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Abstract
We propose a framework for global-scale canopy
height estimation based on satellite data. Our
model leverages advanced data preprocessing
techniques, resorts to a novel loss function de-
signed to counter geolocation inaccuracies inher-
ent in the ground-truth height measurements, and
employs data from the Shuttle Radar Topography
Mission to effectively filter out erroneous labels in
mountainous regions, enhancing the reliability of
our predictions in those areas. A comparison be-
tween predictions and ground-truth labels yields
an MAE / RMSE of 2.43 / 4.73 (meters) overall
and 4.45 / 6.72 (meters) for trees taller than five
meters, which depicts a substantial improvement
compared to existing global-scale maps. The
resulting height map as well as the underlying
framework will facilitate and enhance ecological
analyses at a global scale, including, but not lim-
ited to, large-scale forest and biomass monitoring.

1. Introduction
Managing and conserving forest ecosystems worldwide is an
indispensable component of climate adaptation and climate
change mitigation strategies. Precise and up-to-date infor-
mation about the health and the carbon balance of forests
are, hence, critical to assess the current state of forests, to
trigger appropriate countermeasures against forest loss, and
to develop improved management strategies. In light of
growing carbon emissions and the necessity to comply with
the Paris Agreement on climate, understanding all factors
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Figure 1. A global canopy height map at a 10 m resolution.

affecting our climate is crucial. This includes an accurate
quantification of carbon sinks to monitor carbon distribu-
tion, gains, and losses. Despite decades of interest, this
quantification is still inadequate for detailed policymaking.

Traditional methods such as National Forest Inventory (NFI)
measurements, which are based on tracking and measuring
individual trees, have been fundamental in estimating forest
growth and loss, but are limited by their costly nature and
lack of global reach. This problem is worsened by consider-
ably varying forest monitoring efforts/techniques between
nations with different financial resources (Sloan & Sayer,
2015). Advances in both Earth observation and machine
learning have paved the way for the automation of forest
monitoring using satellite data, including optical, radar, and
LiDAR measurements, and nowadays enable more compre-
hensive global forest assessments (Hu et al., 2020).

A common way to assess the state of forests is to measure or
to estimate their height, resulting in so-called canopy height
maps. Such height estimates are then used to approximate
the biomass and, thus, carbon, stored in the trees. For this
reason, accurate high-resolution canopy height maps pro-
vide insights into forest cycles and dynamics and are vital
for forest management and climate change mitigation. Re-
cent research has addressed canopy height prediction with
classical machine learning approaches (Potapov et al., 2021;
Kacic et al., 2023) and deep neural networks (Schwartz
et al., 2024; Fayad et al., 2023; Lang et al., 2023). While
both global and regional canopy height maps are available,
there is a notable disparity in their quality.

We address this by providing a framework for generating
global-scale height maps based on satellite imagery. The
overall pipeline is based on a (fully) convolutional neural
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network that is trained using a novel loss function to counter
the label noise present in the ground-truth measurements.
The framework is also based on several simple yet crucial
preprocessing steps. We showcase the effectiveness of our
approach by providing a detailed global-scale canopy height
map with a resolution of 10 m, see Figure 1.

2. Background
Current canopy height estimation approaches often resort to
satellite data of the Sentinel-1, Sentinel-2 (European Space
Agency, 2024a;b), or the mission (Williams et al., 2006) as
input. As ground truth data, height measurements provided
by the Global Ecosystem Dynamics Investigation (GEDI)
mission (Dubayah et al., 2020) are commonly used.

2.1. Satellite Imagery

Satellite imagery for canopy height prediction primar-
ily comes from three missions: Landsat, Sentinel-1, and
Sentinel-2. The Landsat (Williams et al., 2006) program is
based on a series of Earth observation satellites—operated
by the NASA since 1972—and provides optical multi-
spectral image data with the latest version yielding images
with a pixel-resolution of 30 m. The current revisit time is
16 days, i.e., for a region on Earth, new data are collected
every 16 days. The satellites belonging to the Sentinel-1 (Eu-
ropean Space Agency, 2024a) and the Sentinel-2 (European
Space Agency, 2024b) missions—operated by the European
Space Agency (ESA) since 2014—offer different capabil-
ities. The Sentinel-1 satellites feature a synthetic-aperture
radar sensor, while the satellites of the Sentinel-2 mission
are equipped with a multi-spectral sensor. Both types of
satellites yield imagery at a resolution of 10 m and capture
images every 6 days at a global scale.

The aforementioned satellite missions provide new image
data on a regular basis and at a global scale. Single satellite
images, however, are typically not directly used for canopy
height prediction due to various challenges. Radar satellites,
such as the ones of the Sentinel-1 mission, can be signifi-
cantly affected by heavy rain and noise in their backscatter.
On the other hand, multi-spectral sensors, such as the ones
of the Sentinel-2 program, often struggle with cloud and
cirrus penetration. To overcome these limitations, temporal
composites are usually generated, which are based on aggre-
gating images over a specific time frame and on calculating
the per-pixel median (see, e.g., Figure 4; top left). Such
composites usually help to mitigate issues related to weather
and atmospheric conditions, thus ensuring more reliable and
consistent data for canopy height analyses.1

1It is worth noting that airborne data are often provided at a
much higher resolution (e.g., up to resolution of 10 cm). However,
these data are generally only available at a country-level, often
with limited public access. This is the reason why the satellite

Figure 2. An RGB image (based on multi-spectral image data col-
lected by one of the Sentinel 2 satellites) along with GEDI height
measurements (red/yellow dots) are shown for an area in France.

