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ABSTRACT

Long-sequence processing is a critical capability for modern large language mod-
els. However, the self-attention mechanism in the standard Transformer architec-
ture faces severe computational and memory bottlenecks when processing long
sequences. While trainable sparse attention methods offer a promising solution,
existing approaches such as NSA introduce excessive extra parameters and disrupt
the conventional pretrain-on-short, finetune-on-long workflow, resulting in slow
convergence and difficulty in acceleration. To overcome these limitations, we in-
troduce Dense-Sparse Switchable Attention framework (DSSA), a trainable sparse
attention that seamlessly adapts models from short to long sequences. Specifically,
DSSA reuses dense attention parameters through parameter-free architecture mod-
ification, maintaining consistency between short and long sequence processing.
Additionally, DSSA ensures computational efficiency across all sequence lengths,
by using dense attention for short inputs and smoothly transitioning to sparse at-
tention for long sequences. To achieve practical acceleration, we further introduce
an efficient implementation of DSSA that significantly reduces the computational
overhead. Our experiments on long-context understanding and chain-of-thought
reasoning demonstrate that DSSA is 4× faster than dense attention while retaining
98.1% and 99.7% of the performance, respectively. We will release all associated
implementations to facilitate future research on efficient attention.

1 INTRODUCTION

With the rapid development of large language models (LLMs) (Brown et al., 2020; Bommasani
et al., 2021; Han et al., 2021; OpenAI, 2023), the demand for long-sequence processing capabilities
has become increasingly critical. From long-input scenarios such as deep research (Zheng et al.,
2025; Xu & Peng, 2025), chatbots with long-term memory, and software issue resolution (Jimenez
et al., 2023; Yang et al., 2025), to long-output tasks including complex reasoning (OpenAI et al.,
2024; DeepSeek et al., 2025) and LLM-driven agents (Wang et al., 2024), a model’s capability to
understand and generate long sequences directly determines its performance in real-world applica-
tions. However, the self-attention mechanism in the existing Transformer (Vaswani et al., 2017)
architecture faces severe computational and memory bottlenecks when processing long sequences.

To address the challenge of processing long sequences, efforts have been devoted to exploring sparse
attention mechanisms (Beltagy et al., 2020; Zaheer et al., 2020; Tay et al., 2022), which restrict each
token within the context to attend to only a subset of tokens related to that token. Early research
in this area focuses on the training-free setting, leveraging the sparsity naturally occurring in self-
attention mechanisms to accelerate inference (Xiao et al., 2024a;b; Jiang et al., 2024). However, the
training-free setting introduces a fundamental trade-off between sparsity and model performance.
To avoid significant performance degradation, the degree of sparsity that can be applied is often
limited, which in turn restricts the potential efficiency gains.

Given the limitations of training-free attention mechanisms, trainable sparse attention mechanisms
have garnered increasing attention from researchers (Lu et al., 2025; Gao et al., 2024). Among
them, the natively trainable sparse attention (NSA) (Yuan et al., 2025) method adopts the widely-
used block-sparse attention (Child et al., 2019) structure, designing three different sparse attention
modules and developing corresponding CUDA kernels to accelerate model computation. Despite
its effectiveness, we find misalignment between the sparse architecture of NSA and the stan-
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Figure 1: The comparison of Vanilla Full Attention, NSA (Yuan et al., 2025), and our DSSA.

dard pretrain-on-short, finetune-on-long workflow. A widely used way to build long LLMs is
to pretrain on short sequences and finetune on long sequences. The NSA creates an architectural
mismatch with vanilla full attention, as it introduces three sets of key-value parameters and three
attention modules, forcing the model to abruptly switch from a single-output attention to a multi-
output attention architecture. As shown in Section 4, this mismatch hinders smooth adaptation,
erases what the model has already learned, and introduces a significant efficiency bottleneck for
short sequences.

To address all the above issues, we propose Dense-Sparse Switchable Attention framework (DSSA).
DSSA is built on block-sparse attention and introduces three core innovations:

1. Seamless Short-to-Long Adaptation: As depicted in Figure 1, different from NSA, which re-
quires additional parameters and multiple attention modules, DSSA seamlessly transitions from
dense to sparse attention by directly reusing existing dense attention parameters. This design
naturally aligns with the standard pretrain-on-short, finetune-on-long workflow, eliminating ar-
chitectural mismatches and minimizing loss fluctuations.

2. Efficiency for Both Short and Long Sequences: Because the transition from dense to sparse
attention in DSSA requires no additional parameters and introduces minimal distributional shifts,
the model preserves its strong performance on short texts and can easily switch back to dense
attention for short sequence efficiency.

3. Accelerated Block Selection Mechanism: The block selection step before sparse attention in-
herently undermines the efficiency gains of the sparse attention itself. We propose a hardware-
awared efficient implementation, effectively removing the bottleneck and unlocking the full po-
tential of sparse attention.

We evaluate our method on long-context understanding and long chain-of-thought (CoT) generation
benchmarks. Our DSSA is 4× faster than dense attention while maintaining 98.1% and 99.7% of
the original performance on these tasks, respectively. To advance research in sparse attention, we
are releasing all operator implementations of DSSA.

