
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DSSA: DENSE-SPARSE SWITCHABLE ATTENTION FOR
SEAMLESS SHORT-TO-LONG ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Long-sequence processing is a critical capability for modern large language mod-
els. However, the self-attention mechanism in the standard Transformer architec-
ture faces severe computational and memory bottlenecks when processing long
sequences. While trainable sparse attention methods offer a promising solution,
existing approaches such as NSA introduce excessive extra parameters and disrupt
the conventional pretrain-on-short, finetune-on-long workflow, resulting in slow
convergence and difficulty in acceleration. To overcome these limitations, we in-
troduce Dense-Sparse Switchable Attention framework (DSSA), a trainable sparse
attention that seamlessly adapts models from short to long sequences. Specifically,
DSSA reuses dense attention parameters through parameter-free architecture mod-
ification, maintaining consistency between short and long sequence processing.
Additionally, DSSA ensures computational efficiency across all sequence lengths,
by using dense attention for short inputs and smoothly transitioning to sparse at-
tention for long sequences. To achieve practical acceleration, we further introduce
an efficient implementation of DSSA that significantly reduces the computational
overhead. Our experiments on long-context understanding and chain-of-thought
reasoning demonstrate that DSSA is 4× faster than dense attention while retaining
98.1% and 99.7% of the performance, respectively. We will release all associated
implementations to facilitate future research on efficient attention.

1 INTRODUCTION

With the rapid development of large language models (LLMs) (Brown et al., 2020; Bommasani
et al., 2021; Han et al., 2021; OpenAI, 2023), the demand for long-sequence processing capabilities
has become increasingly critical. From long-input scenarios such as deep research (Zheng et al.,
2025; Xu & Peng, 2025), chatbots with long-term memory, and software issue resolution (Jimenez
et al., 2023; Yang et al., 2025), to long-output tasks including complex reasoning (OpenAI et al.,
2024; DeepSeek et al., 2025) and LLM-driven agents (Wang et al., 2024), a model’s capability to
understand and generate long sequences directly determines its performance in real-world applica-
tions. However, the self-attention mechanism in the existing Transformer (Vaswani et al., 2017)
architecture faces severe computational and memory bottlenecks when processing long sequences.

To address the challenge of processing long sequences, efforts have been devoted to exploring sparse
attention mechanisms (Beltagy et al., 2020; Zaheer et al., 2020; Tay et al., 2022), which restrict each
token within the context to attend to only a subset of tokens related to that token. Early research
in this area focuses on the training-free setting, leveraging the sparsity naturally occurring in self-
attention mechanisms to accelerate inference (Xiao et al., 2024a;b; Jiang et al., 2024). However, the
training-free setting introduces a fundamental trade-off between sparsity and model performance.
To avoid significant performance degradation, the degree of sparsity that can be applied is often
limited, which in turn restricts the potential efficiency gains.

Given the limitations of training-free attention mechanisms, trainable sparse attention mechanisms
have garnered increasing attention from researchers (Lu et al., 2025; Gao et al., 2024). Among
them, the natively trainable sparse attention (NSA) (Yuan et al., 2025) method adopts the widely-
used block-sparse attention (Child et al., 2019) structure, designing three different sparse attention
modules and developing corresponding CUDA kernels to accelerate model computation. Despite
its effectiveness, we find misalignment between the sparse architecture of NSA and the stan-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Single KV

Single Attention

Single Output

3x KV Projection

3x Attention

Gated Output

Shared KV

Unified Attention

Single Output

NSA Vanilla DSSA
Reusable

Portable

Aligned

Redundant

Expensive

Mismatch

Figure 1: The comparison of Vanilla Full Attention, NSA (Yuan et al., 2025), and our DSSA.

dard pretrain-on-short, finetune-on-long workflow. A widely used way to build long LLMs is
to pretrain on short sequences and finetune on long sequences. The NSA creates an architectural
mismatch with vanilla full attention, as it introduces three sets of key-value parameters and three
attention modules, forcing the model to abruptly switch from a single-output attention to a multi-
output attention architecture. As shown in Section 4, this mismatch hinders smooth adaptation,
erases what the model has already learned, and introduces a significant efficiency bottleneck for
short sequences.

To address all the above issues, we propose Dense-Sparse Switchable Attention framework (DSSA).
DSSA is built on block-sparse attention and introduces three core innovations:

1. Seamless Short-to-Long Adaptation: As depicted in Figure 1, different from NSA, which re-
quires additional parameters and multiple attention modules, DSSA seamlessly transitions from
dense to sparse attention by directly reusing existing dense attention parameters. This design
naturally aligns with the standard pretrain-on-short, finetune-on-long workflow, eliminating ar-
chitectural mismatches and minimizing loss fluctuations.

2. Efficiency for Both Short and Long Sequences: Because the transition from dense to sparse
attention in DSSA requires no additional parameters and introduces minimal distributional shifts,
the model preserves its strong performance on short texts and can easily switch back to dense
attention for short sequence efficiency.

3. Accelerated Block Selection Mechanism: The block selection step before sparse attention in-
herently undermines the efficiency gains of the sparse attention itself. We propose a hardware-
awared efficient implementation, effectively removing the bottleneck and unlocking the full po-
tential of sparse attention.

We evaluate our method on long-context understanding and long chain-of-thought (CoT) generation
benchmarks. Our DSSA is 4× faster than dense attention while maintaining 98.1% and 99.7% of
the original performance on these tasks, respectively. To advance research in sparse attention, we
are releasing all operator implementations of DSSA.

2 RELATED WORK

As the demand for LLMs to understand and generate long sequences continues to grow, research on
improving attention efficiency has garnered increasing attention (Tay et al., 2022; Sun et al., 2025;
Zhang et al., 2025a). In this section, we discuss the sparse attention paradigm from two perspectives:
training-free and trainable sparse attention approaches.

2.1 TRAINING-FREE SPARSE ATTENTION

Training-free sparse attention approaches aim to utilize the intrinsic sparsity of attention layers.
These methods enable LLMs trained with dense attention to perform sparse attention between each
token and a small subset of relevant contexts. Based on the selection strategy for relevant contexts,
these algorithms can be categorized into predefined sparse patterns and dynamic sparse patterns.

Predefined Sparse Patterns. Sparse attention with a predefined pattern employs manually de-
fined heuristic rules to determine which contextual tokens should be selected for attention computa-
tion (Xiao et al., 2024b; Han et al., 2024; Child et al., 2019; Zaheer et al., 2020; Beltagy et al., 2020;
Xiao et al., 2025). For instance, sliding window attention restricts each token to interact only with
neighboring tokens (Beltagy et al., 2020). Building upon sliding windows, some works select spe-
cial tokens such as initial tokens or segment separators, requiring all tokens to attend to these special
tokens (Xiao et al., 2024b; Chen et al., 2024; Child et al., 2019). Furthermore, some works combine

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

multiple predefined attention patterns (Zaheer et al., 2020; Beltagy et al., 2020).These approaches
typically rely on human observations to formulate heuristic rules for selecting relevant contexts.

Dynamic Sparse Patterns. Dynamic sparse patterns incorporate the semantic information of
query tokens into the context selection process by computing the relevance between query tokens
and candidate contexts. Early works primarily perform similarity computation at the token level (Ki-
taev et al., 2020; Roy et al., 2021; Wang et al., 2020). As sequence lengths increase, block sparse
methods have gained widespread adoption, which partition contexts into contiguous block units and
perform relevance computation and context selection at the block granularity (Xiao et al., 2024a;
Jiang et al., 2024; Xu et al., 2025; Tang et al., 2024; Zhang et al., 2025b; Lai et al., 2025). Further-
more, research on attention sparsity has inspired the development of key-value (KV) eviction and
compression methods, which reduce memory consumption by discarding or compressing KV caches
with low attention probabilities (Zhang et al., 2023; Li et al., 2024; Huang et al., 2024; 2025).

Training-free methods, while focusing on improving the inference efficiency of dense attention mod-
els, are often constrained by insufficient sparsity levels in order to avoid severe performance degra-
dation and finally suffer from limited acceleration benefits.

2.2 TRAINABLE SPARSE ATTENTION

To further enhance efficiency for long sequence processing, researchers incorporate sparse attention
into the model training phase. SeerAttention (Gao et al., 2024) employs a self-distillation post-
training algorithm to train a router that selects relevant contexts for query blocks. MoBA (Lu et al.,
2025) employs a block sparse attention structure during the short-to-long adaptation phase, training
routers between query blocks and KV blocks for context selection. These methods partition query
tokens into blocks and can only accelerate the prefilling phase. NSA (Yuan et al., 2025) designs three
attention components for token-level sparsity, effectively accelerating both prefilling and decoding
processes. However, NSA introduces substantial additional parameters, making it unsuitable for ef-
ficient short-to-long adaptation and imposing significant computational overhead on short-sequence
processing. In this paper, we focus on proposing a sparse attention mechanism that effectively and
efficiently processes both short and long sequences, supporting both prefilling and decoding.