2.2. Sparse Height Measurements

The GEDI mission (Dubayah et al., 2020), operated by
the NASA, is based on a light detection and ranging (Li-
DAR) module, which is installed on the International Space
Station (ISS) and which is designed to measure global vege-
tation height. The system features three lasers: two “power
beams” scanning two tracks each and one “coverage beam”
scanning four tracks. These lasers produce measurements
with a 25 m footprint diameter, spaced 60 m apart. The
geolocation of each measurement is estimated by combin-
ing GPS and star tracker data for ISS positioning. The data
acquired via these sensors essentially yield (above-ground)
height measurements, i.e., for each location, the signals
returned in a diameter of about 25 m can be combined to ob-
tain a single height value/estimate. Figure 2 shows a satellite
image along with such (processed) GEDI height measure-
ments. Note that ground-truth GEDI height measurements
are only available for a fraction of the pixels.2

2.3. Generating Height Maps

The goal of a height estimation model is to provide a height
estimate for each location/pixel on Earth/in a given satel-
lite image, see again Figure 2. The output of three height
models is shown in Figure 3. In all three cases, satellite
imagery was used as input data. Potapov et al. (2021) pro-
posed the first high-resolution (30 m) global canopy height

images generally form the basis for global-scale height maps.
2Over its intended two-year lifespan, GEDI was expected to

scan 4% of the Earth’s (vegetation) height, making it the most
relied-upon source for canopy height measurements due to its
global coverage.
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Figure 3. Visual comparison of a regional map (Schwartz et al.,
2023) and two global maps (Lang et al., 2023; Potapov et al., 2021)
(heights from 0 m to 35 m; see Figure 1 for the colormap).

map in 2011 using satellite imagery of the Landsat pro-
gram (Williams et al., 2006). To obtain a height estimate
per pixel, a random forest model was trained using GEDI
height measurements. More recently, fully convolutional
neural networks and vision transformers have been used to
generate height maps at a country-level using Sentinel-1/-2
data, such as the maps provided by Schwartz et al. (2023)
and by Fayad et al. (2023), which both exhibit a resolution
of 10 m.3 Using similar techniques, Liu et al. (2023) devel-
oped a canopy height map for Europe using 3m resolution
commercial satellite imagery and so-called airborne laser
scanning (ALS) data as ground truth. The most recent wall-
to-wall (i.e. with global coverage) height map was provided
by Lang et al. (2023), who also used Sentinel-1/-2 data with
a resolution of 10 m and GEDI labels for training.

Hence, several regional (Schwartz et al., 2023; Fayad et al.,
2023; Liu et al., 2023) as well as two wall-to-wall height
maps (Potapov et al., 2021; Lang et al., 2023) have been
proposed in the recent past. Note that the quality of regional
maps is generally higher compared to one of the global maps.
In this work, we close this quality gap by providing a wall-
to-wall canopy height map with a resolution of 10 m, whose
quality is comparable with the ones of the local products,
while providing height estimates at a global scale.

3. Approach
We introduce a methodology designed to produce high-
quality, high-resolution global forest canopy height maps,
addressing the previously mentioned challenges. Selecting
appropriate input and label data is crucial. Next, we detail
the corresponding selection and preprocessing process, our
model architecture, and the training approach. The overall
pipeline is provided in Figure 4 and comprises the follow-
ing steps: (A) data collection and preprocessing, (B) model
training, and (C) global-scale inference.

3.1. Data Collection and Preprocessing (A)

For the Sentinel-1 data, we adopt a methodology similar to
that used by Schwartz et al. (2024), i.e., we calculate the per-

3Such data products are often based on manual preprocessing
steps that are tailored to the specific needs of the region at hand.

pixel median for images taken during the summer leaf-on
season (April to October 2020 in the northern hemisphere
and October 2019 to April 2020 in the southern hemisphere).
For the Sentinel-2 data, a distinct method is necessary due
to significant cloud coverage in some areas, especially in
rainforest regions. Here, we resort to a cloud reduction
algorithm adapted from Braaten (2024) to minimize cloud
artifacts, cloud shadows, and cirrus in the data. In total, we
consider 14 channels/bands (4 from Sentinel-1 and 10 from
Sentinel-2). We refer the reader to Appendix A.2 for the
implementation details and to Appendix D for examples. As
ground-truth labels, we resort to the data provided by the
GEDI mission. In particular, we make use of the so-called
RH100 metric, which measures the height at which 100%
of the returned signals are registered. To enhance the quality
of these labels, we consider various filtering steps, such as
distinguishing between night and daytime shots to avoid
solar radiation disturbing the height measurements. The
total volumes of the preprocessed Sentinel-1 and Sentinel-2
images and the GEDI data are 45 TB and 1 TB, respectively.

Typically, in the context of GEDI, the canopy height is cal-
culated as the difference between the first and last contact
point of the signal (see Figure 5). In areas with steep slopes,
however, this approach often inaccurately treats unforested
slopes as high canopy or leads to a significant overestima-
tion of tree height, see Figure 5 for an illustration of the
latter issue. To mitigate the impact induced by incorrect
canopy height values in mountainous areas, we resort to
data from the Shuttle Radar Topography Mission (SRTM),
which has mapped the Earth’s surface topography with ap-
proximately 1 arc second resolution (about 30 m). It is
important to note the distinction between the surface return,
which is the initial contact point for measurements (such as
tree canopies or building surfaces), and the terrain return,
which is the actual ground level. The SRTM data, capturing
the surface return, show that forest edges reflect a height
change equal to the tree height, thereby complicating slope
measurement filtering. Hence, for training, we exclude all
GEDI measurements where the corresponding SRTM slope
exceeds 20◦.4

Overall, we generate data samples by selecting satellite
image tiles uniformly at random. For each image, we extract
(the same number of) patches of size 512 × 512 pixels
and for each such patch, we extract the associated GEDI
height measurements as labels, resulting in about 10 to 400
height measurements per patch. Overall, 100 000 patches
are extracted, out of which 80% are used for training, 10%
for validation, and 10% for testing. Patches extracted from
an image tile belong to only one of these three sets, ensuring
no overlap. More details are provided in the appendix.

