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Abstract
A wide range of (multivariate) temporal (1D) and
spatial (2D) data analysis tasks, such as grouping
vehicle sensor trajectories, can be formulated as
clustering with given metric constraints. Existing
metric-constrained clustering algorithms overlook
the rich correlation between feature similarity and
metric distance, i.e., metric autocorrelation. The
model-based variations of these clustering algo-
rithms (e.g. TICC and STICC) achieve SOTA per-
formance, yet suffer from computational instabil-
ity and complexity by using a metric-constrained
Expectation-Maximization procedure. In order
to address these two problems, we propose a
novel clustering algorithm, MC-GTA (Model-
based Clustering via Goodness-of-fit Tests with
Autocorrelations). Its objective is only composed
of pairwise weighted sums of feature similarity
terms (square Wasserstein-2 distance) and metric
autocorrelation terms (a novel multivariate gen-
eralization of classic semivariogram). We show
that MC-GTA is effectively minimizing the total
hinge loss for intra-cluster observation pairs not
passing goodness-of-fit tests, i.e., statistically not
originating from the same distribution. Experi-
ments on 1D/2D synthetic and real-world datasets
demonstrate that MC-GTA successfully incorpo-
rates metric autocorrelation. It outperforms strong
baselines by large margins (up to 14.3% in ARI
and 32.1% in NMI) with faster and stabler opti-
mization (>10x speedup).
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1. Introduction
Clustering is one of the most fundamental problems in un-
supervised learning, which deals with the data partitioning
when ground-truth labels are unknown (Xu & Tian, 2015).
Most existing clustering algorithms only consider the sim-
ilarity among observations in the feature (attribute) space.
However, in real-world applications, additional metric con-
straints (e.g., temporal continuity and geospatial proximity)
often matter, especially in temporal and spatial data min-
ing (Birant & Kut, 2007a; Hu et al., 2015; Mai et al., 2018;
Belhadi et al., 2020). In other words, observations have
both features and positions in a metric space. Hence, ob-
servations that are put in the same cluster should be similar
in terms of features and their positions in the metric space
(e.g., timestamps or geographic locations) should also sat-
isfy some constraints. Metric constraints can be generalized
to even higher dimensions as long as a meaningful distance
measure is defined. This kind of problems is commonly
known as metric-constrained clustering (Veldt et al., 2019).
It is not a trivial task to design a larger composite space
from these two spaces because they may have completely
different metrics. For example, concatenating word embed-
ding with geo-coordinates makes learning good similarity
functions difficult because the former uses cosine distance
while the latter uses Euclidean/geodesic distance, whose
values can not be directly compared.

The current state-of-the-art metric-constrained clustering
algorithms, namely TICC (Hallac et al., 2017) (for tem-
poral clustering) and STICC (Kang et al., 2022) (for spa-
tial clustering), consider both spaces by combining model-
based clustering (Gormley et al., 2022) with a soft met-
ric penalty argminΘ,C

∑K
k=1

[wwλ◦ θCk

ww
1
+
∑

Xi∈Ck

(
−

ll(Xi, θCk
)+β1{X̃i /∈ Ck}

)]
. Here K is the total number

of clusters. Xi is one observation we need to assign to a
cluster, and X̃i is the nearest neighbor of Xi in the metric
space. θCk

are the estimated model parameters for cluster k,
Ck is the set of observations of cluster k, −ll(Xi, θCk

) is
the negative log-likelihood of observation Xi belonging to
cluster Ck given model parameter θCk

, and β1{X̃i /∈ Ck}
is the soft metric penalty. λ is an L-1 normalization hyper-
parameter to prevent overfitting. The advantage of this
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Figure 1. Motivation of MC-GTA using iNaturalist-2018 dataset as an example. We wish to cluster wild animal photos based on both their
image similarity and spatial adjacency. For any pair of observations, we obtain their metric distance dc and generalized model-based
semivariance W 2

2 (square Wasserstein-2 distance), which quantifies feature similarity via underlying models. In the presence of metric
autocorrelation, the expected generalized model-based semivariance is in theory an increasing function of dc within range ρ and levels
off beyond ρ, namely theoretical generalized model-based semivariogram γm. We fit γm from the empirical generalized model-based
semivariogram γ̂m. MC-GTA penalizes observation pairs whose W 2

2 is close to or exceeding γm via a hinge loss with margin δ. An
observation pair having no hinge loss penalty equals passing a goodness-of-fit test with significance level δ.

strategy is three-fold. Firstly, similarity computed based
on underlying models is by nature more robust to noise
and outliers than that based on raw feature vectors (Wang
et al., 2016). Secondly, estimated underlying models pro-
vide better interpretability (Hallac et al., 2017). Finally, the
magnitude of penalty can be tuned to adjust the emphasis
on metric constraints, preferable to methods that enforce
metric constraints as hard rules, such as ST-DBSCAN (Bi-
rant & Kut, 2007a), MDST-DBSCAN (Choi & Hong, 2021),
and semi-supervised algorithms that discretize the metric
constraints into graphs (Wagstaff et al., 2001; Basu et al.,
2004; Lu, 2007; Bibi et al., 2019; Boecking et al., 2022).
However, these approaches also have major drawbacks.