2 RELATED WORK

As the demand for LLMs to understand and generate long sequences continues to grow, research on
improving attention efficiency has garnered increasing attention (Tay et al., 2022; Sun et al., 2025;
Zhang et al., 2025a). In this section, we discuss the sparse attention paradigm from two perspectives:
training-free and trainable sparse attention approaches.

2.1 TRAINING-FREE SPARSE ATTENTION

Training-free sparse attention approaches aim to utilize the intrinsic sparsity of attention layers.
These methods enable LLMs trained with dense attention to perform sparse attention between each
token and a small subset of relevant contexts. Based on the selection strategy for relevant contexts,
these algorithms can be categorized into predefined sparse patterns and dynamic sparse patterns.

Predefined Sparse Patterns. Sparse attention with a predefined pattern employs manually de-
fined heuristic rules to determine which contextual tokens should be selected for attention computa-
tion (Xiao et al., 2024b; Han et al., 2024; Child et al., 2019; Zaheer et al., 2020; Beltagy et al., 2020;
Xiao et al., 2025). For instance, sliding window attention restricts each token to interact only with
neighboring tokens (Beltagy et al., 2020). Building upon sliding windows, some works select spe-
cial tokens such as initial tokens or segment separators, requiring all tokens to attend to these special
tokens (Xiao et al., 2024b; Chen et al., 2024; Child et al., 2019). Furthermore, some works combine
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multiple predefined attention patterns (Zaheer et al., 2020; Beltagy et al., 2020).These approaches
typically rely on human observations to formulate heuristic rules for selecting relevant contexts.

Dynamic Sparse Patterns. Dynamic sparse patterns incorporate the semantic information of
query tokens into the context selection process by computing the relevance between query tokens
and candidate contexts. Early works primarily perform similarity computation at the token level (Ki-
taev et al., 2020; Roy et al., 2021; Wang et al., 2020). As sequence lengths increase, block sparse
methods have gained widespread adoption, which partition contexts into contiguous block units and
perform relevance computation and context selection at the block granularity (Xiao et al., 2024a;
Jiang et al., 2024; Xu et al., 2025; Tang et al., 2024; Zhang et al., 2025b; Lai et al., 2025). Further-
more, research on attention sparsity has inspired the development of key-value (KV) eviction and
compression methods, which reduce memory consumption by discarding or compressing KV caches
with low attention probabilities (Zhang et al., 2023; Li et al., 2024; Huang et al., 2024; 2025).

Training-free methods, while focusing on improving the inference efficiency of dense attention mod-
els, are often constrained by insufficient sparsity levels in order to avoid severe performance degra-
dation and finally suffer from limited acceleration benefits.

2.2 TRAINABLE SPARSE ATTENTION

To further enhance efficiency for long sequence processing, researchers incorporate sparse attention
into the model training phase. SeerAttention (Gao et al., 2024) employs a self-distillation post-
training algorithm to train a router that selects relevant contexts for query blocks. MoBA (Lu et al.,
2025) employs a block sparse attention structure during the short-to-long adaptation phase, training
routers between query blocks and KV blocks for context selection. These methods partition query
tokens into blocks and can only accelerate the prefilling phase. NSA (Yuan et al., 2025) designs three
attention components for token-level sparsity, effectively accelerating both prefilling and decoding
processes. However, NSA introduces substantial additional parameters, making it unsuitable for ef-
ficient short-to-long adaptation and imposing significant computational overhead on short-sequence
processing. In this paper, we focus on proposing a sparse attention mechanism that effectively and
efficiently processes both short and long sequences, supporting both prefilling and decoding.

3 METHOD

3.1 BACKGROUND

Grouped-Query Attention. Attention mechanisms enable models to selectively focus on rel-
evant parts of the input sequence. Among various attention variants, grouped-query attention
(GQA) (Ainslie et al., 2023) has emerged as a popular method that strikes a balance between model
performance and computational efficiency. Given an input sequence of hidden states X ∈ Rn×d,
where n is the sequence length and d is the model dimension, GQA computes the queries (Q), keys
(K), and values (V) via linear projections as Q = XWQ,K = XWK ,V = XWV . The pro-
jection matrices have the shapes WQ ∈ Rd×(hqdh) and WK ,WV ∈ Rd×(hkvdh), with the head
dimension dh. These tensors are then reshaped to form hq query heads {Qi}

hq

i=1, hkv KV heads
{Kj ,Vj}hkv

j=1, with each head having the shape n× dh. The query heads are partitioned by a group
size G = hq/hkv . The attention scores Si and the attention output Oi for the i-th query head are
computed by attending to its corresponding KV heads with the index j = ⌊(i− 1)/G⌋+ 1:

Si = Softmax

(
QiK

⊤
j√

dh

)
, Oi = SiVj . (1)

The final output is obtained by concatenating the attention outputs and projecting them through a
final linear layer WO ∈ R(hqdh)×d: Attention(X) = Concat(O1, . . . ,Ohq )WO.