3 METHOD

3.1 BACKGROUND

Grouped-Query Attention. Attention mechanisms enable models to selectively focus on rel-
evant parts of the input sequence. Among various attention variants, grouped-query attention
(GQA) (Ainslie et al., 2023) has emerged as a popular method that strikes a balance between model
performance and computational efficiency. Given an input sequence of hidden states X ∈ Rn×d,
where n is the sequence length and d is the model dimension, GQA computes the queries (Q), keys
(K), and values (V) via linear projections as Q = XWQ,K = XWK ,V = XWV . The pro-
jection matrices have the shapes WQ ∈ Rd×(hqdh) and WK ,WV ∈ Rd×(hkvdh), with the head
dimension dh. These tensors are then reshaped to form hq query heads {Qi}

hq

i=1, hkv KV heads
{Kj ,Vj}hkv

j=1, with each head having the shape n× dh. The query heads are partitioned by a group
size G = hq/hkv . The attention scores Si and the attention output Oi for the i-th query head are
computed by attending to its corresponding KV heads with the index j = ⌊(i− 1)/G⌋+ 1:

Si = Softmax

(
QiK

⊤
j√

dh

)
, Oi = SiVj . (1)

The final output is obtained by concatenating the attention outputs and projecting them through a
final linear layer WO ∈ R(hqdh)×d: Attention(X) = Concat(O1, . . . ,Ohq)WO.

NSA. NSA (Yuan et al., 2025) is an enhancement of GQA designed for efficiency on long se-
quences. The key insight is that for long sequences, e.g., when n > 32k, the attention score matrix
S exhibits strong sparsity. This allows for approximating the attention matrix by ignoring negli-
gible values, leading to faster computation. As illustrated in Figure 2, NSA utilizes three distinct

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Masked Token Attention ScoreQuery/Key/Value Tokens Attention OutputCUDA Compute Kernel

!

Extra Parameter

MLP

5
MLP

6
MLP

4
MLP

3
MLP

1
MLP

7
MLP

2

5 6431 72 52Top-k

Attention Output Attention Output Attention Output
Gate

Attention Score

Selected Attention Sliding Attention

MEAN
5

MEAN
6

MEAN
4

MEAN
3

MEAN
1

MEAN
7

MEAN
2

5 6431 72 52Top-k

Sparse Attention Output

Attention Score Only

Sparse Attention

Gated Attention Output NSA
DSSA

Larger
Local Window

71Init & More Local

Compressed Attention

Dense Attention

Dense Attention Output

Switch (seqlen)

71Init & Local

!!

Projection

!

Projection

!

6

Short

Long
(Fused Selected & Sliding)

<latexit sha1_base64="VYZowr8xu1waIeEV6n/XoLT/LTs=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVRIp6rLoxmUL9gFNKJPppB06mYSZG6GE/oYbF4q49Wfc+TdO2iy09cDA4Zx7uWdOkAiu0XG+rdLG5tb2Tnm3srd/cHhUPT7p6jhVlHVoLGLVD4hmgkvWQY6C9RPFSBQI1gum97nfe2JK81g+4ixhfkTGkoecEjSS50UEJ0GYtedDHFZrTt1ZwF4nbkFqUKA1rH55o5imEZNIBdF64DoJ+hlRyKlg84qXapYQOiVjNjBUkohpP1tkntsXRhnZYazMk2gv1N8bGYm0nkWBmcwz6lUvF//zBimGt37GZZIik3R5KEyFjbGdF2CPuGIUxcwQQhU3WW06IYpQNDVVTAnu6pfXSfeq7l7XG+1GrXlX1FGGMziHS3DhBprwAC3oAIUEnuEV3qzUerHerY/laMkqdk7hD6zPH1dJkeU=</latexit>

Qt

<latexit sha1_base64="QlvYywN9coOZQyHPdxDwG8KM7e8=">AAACCHicbVDLSsNAFL2pr1pfUZcuHCyCCymJFBVXRTeCmwr2AW0ok+mkHTp5MDMRSsjSjb/ixoUibv0Ed/6NkzaCth4YOPece5l7jxtxJpVlfRmFhcWl5ZXiamltfWNzy9zeacowFoQ2SMhD0XaxpJwFtKGY4rQdCYp9l9OWO7rK/NY9FZKFwZ0aR9Tx8SBgHiNYaaln7nd9rIaul9ykveRCpcc/dXNa98yyVbEmQPPEzkkZctR75me3H5LYp4EiHEvZsa1IOQkWihFO01I3ljTCZIQHtKNpgH0qnWRySIoOtdJHXij0CxSaqL8nEuxLOfZd3ZmtKWe9TPzP68TKO3cSFkSxogGZfuTFHKkQZamgPhOUKD7WBBPB9K6IDLHAROnsSjoEe/bkedI8qdinlepttVy7zOMowh4cwBHYcAY1uIY6NIDAAzzBC7waj8az8Wa8T1sLRj6zC39gfHwDgxSaTQ==</latexit>

K:t,V:t

<latexit sha1_base64="YI7bDatqT94lIcySJJcZXCG8o5M=">AAACInicbVDLSsNAFJ34rPUVdekmWAQXUhIpvlZFN4KbCvYBTQyT6aQdOnkwcyOWkG9x46+4caGoK8GPcdJW0LYHLhzOuZd77/FiziSY5pc2N7+wuLRcWCmurq1vbOpb2w0ZJYLQOol4JFoelpSzkNaBAaetWFAceJw2vf5l7jfvqZAsCm9hEFMnwN2Q+YxgUJKrn9kBhp7np9eZm55DdpfaQB8gJUGcZYe/ZmOG6eols2wOYUwTa0xKaIyaq3/YnYgkAQ2BcCxl2zJjcFIsgBFOs6KdSBpj0sdd2lY0xAGVTjp8MTP2ldIx/EioCsEYqn8nUhxIOQg81ZnfLCe9XJzltRPwT52UhXECNCSjRX7CDYiMPC+jwwQlwAeKYCKYutUgPSwwAZVqUYVgTb48TRpHZeu4XLmplKoX4zgKaBftoQNkoRNURVeohuqIoEf0jF7Rm/akvWjv2ueodU4bz+ygf9C+fwBhBaav</latexit>

Kcmp
:t ,Vcmp

:t
<latexit sha1_base64="lUhFM8xFme3KjQYzsrNIz/eSU3g=">AAACInicbVDLSsNAFJ34rPUVdekmWAQXUhIpvlZFN4KbCvYBTQyT6aQdOnkwcyOWkG9x46+4caGoK8GPcdJW0LYHLhzOuZd77/FiziSY5pc2N7+wuLRcWCmurq1vbOpb2w0ZJYLQOol4JFoelpSzkNaBAaetWFAceJw2vf5l7jfvqZAsCm9hEFMnwN2Q+YxgUJKrn9kBhp7np9eZm55DdpfaQB8glZxk2eGv2ZhhunrJLJtDGNPEGpMSGqPm6h92JyJJQEMgHEvZtswYnBQLYITTrGgnksaY9HGXthUNcUClkw5fzIx9pXQMPxKqQjCG6t+JFAdSDgJPdeY3y0kvF2d57QT8UydlYZwADclokZ9wAyIjz8voMEEJ8IEimAimbjVIDwtMQKVaVCFYky9Pk8ZR2TouV24qperFOI4C2kV76ABZ6ARV0RWqoToi6BE9o1f0pj1pL9q79jlqndPGMzvoH7TvH2eVprM=</latexit>

Kslc
:t ,Vslc

:t

<latexit sha1_base64="zlLPpoC6/RWI7LYg+aN1E3kwFFA=">AAACInicbVDLSsNAFJ3UV62vqks3wSK4kJJI8bUquhHcVLAPaGOYTCft0MkkzNyoJeRb3Pgrblwo6krwY5w+BG174MLhnHu59x4v4kyBZX0Zmbn5hcWl7HJuZXVtfSO/uVVTYSwJrZKQh7LhYUU5E7QKDDhtRJLiwOO07vUuBn79jkrFQnED/Yg6Ae4I5jOCQUtu/rQVYOh6fnKVuskZpLdJC+gDJPdMpOnBr1mbYbr5glW0hjCniT0mBTRGxc1/tNohiQMqgHCsVNO2InASLIERTtNcK1Y0wqSHO7SpqcABVU4yfDE197TSNv1Q6hJgDtW/EwkOlOoHnu4c3KwmvYE4y2vG4J84CRNRDFSQ0SI/5iaE5iAvs80kJcD7mmAimb7VJF0sMQGdak6HYE++PE1qh0X7qFi6LhXK5+M4smgH7aJ9ZKNjVEaXqIKqiKBH9Ixe0ZvxZLwY78bnqDVjjGe20T8Y3z+Ni6bL</latexit>

