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Abstract

In this study, we present a novel multi-stream sensory approach for decoding
video stimuli from human fMRI data. Leveraging a dataset of 1,000 short video
clips and associated fMRI data, we explore the integration of visual, textual,
and audio modalities to enhance the accuracy of brain decoding models. We
develop subject-specific encoding models that predict brain activity from modality-
specific embeddings and apply functional alignment across subjects to improve
model generalization. Our decoding framework employs Ridge regression within
identified regions of interest for each modality, followed by a retrieval process
based on Euclidean search. The results demonstrate that integrating multiple
sensory streams significantly enhances the performance of decoding models, with
the combined Video+Text+Audio modality achieving the highest identification and
retrieval accuracy.

1 Introduction

Vision is one of the primary modalities through which we interpret the external world, involving
complex dynamics related to movement, object recognition, tracking, and multisensory integration.
Understanding how the brain processes this information is a heavily researched yet still not fully
understood area. Recent advancements in brain encoding and decoding using non-invasive techniques
like EEG, MEG, and fMRI have led to the development of computational models that map external
stimuli to brain representations and vice versa, and the availability of large public fMRI datasets and
multimodal foundation models has facilitated these advancements [18]. Typically, encoding involves
using a pretrained model to generate modality-specific embeddings , which are then projected onto
brain activity via linear mapping techniques. For decoding, linear or non-linear models project brain
activity measured in concomitance with the stimuli into an embedding space representing the latter.
These embeddings can be used for tasks like retrieval—identifying the stimulus linked to a specific
brain activity pattern —or reconstruction of the stimuli themselves using generative models. Recent
literature has shown significant progress in fMRI-based image decoding [21} 13} [10} [12} [23} [19],
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Figure 1: Decoding pipeline that translates brain activity into modality-specific embeddings to retrieve
the corresponding video stimuli. Brain activity data is processed through modality-specific ROIs for
text, video, and audio. Decoding models, trained with Ridge regression, estimate embeddings for
each modality (z¢, 2, 24). These embeddings are then combined in a retrieval module to identify
and output the candidate videos that best match the estimated embeddings, effectively decoding the
original video stimulus.

particularly for image retrieval and reconstruction. Most methods are variations of the following
concept: the brain creates a representation of external stimuli, while we can obtain external stimulus
representation (i.e. image embeddings) using a computational model, then learning a mapping
between these two representations completes the decoding pipeline. These methods differ e.g. in the
generative models used, in how the models are conditioned, and in the techniques used to compute
the mapping between brain activity and embeddings—ranging from linear layers to neural networks.
However, they all revolve around the central idea that the brain computes something analogous to
image embeddings (ideally a representation in a manifold homomorphic the the model’s one) which
can be captured via fMRI measurements, and that with sufficient data, a mapping between brain
activity and computational model-derived embeddings can effectively link brain activity to external
stimuli. This concept also underpins language encoding and decoding [} 24} [15]], where large
language model embeddings serve as surrogates to approximate, through linear layers, the language
processing which occurs in the brain during listening and comprehension. Similar approaches have
shown promising results in decoding music from brain activity [8,13]]. The closest related work in this
domain is represented by [4} 22], which directly addresses the problem of video reconstruction from
fMRI data using a different dataset from the on employed here [26]]. This latter dataset comprises
18 training videos (each 8 minutes long) and 5 test videos of the same length, collected from 3
subjects. The approach in [4} 22] is based on subject-specific semantic mapping between fMRI data
and Contrastive Language Image Pretraining (CLIP) embeddings, along with attention based modules
to condition generative models for generating temporally coherent images to reconstruct videos. In
this work, we approach video decoding from a different perspective. We use a rich dataset [[6] of
1000 short video stimuli and concomitant fMRI data to build cross-subject models [11] for decoding
through video retrieval from fMRI data. We hypothesize that video processing in the brain can be
decomposed into three distinct streams: a visual stream (recognizing shapes, patterns, and objects
in images), a semantic stream (understanding what is happening in the video), and an audio stream,
which provides multisensory integration that aids in video comprehension. Based on this hypothesis,
our pipeline consists of three main components: First, we construct subject-specific encoding models
that predict brain activity from modality-specific embeddings (video, text, and audio) to identify
responsive brain regions (regions of interest, ROIs) for each modality. Next, we perform functional
alignment [14]] to create a robust training and testing set across subjects. Finally, we develop a set of
modality-specific decoding models that estimate embeddings from brain activity, which can be used
for video retrieval. We demonstrate how multistream integration enhances decoding performance
and provide examples athttps://mind2music.my.canva.site/decoding-video-nips-sito.
Figures [T]and ] depict our decoding and encoding frameworks, respectively.
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Figure 2: This figure shows the encoding pipeline that processes video data into modality-specific
embeddings and maps them onto brain activity. Text captions, video frames, and audio are extracted
and processed using pretrained models: XCLIP for text and video, and CLAP for audio, generating
embeddings (z;, 2., 24)- These embeddings are then used in Ridge regression models to predict brain
activity. The final step correlates the predicted brain activity with the actual brain data, visualized as
brain maps. The frozen symbols indicate that encoder parameters are fixed during training, while
Ridge regression models are trained for each modality.