4As we do not want to discard any valid measurement, we apply
a 20◦filter threshold (a forest edges with trees up to 40 m in height
already corresponds to a slope of 15◦).
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Figure 4. Our approach to generate height maps at a global scale: (A) data collection and preprocessing, (B) model training, and
(C) global-scale inference. Initially, image composites based on Sentinel-1 and Sentinel-2 imagery are constructed and corresponding
GEDI measurements as well as SRTM data are collected. After training the model using hyperparameter grid search, it is applied in a
distributed manner, with the canopy height estimates being subsequently reprojected and made available through streaming services.

Figure 5. The GEDI instrument records the signals returned from
the ground within a 25 m diameter. The height is then essentially
computed based on the differences of the first and last signals.
While satisfying height values are obtained for most areas, this
often leads to inaccurate height measurements for slopes.

3.2. Model Training (B)

Next, we describe the model architecture and the technical
details of the training and hyperparameter tuning process.

3.2.1. MODEL ARCHITECTURE & PARAMETERS

Let X = Rnc×w×h be the input space containing images
with nc channels (in our case w = 512, h = 512, and
nc = 14) and let Y = Rw×h be the output space. The
goal is to train a height estimation model f : X → Y
that assigns one height estimate to each of the input pixels.
Given the global application scope, achieving a balance
between prediction accuracy and inference time is essential.

Following Schwartz et al. (2024), we resort to the well-
known U-Net architecture (Ronneberger et al., 2015), which
is a semantic segmentation model. We set the number of
output classes to one and make use of a linear activation
for the final layer in order to estimate the GEDI heights.
We also replace the original architecture’s backbone by a
ResNet50 (He et al., 2016) backbone. We optimize the
model weights using the AdamW (Loshchilov & Hutter,
2017) optimizer with a weight decay of 0.001, a batch size
of 32, and an initial learning rate of 0.001. We also re-
sort to a linear learning rate warm-up for the first 10% of
the iterations and a linear learning rate scheduler for the
remaining 90% of the iterations. To address the skewed
label distribution (also see Section 4.2) in our training set,
a weighted sampler is used. The validation set was used
for hyperparameter selection. We refer to the appendix for
more details related to the hyperparameter search and the
training process.

3.2.2. SHIFT-RESILIENT LOSS

When inspecting GEDI measurements, it can be observed
that their geolocation is not always precise, i.e., a system-
atic pattern in geolocation errors is often given in the data,
characterized by consistent shifts in each track of measure-
ments, see Figure 6. These shifts are problematic since
correct predictions made by a model might be considered
to be wrong by standard loss functions. A recent approach
employs a high-resolution (1m) digital terrain model (DTM)
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Figure 6. The geolocations of GEDI measurements often exhibit a
systematic shift, leading to faulty ground-truth labels (each circle
shows a height measurement; background image: Google Maps).

to individually correct GEDI measurements based on their
ground return (Schleich et al., 2023). While this method
enhances the geolocation accuracy of GEDI measurements,
it is not feasible for global-scale applications due to a lack
of up-to-date DTMs at a global scale.

We propose a shift-resilient loss function tailored to this
learning scenario that can be added on top of any other
regression loss function. The basic idea is that we allow each
track to be shifted in any direction by a magnitude smaller
than a radius r > 0 and select the shift with the lowest
associated loss. More specifically, for a given input instance
I ∈ X , let TI = {t1, . . . , tn} be the corresponding set of
GEDI tracks containing the (potentially shifted) ground-
truth height measurements. Here, each of the tracks t ∈
TI is composed of a set t = {m1, . . . ,mnt} of ground-
truth measurements and each such measurement m ∈ t
is represented by m = (mx,my,ml), where mx and my

depict the pixel coordinates and ml the height value. Note
that the measurements belonging to one track are on a “line”.
For example, the “GEDI” input image patch on the left hand
side of Figure 4 contains five tracks, where each white dot
on a track represents one measurement.

For a track t ∈ TI in a set of tracks TI associated with an
input image I ∈ X , we define tI ∈ Y as

tI(x, y) :=

{
ml if ∃m ∈ t s.t. (x, y)=(mx,my),

0 otherwise.
(1)

For each such tI , we also define a t0I ∈ {0, 1}w×h as

t0I(x, y) :=

{
1 if tI(x, y) ̸= 0,

0 otherwise.
(2)

For an I ∈ X with corresponding height estimates f(I), the
(non-shifted) loss LNS can be computed as

LNS (f(I), TI) :=
1

N

∑
t∈TI

L
(
f(I)⊙ t0I , tI

)
, (3)

where N =
∑

t∈TI
|t|, ⊙ the element-wise Hadamard prod-

uct, and L : Y × Y → R+ a standard (pixel-wise) loss for
regression (e.g., L2 loss).

As mentioned above, the geolocations of the GEDI measure-
ments are often not precise. Hence, the loss function LNS is
not an ideal choice to assess the quality of f(I) since f(I)
would be compared with ground-truth values inaccurate in
their geolocation, potentially leading to a high loss although
the model output might be correct. Note, however, that the
shift is (relatively) consistent accross all the GEDI mea-
surements belonging to the same track. Hence, to compen-
sate for possible (unknown) systematic geolocation shifts
δ = (δx, δy) ∈ Z2 of the GEDI measurements belonging to
the same track, we define the following shifted ground-truth
targets tI,δ(x, y) := tI(x−δx, y−δy) (measurements close
to any of the borders are handled appropriately). Then, we
consider the following (shifted) loss function:

LS (f(I), TI) :=
1

N

∑
t∈TI

min
δ

L
(
f(I)⊙ t0I,δ, tI,δ

)
(4)

s.t.
√
δ2x + δ2y ≤ r.