Kwin
:t ,Vwin

:t

<latexit sha1_base64="VYZowr8xu1waIeEV6n/XoLT/LTs=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVRIp6rLoxmUL9gFNKJPppB06mYSZG6GE/oYbF4q49Wfc+TdO2iy09cDA4Zx7uWdOkAiu0XG+rdLG5tb2Tnm3srd/cHhUPT7p6jhVlHVoLGLVD4hmgkvWQY6C9RPFSBQI1gum97nfe2JK81g+4ixhfkTGkoecEjSS50UEJ0GYtedDHFZrTt1ZwF4nbkFqUKA1rH55o5imEZNIBdF64DoJ+hlRyKlg84qXapYQOiVjNjBUkohpP1tkntsXRhnZYazMk2gv1N8bGYm0nkWBmcwz6lUvF//zBimGt37GZZIik3R5KEyFjbGdF2CPuGIUxcwQQhU3WW06IYpQNDVVTAnu6pfXSfeq7l7XG+1GrXlX1FGGMziHS3DhBprwAC3oAIUEnuEV3qzUerHerY/laMkqdk7hD6zPH1dJkeU=</latexit>

Qt

Figure 2: The overview of NSA and our DSSA. DSSA uses a shared KV for both Sparse Attention
and Dense Attention. DSSA fuses Selected Attention and Sliding Attention and eliminates the
output of Compressed Attention. In addition, DSSA introduces no extra parameters.

modules and combines them using a gating module. Based on the observation that adjacent atten-
tion scores are similar (Jiang et al., 2024), NSA splits the sequences into blocks of size B. First,
Compressed Attention employs a compressed representation of the KV tensors to reduce the com-
putational complexity. Second, Selected Attention leverages the attention scores from compressed
attention to compute only the blocks with high attention scores. Finally, Sliding Attention is used
to focus on local contextual information within the sequence. For these three attention modes, they
introduce three sets of KV projection matrices: Wcmp

K ,Wcmp
V ,Wslc

K ,Wslc
V ,Wwin

K ,Wwin
V . This final

output can be mathematically represented as Output = gcmpOcmp+gslcOslc+gwinOwin, where Ocmp,
Oslc, and Owin are the outputs of the three respective modules, and the gate scores gcmp, gslc, and
gwin are derived from the input features X via an MLP and a sigmoid activation. They also train an
MLP module for compressing the KV tensors. The three distinct KV projections, combined with
an additional MLP and gating module, result in a highly complex architecture. This complexity,
in turn, makes the model poorly suited for training from scratch on short-sequence data and also
complicates the process of converting pretrained dense models to sparse ones.

3.2 OVERALL FRAMEWORK

We propose DSSA, a more concise framework with zero extra parameters that more closely aligns
dense and sparse attention patterns.

Shared Key-Value Projection. We find that using three separate sets of KV projection parameters
in NSA (Yuan et al., 2025) is unnecessary, which not only complicates the adaptation from short
to long sequences but also significantly slows down computation for short sequences. Therefore,
we propose using a single shared set of projection parameters, WK and WV , initialized with the
pretrained dense attention parameters and used for finetuning on long sequences.

Aligned Computation. In addition to ensuring that sparse and dense attention share the same pa-
rameters, their computational processes must also be closely aligned. In NSA, the three attention
modules all generate outputs that are aggregated by an extra gating module. This forces the computa-
tion of all three modules even for short sequences, leading to substantial overhead. To mitigate this,
we take a union of the two sparse patterns in Selected Attention and Sliding Attention and eliminate
the output of Compressed Attention, forming a unified Sparse Attention module. Specifically, the
original Selected Attention module identifies important token blocks based on the attention scores
from the Compressed Attention module, Scmp. For a query token with index i, located in the block
bi = ⌊ i−1

B ⌋+ 1, attention is always granted to a fixed set of initial blocks and a set of local blocks:

Iinit = {1, 2, . . . , Ninit}, Ilocal(i) = {bi −Nlocal + 1, . . . , bi − 1, bi}. (2)

The top-k selection is then applied to Scmp over the set of remaining blocks, denoted as Itopk(i). The
complete set of attended block indices for this query token is the union of these three sets:

I(i) = Iinit ∪ Ilocal(i) ∪ Itopk(i). (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

If we denote the set of token indices in the j-th block as Tj = {jB+1, . . . , (j+1)B}, the selected
attention allows a token in the block bi to attend to the union of blocks

⋃
j∈I(i) Tj . The Sliding

Attention, on the other hand, allows the i-th token to attend to a range {i−w+1, . . . , i} of window
size w. Since the local blocks in Selected Attention and the window in Sliding Attention create
overlapping, we merge them by expanding the number of local blocks within our unified Sparse
Attention to strictly cover the region of the Sliding Attention, that is, Nlocal ≥ ⌈w

B ⌉+1, as illustrated
in Figure 3.

NSA Selected Attention Mask (init=1, topk=2, local=1)

NSA Sliding Attention Mask (w=6)

DSSA Sparse Attention Mask (init=1, topk=2, local=3)

Figure 3: The illustration of the union of Selected
Attention and Sliding Attention.

Furthermore, we eliminate the output of the
Compressed Attention module, only retaining
its attention scores Scmp for block selection
in Sparse Attention. This single-output de-
sign more closely mirrors dense attention and
aids the training of the sparse attention model.
DSSA can thus dynamically switch between
dense and sparse attention patterns based on the
input sequence length.

Simplified and Efficient Compression Mod-
ule. Since we eliminate the output of the
Compression Attention, using MLP for token
compression would not receive gradients. We replace it with a more intuitive parameter-free pooling
function, which will be detailed in Section 3.3. Additionally, computing the attention scores Scmp

introduces non-negligible overhead, and we will reduce this overhead in Section 3.4.

3.3 BLOCK REPRESENTATION

MAXMAX

 MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEANMEAN

MEAN MEAN
1 2

1 2
Attention Score

7 8654321 9
Attention Score

7 8654321 9

1 2

3-stage group-level
1-stage token-level

7 8654321 9
7 8654321 9

7 8654321 9
SUM

Head
Group
G=3

<latexit sha1_base64="vOqNRw6w2vhVnGYPq5gV4B4D8zY=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6rLYjcuK9gFtDJPppB06mYSZSaGE/okbF4q49U/c+TdO2iy09cDA4Zx7uWdOkHCmtON8W6W19Y3NrfJ2ZWd3b//APjxqqziVhLZIzGPZDbCinAna0kxz2k0kxVHAaScYN3K/M6FSsVg86mlCvQgPBQsZwdpIvm33I6xHQZg9zJ6yhu/OfLvq1Jw50CpxC1KFAk3f/uoPYpJGVGjCsVI910m0l2GpGeF0VumniiaYjPGQ9gwVOKLKy+bJZ+jMKAMUxtI8odFc/b2R4UipaRSYyTynWvZy8T+vl+rwxsuYSFJNBVkcClOOdIzyGtCASUo0nxqCiWQmKyIjLDHRpqyKKcFd/vIqaV/U3Kva5f1ltX5b1FGGEziFc3DhGupwB01oAYEJPMMrvFmZ9WK9Wx+L0ZJV7BzDH1ifP4Ijk5Y=</latexit>

SC1

<latexit sha1_base64="1bGlbD6DqDBKescw1AbCY4g7oaM=">AAACA3icbVDJSgNBEO1xjXEb9aaXwSB4CjMS1GPQi8eIZoFMDD09NUmTnoXuGjEMA178FS8eFPHqT3jzb+wsB018UPB4r4qqel4iuELb/jYWFpeWV1YLa8X1jc2tbXNnt6HiVDKos1jEsuVRBYJHUEeOAlqJBBp6Apre4HLkN+9BKh5HtzhMoBPSXsQDzihqqWvuuyHFvhdkN/ld5iI8YKb6VIKf512zZJftMax54kxJiUxR65pfrh+zNIQImaBKtR07wU5GJXImIC+6qYKEsgHtQVvTiIagOtn4h9w60opvBbHUFaE1Vn9PZDRUahh6unN0sZr1RuJ/XjvF4LyT8ShJESI2WRSkwsLYGgVi+VwCQzHUhDLJ9a0W0wlQhjq2og7BmX15njROys5puXJdKVUvpnEUyAE5JMfEIWekSq5IjdQJI4/kmbySN+PJeDHejY9J64Ixndkjf2B8/gB7Q5i3</latexit>