NSA. NSA (Yuan et al., 2025) is an enhancement of GQA designed for efficiency on long se-
quences. The key insight is that for long sequences, e.g., when n > 32k, the attention score matrix
S exhibits strong sparsity. This allows for approximating the attention matrix by ignoring negli-
gible values, leading to faster computation. As illustrated in Figure 2, NSA utilizes three distinct
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Figure 2: The overview of NSA and our DSSA. DSSA uses a shared KV for both Sparse Attention
and Dense Attention. DSSA fuses Selected Attention and Sliding Attention and eliminates the
output of Compressed Attention. In addition, DSSA introduces no extra parameters.

modules and combines them using a gating module. Based on the observation that adjacent atten-
tion scores are similar (Jiang et al., 2024), NSA splits the sequences into blocks of size B. First,
Compressed Attention employs a compressed representation of the KV tensors to reduce the com-
putational complexity. Second, Selected Attention leverages the attention scores from compressed
attention to compute only the blocks with high attention scores. Finally, Sliding Attention is used
to focus on local contextual information within the sequence. For these three attention modes, they
introduce three sets of KV projection matrices: Wcmp

K ,Wcmp
V ,Wslc

K ,Wslc
V ,Wwin

K ,Wwin
V . This final

output can be mathematically represented as Output = gcmpOcmp+gslcOslc+gwinOwin, where Ocmp,
Oslc, and Owin are the outputs of the three respective modules, and the gate scores gcmp, gslc, and
gwin are derived from the input features X via an MLP and a sigmoid activation. They also train an
MLP module for compressing the KV tensors. The three distinct KV projections, combined with
an additional MLP and gating module, result in a highly complex architecture. This complexity,
in turn, makes the model poorly suited for training from scratch on short-sequence data and also
complicates the process of converting pretrained dense models to sparse ones.

3.2 OVERALL FRAMEWORK

We propose DSSA, a more concise framework with zero extra parameters that more closely aligns
dense and sparse attention patterns.

Shared Key-Value Projection. We find that using three separate sets of KV projection parameters
in NSA (Yuan et al., 2025) is unnecessary, which not only complicates the adaptation from short
to long sequences but also significantly slows down computation for short sequences. Therefore,
we propose using a single shared set of projection parameters, WK and WV , initialized with the
pretrained dense attention parameters and used for finetuning on long sequences.

Aligned Computation. In addition to ensuring that sparse and dense attention share the same pa-
rameters, their computational processes must also be closely aligned. In NSA, the three attention
modules all generate outputs that are aggregated by an extra gating module. This forces the computa-
tion of all three modules even for short sequences, leading to substantial overhead. To mitigate this,
we take a union of the two sparse patterns in Selected Attention and Sliding Attention and eliminate
the output of Compressed Attention, forming a unified Sparse Attention module. Specifically, the
original Selected Attention module identifies important token blocks based on the attention scores
from the Compressed Attention module, Scmp. For a query token with index i, located in the block
bi = ⌊ i−1

B ⌋+ 1, attention is always granted to a fixed set of initial blocks and a set of local blocks:

Iinit = {1, 2, . . . , Ninit}, Ilocal(i) = {bi −Nlocal + 1, . . . , bi − 1, bi}. (2)

The top-k selection is then applied to Scmp over the set of remaining blocks, denoted as Itopk(i). The
complete set of attended block indices for this query token is the union of these three sets:

I(i) = Iinit ∪ Ilocal(i) ∪ Itopk(i). (3)
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If we denote the set of token indices in the j-th block as Tj = {jB+1, . . . , (j+1)B}, the selected
attention allows a token in the block bi to attend to the union of blocks

⋃
j∈I(i) Tj . The Sliding

Attention, on the other hand, allows the i-th token to attend to a range {i−w+1, . . . , i} of window
size w. Since the local blocks in Selected Attention and the window in Sliding Attention create
overlapping, we merge them by expanding the number of local blocks within our unified Sparse
Attention to strictly cover the region of the Sliding Attention, that is, Nlocal ≥ ⌈w

B ⌉+1, as illustrated
in Figure 3.

NSA Selected Attention Mask (init=1, topk=2, local=1)

NSA Sliding Attention Mask (w=6)

DSSA Sparse Attention Mask (init=1, topk=2, local=3)

Figure 3: The illustration of the union of Selected
Attention and Sliding Attention.

Furthermore, we eliminate the output of the
Compressed Attention module, only retaining
its attention scores Scmp for block selection
in Sparse Attention. This single-output de-
sign more closely mirrors dense attention and
aids the training of the sparse attention model.
DSSA can thus dynamically switch between
dense and sparse attention patterns based on the
input sequence length.

Simplified and Efficient Compression Mod-
ule. Since we eliminate the output of the
Compression Attention, using MLP for token
compression would not receive gradients. We replace it with a more intuitive parameter-free pooling
function, which will be detailed in Section 3.3. Additionally, computing the attention scores Scmp

introduces non-negligible overhead, and we will reduce this overhead in Section 3.4.

3.3 BLOCK REPRESENTATION

MAXMAX

    MEAN    MEAN    MEAN    MEAN    MEAN    MEAN    MEAN    MEANMEAN

MEAN MEAN
1 2

1 2
Attention Score

7 8654321 9
Attention Score

7 8654321 9

1 2

3-stage group-level
1-stage token-level

7 8654321 9
7 8654321 9

7 8654321 9
SUM

Head
Group
G=3
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Scmp

Figure 4: The illustration of the 3-stage group-
level compression, compared with the 1-stage
token-level compression.