Thus, all shifts meeting the constraint are considered, and
the one with the lowest pixel-wise loss is chosen.5 In our
case, we choose the pixel-wise Huber loss for L, as it is
more robust to outliers than the L2 loss. The variable r is a
user-defined parameter specifying the allowed shift radius.
For the GEDI measurements, it makes sense to restrict r
to about

√
2 as 80.8% of the GEDI tracks exhibit a mean

geolocation error below 10 meters (Tang et al., 2023).

3.3. Global-Scale Inference (C)

After training, the model is deployed globally by partition-
ing the Earth into patches of size 312 × 312 pixels. For
predictions, we consider image patches of size 512× 512
pixels, i.e., we include 100 pixels at each border for context
(the predictions within these borders are ignored for the final
map/mosaic). The computational process consumes approx-
imately 1 500 GPU hours on a GPU cluster with various
GPU devices (e.g., Nvidia RTX3090s and A100s).

For an efficient visualization of the map, we resort to sev-
eral postprocessing steps. Initially, we standardize the map
projection across all predictions to the EPSG:3857 (Web
Mercator) projection. Subsequently, we convert predictions
into the cloud optimized GeoTiff (COG) format. This con-
version step involves, among other things, data compres-
sion and the creation of high-level overviews. These steps
are computationally very demanding, with reprojection and
COG creation requiring about 81 000 CPU hours.

Finally, we resort to a web map service (WMS) to stream the
canopy height map to any geographic information system
software. We visualize the map using a magma color ramp,

5In case there are fewer than ten measurements available in a
track tI , we do not allow shifting for that track, as it is hard to
estimate the systematic shift with only a few measurements.
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Table 1. Comparison of our height map with two publicly available
global-scale height maps (Potapov et al., 2021; Lang et al., 2023).

FILTER METRIC UNIT LANG POTAPOV OURS

MAE m 6.47 6.92 2.43
MSE m2 74.70 85.58 22.41

NO RMSE m 8.62 9.25 4.73
RRMSE 1.39 2.38 0.53
MAPE 1.01 0.97 0.22

MAE m 8.80 10.01 4.45
MSE m2 121.51 154.45 45.12

ml > 5 RMSE m 11.02 12.43 6.72
RRMSE 1.02 1.77 0.49
MAPE 0.76 0.77 0.28

a common choice for depicting canopy heights. A high-level
overview of the final map is presented in Figure 1 (a more
detailed version can be found in the appendix).

3.4. Source Code & Canopy Height Map

Our source code, as well as detailed documentation, are
publicly available on GitHub.6 The induced global canopy
height map is accessible through the Google Earth Engine
(see Appendix F).

4. Results
We provide a comparison of our height map with two
other global height map products commonly used in the
field (Potapov et al., 2021; Lang et al., 2023) and with one
regional height map that has recently been produced for
France (Schwartz et al., 2023). We also analyze the errors
still made by our model and the impact of key filtering steps.

4.1. Comparison of Height Maps

We resort to several performance metrics as well as to visual
examples in order to compare the quality of the height maps.

4.1.1. METRIC-BASED COMPARISON

We consider the mean absolute error (MAE), the mean
squared error (MSE), the root mean squared error, the rel-
ative root mean squared error (RRMSE), and the mean ab-
solute percentage error (MAPE) to asses the quality of the
different height map products (all maps are compared using
the same non-shifted GEDI data). All numbers the provided
are obtained using the test area (see Appendix B). No test
instances have been used for training and model selection.

The results are shown in Table 1. As Lang et al. (2023) and
Potapov et al. (2021) both use a forest mask, the metrics are
shown with no filters applied as well as only for GEDI mea-

6https://github.com/AI4Forest/Global-Canopy-Height-Map

surements larger than 5 m. The top part of the table presents
the results without any additional filter being applied to the
GEDI data. It can be seen that our height map yields a
significantly smaller MAE, standing at 2.43 m, compared
to the maps of Lang et al. (2023) and Potapov et al. (2021),
which result in an MAE of 6.47 m and 6.92 m, respectively.
Similar improvements are given for the other metrics. Note
that these values do not account for the fact that a GEDI
label of 3 m corresponds to the ground, but most height
maps resort to forest masks in order to set the corresponding
height values to 0 m. This results in a consistent 3 m error
for all accurately classified ground predictions. To address
this, we also provide a comparison using only the GEDI
height measurements larger than 5 m (ml > 5). For these
filtered data, a similar quality gain of our map compared to
the other two existing height map products can be observed.

4.1.2. VISUAL COMPARISON

Next, we compare the maps using various visual examples.
Here, visual quality refers to a map’s appearance, particu-
larly at forest edges, patches, and in terms of “resolution”.
Some examples are given in Figure 7. In addition to the
two global height maps (Lang et al., 2023; Potapov et al.,
2021), we also consider the regional map for France recently
proposed by Schwartz et al. (2023).

We start with a comparison of the two global map products
and our map. The map by Lang et al. (2023) generally yields
a smoother texture compared to our map, leading to some
loss of detail. For instance, it sometimes fails to accurately
depict forest structure (as it can be seen, e.g., in the first
column). The map also yields the highest predictions, which
sometimes leads to fewer details in low-height areas (visible
in, e.g., the fourth column). The map of Potapov et al. (2021)
is derived from Landsat data with a resolution of 30 m.
Hence, naturally, it appears to be more coarse compared to
the other maps (which are based on Sentinel-1/Sentinel 2
imagery with a resolution of 10 m). It also struggles with
capturing forest variances. In particular, it often renders
forest areas using an almost uniform height and, thus, does
not capture smaller forest patches and fine structural details.
This is, for instance, visible in the fifth and the last column
of the table. In contrast, our map often more accurately
identifies fine structural details, such as the pathways and
small forest patches (see, e.g., the first and the fifth column).