Sshared

<latexit sha1_base64="ikdcAqk3HT1HwYXW+9iV/nhqL9A=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6rLYjeCmgn1AG8NkOmmHTiZhZlIooX/ixoUibv0Td/6NkzYLbT0wcDjnXu6ZEyScKe0431ZpbX1jc6u8XdnZ3ds/sA+P2ipOJaEtEvNYdgOsKGeCtjTTnHYTSXEUcNoJxo3c70yoVCwWj3qaUC/CQ8FCRrA2km/b/QjrURBm97OnrOG7M9+uOjVnDrRK3IJUoUDTt7/6g5ikERWacKxUz3US7WVYakY4nVX6qaIJJmM8pD1DBY6o8rJ58hk6M8oAhbE0T2g0V39vZDhSahoFZjLPqZa9XPzP66U6vPEyJpJUU0EWh8KUIx2jvAY0YJISzaeGYCKZyYrICEtMtCmrYkpwl7+8StoXNfeqdvlwWa3fFnWU4QRO4RxcuIY63EETWkBgAs/wCm9WZr1Y79bHYrRkFTvH8AfW5w91y5OO</latexit>

KC1

<latexit sha1_base64="50mQRR/nE7xRORKuMEONvlj+9nQ=">AAACAHicbVBNS8NAEN3Ur1q/oh48eAkWwVNJpKjHohePFe0HNLFstpt26W4SdidiCbn4V7x4UMSrP8Ob/8ZNm4O2Phh4vDfDzDw/5kyBbX8bpaXlldW18nplY3Nre8fc3WurKJGEtkjEI9n1saKchbQFDDjtxpJi4XPa8cdXud95oFKxKLyDSUw9gYchCxjBoKW+eeAKDCM/SG+z+9QF+ggpEXGW9c2qXbOnsBaJU5AqKtDsm1/uICKJoCEQjpXqOXYMXoolMMJpVnETRWNMxnhIe5qGWFDlpdMHMutYKwMriKSuEKyp+nsixUKpifB1Z36umvdy8T+vl0Bw4aUsjBOgIZktChJuQWTlaVgDJikBPtEEE8n0rRYZYYkJ6MwqOgRn/uVF0j6tOWe1+k292rgs4iijQ3SETpCDzlEDXaMmaiGCMvSMXtGb8WS8GO/Gx6y1ZBQz++gPjM8fFgaXYg==</latexit>

Scmp

<latexit sha1_base64="VYZowr8xu1waIeEV6n/XoLT/LTs=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVRIp6rLoxmUL9gFNKJPppB06mYSZG6GE/oYbF4q49Wfc+TdO2iy09cDA4Zx7uWdOkAiu0XG+rdLG5tb2Tnm3srd/cHhUPT7p6jhVlHVoLGLVD4hmgkvWQY6C9RPFSBQI1gum97nfe2JK81g+4ixhfkTGkoecEjSS50UEJ0GYtedDHFZrTt1ZwF4nbkFqUKA1rH55o5imEZNIBdF64DoJ+hlRyKlg84qXapYQOiVjNjBUkohpP1tkntsXRhnZYazMk2gv1N8bGYm0nkWBmcwz6lUvF//zBimGt37GZZIik3R5KEyFjbGdF2CPuGIUxcwQQhU3WW06IYpQNDVVTAnu6pfXSfeq7l7XG+1GrXlX1FGGMziHS3DhBprwAC3oAIUEnuEV3qzUerHerY/laMkqdk7hD6zPH1dJkeU=</latexit>

Qt

<latexit sha1_base64="1eq69JRZrx0s1wYSQvxEBZFXlpw=">AAAB+HicbVDLSsNAFL2pr1ofrbp0M1gEVyURUXFVdCO4qWAf0IYwmU7aoZNJmJkINeRL3LhQxK2f4s6/cdJmoa0HBg7n3Ms9c/yYM6Vt+9sqrayurW+UNytb2zu71drefkdFiSS0TSIeyZ6PFeVM0LZmmtNeLCkOfU67/uQm97uPVCoWiQc9jakb4pFgASNYG8mrVQch1mM/SO8yL73SmVer2w17BrRMnILUoUDLq30NhhFJQio04VipvmPH2k2x1IxwmlUGiaIxJhM8on1DBQ6pctNZ8AwdG2WIgkiaJzSaqb83UhwqNQ19M5nHVIteLv7n9RMdXLopE3GiqSDzQ0HCkY5Q3gIaMkmJ5lNDMJHMZEVkjCUm2nRVMSU4i19eJp3ThnPeOLs/qzevizrKcAhHcAIOXEATbqEFbSCQwDO8wpv1ZL1Y79bHfLRkFTsH8AfW5w8UZpNg</latexit>

K:t

<latexit sha1_base64="VYZowr8xu1waIeEV6n/XoLT/LTs=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVRIp6rLoxmUL9gFNKJPppB06mYSZG6GE/oYbF4q49Wfc+TdO2iy09cDA4Zx7uWdOkAiu0XG+rdLG5tb2Tnm3srd/cHhUPT7p6jhVlHVoLGLVD4hmgkvWQY6C9RPFSBQI1gum97nfe2JK81g+4ixhfkTGkoecEjSS50UEJ0GYtedDHFZrTt1ZwF4nbkFqUKA1rH55o5imEZNIBdF64DoJ+hlRyKlg84qXapYQOiVjNjBUkohpP1tkntsXRhnZYazMk2gv1N8bGYm0nkWBmcwz6lUvF//zBimGt37GZZIik3R5KEyFjbGdF2CPuGIUxcwQQhU3WW06IYpQNDVVTAnu6pfXSfeq7l7XG+1GrXlX1FGGMziHS3DhBprwAC3oAIUEnuEV3qzUerHerY/laMkqdk7hD6zPH1dJkeU=</latexit>

Qt

<latexit sha1_base64="1eq69JRZrx0s1wYSQvxEBZFXlpw=">AAAB+HicbVDLSsNAFL2pr1ofrbp0M1gEVyURUXFVdCO4qWAf0IYwmU7aoZNJmJkINeRL3LhQxK2f4s6/cdJmoa0HBg7n3Ms9c/yYM6Vt+9sqrayurW+UNytb2zu71drefkdFiSS0TSIeyZ6PFeVM0LZmmtNeLCkOfU67/uQm97uPVCoWiQc9jakb4pFgASNYG8mrVQch1mM/SO8yL73SmVer2w17BrRMnILUoUDLq30NhhFJQio04VipvmPH2k2x1IxwmlUGiaIxJhM8on1DBQ6pctNZ8AwdG2WIgkiaJzSaqb83UhwqNQ19M5nHVIteLv7n9RMdXLopE3GiqSDzQ0HCkY5Q3gIaMkmJ5lNDMJHMZEVkjCUm2nRVMSU4i19eJp3ThnPeOLs/qzevizrKcAhHcAIOXEATbqEFbSCQwDO8wpv1ZL1Y79bHfLRkFTsH8AfW5w8UZpNg</latexit>

K:t

<latexit sha1_base64="50mQRR/nE7xRORKuMEONvlj+9nQ=">AAACAHicbVBNS8NAEN3Ur1q/oh48eAkWwVNJpKjHohePFe0HNLFstpt26W4SdidiCbn4V7x4UMSrP8Ob/8ZNm4O2Phh4vDfDzDw/5kyBbX8bpaXlldW18nplY3Nre8fc3WurKJGEtkjEI9n1saKchbQFDDjtxpJi4XPa8cdXud95oFKxKLyDSUw9gYchCxjBoKW+eeAKDCM/SG+z+9QF+ggpEXGW9c2qXbOnsBaJU5AqKtDsm1/uICKJoCEQjpXqOXYMXoolMMJpVnETRWNMxnhIe5qGWFDlpdMHMutYKwMriKSuEKyp+nsixUKpifB1Z36umvdy8T+vl0Bw4aUsjBOgIZktChJuQWTlaVgDJikBPtEEE8n0rRYZYYkJ6MwqOgRn/uVF0j6tOWe1+k292rgs4iijQ3SETpCDzlEDXaMmaiGCMvSMXtGb8WS8GO/Gx6y1ZBQz++gPjM8fFgaXYg==</latexit>

Scmp

Figure 4: The illustration of the 3-stage group-
level compression, compared with the 1-stage
token-level compression.

Simply compressing a long sequence with a
large block size B in 1-stage can lead to a
significant loss of granular information (Yuan
et al., 2025). To address this, we implement
a 3-stage, coarse-grained to fine-grained com-
pression process, as shown in Figure 4. In the
first stage, we process the input key sequence K
to produce an intermediate and coarse-grained
representation KC1 . By denoting the initial
compression block size as lC1

and the stride
as sC1

, we achieve this by applying a mean-
pooling operation over sequential blocks:

KC1
i = Mean(Ki·sC1

:i·sC1
+lC1

). (4)

Then, we compute the attention scores SC1 be-
tween the query Q and KC1 :

SC1 = Softmax(Q(KC1)⊤). (5)
In the second stage, we employ block-wise sparse attention rather than token-level approaches for
the efficiency of Sparse Attention. In a model utilizing GQA, we can achieve this by forcing the
block selection pattern across all heads within a group to be the same. We conduct summation
within the head group to get the shared importance score Sshared:

Sshared =

G∑
h=1

SC1(h). (6)

In the third stage, we apply a max-pooling operation, which can preserve the most salient features.
The aggregated score Scmp are defined as follows and used for the Sparse Attention:

Scmp
i = Max(Sshared

i·s:i·s+l). (7)

In our method, we set lC1
= B

2 , sC1
= B

4 , l = 5, and s = 4 so that it can achieve the same
compression ratio as 1-stage compression of block size B. Intuitively, we compute the sparse scores
of the entire block based on several sliding sub-blocks within the block.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Computation of Sshared (Suppose hkv = 1 without loss of generality.)
Require: Q ∈ Rn×G×dh ,KC1 ∈ R(n/sC1

)×dh ,KC2 ∈ R(n/sC2
)×dh in HBM. Block sizes Bq, Bk.