Simply compressing a long sequence with a
large block size B in 1-stage can lead to a
significant loss of granular information (Yuan
et al., 2025). To address this, we implement
a 3-stage, coarse-grained to fine-grained com-
pression process, as shown in Figure 4. In the
first stage, we process the input key sequence K
to produce an intermediate and coarse-grained
representation KC1 . By denoting the initial
compression block size as lC1

and the stride
as sC1

, we achieve this by applying a mean-
pooling operation over sequential blocks:

KC1
i = Mean(Ki·sC1

:i·sC1
+lC1

). (4)

Then, we compute the attention scores SC1 be-
tween the query Q and KC1 :

SC1 = Softmax(Q(KC1)⊤). (5)
In the second stage, we employ block-wise sparse attention rather than token-level approaches for
the efficiency of Sparse Attention. In a model utilizing GQA, we can achieve this by forcing the
block selection pattern across all heads within a group to be the same. We conduct summation
within the head group to get the shared importance score Sshared:

Sshared =

G∑
h=1

SC1(h). (6)

In the third stage, we apply a max-pooling operation, which can preserve the most salient features.
The aggregated score Scmp are defined as follows and used for the Sparse Attention:

Scmp
i = Max(Sshared

i·s:i·s+l). (7)

In our method, we set lC1
= B

2 , sC1
= B

4 , l = 5, and s = 4 so that it can achieve the same
compression ratio as 1-stage compression of block size B. Intuitively, we compute the sparse scores
of the entire block based on several sliding sub-blocks within the block.
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Algorithm 1 Computation of Sshared (Suppose hkv = 1 without loss of generality.)
Require: Q ∈ Rn×G×dh ,KC1 ∈ R(n/sC1

)×dh ,KC2 ∈ R(n/sC2
)×dh in HBM. Block sizes Bq, Bk.

Divide Q into Tq = ⌈n/Bq⌉ blocks Q1, . . . ,QTq of size Bq ×G× dh each.
Divide KC1 into T1 = ⌈n/sC1/Bk⌉ blocks KC1

1 , . . . ,KC1
T1

of size Bk × dh each.
Divide KC2 into T2 = ⌈n/sC2/Bk⌉ blocks KC2

1 , . . . ,KC2
T2

of size Bk × dh each.
Divide Sshared into Tq × T1 blocks of size Bq ×Bk each.
for i = 1, . . . , Tq (parallel) do

Load Qi from HBM to on-chip SRAM.
On chip, initialize online-softmax related statistic log-sum-exp lse.
for j = 1, . . . , T2 (sequential) do ▷ First pass (Coarse-grained)

Load KC2
j from HBM to on-chip SRAM.

On chip, compute attention scores SC2
ij ∈ RG×Bq×Bk as in Eq. (8) and update lse.

for j = 1, . . . , T1 (sequential) do ▷ Second pass (Fine-grained)
Load KC1

j from HBM to on-chip SRAM.
On chip, compute attention scores SC1

ij ∈ RG×Bq×Bk as in Eq. (5) and normalize it using lse.
On chip, compute the final block Sshared

ij ∈ RBq×Bk by summing SC1
ij over the head group.

Write the block Sshared
ij to its corresponding position in HBM.

return the output Sshared.

3.4 EFFICIENT IMPLEMENTATION

For efficient Sparse Attention, we follow the techniques in NSA (Yuan et al., 2025) to set the group
size G of GQA to 16, a configuration well-suited for block sparse attention. More details can be
found in Appendix B. However, our profiling reveals that the computation of the compression
score, Scmp, introduces a significant performance bottleneck. A primary source of this slowdown
is the substantial I/O required to store the first-stage attention scores SC1 into the slow GPU HBM.
The amount of data that needs to be written is hqn

2/sC1
, where n is the full sequence length. Given

that sC1
≪ n, materializing the full attention score matrix to GPU HBM incurs a prohibitive cost.

Drawing inspiration from FlashAttention (Dao, 2024), we aim to minimize this I/O by ensuring the
attention scores remain within the fast GPU SRAM as much as possible. Our approach, Fused
Head Group Summation, is to fuse the summation over the head group, required for the second-
stage compression, directly into the SRAM-based computation loop of FlashAttention. After that,
we can only store the reduced attention scores Sshared into GPU HBM, whose size is hqn

2/(sC1
G).

Another challenge arises from the fact that summing over the head group dimension and performing
the online-softmax (Dao, 2024) along the sequence dimension are not commutative operations. This
conflict prevents a straightforward fusion. To overcome this, we implement a two-pass approach. In
the first pass, we compute the log-sum-exp (lse) term required for the softmax normalization within
the SRAM. In the second pass, we leverage the lse to calculate the final attention scores, perform
the summation across the head group within the SRAM, and write the reduced scores to the HBM.
The trade-off of this two-pass method is that it doubles the computational workload. Therefore,
we propose LSE Approximation to approximate the lse computation by using a coarser-grained
attention score SC2 . Following Eq. (4) and Eq. (5), we change them to

KC2
i = Mean(Ki·sC2

:i·sC2
+lC2

), SC2 = Softmax(Q(KC2)⊤). (8)

By setting sC2 = 4sC1 and lC2 = 4lC1 , the computational overhead was reduced from 2× to 1.25×.
We summarize the procedure for computing Sshared in Algorithm 1. To further reduce memory I/O,
the max-pooling and top-k operations related to Scmp could also be fused into the kernel; however,
we leave this implementation for future work.