Comparing our height map with the regional map for France
provided by Schwartz et al. (2023), we observe notable
similarities between both maps. Compared to the other
two global maps, the most significant distinction lies in
the ability of these two maps to identify fine structures
such as forest gaps, roads within forests, and adjacent forest
areas. For instance, in the fifth column, our map successfully
identifies multiple gaps and roads, a detail both global maps

6
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Figure 7. Visual comparison of our map with two global height maps (first four columns) (Lang et al., 2023; Potapov et al., 2021) and a
regional map for France (Schwartz et al., 2023) (last four columns). The first row provides high-resolution Google Maps imagery for
visual context. Our canopy height map shows an improvement compared to existing global canopy height maps in terms of clarity and
detail for all eight examples. The visual quality of our map for the four examples in France is close to the one of the regional map (heights
from 0 m to 35 m; see Figure 1 for the colormap).

do no capture. Notably, even the regional map fails to
accurately depict the gap line in the upper half of the image.7

4.2. Error Analysis & Filtering Steps

Next, we analyze the remaining errors in more detail as well
as the effect of the SRTM filtering step.

4.2.1. UNDERESTIMATION OF HIGH HEIGHTS

In Figure 8, a scatter plot comparing GEDI ground-truth
measurements and our height estimates is provided. The
logarithmic scale of density in the scatter plot illustrates
the label imbalance present in the GEDI data, with a mean
height of 6.33 m and a standard deviation of 7.17 m. Mea-
surements at 40 m are approximately 423 times rarer than
those at 3 m, and 90% of the measurements are below 14 m,
showing a pronounced bias towards lower height measure-
ments. The use of the shifted loss function significantly re-

7This enhanced detail in our map could be attributed to the
shifted loss function, which makes the model more resilient against
the label noise present in the ground-truth GEDI measurements.
This seems to effectively reduce smoothing at ambiguous locations.

duces completely incorrect predictions (i.e., errors “located”
close to the x- or y-axis), which are typically prevalent in
canopy height maps. However, our model still underesti-
mates the ground-truth measurements, which is especially
the case for high heights (e.g., ml > 30 m). Note that this
is a common problem across the available height maps.

Figure 9 presents boxplots for all three global maps, where
the errors are sorted according to the ground-truth GEDI
height measurements in bins of 10 m. Our map shows signif-
icantly lower error rates for vegetation heights under 20 m
compared to the other two maps. For heights up to 10 m,
the error rate for the map of Potapov et al. (2021) is compa-
rable to that of the map of Lang et al. (2023). However, for
heights greater than 10 m, it deteriorates, generally falling
5–10 m short of both other maps. While our map shows an
improved accuracy for heights up to 20 m, this advantage
does not extend to greater heights, where our errors align
more closely with those of Lang et al. (2023).8 Across all

8The approach of Lang et al. (2023) strongly aimed at address-
ing the underestimation of high heights/tall trees, which results in
the overestimation of smaller heights, as indicated by the +20 m
whiskers in the 10 m to 30 m height ranges.
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Figure 8. Scatter plot showing height estimates versus ground-truth
GEDI height measurements (R2: 0.72; log scale).

height bins, our map consistently shows the lowest variance,
particularly notable in trees up to 30 m, where the reduction
in variance is significantly prominent.

4.2.2. SRTM FILTERING FOR MOUNTAINOUS REGIONS

We resort to a filtering step for the GEDI height measure-
ments for mountainous regions using SRTM data, see Sec-
tion 3.1. While the SRTM provides valuable surface topog-
raphy data, it is important to note that it captures surface
elevation rather than pure terrain elevation. Our use of
SRTM data is, due to this limitation, not a perfect solution
for improving height estimation in mountainous regions, see
Figure 10. However, incorporating SRTM data still repre-
sents an improvement over not addressing the topographical
challenges at all. Hence, the implementation of a filter
based on SRTM data predominantly ensures the exclusion
of unrealistically high canopy predictions in steep terrains.

5. Conclusion
We propose a comprehensive framework for generating pre-
cise height maps at a global scale, utilizing both Sentinel and
GEDI data for training. Our framework is built upon fully
convolutional neural networks and utilizes cloud-free satel-
lite imagery composites, a novel loss function designed to
mitigate GEDI geolocation inaccuracies, and several prepro-
cessing steps. It enables the generation of high-resolution
(10 m) global-scale height maps that stand on par with or
even surpass the quality of specialized regional height map
products. Such height maps play a crucial role in under-
standing Earth’s carbon dynamics and are instrumental in
addressing climate change mitigation efforts.

Figure 9. Top: Distribution of GEDI measurements (log scale).
Bottom: Evaluation of the errors given different height ranges
from 0 m to 60 m. Here, negative errors indicate that the estimates
are smaller than the ground-truth GEDI measurements.