Divide Q into Tq = ⌈n/Bq⌉ blocks Q1, . . . ,QTq of size Bq ×G× dh each.
Divide KC1 into T1 = ⌈n/sC1/Bk⌉ blocks KC1

1 , . . . ,KC1
T1

of size Bk × dh each.
Divide KC2 into T2 = ⌈n/sC2/Bk⌉ blocks KC2

1 , . . . ,KC2
T2

of size Bk × dh each.
Divide Sshared into Tq × T1 blocks of size Bq ×Bk each.
for i = 1, . . . , Tq (parallel) do

Load Qi from HBM to on-chip SRAM.
On chip, initialize online-softmax related statistic log-sum-exp lse.
for j = 1, . . . , T2 (sequential) do ▷ First pass (Coarse-grained)

Load KC2
j from HBM to on-chip SRAM.

On chip, compute attention scores SC2
ij ∈ RG×Bq×Bk as in Eq. (8) and update lse.

for j = 1, . . . , T1 (sequential) do ▷ Second pass (Fine-grained)
Load KC1

j from HBM to on-chip SRAM.
On chip, compute attention scores SC1

ij ∈ RG×Bq×Bk as in Eq. (5) and normalize it using lse.
On chip, compute the final block Sshared

ij ∈ RBq×Bk by summing SC1
ij over the head group.

Write the block Sshared
ij to its corresponding position in HBM.

return the output Sshared.

3.4 EFFICIENT IMPLEMENTATION

For efficient Sparse Attention, we follow the techniques in NSA (Yuan et al., 2025) to set the group
size G of GQA to 16, a configuration well-suited for block sparse attention. More details can be
found in Appendix B. However, our profiling reveals that the computation of the compression
score, Scmp, introduces a significant performance bottleneck. A primary source of this slowdown
is the substantial I/O required to store the first-stage attention scores SC1 into the slow GPU HBM.
The amount of data that needs to be written is hqn

2/sC1
, where n is the full sequence length. Given

that sC1
≪ n, materializing the full attention score matrix to GPU HBM incurs a prohibitive cost.

Drawing inspiration from FlashAttention (Dao, 2024), we aim to minimize this I/O by ensuring the
attention scores remain within the fast GPU SRAM as much as possible. Our approach, Fused
Head Group Summation, is to fuse the summation over the head group, required for the second-
stage compression, directly into the SRAM-based computation loop of FlashAttention. After that,
we can only store the reduced attention scores Sshared into GPU HBM, whose size is hqn

2/(sC1
G).

Another challenge arises from the fact that summing over the head group dimension and performing
the online-softmax (Dao, 2024) along the sequence dimension are not commutative operations. This
conflict prevents a straightforward fusion. To overcome this, we implement a two-pass approach. In
the first pass, we compute the log-sum-exp (lse) term required for the softmax normalization within
the SRAM. In the second pass, we leverage the lse to calculate the final attention scores, perform
the summation across the head group within the SRAM, and write the reduced scores to the HBM.
The trade-off of this two-pass method is that it doubles the computational workload. Therefore,
we propose LSE Approximation to approximate the lse computation by using a coarser-grained
attention score SC2 . Following Eq. (4) and Eq. (5), we change them to

KC2
i = Mean(Ki·sC2

:i·sC2
+lC2

), SC2 = Softmax(Q(KC2)⊤). (8)

By setting sC2 = 4sC1 and lC2 = 4lC1 , the computational overhead was reduced from 2× to 1.25×.
We summarize the procedure for computing Sshared in Algorithm 1. To further reduce memory I/O,
the max-pooling and top-k operations related to Scmp could also be fused into the kernel; however,
we leave this implementation for future work.

4 EXPERIMENT

We evaluate DSSA on tasks ranging from short to long contexts, and demonstrate its efficiency.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500 600
Steps

1

1.5

2

2.5

3

3.5

4

Lo
ss

0 10 20 30 40

1.0

1.2

1.4

FullAttn (Long Fine-tuning)
DSSA (Long Fine-tuning)
NSA (Long Fine-tuning)
FullAttn (Short Pre-training)

Figure 5: The training loss of models. We only show the last few iterations of the short pretraining.

4.1 EXPERIMENT SETUP

Pretraining Setup. We first use full attention to pretrain a model on short-sequence data, marked
as SHORT. We employ a standard GQA (Ainslie et al., 2023) model backbone with 8B parameters,
with the hidden size d = 4096, the number of heads hq = 32, hkv = 2, and the head dimension dh =
128. The pretraining dataset consists of 8T tokens of 4k-length sequences, primarily comprising
FineWeb-Edu (Penedo et al., 2024) and Stack-v2 (Lozhkov et al., 2024). We set 8M tokens per
batch, and use a WSD learning rate scheduler (Hu et al., 2024) with 2000 warmup steps to an initial
learning rate of 7.5e-3, and 27000 decay steps to the final learning rate of 3e-4.

Long-Context Adaptation. When transitioning to long-context finetuning, we switch to DSSA-
Sparse mode. Following NSA (Yuan et al., 2025), we set the compression block size lC1

= 32,
compression stride sC1

= 16, and attention block size B = 64. For our efficient block selection
implementation in Section 3.4, we additionally set the LSE Approximation block size lC2

= 128
and stride sC2

= 64. We set the selected block count |I| = 96 (including |Iinit| = 1, |Itopk| = 63,
and |Ilocal| = 32) for both training and inference. Therefore, the total number of visible tokens is
|I| · B = 6k. We conduct long-sequence finetuning on the pretrained model using 5B tokens, with
an initial learning rate of 3e-4 and linear decay to 2.75e-4. The training batches contain sequences
from four length intervals: 0-4k, 4-12k, 12-24k, and 24-32k, with token counts in a 1:1:1:1 ratio.

Baselines. We finetune a baseline model with full attention, marked as FULLATTN, using the same
training configuration as DSSA-Sparse. We then apply several typical training-free sparse attention
methods on FULLATTN as baselines, including InfLLM (Xiao et al., 2024a) and MInference (Jiang
et al., 2024). In addition, we present the results of SHORT with YaRN (Peng et al., 2023) to extend
the context window size. In terms of trainable sparse attention, we compare with NSA (Yuan et al.,
2025). By using the same training settings as in DSSA-Sparse, we finetune our pretrained model
into an NSA version. We initialize NSA’s three sets of KV parameters by replicating the original
KV parameters in dense attention. As NSA does not publish their code, we adopt an open-source
Triton implementation of NSA for experiments1.

For all the above sparse attention methods, we maintain the same sparsity level to ensure a fair com-
parison. We provide the training curve for trainable methods in Figure 5. NSA causes a disruption
in the loss, while DSSA is closer to FULLATTN.

4.2 TASK PERFORMANCE

In this section, we evaluate DSSA and other baselines across various tasks. Notably, while the
original NSA paper demonstrates performance comparable to full attention when training on long
sequences from scratch, NSA fails to achieve satisfactory results in short-to-long adaptation settings.
This indicates that the substantial parameter overhead introduced by NSA renders it unsuitable for
the conventional “pretraining-on-short, finetuning-on-long” paradigm.

Long-Context Understanding. To evaluate DSSA’s performance on long-input tasks, we com-
pare DSSA and different baselines on RULER (Hsieh et al., 2024), LongBench (Bai et al., 2024)
and LongPPL (Fang et al., 2025). RULER is a synthetic dataset with a configurable average length.