2 Material and Methods

We analyzed a public available fMRI dataset acquired while ten subjects watched a video, originally
released as part of the Algonauts 2021 challenge [6l [16]. In the main experiment, participants viewed
1,000 training videos and 102 testing videos multiple times, all presented without audio. MRI
data were collected using a 3T Siemens Trio scanner, and preprocessing included standard fMRI
procedures such as slice time correction and normalization. The data were part of the Algonauts
2021 challenge, focusing on 1,000 fMRI-video pairs. For more detailed information about the
data collection and preprocessing, please refer to the appendix and the original article [6]. Our
primary objective was to identify brain regions responsive to identify potentially distinct brain regions
responsive to each specific modality. We extracted captions from videos using a video captioning
model [25], along with video frames and audio. These stimuli representations (semantic, visual, and
audio) were processed using pretrained computational models to obtain modality-specific embeddings.
Transformer-based models, such as XCLIP [17, 20], were used to extract video and text embeddings,
while CLAP [9] was employed to obtain audio embeddings. We then modeled the mapping between
brain activity and embeddings using Ridge regression. For each modality, the encoding models
took as input embeddings with a dimensionality of 512 and projected them onto estimated brain
activity, which had a dimensionality corresponding to the number of voxels (ranging from 10,836
to 21,573, depending on the subject). All models were subject-specific and trained using nested
5-fold cross-validation to prevent any potential circularity with the decoding models. The inner
loop was used for hyperparameter optimization, while the outer loop predicted held-out data from
the training set. Once the full training set was predicted, Pearson correlation was computed along
the samples dimension, resulting in a voxel-wise map of correlations between predicted and actual
brain activity for each modality. A threshold of 0.15, determined empirically, was then applied
to create a ROI for each modality, which was used in subsequent analyses.We found "activations"
in visual, auditory, language, and multimodal integration brain areas corresponds to video, audio,
and text inputs, indicating distributed processing across both unimodal and multimodal regions. To
account for variability in brain structure and function across individuals, we used a modality-specific
functional alignment strategy within a 5-fold nested cross-validation framework. This approach aligns
brain activity patterns across subjects for each modality (semantic, visual, and audio), maximizing
the similarity of functional responses while retaining modality-specific information. Following
recent literature [[L1} (7 2], we employed ridge regression as a regularization technique to improve
robustness and generalizability by addressing multicollinearity in the high-dimensional fMRI data.
This alignment method aimed to enhance the performance of our decoding models across multiple
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Figure 3: This figure presents three key performance metrics evaluating the effectiveness of de-
coding models across different single and combined modalities (Video, Text, Audio, Video+Text,
Video+Audio, Text+Audio, and Video+Text+Audio). From left to right: top1, top5 and identification
accuracy.

subjects. The above procedures resulted, for each modality, in a set of 9,000 training video-fMRI
pairs (900 pairs per subject) and 1,000 testing pairs (100 pairs per subject). We then developed
modality-specific decoding models by training cross-validated Ridge regression models within each
identified ROI. These models were used to estimate the modality embeddings from brain activity
(e.g., estimating text embeddings from regions responsive to text stimuli, and similarly for visual
and audio modalities). For video retrieval, we employed a Euclidean search strategy, selecting the
top-N closest test videos based on the L2 distance between the estimated and true embeddings for
each modality. Additionally, we implemented a modality integration-based search by concatenating
embeddings from different modalities, thereby allowing for a more comprehensive retrieval process
that leverages the combined information from multiple sensory streams. As evaluation we report three
metric useful to identity quality of retrieval and decoding. The first two are Top-1 and Top-5 accuracy,
which simply count how many times the first retrieved videos is exactly the stimulus or when the the
stimulus is correctly retrieved among the first 5 five retrieved videos. To complete the analysis and
evaluate the quality of the decoded embeddings, we also report the identification accuracy, originally
defined in [23]]. This metric is a pairwise measure based on correlation, where a value of 0.5 indicates
random predictions and a value of 1 signifies perfect predictions. The identification accuracy counts
the number of times the estimated embeddings correlate more strongly with the true embedding
than with other embeddings. This metric provides a robust evaluation of the quality of the estimated
embeddings, which is crucial for more complex tasks such as generation.