The most critical weakness of all existing clustering algo-
rithms is that they ignore the effects of metric autocorre-
lation, e.g., temporal/spatial autocorrelation (Goodchild,
1987; Anselin, 1988; Fortin et al., 2002; Gubner, 2006),
when applying the metric constraints. Metric autocorrela-
tion effectively asserts that within a cluster, feature vectors
observed at metrically distant positions naturally have higher
empirical variance than metrically adjacent ones. Figure
1 shows how considering metric autocorrelation may even
reverse the clustering results: suppose observation B and
observation C are equally similar to observation A feature-
wise, but C is farther away from A than B. Without metric
autocorrelation, B should be preferred to be clustered with
A, since it has smaller metric distance; but if we do con-
sider metric autocorrelation, C should be preferred instead,
because autocorrelation implies that C would have been
more similar to A if it were in B’s metric position. Using

log-likelihood as a clustering objective makes it hard to in-
tegrate metric constrains in a generative process. Although
log-likelihood alone as loss function fits well with model se-
lection theories such as Akaike Information Criterion (AIC),
the sum of log-likelihood and weighted distance penalties
lacks statistical meaning. Moreover, the presence of the
penalty term breaks the convergence guarantee of EM it-
erations. Empirically, TICC/STICC is highly non-convex
and difficult to optimize (Hallac et al., 2017; Kang et al.,
2022). Other issues include high computational complexity,
sensitivity to initial conditions, and expensive hyperparam-
eter tuning. Please refer to Section 2 and Appendix A.7
for detailed discussions. These problems, however, can
be avoided by getting rid of log-likelihood and EM itera-
tions. One strategy is to perform clustering only according
to pairwise similarity measurements, similar to DBSCAN.

In this paper, inspired by the analysis above, we pro-
pose a novel model-based clustering method named MC-
GTA (Model-based Clustering via Goodness-of-fit Tests
with Autocorrelations) that expilicitly accounts for the met-
ric autocorrelation by designing a Wasserstein-2 distance-
based multivariate generalization of the spatial semivari-
ogram, which is widely used in geostatistics (Isaaks & Sri-
vastava, 1989). MC-GTA first fits an underlying model
(Gaussian Markov Random Field) for each observation us-
ing its neighbors. Then we compute the generalized model-
based semivariance (i.e., square Wasserstein-2 distance) and
metric distance for all observation pairs. Next, we fit the the-
oretical generalized model-based semivariogram and form
our clustering objective as a total hinge loss based on the
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difference between the empirical semivariance and the theo-
retical semivariogram. This injects metric constraints into
clustering. Finally, we develop an algorithm that minimizes
the loss. We prove that our objective can be theoretically
interpreted in terms of goodness-of-fit tests. We use exten-
sive experiments to demonstrate that MC-GTA can mitigate
the computational complexity and convergence instability
problems of TICC/STICC, achieving significantly better
clustering quality.

To summarize, the major contributions of this paper are:

• We propose a Wasserstein-2 distance-based generaliza-
tion of semivariogram that explicitly accounts for multi-
variate metric autocorrelation.

• We propose a novel model-based clustering objective
based on goodness-of-fit tests. It simultaneously enables
incorporating metric autocorrelation information and
improves computational stability/efficiency. We believe
that clustering based on statistic tests is a promising
direction for future research developments.

• We compare our method with existing works compre-
hensively on various 1D and 2D synthetic and real-world
datasets. We demonstrate that our method outperforms
the baselines in clustering quality, computational stabil-
ity, and computational efficiency.

2. Related Works
Spatial and Temporal Clustering. Clustering temporal
subsequences and spatial subregions is a well-studied sub-
field of clustering (Appendix A.1). Some works treat tem-
poral/spatial information as indices, such as dynamic time
warping (Begum et al., 2015; Keogh, 2002; Keogh & Paz-
zani, 2000; Rakthanmanon et al., 2012), time point cluster-
ing (Gionis & Mannila, 2003; Zolhavarieh et al., 2014) and
geo-tagged images (Liu et al., 2018), and some works clus-
ter the spatio-temporal trajectories directly (Belhadi et al.,
2020; Kisilevich et al., 2010). We are mostly interested
in the first case, i.e., clustering temporally/geospatially ref-
erenced observations. However, these methods generally
perform clustering based on feature similarity, which can be
problematic or even unreliable (Keogh et al., 2003), because
it only considers the structure of features, ignoring that the
observations are also distributed over time and space.