1https://github.com/XunhaoLai/native-sparse-attention-triton

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Task Performance on RULER. Best results in sparse attention are bolded.
Method SG1 SG2 SG3 MK1 MK2 MK3 MV MQ VT CWE FWE QA1 QA2 Avg. ↑
FULLATTN 100.00 100.00 100.00 96.00 94.00 92.00 82.00 98.50 93.20 44.40 91.33 48.00 56.00 84.26

SHORT+YARN 98.00 68.00 50.00 46.00 6.00 0.00 32.00 31.50 36.00 21.40 87.33 26.00 26.00 40.63
INFLLM 98.00 6.00 4.00 10.00 10.00 10.00 9.00 7.50 70.00 16.00 80.67 18.00 24.00 27.94
MINFERENCE 100.00 100.00 100.00 76.00 36.00 46.00 79.50 93.50 88.00 64.20 92.67 32.00 44.00 73.22
NSA 100.00 88.00 82.00 54.00 38.00 30.00 59.00 61.50 56.00 34.40 86.00 56.00 34.00 59.92

DSSA-SPARSE
w/ LSE Approx 100.00 100.00 100.00 94.00 82.00 62.00 98.50 94.50 98.00 50.40 82.67 72.00 40.00 82.62
w/o LSE Approx 100.00 100.00 100.00 92.00 80.00 64.00 98.50 95.50 98.00 47.80 81.33 70.00 40.00 82.09

DSSA-DENSE 100.00 100.00 100.00 94.00 98.00 98.00 99.00 98.00 98.40 52.80 90.00 76.00 44.00 88.32

Table 2: Task Performance on LongBench and LongPPL. Best results in sparse attention are bolded.
Benchmark FULLATTN SHORT+YARN INFLLM MINFERENCE NSA DSSA-SPARSE DSSA-DENSE

LongBench ↑ 42.30 37.86 32.30 41.55 37.10 42.54 42.49
LongPPL ↓ 2.06 5.28 12.01 2.62 4.24 2.12 2.00

LongBench is a bilingual benchmark for long-context understanding. Compared to RULER, Long-
Bench is primarily built from existing, real-world datasets. LongPPL is a perplexity evaluation
benchmark for long sequences. The experimental results of RULER when the length is 32k are
shown in Table 1. The results on LongBench and LongPPL are shown in Table 2. Please refer
to Appendix C for detailed performance of the sub-tasks in LongBench. From the results, we can
observe that: 1) DSSA achieves the best performance compared to other sparse methods, with its
results being highly competitive and closely matching the strong, FULLATTN baseline. Alternative
approaches, whether applying training-free sparsity or training-based sparsity, result in a substantial
drop in performance. 2) Compared to NSA, DSSA can achieve significant performance improve-
ments through minimal finetuning on long-sequences. Although NSA has low training loss, its high
perplexity on the LongPPL evaluations indicates that NSA has not adequately learned long-range
dependencies. 3) A unique advantage of DSSA is the flexibility to seamlessly switch between
dense mode and sparse mode. This flexibility not only provides an option for dense computation but
can also lead to a further improvement in performance, surpassing even the full attention baseline.
4) Furthermore, the DSSA-SPARSE variant with LSE Approximation does not lose any perfor-
mance, confirming the effectiveness of our acceleration technique. Given its comparable perfor-
mance and efficiency, we adopt the LSE Approximation setting for all subsequent tasks by default.

Table 3: Task Performance on Long Reasoning Tasks.
Method MATH-500 AIME 24 AIME 25 LCB v5 LCB v6 Avg. ↑
FULLATTN 86.00 37.50 30.63 30.67 29.14 42.79

NSA 83.80 28.75 23.54 25.15 25.14 37.28
DSSA-Sparse 87.80 38.33 29.38 29.94 27.83 42.66
DSSA-Dense 86.40 36.67 23.33 29.94 26.29 40.53

Long Reasoning. To evaluate the
performance of DSSA in long-
output scenarios, we compared sev-
eral major Long Reasoning tasks,
including MATH-500 (Hendrycks
et al., 2021b), AIME (MAA), and
LiveCodeBench (LCB) (Jain et al., 2025). We finetune DSSA and baselines on OpenMathReason-
ing (Moshkov et al., 2025) and OpenCodeReasoning (Ahmad et al., 2025). As InfLLM and MInfer-
ence primarily accelerate long-input processing, we exclude them from this long-output evaluation.
The experimental results are shown in Table 3. The results show that DSSA attains performance on
par with full attention, confirming its effectiveness for long-output scenarios.

General Tasks. We verify that the DSSA architecture can freely switch back to Dense mode with-
out performance degradation on short-sequence tasks after long-sequence fine-tuning. Zero-shot
evaluations on MMLU (Hendrycks et al., 2021a), MMLU-Redux (Gema et al., 2025), CEval (Huang
et al., 2023), MATH-500 (Hendrycks et al., 2021b), HumanEval (Chen et al., 2021), MBPP (Austin
et al., 2021) and BBH (Suzgun et al., 2023) are shown in Table 4. Experimental results show that
DSSA achieves performance comparable to full attention.

Table 4: Task Performance on General Tasks.
Method MMLU MMLU-Redux CEval MATH-500 HumanEval MBPP BBH Avg. ↑
SHORT 72.73 72.71 76.17 54.40 70.73 75.49 51.90 67.73

FULLATTN 73.38 70.24 78.11 54.60 71.34 75.10 49.13 67.41
NSA 68.27 66.39 74.33 44.40 62.20 65.00 43.81 60.63
DSSA-Dense 71.29 69.73 77.70 54.80 73.17 73.54 47.09 66.76

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1k 2k 4k 6k
0

20

40

60

80
Ti

m
e

(m
s)

3.
0x1.

5x

2.
1x

1.
1x

1.
3x

0.
7x

1.
1x

0.
5x

A100, seqlen=32k

1k 2k 4k 6k
0

50

100

150

200

5.
2x

2.
2x

3.
6x

1.
7x

2.
2x

1.
1x

1.
8x

0.
9x

A100, seqlen=64k

1k 2k 4k 6k
0

100

200

300

400

6.
4x

2.
6x

4.
6x

2.
1x

2.
9x

1.
5x

2.
5x

1.
2x

A100, seqlen=96k

1k 2k 4k 6k
0

200

400

600

800

7.
4x

2.
9x

5.
5x

2.
4x

3.
5x

1.
7x

3.
1x

1.
4x

A100, seqlen=128k

1k 2k 4k 6k
Number of Visible Tokens

0

20

40

60

Ti
m

e
(m

s)

3.
9x2.

3x

2.
8x

1.
8x 1.
7x

1.
2x

1.
5x

0.
9x

4090, seqlen=32k

1k 2k 4k 6k
Number of Visible Tokens

0

100

200

6.
6x3.

0x

4.
7x2.

5x

2.
9x

1.
8x

2.
5x

1.
5x

4090, seqlen=64k

1k 2k 4k 6k
Number of Visible Tokens

0

200

400

600

8.
2x3.

3x

6.
0x2.

9x

3.
8x2.

3x

3.
3x

1.
9x

4090, seqlen=96k

1k 2k 4k 6k
Number of Visible Tokens

0

250

500

750

1000

9.
3x3.

5x

7.
1x3.

0x

4.
6x2.

4x

4.
0x

2.
1x

4090, seqlen=128k

FullAttn (FlashAttention) NSA DSSA Block Selection Sparse Attention

Figure 6: Speed of the kernels on NVIDIA A100 and NVIDIA 4090. “Number of Visible Tokens”
means the number of key/value tokens each query token can attend to.

Table 5: Ablation study of Block Selection efficiency, with and without LSE Approximation. All
measurements are in time (ms), and the number of selected blocks is set to 16.

Device A100 4090

Sequence Length 32k 64k 96k 128k 32k 64k 96k 128k

w/o LSE Approximation 4.67 18.20 42.46 75.36 4.89 19.95 46.51 83.26
w/ LSE Approximation 3.93 14.07 32.44 56.59 3.70 14.39 33.16 59.04

4.3 EFFICIENCY

We first evaluate the efficiency of our kernel implementation on NVIDIA A100 and NVIDIA 4090.
We evaluate DSSA’s inference efficiency on the batch=1 setting. We select FlashAttention-2 (Dao,
2024) implementation for full attention. For a fair efficiency comparison with NSA, we ignore its
sliding attention component, and compare solely on the compression and sparse attention parts by
selecting an equal number of blocks |I|. Experiment results are shown in Figure 6. When the
number of selected blocks is 16, DSSA achieves up to 7.4× over FlashAttention on A100 and 9.3×
on 4090. In contrast, NSA’s speedup is limited to 3.5× in the same setting. The breakdown of the
execution time shows that the overhead from the Block Selection stage is greatly optimized by our
efficient implementation in Section 3.4. We further conduct an ablation study on the Block Selection,
as shown in Table 5, which shows the effectiveness of our proposed LSE Approximation.

The end-to-end inference speed (with a |I| = 96 and W4A16 quantization (Frantar et al., 2025)) is
shown in Figure 7. DSSA can achieve 2.13× prefilling speedup and 2.32× decoding speedup. Since
DSSA does not accelerate the Feed-Forward Network (FFN) layers, a higher speedup ratio can be
achieved by incorporating FFN-specific acceleration techniques in future work.