3 Results

The results, summarized in Fig. [3|and Tables 2] [T] suggest that multimodal integration significantly
enhances decoding and retrieval performance. On average, the Video+Text+Audio combination
achieved the highest identification accuracy, around 0.94, consistently outperforming other combina-
tions. Video+Text and Video+Audio combinations also performed well, with average accuracies of
0.92 and 0.91, respectively. All combinations performed above chance level, highlighting the effec-
tiveness of multimodal integration. In terms of video retrieval, the Video+Text+Audio combination
again provided the highest average Top-1 and Top-5 accuracies, confirming that combining multiple
modalities provides best results for decoding and retrieval tasks.

4 Discussion and Conclusions

In this study, we explored the advantages of a multi-stream approach for decoding brain activity,
focusing on integrating Video, Text, and Audio modalities. Combining multiple modalities enhances
decoding and retrieval performance compared to using individual modalities. The Video+Text+Audio
combination consistently outperformed other combinations, indicating that this multi-stream integra-
tion captures more comprehensive and complementary information.

To implement this approach, we leveraged state-of-the-art multimodal models like XCLIP and
CLAP. Growing evidence suggests that multimodal models more accurately capture brain patterns
than unimodal models, due to their ability to process richer and more informative embeddings
3 [I]. These embeddings reflect the multimodal sensory integration mechanisms that occur
in the brain, aligning with the brain’s tendency to synthesize data from various senses to build
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Figure 4: Some examples video stimuli (first frame) and retrieved pool of candidates from mixed
modality Video+Audio+Text, subject01

cohesive representations. This integration is particularly advantageous in neuroimaging contexts,
where understanding brain patterns relies on diverse information from multiple sensory domains.

Interestingly, the audio modality, despite the fact that videos were presented without sound, still
performed above chance level in both identification and retrieval tasks. This suggests that the brain
may integrate audio-visual information even in the absence of one modality, aligning with findings
from hearing and optical illusions where the brain uses available sensory data to construct a complete
perceptual experience. This observation underlines the complex and interconnected nature of sensory
processing in the brain, where information from one modality can influence the processing of another,
even when it is not directly presented.

This study is not without limitations. The reliance on pre-trained models for generating embeddings
may not fully capture the specific neural representations relevant to each participant, potentially
introducing model biases. As these models are trained on vast, diverse datasets, their internal
representations may inadvertently reflect biases or inaccuracies that could misinterpret individual
brain activity. This issue emphasizes the need to consider the ethical implications of decoding models,
particularly when dealing with sensitive or personal neural data. Implementing safeguards and ethical
guidelines, including transparent and interpretable models, can mitigate the risks of misinterpretation
or misuse of brain decoding technology.

Looking ahead, a promising direction for future work involves the development of generative models
that can not only decode brain activity into embeddings but also reconstruct the original stimuli. One
potential pathway could involve a two-step approach: first, a multimodal encoding model could be
developed, as we have done in this study. Then, building on prior work [[10], brain activity could be
decoded into a textual representation of the videos, which could be used alongside a generative model
in combination with a Bayesian approach to generate videos that match the brain activity measured.
This advancement would enable a more direct and intuitive understanding of how the brain encodes
and processes complex sensory information, providing deeper insights into the neural mechanisms of
perception.

As we advance in the field of brain decoding, the creation of generative models that reconstruct stimuli
from brain data could bring transformative applications across various fields, but also underscores
the importance of ethical considerations. Ensuring neural privacy and responsible use of decoding
models is paramount, especially as this technology continues to mature.
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A Appendix / supplemental material