Figure 10. Visual illustration of the impact of the SRTM filtering
step. The SRTM filtering drastically reduces the overestimation of
high heights in mountainous areas (heights from 0 m to 35 m; see
Figure 1 for the colormap).
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Impact Statement
This work aims to enhance the accuracy of forest monitor-
ing through machine learning techniques. Currently, forests
absorb approximately half of the CO2 emissions generated
by human activities and play a crucial role in mitigating
global warming (Friedlingstein et al., 2022). However, they
are increasingly vulnerable to the impacts of climate change
and direct land use changes, such as deforestation and degra-
dation (Anderegg et al., 2022). In line with the UN’s Sus-
tainable Development Goals (SDGs)9, the Bonn Challenge
on forests10, and the Glasgow Declaration of halting forest
loss, managing and conserving forests is an indispensable
component of climate adaptation and mitigation strategies.
Moreover, numerous private entities engage in carbon credit
investments, financing projects for forest growth and tree
planting within the voluntary carbon market. Accurate mon-
itoring of these projects is essential to ensure their additional
value and permanence, thereby mitigating potential leakage
effects.11

Forest conservation, regeneration, afforestation, and refor-
estation are key ingredients of climate mitigation policies in
future scenarios that meet the goals of the Paris Agreement
on climate.12 Up to now, the means to assess forest carbon
stocks and their changes over time has been through labor-
intensive field inventories. Although inventories provide
robust estimates of carbon stocks at national scale, their
sampling is too sparse to allow monitoring of regional and
local changes, and their infrequent revisit cycle does allow
to capture shocks causing abrupt forest loss like fires, in-
sects attacks, windthrown events. Moreover, most tropical
forested countries do not have an inventory and use default
growth rates and simple methods to estimate their forest
carbon changes (Grassi et al., 2022).

Precise and up-to-date wall-to-wall high-resolution infor-
mation about the structure, health, and carbon stocks of
forests in the world is critical to assess the current state of
forest carbon sinks, predict their future state, and trigger
appropriate measures against forest loss. The framework
developed in this work aids in providing a consistent and
global height map utilizing publicly available satellite data
from optical, radar, and GEDI spaceborne sensors. This map
can be used as a reference to derive more accurate biomass
carbon stocks, as a baseline for policymakers to make more
accurate decisions about forest management, and further
related policies.

9https://sdgs.un.org/2030agenda
10https://www.bonnchallenge.org
11https://www.theguardian.com/environment/

2023/jan/18/revealed-forest-carbon-offsets
-biggest-provider-worthless-verra-aoe

12https://www.ipcc.ch/report/sixth-assessm
ent-report-workinggroup-3/
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A. Data
A.1. Sentinel-1

For Sentinel-1, we use all available images from the Sentinel-1 Ground Range Detected (GRD) dataset, taken between April
and October 2020 for the northern hemisphere, and between October 2019 and April 2020 for the southern hemisphere (Eu-
ropean Space Agency, 2024a). This difference in time frame accounts for the varying seasonality. Summer leaf-on images
are particularly useful for estimating canopy height, so we aim to obtain a summer leaf-on composite for each hemisphere.

We use Sentinel-1 satellite images acquired in both VV (Vertical Transmit, Vertical Receive) and VH (Vertical Transmit,
Horizontal Receive) polarization. Given the substantial differences in the data acquired during ascending and descending
satellite orbits, we categorically separate the images from different orbits. Although Sentinel-1 is mostly unaffected by
clouds and general weather, using single images as input data for the model is insufficient. Sentinel-1 images often encounter
issues with noise (e.g., speckle or thermal noise), and heavy rain can disrupt image quality. We follow a common approach
for addressing these issues (which we follow) is to use the temporal per-pixel median, which effectively eliminates most of
the noise problems. By following this approach, we generate four distinct channels: VV from ascending orbits, VV from
descending orbits, VH from ascending orbits, and VH from descending orbits.

A.2. Sentinel-2

For Sentinel-2, there are different data products available. We use all Sentinel-2 bottom-of-the-atmosphere (BOA) images
from the same time frame as the Sentinel-1 data (European Space Agency, 2024b). Typically, one resorts to a similar
temporal composition approach for Sentinel-2 as for Sentinel-1 data. However, such temporal per-pixel median composites
are often insufficient for Sentinel-2 data, since the corresponding optical sensor cannot penetrate clouds. Hence, while taking
the temporal per-pixel median might yield cloud-free image composites for most regions, such an approach is generally not
suited for rainforest regions, where the cloud coverage is often persistent throughout the year. These regions are crucial
though for carbon monitoring as they store a significant portion of global carbon. Therefore, we deviate from the common
procedure and make use of the following steps to generate Sentinel-2 image composites:

1. Instead of directly taking the temporal per-pixel median, we first filter out clouds in each image before aggregating the
remaining pixels. We do this by adapting an approach from Braaten (2024). More precisely, each Sentinel-2 image
comes with a so-called cloud mask that contains the (estimated) cloud cover/probability for each pixel in that image.
We make use of this mask to filter out images with less than 10% cloud-free pixels.

2. We then employ multiple steps to identify and remove disturbed pixels. First, we identify and remove pixels with a
cloud probability larger than 30%. Knowing the sun angle at the time of image capture, we examine each cloud pixel
up to 1 km in the (opposite) direction of the sun and search for potential shadow/dark pixels. To identify those dark
pixels, we make use of the near-infrared band B8 and the scene-classification band SCL. We then remove, for each
pixel identified as cloud or shadow, all neighbored pixels within a 300 m radius.

3. Finally, we aggregate all the remaining pixels for each image using a temporal per-pixel median.

The approach described above generally yields reasonable image composites containing no “gaps”. For very few areas, no
valid pixels might remain, thus leading to “empty” regions in the input data, see the last row of Figure 12.

A.3. GEDI

To enhance the quality of the GEDI measurements, we apply several filters:

1. beam int > 5: The GEDI instrument captures data via 8 tracks, 4 of those are measured by only one beam, the
so-called “coverage” beam. This beam has lower power, making its measurements more susceptible to noise. For this
reason, we discard those tracks and only resort to the measurements of the remaining so-called “power” beams.

2. quality flag = 1: This flag filters out the GEDI measurements with a poor quality, i.e., those measurements that were
significantly disturbed by clouds or adverse weather conditions.