4 EXPERIMENT

We evaluate DSSA on tasks ranging from short to long contexts, and demonstrate its efficiency.
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Figure 5: The training loss of models. We only show the last few iterations of the short pretraining.

4.1 EXPERIMENT SETUP

Pretraining Setup. We first use full attention to pretrain a model on short-sequence data, marked
as SHORT. We employ a standard GQA (Ainslie et al., 2023) model backbone with 8B parameters,
with the hidden size d = 4096, the number of heads hq = 32, hkv = 2, and the head dimension dh =
128. The pretraining dataset consists of 8T tokens of 4k-length sequences, primarily comprising
FineWeb-Edu (Penedo et al., 2024) and Stack-v2 (Lozhkov et al., 2024). We set 8M tokens per
batch, and use a WSD learning rate scheduler (Hu et al., 2024) with 2000 warmup steps to an initial
learning rate of 7.5e-3, and 27000 decay steps to the final learning rate of 3e-4.

Long-Context Adaptation. When transitioning to long-context finetuning, we switch to DSSA-
Sparse mode. Following NSA (Yuan et al., 2025), we set the compression block size lC1

= 32,
compression stride sC1

= 16, and attention block size B = 64. For our efficient block selection
implementation in Section 3.4, we additionally set the LSE Approximation block size lC2

= 128
and stride sC2

= 64. We set the selected block count |I| = 96 (including |Iinit| = 1, |Itopk| = 63,
and |Ilocal| = 32) for both training and inference. Therefore, the total number of visible tokens is
|I| · B = 6k. We conduct long-sequence finetuning on the pretrained model using 5B tokens, with
an initial learning rate of 3e-4 and linear decay to 2.75e-4. The training batches contain sequences
from four length intervals: 0-4k, 4-12k, 12-24k, and 24-32k, with token counts in a 1:1:1:1 ratio.

Baselines. We finetune a baseline model with full attention, marked as FULLATTN, using the same
training configuration as DSSA-Sparse. We then apply several typical training-free sparse attention
methods on FULLATTN as baselines, including InfLLM (Xiao et al., 2024a) and MInference (Jiang
et al., 2024). In addition, we present the results of SHORT with YaRN (Peng et al., 2023) to extend
the context window size. In terms of trainable sparse attention, we compare with NSA (Yuan et al.,
2025). By using the same training settings as in DSSA-Sparse, we finetune our pretrained model
into an NSA version. We initialize NSA’s three sets of KV parameters by replicating the original
KV parameters in dense attention. As NSA does not publish their code, we adopt an open-source
Triton implementation of NSA for experiments1.

For all the above sparse attention methods, we maintain the same sparsity level to ensure a fair com-
parison. We provide the training curve for trainable methods in Figure 5. NSA causes a disruption
in the loss, while DSSA is closer to FULLATTN.

4.2 TASK PERFORMANCE

In this section, we evaluate DSSA and other baselines across various tasks. Notably, while the
original NSA paper demonstrates performance comparable to full attention when training on long
sequences from scratch, NSA fails to achieve satisfactory results in short-to-long adaptation settings.
This indicates that the substantial parameter overhead introduced by NSA renders it unsuitable for
the conventional “pretraining-on-short, finetuning-on-long” paradigm.

Long-Context Understanding. To evaluate DSSA’s performance on long-input tasks, we com-
pare DSSA and different baselines on RULER (Hsieh et al., 2024), LongBench (Bai et al., 2024)
and LongPPL (Fang et al., 2025). RULER is a synthetic dataset with a configurable average length.

1https://github.com/XunhaoLai/native-sparse-attention-triton
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Table 1: Task Performance on RULER. Best results in sparse attention are bolded.
Method SG1 SG2 SG3 MK1 MK2 MK3 MV MQ VT CWE FWE QA1 QA2 Avg. ↑
FULLATTN 100.00 100.00 100.00 96.00 94.00 92.00 82.00 98.50 93.20 44.40 91.33 48.00 56.00 84.26

SHORT+YARN 98.00 68.00 50.00 46.00 6.00 0.00 32.00 31.50 36.00 21.40 87.33 26.00 26.00 40.63
INFLLM 98.00 6.00 4.00 10.00 10.00 10.00 9.00 7.50 70.00 16.00 80.67 18.00 24.00 27.94
MINFERENCE 100.00 100.00 100.00 76.00 36.00 46.00 79.50 93.50 88.00 64.20 92.67 32.00 44.00 73.22
NSA 100.00 88.00 82.00 54.00 38.00 30.00 59.00 61.50 56.00 34.40 86.00 56.00 34.00 59.92

DSSA-SPARSE
w/ LSE Approx 100.00 100.00 100.00 94.00 82.00 62.00 98.50 94.50 98.00 50.40 82.67 72.00 40.00 82.62
w/o LSE Approx 100.00 100.00 100.00 92.00 80.00 64.00 98.50 95.50 98.00 47.80 81.33 70.00 40.00 82.09

