT exhibits972

robust performance across different instructional973

variations.974

C.2 The effect of instruction datasets975

To find a model with superior zero-shot general-976

ization and ICL capabilities, we assess the per-977

formance of models that have been fine-tuned by978

datasets that employ diverse mixture strategies.979

These strategies include single 0-shot instruction,980

single 4-shot instruction, combined 0&4-shot in-981

struction, combined 0,1,2,3,4-shot (0-4 shot) in-982

struction, and doubled scale of combined 0&4-shot983

instruction datasets.984

In the combined 0&4-shot methodology, we985

merge the 0-shot and 4-shot instruction datasets986

in an equal ratio of 0.5: 0.5. For the comprehensive987

0-4 shot mix, we integrate the 0,1,2,3, and 4-shot988

instruction datasets in a ratio of 0.6: 0.1: 0.1: 0.1:989

0.1. During these procedures, we ensure the ab-990

sence of duplicate query molecules and maintain991

the scale of the datasets. For the doubled scale of992

0&4-shot, we amalgamate the 0-shot and 4-shot993

instruction datasets in an equal proportion of 1: 1.994

The results of the zero- and few-shot inferences are995

presented in the following Tab. 5, 6, 7, 8 and 9.996

C.3 The effect of inference strategies997

We examine the efficacy of the order of the demon-998

strations within instructions. Tab. 10 illustrates the999

performance of arranging retrieval demonstrations1000

in ascending order. Notably, the phrasing in zero-1001

shot or one-shot instruction is consistent in both1002

ascending and descending order. Consequently, we1003

present the results of 2-shot and above. Addition-1004

ally, we examine the efficacy of retrieval based on1005

diversity, comparing it with a strategy that priori-1006

tizes similarity, as illustrated in Tab. 11. It’s impor-1007

tant to note that to ensure an equal distribution of1008

different class samples, evaluating even-numbered1009

shot is essential. Moreover, this strategy is specifi-1010

cally designed for classification tasks, as regression1011

tasks lack distinct classes.1012
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Table 7: The zero- and few-shot performances of model which was fine-tuned on 0&4-shot instruction datasets.

Tasks Classification (AUC-ROC) Regression (RMSE)

Method Type BACE HIV MUV Tox21 ToxCast BBBP CYP450 ESOL FreeSolv Lipo

0-Shot 0.6568 0.6728 0.5533 0.6067 0.5352 0.6086 0.7931 1.377 5.376 1.208
1-Shot 0.7393 0.6620 0.5954 0.6817 0.5809 0.7087 0.8231 1.468 5.034 1.042
2-Shot 0.7204 0.6485 0.5969 0.7004 0.5863 0.7135 0.8357 1.481 4.981 1.038

0,4_examples 3-Shot 0.7543 0.6459 0.6139 0.6964 0.5877 0.6997 0.8368 1.481 4.984 1.030
4-Shot 0.7593 0.6363 0.6026 0.7074 0.5938 0.7130 0.8390 1.413 5.149 1.028
6-Shot 0.7574 0.6150 0.5926 0.7156 0.5954 0.7145 0.8438 1.427 4.928 1.047
8-Shot 0.7474 0.6197 0.5942 0.7182 0.5962 0.7029 0.8459 1.479 4.846 1.031

Table 8: The zero- and few-shot performances of model which was fine-tuned on 0,1,2,3,4-shot instruction datasets.

Tasks Classification (AUC-ROC) Regression (RMSE)

Method Type BACE HIV MUV Tox21 ToxCast BBBP CYP450 ESOL FreeSolv Lipo

0-Shot 0.6521 0.7046 0.5788 0.5673 0.5612 0.6807 0.7539 1.228 5.835 1.176
1-Shot 0.7728 0.7049 0.5859 0.6639 0.6026 0.7220 0.8115 1.192 4.979 0.996
2-Shot 0.7393 0.6816 0.5866 0.6780 0.6085 0.7360 0.8232 1.218 4.985 0.983

0-4_examples 3-Shot 0.7793 0.6806 0.5993 0.6719 0.6066 0.7187 0.8323 1.223 4.979 0.960
4-Shot 0.7743 0.6807 0.5849 0.6817 0.6148 0.7272 0.8394 1.167 5.247 0.983
6-Shot 0.7724 0.6673 0.6044 0.6956 0.6179 0.7223 0.8452 1.165 5.219 0.976
8-Shot 0.8102 0.6724 0.6170 0.7043 0.6190 0.7125 0.8418 1.163 5.033 0.992

Table 9: The zero- and few-shot performances of model which was fine-tuned on double scale 0&4-shot instruction
datasets.

Tasks Classification (AUC-ROC) Regression (RMSE)

Method Type BACE HIV MUV Tox21 ToxCast BBBP CYP450 ESOL FreeSolv Lipo

0-Shot 0.6212 0.7128 0.6253 0.5893 0.5669 0.6373 0.8031 1.471 4.975 1.157
1-Shot 0.7520 0.7172 0.6327 0.6529 0.5968 0.6999 0.8229 1.496 5.248 1.058
2-Shot 0.7218 0.7204 0.6338 0.6573 0.5945 0.7260 0.8275 1.489 5.226 1.015

0,4_examples_double 3-Shot 0.7350 0.7038 0.6408 0.6542 0.5951 0.7191 0.8293 1.494 5.082 1.032
4-Shot 0.7228 0.6893 0.6419 0.6577 0.5978 0.7168 0.8252 1.535 5.375 1.045
6-Shot 0.7181 0.6554 0.6561 0.6629 0.5965 0.7139 0.8289 1.465 5.046 1.023
8-Shot 0.7331 0.6382 0.6469 0.6565 0.5985 0.6822 0.8228 1.433 5.033 1.028

Table 10: The few-shot inference results of MolecularGPT using a ICL template that organizes the retrieval
demonstrations in a ascending order.

Classification (AUC-ROC) Regression (RMSE)

Type BACE HIV MUV Tox21 ToxCast BBBP CYP450 ESOL FreeSolv Lipo

2-shot 0.7105 0.7126 0.6269 0.6553 0.5941 0.7245 0.8287 1.514 4.934 1.053
3-shot 0.7172 0.6884 0.6166 0.6489 0.5938 0.7090 0.8302 1.527 4.898 1.078
4-shot 0.7333 0.6732 0.6299 0.6474 0.5888 0.7130 0.8281 1.500 5.031 1.050
6-shot 0.7067 0.6423 0.6237 0.6447 0.5864 0.7040 0.8297 1.446 5.097 1.049
8-shot 0.7407 0.6311 0.6352 0.6452 0.5861 0.6555 0.8237 1.462 5.041 1.034

Table 11: The few-shot inference results of MolecularGPT, which retrieves demonstrations based on their diversity.

Classification (AUC-ROC)

Type BACE HIV MUV Tox21 ToxCast BBBP CYP450

2-shot 0.7039 0.6854 0.6135 0.6297 0.5819 0.7037 0.8081
4-shot 0.6688 0.6584 0.6255 0.6321 0.5826 0.6962 0.8100
6-shot 0.6782 0.6425 0.6213 0.6184 0.5797 0.7079 0.8133
8-shot 0.6832 0.6127 0.6118 0.6140 0.5848 0.6740 0.8070
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