32 64 96 128
Seqlen (k)

0

20

TT
FT

 (s
)

1.
09

x 1.
39

x 1.
67

x 1.
99

x

A100 - Prefilling

32 64 96 128
Seqlen (k)

0

20

TP
OT

 (m
s)

1.
17

x

1.
43

x

1.
63

x

1.
82

x

A100 - Decoding

32 64 96 128
Seqlen (k)

0

20

40

TT
FT

 (s
)

1.
16

x

1.
49

x 1.
79

x 2.
13

x

4090 - Prefilling

32 64 96 128
Seqlen (k)

0

20

TP
OT

 (m
s)

1.
43

x

1.
78

x

2.
03

x

2.
32

x

4090 - Decoding

DSSA-Dense DSSA-Sparse Attention Other Time

Figure 7: End-to-end inference speed of our 8B model when the number of visible tokens is 6k.
TTFT means time-to-first-token, and TPOT means time-per-output-token.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 CONCLUSION

In this paper, we introduced DSSA, a Dense-Sparse Switchable Attention framework designed to
overcome the limitations of existing trainable sparse attention mechanisms. By ensuring architec-
tural alignment with the standard pretrain-on-short and finetune-on-long workflow, DSSA facilitates
a seamless and efficient sparse adaptation to long contexts without requiring extra parameters or
causing disruptive distributional shifts. We believe DSSA offers a practical and powerful solution
for advancing the capabilities of large language models in the long-context era.

ETHICS STATEMENT

Our method has no potential risk since we focus on developing a novel algorithm.

REPRODUCIBILITY STATEMENT

We provided our kernel implementation in the supplementary materials.

THE USE OF LARGE LANGUAGE MODELS

After writing the paper manually, the paper was polished for clarity and readability using a large
language model (LLM).

REFERENCES

Wasi Uddin Ahmad, Sean Narenthiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain,
Jocelyn Huang, Vahid Noroozi, and Boris Ginsburg. Opencodereasoning: Advancing data distil-
lation for competitive coding. arXiv preprint arXiv:2504.01943, 2025.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 4895–4901, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3119–3137, 2024.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. Preprint, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pp. 1877–
1901, 2020.

Guoxuan Chen, Han Shi, Jiawei Li, Yihang Gao, Xiaozhe Ren, Yimeng Chen, Xin Jiang, Zhenguo
Li, Weiyang Liu, and Chao Huang. Sepllm: Accelerate large language models by compressing
one segment into one separator. In Forty-second International Conference on Machine Learning,
2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations, 2024.

Daya DeepSeek, Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao
Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Lizhe Fang, Yifei Wang, Zhaoyang Liu, Chenheng Zhang, Stefanie Jegelka, Jinyang Gao, Bolin
Ding, and Yisen Wang. What is wrong with perplexity for long-context language modeling? In
The Thirteenth International Conference on Learning Representations, 2025.

Elias Frantar, Roberto L Castro, Jiale Chen, Torsten Hoefler, and Dan Alistarh. Marlin: Mixed-
precision auto-regressive parallel inference on large language models. In Proceedings of the 30th
ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming, pp.
239–251, 2025.

Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Peiyuan Zhou, Jiaxing Qi, Junjie Lai, Hayden
Kwok-Hay So, Ting Cao, Fan Yang, et al. Seerattention: Learning intrinsic sparse attention in
your llms. arXiv preprint arXiv:2410.13276, 2024.

Aryo Pradipta Gema, Joshua Ong Jun Leang, Giwon Hong, Alessio Devoto, Alberto Carlo Maria
Mancino, Rohit Saxena, Xuanli He, Yu Zhao, Xiaotang Du, Mohammad Reza Ghasemi Madani,
et al. Are we done with mmlu? In Proceedings of the 2025 Conference of the Nations of the Amer-
icas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pp. 5069–5096, 2025.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite:
Zero-shot extreme length generalization for large language models. In Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 3991–4008, 2024.

Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong Qiu, Yuan Yao,
Ao Zhang, Liang Zhang, et al. Pre-trained models: Past, present and future. AI Open, 2:225–250,
2021.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations, 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021b.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. Ruler: What’s the real context size of your long-context language models? In
First Conference on Language Modeling, 2024.

Shengding Hu, Yuge Tu, Xu Han, Ganqu Cui, Chaoqun He, Weilin Zhao, Xiang Long, Zhi Zheng,
Yewei Fang, Yuxiang Huang, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. In First Conference on Language Modeling, 2024.

Yuxiang Huang, Binhang Yuan, Xu Han, Chaojun Xiao, and Zhiyuan Liu. Locret: Enhancing
eviction in long-context llm inference with trained retaining heads on consumer-grade devices.
arXiv preprint arXiv:2410.01805, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuxiang Huang, Mingye Li, Xu Han, Chaojun Xiao, Weilin Zhao, Ao Sun, Hao Zhou, Jie Zhou,
Zhiyuan Liu, and Maosong Sun. APB: Accelerating distributed long-context inference by passing
compressed context blocks across GPUs. In Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 10708–10727, 2025.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Yao Fu, et al. C-eval: A multi-level multi-discipline chinese eval-
uation suite for foundation models. Advances in Neural Information Processing Systems, 36:
62991–63010, 2023.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. In The Thirteenth International Conference on
Learning Representations, 2025.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. Advances in Neural Information Processing
Systems, 37:52481–52515, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2023.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020.

Xunhao Lai, Jianqiao Lu, Yao Luo, Yiyuan Ma, and Xun Zhou. Flexprefill: A context-aware sparse
attention mechanism for efficient long-sequence inference. In The Thirteenth International Con-
ference on Learning Representations, 2025.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. Advances in Neural Information Processing Systems, 37:22947–22970, 2024.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He,
Enming Yuan, Yuzhi Wang, et al. Moba: Mixture of block attention for long-context llms. arXiv
preprint arXiv:2502.13189, 2025.

MAA. American invitational mathematics examination-aime. URL https://maa.org/
maa-invitational-competitions/.

Ivan Moshkov, Darragh Hanley, Ivan Sorokin, Shubham Toshniwal, Christof Henkel, Benedikt
Schifferer, Wei Du, and Igor Gitman. Aimo-2 winning solution: Building state-of-the-art math-
ematical reasoning models with openmathreasoning dataset. arXiv preprint arXiv:2504.16891,
2025.

OpenAI. GPT-4 technical report. Preprint, 2023.

Aaron OpenAI, Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low,
Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Guilherme Penedo, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
at scale. Advances in Neural Information Processing Systems, 37:30811–30849, 2024.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context win-
dow extension of large language models. In The Twelfth International Conference on Learning
Representations, 2023.

12

https://maa.org/maa-invitational-competitions/
https://maa.org/maa-invitational-competitions/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguis-
tics, 9:53–68, 2021.

Yutao Sun, Zhenyu Li, Yike Zhang, Tengyu Pan, Bowen Dong, Yuyi Guo, and Jianyong
Wang. Efficient attention mechanisms for large language models: A survey. arXiv preprint
arXiv:2507.19595, 2025.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, et al. Challenging big-bench tasks and
whether chain-of-thought can solve them. In Findings of the Association for Computational Lin-
guistics: ACL 2023, pp. 13003–13051, 2023.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. In Forty-first International Confer-
ence on Machine Learning, 2024.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. ACM
Comput. Surv., 55(6), 2022. ISSN 0360-0300. doi: 10.1145/3530811.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, and Maosong Sun. Infllm: Training-free long-context extrapolation for llms with an effi-
cient context memory. Advances in Neural Information Processing Systems, 37:119638–119661,
2024a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2024b.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Shang Yang, Haotian Tang, Yao Fu, Song Han, et al.
Duoattention: Efficient long-context llm inference with retrieval and streaming heads. In The
Thirteenth International Conference on Learning Representations, 2025.

Renjun Xu and Jingwen Peng. A comprehensive survey of deep research: Systems, methodologies,
and applications. arXiv preprint arXiv:2506.12594, 2025.

Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. Xattention: Block sparse
attention with antidiagonal scoring. In Forty-second International Conference on Machine Learn-
ing, 2025.

John Yang, Kilian Lieret, Carlos E Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents. arXiv preprint arXiv:2504.21798, 2025.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jintao Zhang, Rundong Su, Chunyu Liu, Jia Wei, Ziteng Wang, Pengle Zhang, Haoxu Wang,
Huiqiang Jiang, Haofeng Huang, Chendong Xiang, et al. A survey of efficient attention methods:
Hardware-efficient, sparse, compact, and linear attention. 2025a.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Haocheng Xi, Jun Zhu, Jianfei Chen, et al.
Spargeattention: Accurate and training-free sparse attention accelerating any model inference.
In Forty-second International Conference on Machine Learning, 2025b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661–34710, 2023.

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
ments. arXiv preprint arXiv:2504.03160, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

After writing the paper manually, the paper was polished for clarity and readability using a large
language model (LLM).

B IMPLEMENTATION DETAIL

We have shown the implementation of Block Selection in Section 3.4. We show the implementation
detail of Sparse Attention here in Algorithm 2.