DSSA-DENSE 100.00 100.00 100.00 94.00 98.00 98.00 99.00 98.00 98.40 52.80 90.00 76.00 44.00 88.32

Table 2: Task Performance on LongBench and LongPPL. Best results in sparse attention are bolded.
Benchmark FULLATTN SHORT+YARN INFLLM MINFERENCE NSA DSSA-SPARSE DSSA-DENSE

LongBench ↑ 42.30 37.86 32.30 41.55 37.10 42.54 42.49
LongPPL ↓ 2.06 5.28 12.01 2.62 4.24 2.12 2.00

LongBench is a bilingual benchmark for long-context understanding. Compared to RULER, Long-
Bench is primarily built from existing, real-world datasets. LongPPL is a perplexity evaluation
benchmark for long sequences. The experimental results of RULER when the length is 32k are
shown in Table 1. The results on LongBench and LongPPL are shown in Table 2. Please refer
to Appendix C for detailed performance of the sub-tasks in LongBench. From the results, we can
observe that: 1) DSSA achieves the best performance compared to other sparse methods, with its
results being highly competitive and closely matching the strong, FULLATTN baseline. Alternative
approaches, whether applying training-free sparsity or training-based sparsity, result in a substantial
drop in performance. 2) Compared to NSA, DSSA can achieve significant performance improve-
ments through minimal finetuning on long-sequences. Although NSA has low training loss, its high
perplexity on the LongPPL evaluations indicates that NSA has not adequately learned long-range
dependencies. 3) A unique advantage of DSSA is the flexibility to seamlessly switch between
dense mode and sparse mode. This flexibility not only provides an option for dense computation but
can also lead to a further improvement in performance, surpassing even the full attention baseline.
4) Furthermore, the DSSA-SPARSE variant with LSE Approximation does not lose any perfor-
mance, confirming the effectiveness of our acceleration technique. Given its comparable perfor-
mance and efficiency, we adopt the LSE Approximation setting for all subsequent tasks by default.

Table 3: Task Performance on Long Reasoning Tasks.
Method MATH-500 AIME 24 AIME 25 LCB v5 LCB v6 Avg. ↑
FULLATTN 86.00 37.50 30.63 30.67 29.14 42.79

NSA 83.80 28.75 23.54 25.15 25.14 37.28
DSSA-Sparse 87.80 38.33 29.38 29.94 27.83 42.66
DSSA-Dense 86.40 36.67 23.33 29.94 26.29 40.53

Long Reasoning. To evaluate the
performance of DSSA in long-
output scenarios, we compared sev-
eral major Long Reasoning tasks,
including MATH-500 (Hendrycks
et al., 2021b), AIME (MAA), and
LiveCodeBench (LCB) (Jain et al., 2025). We finetune DSSA and baselines on OpenMathReason-
ing (Moshkov et al., 2025) and OpenCodeReasoning (Ahmad et al., 2025). As InfLLM and MInfer-
ence primarily accelerate long-input processing, we exclude them from this long-output evaluation.
The experimental results are shown in Table 3. The results show that DSSA attains performance on
par with full attention, confirming its effectiveness for long-output scenarios.

General Tasks. We verify that the DSSA architecture can freely switch back to Dense mode with-
out performance degradation on short-sequence tasks after long-sequence fine-tuning. Zero-shot
evaluations on MMLU (Hendrycks et al., 2021a), MMLU-Redux (Gema et al., 2025), CEval (Huang
et al., 2023), MATH-500 (Hendrycks et al., 2021b), HumanEval (Chen et al., 2021), MBPP (Austin
et al., 2021) and BBH (Suzgun et al., 2023) are shown in Table 4. Experimental results show that
DSSA achieves performance comparable to full attention.

Table 4: Task Performance on General Tasks.
Method MMLU MMLU-Redux CEval MATH-500 HumanEval MBPP BBH Avg. ↑
SHORT 72.73 72.71 76.17 54.40 70.73 75.49 51.90 67.73

FULLATTN 73.38 70.24 78.11 54.60 71.34 75.10 49.13 67.41
NSA 68.27 66.39 74.33 44.40 62.20 65.00 43.81 60.63
DSSA-Dense 71.29 69.73 77.70 54.80 73.17 73.54 47.09 66.76
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Figure 6: Speed of the kernels on NVIDIA A100 and NVIDIA 4090. “Number of Visible Tokens”
means the number of key/value tokens each query token can attend to.

Table 5: Ablation study of Block Selection efficiency, with and without LSE Approximation. All
measurements are in time (ms), and the number of selected blocks is set to 16.

Device A100 4090

Sequence Length 32k 64k 96k 128k 32k 64k 96k 128k

w/o LSE Approximation 4.67 18.20 42.46 75.36 4.89 19.95 46.51 83.26
w/ LSE Approximation 3.93 14.07 32.44 56.59 3.70 14.39 33.16 59.04

4.3 EFFICIENCY

We first evaluate the efficiency of our kernel implementation on NVIDIA A100 and NVIDIA 4090.
We evaluate DSSA’s inference efficiency on the batch=1 setting. We select FlashAttention-2 (Dao,
2024) implementation for full attention. For a fair efficiency comparison with NSA, we ignore its
sliding attention component, and compare solely on the compression and sparse attention parts by
selecting an equal number of blocks |I|. Experiment results are shown in Figure 6. When the
number of selected blocks is 16, DSSA achieves up to 7.4× over FlashAttention on A100 and 9.3×
on 4090. In contrast, NSA’s speedup is limited to 3.5× in the same setting. The breakdown of the
execution time shows that the overhead from the Block Selection stage is greatly optimized by our
efficient implementation in Section 3.4. We further conduct an ablation study on the Block Selection,
as shown in Table 5, which shows the effectiveness of our proposed LSE Approximation.