3. solar elevation < 0: To minimize the impact of solar radiation on GEDI measurements, we exclude all daytime
measurements, retaining only those taken during nighttime.
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Figure 11. Training (light grey), validation (dark grey), and test (black) regions.
A.4. SRTM

GEDI measurements might be incorrect for mountainous regions (cf. Figure 5). GEDI determines (vegetation) height by
calculating the time difference between the first and the last of the returned signals. For example, by multiplying a time
difference of 112 ns between the first and the last signal with the speed of light (15 cm/ns) results in a height of about 16.8 m.
On slopes, the first and last signals may not originate from the same object/tree, but from nearby objects/trees of different
heights, leading to an overestimation of the canopy height. Additionally, even in the absence of any object/vegetation, the
first and last signals may be reflected at different heights, causing GEDI to register a positive height for these areas as well.

Ideally, the exact slope at each measurement location should be determined using a high-resolution digital terrain
model (DTM), which would allow to identify and exclude these faulty measurements. However, such DTMs are not
publicly available at a global scale. Therefore, we resort to data of the SRTM mission, which mapped the Earth’s surface
height with a resolution of about 30 m. Although surface height data are not perfect in this context (since forest borders can
also appear as slopes), they currently depict the best publicly available data source for the identification of the critical areas.
To improve the label quality, we filter out any measurement with a SRTM slope of 20◦or larger. We calculate the slope by
taking the height difference within an area of size 5× 5 pixels (corresponding to 150× 150 m). To ensure no valid GEDI
measurement is discarded, we set the filter threshold above the possible slope at forest borders. More precisely, if a forest
border has trees of height 40 m, the slope is approximately 15◦. Hence, we set the threshold to 20◦, allowing for a height
change (excluding the forest border) of up to 15 m.

B. Training/Validation/Test
We split the data into geographically non-overlapping regions for training, validation, and testing. An illustration of the
distribution of training, validation, and test instances can be seen in Figure 11. Each Universal Transverse Mercator (UTM)
zone has, relative to its size, the same proportion of training, validation, and test instances. Note that the northern regions
are not covered due to the ISS orbit not covering this area.

C. Model
To fine-tune our model, we conduct a comprehensive hyperparameter search, see Table 2. The final model was trained from
scratch using the AdamW optimizer with a weight decay of 0.001, a batch size of 32, and an initial learning rate of 0.001.
We implemented a linear learning rate warm-up for the first 10% of the total iterations, followed by a linear learning rate
scheduler for the remaining 90%. Additionally, gradient clipping was applied to prevent gradient explosion. Finally, the
shifted Huber loss was used during training, i.e., LS with the Huber loss as pixel-wise loss function L in Equation (4).13

13Using sample weights for the training instances led to a worse performance. Hence, no sample weights have been used for training.
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Table 2. Model hyperparameters for fine-tuning.

HYPERPARAMETER VALUES DESCRIPTION

weight decay 0, 0.01, 0.001 Weight decay of the AdamW optimizer

shifted loss LS, LNS
We consider both the standard non-shifted loss function LNS defined in
Equation (3) as well as the shifted variant LS defined in Equation (4).

pixel-wise loss L1, L2, Huber
Both LNS and LS are based on a pixel-wise loss L. Here, we consider the L1

(mean absolute error), L2 (mean squared error), and the Huber loss as loss
functions. For the Huber loss, we set the cutoff parameter δ to 3 (meters).

model weights None, ImageNet
We use the ResNet-50 (He et al., 2016) backbone and train the weights
either from scratch (None) or resort to pre-trained weights (that stem from
the ImageNet (Deng et al., 2009) dataset).

Table 3. Ablation study on different loss function: L1, L2 and Huber loss both with and without LS. Each row represents the loss function
used for training the model, while each column represents the loss function used for evaluating the model’s performance.

VALIDATION LOSS L1 L2 Huber LS + L1 LS + L2 LS + Huber
TRAINING LOSS

L1 1.68 ± 0.03 11.19 ± 0.25 1.04 ± 0.02 1.65 ± 0.03 10.82 ± 0.27 1.01 ± 0.02
L2 1.76 ± 0.01 11.12 ± 0.12 1.05 ± 0.00 1.73 ± 0.01 10.76 ± 0.13 1.02 ± 0.00
Huber 1.73 ± 0.01 11.11 ± 0.18 1.04 ± 0.01 1.70 ± 0.01 10.73 ± 0.20 1.01 ± 0.01

LS + L1 1.68 ± 0.03 11.15 ± 0.21 1.04 ± 0.02 1.64 ± 0.03 10.63 ± 0.19 1.00 ± 0.02
LS + L2 1.75 ± 0.02 11.07 ± 0.08 1.05 ± 0.01 1.71 ± 0.02 10.57 ± 0.08 1.01 ± 0.01
LS + Huber 1.70 ± 0.01 10.92 ± 0.16 1.03 ± 0.01 1.66 ± 0.01 10.42 ± 0.17 0.99 ± 0.01

D. Examples
Figure 12 shows Sentinel input data as well as the height estimates induced by our model for some more examples. Note
that the last row sketches the (rare) situation in case no input pixels are considered to be valid (see above), leading to an
empty area in the composite image. Here, some parts of the Sentinel-2 image were masked out due to a lack of non-cloud
pixels. Yet, our model estimates the height reasonably well using the spatial context given in the Sentinel-2 composite as
well as the Sentinel-1 data.

E. Ablation Studies
We conduct several ablation studies to evaluate the impact of the involved model components.

E.1. Loss Function

First, we start by assessing effectiveness of the shifted loss function. Our objective is to ascertain whether the use of LS (see
Equation (4)) enhances the model performance and to identify the most suitable pixel-wise loss function. We compare three
commonly used loss functions (L1, L2, Huber loss) and conduct experiments using both LS and LNS. The results are given
in Table 3. All models are trained with the same set of hyperparameters, except for the choice of loss function used during
training (first column). We present the results for all metrics (remaining columns) based on the validation set. One can see
that using LS generally leads to equal or better results compared to LNS, which was expected since LNS is a special case of
LS with δx = 0 and δy = 0.