Algorithm 2 Computation of Sparse Attention. (Suppose hkv = 1 without loss of generality.)
Require: Q ∈ Rn×G×dh ,K,V ∈ Rn×dh . Block sizes Bk.

Divide Q into n blocks Q1, . . . ,Qn of size G× dh each.
Divide K,V into Tk = ⌈n/Bk⌉ blocks K1, . . . ,KTk and V1, . . . ,VTk of size Bk × dh each.
Divide O ∈ Rn×G×dh into n blocks of size G× dh each.
Divide the log-sum-exp lse into n blocks of size G each.
for i = 1, . . . , n (parallel) do

Load Qi from HBM to on-chip SRAM.
On chip, initialize O

(0)
i = (0)G×dh

, ℓ(0)i = (0)G, m(0)
i = (−∞)G.

for j = 1, . . . , Tk (sequential) do
if Kj in visible tokens (determined by the |I(i)| in Eq. 3) then

Load Kj ,Vj from HBM to on-chip SRAM.
On chip, compute attention scores Sij = QiK

⊤
j ∈ RG×Bk .

On chip, compute m
(j)
i = max(m(j−1)

i , rowmax(Sij)) ∈ RG.
On chip, compute P̃ij = exp(Sij −m

(j)
i) ∈ RG×Bk .

On chip, compute ℓ
(j)
i = exp(m

(j−1)
i −m

(j)
i)ℓ

(j−1)
i + rowsum(P̃ij) ∈ RG.

On chip, compute O
(j)
i = diag(exp(m(j−1)

i −m
(j)
i))−1O

(j−1)
i + P̃ijVj .

On chip, compute Oi = diag(ℓ(Tk)
i)−1O

(Tk)
i .

On chip, compute lsei = m
(Tk)
i + log(ℓ

(Tk)
i).

Write Oi to HBM as the i-th block of O.
Write lsei to HBM as the i-th block of lse.

return the output O and the log-sum-exp lse.

Algorithm 3 Computation of Dense Attention. (Suppose hkv = 1 without loss of generality.)
Require: Q ∈ Rn×G×dh ,K,V ∈ Rn×dh . Block sizes Bq, Bk.

Divide Q into Tq = G× ⌈n/Bq⌉ blocks Q1, . . . ,QTq of size Bq × dh each.
Divide K,V into Tk = ⌈n/Bk⌉ blocks K1, . . . ,KTk and V1, . . . ,VTk of size Bk × dh each.
Divide O ∈ Rn×G×dh into Tq blocks of size Bq × dh each.
Divide the log-sum-exp lse into Tq blocks of size Bq each.
for i = 1, . . . , Tq (parallel) do

Load Qi from HBM to on-chip SRAM.
On chip, initialize O

(0)
i = (0)Bq×dh

, ℓ(0)i = (0)Bq
, m(0)

i = (−∞)Bq
.

for j = 1, . . . , Tk (sequential) do
Load Kj ,Vj from HBM to on-chip SRAM.
On chip, compute attention scores Sij = QiK

⊤
j ∈ RBq×Bk .

On chip, compute m
(j)
i = max(m(j−1)

i , rowmax(Sij)) ∈ RBq .
On chip, compute P̃ij = exp(Sij −m

(j)
i) ∈ RBq×Bk .

On chip, compute ℓ
(j)
i = exp(m

(j−1)
i −m

(j)
i)ℓ

(j−1)
i + rowsum(P̃ij) ∈ RBq .

On chip, compute O
(j)
i = diag(exp(m(j−1)

i −m
(j)
i))−1O

(j−1)
i + P̃ijVj .

On chip, compute Oi = diag(ℓ(Tk)
i)−1O

(Tk)
i .

On chip, compute lsei = m
(Tk)
i + log(ℓ

(Tk)
i).

Write Oi to HBM as the i-th block of O.
Write lsei to HBM as the i-th block of lse.

return the output O and the log-sum-exp lse.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Similar to FlashAttention (Dao, 2024), the algorithm divides the input into blocks. The differences
are: 1) The FlashAttention block size Bk of K, should divide the sparse attention block size B.
That is, B should be a multiple of Bk. 2) The FlashAttention block of Q typically contains a single
attention head and multiple tokens. We follow NSA (Yuan et al., 2025) to make it contain a group of
attention heads of a single token, so that they can share the same sparse pattern. 3) The inner loop of
the FlashAttention iterates over all blocks of K, whereas our method’s loop only covers the visible
blocks of the sparse attention. We also show the FlashAttention implementation of Dense Attention
to Algorithm 3 for reference.

C BENCHMARK DETAILS

We provide the detailed results of the LongBench benchmark, mentioned in Table 2, in Table 6.
Following LongBench (Bai et al., 2024), the “Overall” score is computed by the macro-average
over the six task categories.

Table 6: Task Performance on LongBench. Best results in sparse attention are bolded.
Category FULLATTN (PT) FULLATTN (FT) INFLLM MINFERENCE NSA DSSA-SPARSE DSSA-DENSE

Single-Doc
QA

NarQA 18.17 21.38 21.02 20.16 18.34 20.75 21.03
Qasper 30.98 43.80 34.92 44.51 39.96 45.29 45.29

MFQA-en 43.81 55.07 49.39 54.83 51.35 53.53 53.54
MFQA-zh 54.51 57.26 51.75 57.00 59.06 59.33 59.64

Multi-Doc
QA

HotpotQA 48.49 50.13 44.03 48.00 46.78 54.11 54.07
2WikiQA 32.71 39.54 30.58 36.22 35.33 37.86 37.86
MuSiQue 23.22 24.68 17.85 22.87 16.97 21.74 21.24
Dureader 33.00 33.54 33.01 33.94 33.62 33.39 33.29

Summary

GovReport 31.93 32.17 21.40 32.21 28.72 30.33 30.38
QMSum 22.45 24.35 20.96 25.05 23.81 24.58 24.35

MultiNews 26.46 26.70 22.90 26.50 25.02 25.71 25.75
VCSUM 16.55 16.37 17.81 16.17 19.12 16.17 16.20

Few-shot
Learning

TREC 65.50 45.00 61.00 43.50 23.50 22.50 24.00
TriviaQA 85.67 84.35 75.78 81.93 83.95 84.22 84.22
SAMSum 42.92 40.26 37.46 39.81 38.47 40.69 40.51

LSHT 38.00 37.75 24.57 35.75 25.50 22.01 21.47

Synthetic
Task

PsgCount 4.06 4.00 3.00 3.50 3.50 5.00 4.50
PsgRe-en 20.75 86.50 19.00 85.00 66.00 92.00 91.00
PsgRe-zh 42.00 90.50 43.00 90.50 68.00 90.50 90.50

Code LCC 58.65 35.72 31.35 35.91 33.83 44.73 44.73
RepoBen-P 43.93 35.00 30.72 34.17 34.95 44.62 44.76

Overall ↑ 37.86 42.30 32.30 41.55 37.10 42.54 42.49

D HYPERPARAMETERS ANALYSIS

In this section, we present analyses and discussions regarding the choice of key hyperparameters
in our framework, specifically focusing on the number of selected blocks (|Itopk|), local blocks
(|Ilocal|), initial blocks (|Iinit|), and the block size (B). These parameters serve as the core variables
controlling the trade-off between model performance and computational efficiency. As shown in
Table 7, increasing |Itopk| from 31 to 63 yields significant performance gains, whereas further in-
creasing it to 95 offers only marginal improvements. Similarly, while larger |Ilocal| improves results,
the marginal gain decreases as computational overhead grows. Consequently, we select |Itopk| = 63
and |Ilocal| = 32 as the optimal configuration for balancing efficiency and effectiveness.

Table 7: Hyperparameter analysis on the number of selected blocks and local blocks.
Iinit Itopk Ilocal RULER ↑ LongPPL ↓

1 63 32 82.62 2.12

1 31 32 76.14 2.36
1 95 32 84.89 2.05

1 63 16 82.08 2.15
1 63 64 83.45 2.09

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Regarding other parameters, we set |Iinit| to a minimal value following the established practice in
StreamingLLM (Xiao et al., 2024b), as a small number of attention sinks is sufficient for stability.
For the block size B, we adopt B = 64 following NSA (Yuan et al., 2025). This choice is moti-
vated by hardware efficiency, as FlashAttention kernels typically require block sizes of 64 or 128 to
maximize Tensor Core utilization and memory bandwidth.

17

	Introduction
	Related Work
	Training-free Sparse Attention
	Trainable Sparse Attention

	Method
	Background
	Overall Framework
	Block Representation
	Efficient Implementation

	Experiment
	Experiment Setup
	Task Performance
	Efficiency

	Conclusion
	The Use of Large Language Models
	Implementation Detail
	Benchmark Details
	Hyperparameters Analysis