The end-to-end inference speed (with a |I| = 96 and W4A16 quantization (Frantar et al., 2025)) is
shown in Figure 7. DSSA can achieve 2.13× prefilling speedup and 2.32× decoding speedup. Since
DSSA does not accelerate the Feed-Forward Network (FFN) layers, a higher speedup ratio can be
achieved by incorporating FFN-specific acceleration techniques in future work.
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Figure 7: End-to-end inference speed of our 8B model when the number of visible tokens is 6k.
TTFT means time-to-first-token, and TPOT means time-per-output-token.
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5 CONCLUSION

In this paper, we introduced DSSA, a Dense-Sparse Switchable Attention framework designed to
overcome the limitations of existing trainable sparse attention mechanisms. By ensuring architec-
tural alignment with the standard pretrain-on-short and finetune-on-long workflow, DSSA facilitates
a seamless and efficient sparse adaptation to long contexts without requiring extra parameters or
causing disruptive distributional shifts. We believe DSSA offers a practical and powerful solution
for advancing the capabilities of large language models in the long-context era.
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After writing the paper manually, the paper was polished for clarity and readability using a large
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A THE USE OF LARGE LANGUAGE MODELS

After writing the paper manually, the paper was polished for clarity and readability using a large
language model (LLM).

B IMPLEMENTATION DETAIL

We have shown the implementation of Block Selection in Section 3.4. We show the implementation
detail of Sparse Attention here in Algorithm 2.

Algorithm 2 Computation of Sparse Attention. (Suppose hkv = 1 without loss of generality.)
Require: Q ∈ Rn×G×dh ,K,V ∈ Rn×dh . Block sizes Bk.

Divide Q into n blocks Q1, . . . ,Qn of size G× dh each.
Divide K,V into Tk = ⌈n/Bk⌉ blocks K1, . . . ,KTk and V1, . . . ,VTk of size Bk × dh each.
Divide O ∈ Rn×G×dh into n blocks of size G× dh each.
Divide the log-sum-exp lse into n blocks of size G each.
for i = 1, . . . , n (parallel) do

Load Qi from HBM to on-chip SRAM.
On chip, initialize O

(0)
i = (0)G×dh

, ℓ(0)i = (0)G, m(0)
i = (−∞)G.

for j = 1, . . . , Tk (sequential) do
if Kj in visible tokens (determined by the |I(i)| in Eq. 3) then

Load Kj ,Vj from HBM to on-chip SRAM.
On chip, compute attention scores Sij = QiK

⊤
j ∈ RG×Bk .

On chip, compute m
(j)
i = max(m(j−1)

i , rowmax(Sij)) ∈ RG.
On chip, compute P̃ij = exp(Sij −m

(j)
i ) ∈ RG×Bk .

On chip, compute ℓ
(j)
i = exp(m

(j−1)
i −m

(j)
i )ℓ

(j−1)
i + rowsum(P̃ij) ∈ RG.

On chip, compute O
(j)
i = diag(exp(m(j−1)

i −m
(j)
i ))−1O

(j−1)
i + P̃ijVj .

On chip, compute Oi = diag(ℓ(Tk)
i )−1O

(Tk)
i .

On chip, compute lsei = m
(Tk)
i + log(ℓ

(Tk)
i ).

Write Oi to HBM as the i-th block of O.
Write lsei to HBM as the i-th block of lse.

return the output O and the log-sum-exp lse.

Algorithm 3 Computation of Dense Attention. (Suppose hkv = 1 without loss of generality.)
Require: Q ∈ Rn×G×dh ,K,V ∈ Rn×dh . Block sizes Bq, Bk.

Divide Q into Tq = G× ⌈n/Bq⌉ blocks Q1, . . . ,QTq of size Bq × dh each.
Divide K,V into Tk = ⌈n/Bk⌉ blocks K1, . . . ,KTk and V1, . . . ,VTk of size Bk × dh each.
Divide O ∈ Rn×G×dh into Tq blocks of size Bq × dh each.
Divide the log-sum-exp lse into Tq blocks of size Bq each.
for i = 1, . . . , Tq (parallel) do

Load Qi from HBM to on-chip SRAM.
On chip, initialize O

(0)
i = (0)Bq×dh

, ℓ(0)i = (0)Bq
, m(0)

i = (−∞)Bq
.

for j = 1, . . . , Tk (sequential) do
Load Kj ,Vj from HBM to on-chip SRAM.
On chip, compute attention scores Sij = QiK

⊤
j ∈ RBq×Bk .

On chip, compute m
(j)
i = max(m(j−1)

i , rowmax(Sij)) ∈ RBq .
On chip, compute P̃ij = exp(Sij −m

(j)
i ) ∈ RBq×Bk .