A.1 Data details

The study involved ten participants, each undergoing five scanning sessions. The first session was
a localizer experiment where participants passively viewed short videos (unrelated to the main
experiment) to define visual ROIs. The remaining four sessions constituted the main experiment,
where participants focused on a fixation cross while viewing 3-second training and testing videos
without audio. Videos were presented in 13 runs per session, each lasting about 7 minutes. By
the end, participants had viewed 1,000 training videos three times and another set of 102 videos
ten times. Using data from the localizer experiment, nine non-overlapping ROIs were defined for
each participant, covering regions from early visual cortex (V1, V2, V3, V4) to higher-level areas
responding to objects and categories (EBA, FFA, STS, LOC, PPA). MRI data were collected on a
3T Siemens Trio scanner with consistent acquisition parameters across all sessions (TR = 1750 ms,
resolution = 2.5 mm?3, 54 slices, multi-band factor = 2). Preprocessing was done using fMRIprep,
including slice time correction, realignment, co-registration, and normalization to MNI space. Data
were interpolated from TR = 1750 ms to 1000 ms using the pchip method. FIR basis functions
modeled the BOLD signal for each voxel, extracting beta values from 5 to 9 seconds post-video
onset. These were averaged across time and used in subsequent analyses. Our study focused on data
from the Algonauts 2021 challenge, specifically 1,000 fMRI-video pairs, with the first 900 used for
training and the last 100 for testing.

A.2 Subject performances detail

Subject Video  Text Audio Video Video  Text Text Audio  Audio
Iden- Iden- Iden- Top-1  Top-5 Top-1 Top-5 Top-1 Top-5
tifica-  tifica- tifica-

tion tion tion
Accu- Accu- Accu-
racy racy racy

sub01 0952 0953 0.881 0300 0570 0.110 0260 0.190 0.450
sub02 0934 0.899 0.805 0.160 0.440 0.050 0.160 0.040  0.240
sub03 0949 0922 0805 0.160 0460 0.070 0.130 0.070  0.280
sub04 0916 0941 0.751 0.100 0340 0.050 0.120 0.070  0.250
sub05 0.885 0.891 0.785 0.080 0270 0.050 0.130 0.050  0.260
sub06 0915 0.893 0.835 0.150 0370 0.030 0.130 0.100  0.300
sub07  0.822 0.870 0.810 0.040 0.170 0.030 0.070 0.100  0.300
sub08  0.796 0.869 0.745 0.070 0.200 0.060 0.110 0.070  0.240
sub09 0940 0952 0.781 0.130 0.430 0.060 0.160 0.080  0.290
subl0  0.878 0900 0.780  0.090 0.270 0.040 0.150 0.040  0.230

Table 1: Single Modality Results
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Subject Video Video Text Video Video Video Video Video Text Text Video Video
+ +Au- +Au- + + +Text +Au- +Au- +Au- +Au- + +Text
Text  dio dio Text Text Top- dio dio dio dio Text + Au-
Id. Id. Id. +Au- Top- 5 Top- Top- Top- Top- +Au- dio
Acc  Acc  Acc dio 1 1 5 1 5 dio Top-
Id Top- 5
Acc 1
sub01 0962 0951 0953 0962 0.320 0.600 0.300 0570 0.110 0.270 0.320 0.600
sub02 0943 0.934 0901 0943 0.100 0.470 0.160 0.440 0.050 0.160 0.100 0.470
sub03 0956 0.950 0924 0956 0.170 0.520 0.160 0460 0.070 0.140 0.170 0.520
sub04 0931 0916 0942 0931 0.100 0.370 0.090 0.340 0.050 0.130 0.100 0.370
sub05 0.895 0.885 0.893 0.895 0.110 0300 0.080 0.270 0.050 0.130 0.110 0.300
sub06 0923 0916 0.896 0923 0.130 0370 0.150 0.370 0.030 0.140 0.130 0.370
sub07 0.834 0.823 0.873 0.834 0.040 0.140 0.040 0.170 0.030 0.070 0.040 0.140
sub08 0.813 0.796 0.870 0.813 0.070 0.210 0.070 0.200 0.060 0.110 0.070 0.210
sub09 0950 0.940 0953 0950 0.160 0.460 0.130 0430 0.060 0.150 0.160 0.460
sub10 0.889 0.879 0.901 0.890 0.090 0.280 0.090 0.270 0.040 0.150 0.090 0.280
Table 2: Mixed Modality Results
Identification Accuracy for Single and Combined Modalities
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Figure 8: Average Cosine similarity matrix between true and predicted test embeddings.
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Stimulus Retrieved

Figure 9: Some examples video (first frame) stimuli and retrieved pool of candidates from mixed
modality Video+Audio+Text, subjectO1

Stimulus Retrieved

Figure 10: Some examples video stimuli (first frame) and retrieved pool of candidates from mixed
modality Video+Audio+Text, subject01
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