To address this problem, two main strategies are explored
in previous works. The first strategy is to enforce metric
constraints as hard rules. For example, in ST-DBSCAN (Bi-
rant & Kut, 2007a) and MDST-DBSCAN (Choi & Hong,
2021), only temporally dense observations are considered
candidates for core observations. The second strategy is
to add a soft metric penalty to the clustering optimization
objective. TICC (Hallac et al., 2017) is the first work to
introduce Markov Random Fields to model temporal de-

pendency structures of subsequences together with a soft
temporal penalty. STICC (Kang et al., 2022), following
this work, modified the algorithm to suit 2-dimensional
spatial subregion clustering. They are both model-based
clustering algorithms, like ARMA (Xiong & Yeung, 2004),
GMM (Fraley & Raftery, 2006) and HMMs (Smyth, 1996).
TICC/STICC achieves state-of-the-art performance in tem-
poral/spatial clustering tasks.

3. Problem Formulation
3.1. Metric-Constrained Clustering

Given a dataset D of N observations {Xi}Ni=1 (e.g., points
of interest in an urban area, sensor measurements at different
time points, etc), we need to assign each Xi to a set Ck,
i.e. cluster k. The set of all clusters C = {Ck}Kk=1 is a
cluster assignment or a clustering. K is called the number
of clusters, either predefined or inferred from data.

Each observation Xi = (fi,pi) is a tuple of two vectors:
fi is a dF -dimensional feature vector (e.g., attributes of a
POI) in a feature space F , while pi is a dM -dimensional
position vector (e.g., geo-coordinates of this POI) in a met-
ric space (M,dc) (e.g., Earth surface with geodesic dis-
tance), where dc is a predefined metric. With a dissimilar-
ity measurement df (·, ·) in the feature space, e.g., cosine
distance, a classic clustering problem without metric con-
straints ĈK = argminC L(C) is to minimize the loss:

L(C) =
∑

{Ck∈C}

∑
{i,j∈Ck}

df (fi, fj)

− α
∑

{Ck,Cl∈C,k ̸=l}

∑
{i∈Ck,j∈Cl}

df (fi, fj)
(1)

where the first term is the intra-cluster cohesion objective
and the second is the inter-cluster separation objective. α is
a hyperparameter balancing cohesion and separation. Many
applications emphasize more on intra-cluster cohesion. Fol-
lowing TICC/STICC (Hallac et al., 2017; Kang et al., 2022),
we set α = 0 in this study.

A metric constraint is an additional loss Lmc that assigns
penalty based on metric distance and feature similarity. A
metric-constrained clustering problem is to find an optimal
cluster assignment that minimizes a multi-objective Ĉmc

K =

argminC

[
L(C) + βLmc(C)

]
where β is a hyperparameter

that determines how soft the constraints are, and

Lmc(C) =
∑

{Ck∈C}

∑
{i,j∈Ck}

r(df (fi, fj), dc(pi,pj)). (2)

r is a function of the metric distance and the feature dis-
similarity, called the metric penalty function, designed to
properly enforce the metric constraints. For example, in
ST-DBSCAN (Birant & Kut, 2007a), temporal continuity
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is the metric constraint. Conceptually it corresponds to
r(df (fi, fj), dc(pi,pj)) = 1{dc(pi,pj) > ϵt} with ϵt be-
ing the preset radius of temporal neighborhood, and β =∞.
It effectively means that cluster assignments with temporal
discontinuity are hard eliminated.

3.2. Metric-Constrained Model-Based Clustering

Metric-Constrained Model-based (MCM) clustering is a
special case of metric-constrained clustering, which views
the feature vector fi of observation Xi as a random sam-
ple drawn from a parametric distributionM(θi). We say
M(θi) is the underlying model of Xi and θi is a specifi-
cation of the parameters. The family of distribution (e.g.
Gaussian) and exact parameterization (e.g. mean and covari-
ance matrix) ofM(θi) is chosen a priori based on domain
knowledge and computational considerations. In MCM
clustering, the feature dissimilarity measure df (fi, fj) is
replaced with dm(i, j) = dm(fi, fj , θi, θj ;M), named as
model-based dissimilarity, e.g. negative log-likelihood.

In summary, MCM clustering can be formulated as mini-
mizing the MCM loss1:

Lmcm(C) =
∑

{Ck∈C}

∑
{i,j∈Ck}

[dm(i, j) + βr(i, j)] (3)

As TICC authors (Hallac et al., 2017) argued, distance-
based metrics have been shown to yield unreliable results in
certain situations. While model-based approaches prevents
overfitting and allows us to discover types of patterns that
other approaches are unable to find. See Section 6.3.1 for a
detailed analysis of the tasks in this study.