E.2. SRTM-Filtering

Next, we assess the effectiveness of the SRTM filtering approach. For this, we resort to Airbone Laser Scanning (ALS) data
from the Needle Mountains in the USA (covering an area of about 51.83 km2). The ALS data depict (more) precise height
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Figure 12. Sentinel-1 and Sentinel-2 images (RGB channels) and our prediction in France (first row), in the Sahara (second row), in
Canada (third row), and in the Congo Basin (fourth row; heights from 0 m to 35 m; see Figure 1 for the colormap)
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Figure 13. ALS data and both predictions for the ablation area.

Table 4. Ablation study comparing different model architectures showing the shifted Huber loss.

ARCHITECTURE DEEPLABV3 DEEPLABV3+ FPN LINKNET MANET PAN PSPNET UNET UNET++

PRE-TRAINED 1.22 1.10 1.14 1.06 1.04 1.13 1.13 1.10 1.10
NOT PRE-TRAINED 1.15 1.08 1.08 1.04 1.03 1.07 1.12 1.01 1.04

measurements and can be considered as ground-truth for this ablation study. We train two models using the same data and
the same parameters, except for SRTM filtering. The MAE is 9.77 m without SRTM filtering and improves to 7.33 m with
SRTM filtering. An illustration of the ALS data as well as both results is provided in Figure 13.

E.3. Architectures

To assess the effectiveness of various deep learning architectures for canopy height prediction, we conducted comparative
analyses on several models, including DeepLabV3 (Chen et al., 2017) and V3+ (Chen et al., 2018), FPN (Lin et al., 2017),
LinkNet (Chaurasia & Culurciello, 2017), MANet (Fan et al., 2020), PAN (Li et al., 2018), PSPNet (Zhao et al., 2017), and
UNet++ (Zhou et al., 2019). These models were evaluated in both configurations: with and without pre-trained backbones
based on ImageNet (Deng et al., 2009). The comparative analysis, provided in Table 4, suggests a strong disparity between
different model architectures. Specifically for canopy height prediction, the standard U-Net model (Ronneberger et al.,
2015), despite its simplicity, outperformed more complex architectures like DeepLabV3 (Chen et al., 2017) or PSPNet (Zhao
et al., 2017). This outcome underscores the unique demands of canopy height prediction tasks, which may not align with the
strengths of architectures designed for broader or different types of image segmentation tasks. Moreover, the experiment
revealed a counter-intuitive finding regarding the use of pre-trained backbones. Contrary to expectations, employing a
pre-trained backbone resulted in a decrease in performance across all examined architectures. This decrease was consistent
but varied in magnitude among the different models, indicating a potential mismatch between the generalized features
learned from ImageNet (Deng et al., 2009) and the specific features of satellite images relevant to canopy height estimation.

E.4. Learning Rate Scheduler

Table 5. Learning rate schedulers with and without amplitude decay (AD).

MODE LINEAR 1 CYCLE 2 CYCLES 3 CYCLES 4 CYCLES

WITHOUT AD − 1.022 1.012 1.010 1.004
WITH AD 1.014 1.016 1.060 1.026 1.053

Throughout our experiments,
we relied on a linear learning
rate scheduler with tuned initial
value. The use of cyclical sched-
uler has previously been found to
aid generalization (Smith, 2017;
Zimmer et al., 2023). To investi-
gate the impact in our setting, we compare two different cyclical schedulers (with and without overall decay of the cycle
amplitude) in Table 5 for different numbers of cycles, using 0.001 as the learning rate bound. These two modes correspond
to triangular and triangular2 in PyTorch’s CyclicLR implementation. We report the shifted Huber loss on the
validation set.
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Figure 14. Global canopy height map (enlarged version of Figure 1).

E.5. Ensembles
Table 6. Single versus ensemble model.

MODEL MAE MSE RMSE MAPE RRMSE

SINGLE 4.03 36.57 6.05 0.29 0.50
ENSEMBLE 3.94 35.07 5.92 0.28 0.49

Previous work has shown that the performance
of models can be improved by building ensem-
bles (Fort et al., 2019; Ganaie et al., 2022) or to
parameter averages (Izmailov et al., 2018; Zimmer
et al., 2024)) from multiple models. While param-
eter averages do not increase the inference complexity, more effort is required to find models suitable for averaging (hence,
parameter averages are not suited for our case). In Table 6, we evaluate the single model against an ensemble of six models.
Here, the ensemble aggregates the estimates of multiple models and, hence, increases the performance in all metrics, albeit
at the price of having to evaluate multiple models for inference.

E.6. Backbone Table 7. Different backbones.

RESNET18 RESNET50 RESNET101

PARAMETERS 14 362 705 32 555 601 51 547 729
PRE-TRAINED 1.117 1.086 1.095
NOT PRE-TRAINED 1.051 1.017 1.020

In order to validate our backbone choice, we do
an ablation study testing different versions of our
backbone and compare them with each other re-
garding the number of parameters and the shifted
Huber loss (on the validation set) for both pre-
trained and not pre-trained backbones. The results can be seen in Table 7. As already mentioned above, training the
backbones from scratch seems to be beneficial in this context, and the ResNet50 backbone seems to be a reasonable choice.

F. Canopy Height Map
The final canopy height map is shown in Figure 14. For an interactive map, we refer the reader to the Google Earth Engine,
which allows to inspect any location on the map in more detail.14

14https://worldwidemap.projects.earthengine.app/view/canopy-height-2020
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