On chip, compute ℓ
(j)
i = exp(m

(j−1)
i −m

(j)
i )ℓ

(j−1)
i + rowsum(P̃ij) ∈ RBq .

On chip, compute O
(j)
i = diag(exp(m(j−1)

i −m
(j)
i ))−1O

(j−1)
i + P̃ijVj .

On chip, compute Oi = diag(ℓ(Tk)
i )−1O

(Tk)
i .

On chip, compute lsei = m
(Tk)
i + log(ℓ

(Tk)
i ).

Write Oi to HBM as the i-th block of O.
Write lsei to HBM as the i-th block of lse.

return the output O and the log-sum-exp lse.
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Similar to FlashAttention (Dao, 2024), the algorithm divides the input into blocks. The differences
are: 1) The FlashAttention block size Bk of K, should divide the sparse attention block size B.
That is, B should be a multiple of Bk. 2) The FlashAttention block of Q typically contains a single
attention head and multiple tokens. We follow NSA (Yuan et al., 2025) to make it contain a group of
attention heads of a single token, so that they can share the same sparse pattern. 3) The inner loop of
the FlashAttention iterates over all blocks of K, whereas our method’s loop only covers the visible
blocks of the sparse attention. We also show the FlashAttention implementation of Dense Attention
to Algorithm 3 for reference.

C BENCHMARK DETAILS

We provide the detailed results of the LongBench benchmark, mentioned in Table 2, in Table 6.
Following LongBench (Bai et al., 2024), the “Overall” score is computed by the macro-average
over the six task categories.

Table 6: Task Performance on LongBench. Best results in sparse attention are bolded.
Category FULLATTN (PT) FULLATTN (FT) INFLLM MINFERENCE NSA DSSA-SPARSE DSSA-DENSE

Single-Doc
QA

NarQA 18.17 21.38 21.02 20.16 18.34 20.75 21.03
Qasper 30.98 43.80 34.92 44.51 39.96 45.29 45.29

MFQA-en 43.81 55.07 49.39 54.83 51.35 53.53 53.54
MFQA-zh 54.51 57.26 51.75 57.00 59.06 59.33 59.64

Multi-Doc
QA

HotpotQA 48.49 50.13 44.03 48.00 46.78 54.11 54.07
2WikiQA 32.71 39.54 30.58 36.22 35.33 37.86 37.86
MuSiQue 23.22 24.68 17.85 22.87 16.97 21.74 21.24
Dureader 33.00 33.54 33.01 33.94 33.62 33.39 33.29

Summary

GovReport 31.93 32.17 21.40 32.21 28.72 30.33 30.38
QMSum 22.45 24.35 20.96 25.05 23.81 24.58 24.35

MultiNews 26.46 26.70 22.90 26.50 25.02 25.71 25.75
VCSUM 16.55 16.37 17.81 16.17 19.12 16.17 16.20

Few-shot
Learning

TREC 65.50 45.00 61.00 43.50 23.50 22.50 24.00
TriviaQA 85.67 84.35 75.78 81.93 83.95 84.22 84.22
SAMSum 42.92 40.26 37.46 39.81 38.47 40.69 40.51

LSHT 38.00 37.75 24.57 35.75 25.50 22.01 21.47

Synthetic
Task

PsgCount 4.06 4.00 3.00 3.50 3.50 5.00 4.50
PsgRe-en 20.75 86.50 19.00 85.00 66.00 92.00 91.00
PsgRe-zh 42.00 90.50 43.00 90.50 68.00 90.50 90.50

Code LCC 58.65 35.72 31.35 35.91 33.83 44.73 44.73
RepoBen-P 43.93 35.00 30.72 34.17 34.95 44.62 44.76

Overall ↑ 37.86 42.30 32.30 41.55 37.10 42.54 42.49

D HYPERPARAMETERS ANALYSIS

In this section, we present analyses and discussions regarding the choice of key hyperparameters
in our framework, specifically focusing on the number of selected blocks (|Itopk|), local blocks
(|Ilocal|), initial blocks (|Iinit|), and the block size (B). These parameters serve as the core variables
controlling the trade-off between model performance and computational efficiency. As shown in
Table 7, increasing |Itopk| from 31 to 63 yields significant performance gains, whereas further in-
creasing it to 95 offers only marginal improvements. Similarly, while larger |Ilocal| improves results,
the marginal gain decreases as computational overhead grows. Consequently, we select |Itopk| = 63
and |Ilocal| = 32 as the optimal configuration for balancing efficiency and effectiveness.

Table 7: Hyperparameter analysis on the number of selected blocks and local blocks.
Iinit Itopk Ilocal RULER ↑ LongPPL ↓

1 63 32 82.62 2.12

1 31 32 76.14 2.36
1 95 32 84.89 2.05

1 63 16 82.08 2.15
1 63 64 83.45 2.09
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Regarding other parameters, we set |Iinit| to a minimal value following the established practice in
StreamingLLM (Xiao et al., 2024b), as a small number of attention sinks is sufficient for stability.
For the block size B, we adopt B = 64 following NSA (Yuan et al., 2025). This choice is moti-
vated by hardware efficiency, as FlashAttention kernels typically require block sizes of 64 or 128 to
maximize Tensor Core utilization and memory bandwidth.
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