4. Preliminaries
In this section, we introduce a few useful statistical tools for
our proposed clustering algorithm.

4.1. Classic Univariate Semivariogram

In Section 1, we argued for the importance of metric au-
tocorrelation in metric-constrained clustering. In order to
incorporate it into the clustering process, we need to appro-
priately quantify it. While an abundance of statistics for
autocorrelation tests are developed in classic temporal and
spatial analysis, such as Durbin–Watson statistic (Durbin &
Watson, 1950; 1951) and Moran’s I (Moran, 1950), the semi-
variogram (Matheron, 1963) fits our end best. This is be-
cause the theoretical semivariogram, denoted as γ(pi,pj),
is a function describing the degree of spatial dependence of
a spatial random field or stochastic process, which is literally

1For the rest of the paper, we abbreviate the notations by omit-
ting the arguments and only keeping the indices. For example,
dm(fi, fj , θi, θj ;M) is written in short as dm(i, j), dc(pi,pj) as
dc(i, j), r(dm(i, j), dc(i, j)) as r(i, j), respectively.

the fundamental assumption of model-based clustering.

Given a dataset (which is a sample generated from the
spatial stochastic process) of N univariate observed vari-
ables {z1, · · · zN} together with their spatial positions
{p1, · · ·pN}, there are N2 pairs of variables (zi, zj) and
their corresponding pairs of spatial positions (pi,pj). The
empirical semivariogram is defined as

γ̂(h± ϵ) :=
1

2|N(h± ϵ)|
∑

{(pi,pj)∈N(h±ϵ)}

|zi − zj |2 (4)

where N(h± ϵ) := {(pi,pj)|h− ϵ ≤ dc(pi,pj) ≤ h+ ϵ},
a set of spatial positions, and |N(h± ϵ)| is the size of the
set. This is essentially the half empirical variance of all
pairs whose spatial distance falls into the same distance bin
centered at h of width 2ϵ.

In a semivariogram, the x and y axes indicate the spatial
distance and semivariance γ̂(h± ϵ), respectively. In the be-
ginning the semivariance rises as distance increases, which
indicates spatial autocorrelation. Then it levels off, which
indicates that now semivariance no longer provides useful
information. The range ρ is the distance beyond which spa-
tial autocorrelation levels off. The sill σ is the semivariance
when spatial autocorrelation levels off. The nugget ν is
the semivariance when distance is almost zero, which is
considered an intrinsic variance of the stochastic process.

Semivariogram can also be applied to metric spaces other
than 2D or 3D geospatial space, such as temporal space,
spatio-temporal space, and even multi-dimensional, non-
Euclidean spaces (Nguyen et al., 2014). However, they are
designed to quantify the autocorrelation between univariate
observations and can not be applied to multivariate cases as
shown in Figure 1. This is because the concepts of range,
sill and nugget are defined as turning/intercepting points of
the function. If γ is multivariate, the three core concepts
are not well-defined. One of our novel contributions is to
generalize the definition of semivariogram to multivariate
observations. Figure 1 illustrates this generalization.

4.2. Wasserstein-2 Distance and Gaussian Markov
Random Fields

To generalize semivariograms to multivariate cases, our
strategy is to replace the univariate distance in Equation 4
with a model dissimilarity measurement. There are various
statistical metrics or quasi-metrics that can be used, such as
divergence (such as KL-divergence), total variation, discrep-
ancy, and Wasserstein-2 distance (Gibbs & Su, 2002). We
wish to choose one that is compatible with the classic semi-
variogram’s definition. Specifically, we need to show that
having a small semivariance in terms of model dissimilarity
guarantees having a small semivariance in terms of feature
difference. The weakest possible condition that satisfies this
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requirement is weak convergence, also known as conver-
gence in distribution. Intuitively it says if a model weakly
converges to another model, the observations generated
from them will become statistically indistinguishable, con-
sequently having indistinguishable semivariance. Therefore,
we need to find a statistical metric W2 that metricizes weak
convergence, i.e., (W2(i, j) → 0) ⇒ (Fi

D−→ Fj). Here
Fi,Fj are cumulative distribution functions parametrized

by θi, θj respectively, and D−→ denotes convergence in dis-
tribution. Among all such metrizations, Lévy-Prokhorov
metric and Wasserstein’s distance (Earth Mover’s Distance)
are the two most important cases. By (Gibbs & Su, 2002),
Lévy-Prokhorov metric is the tightest bound of the distance
between two distributions, and the Wasserstein’s distance is
only looser up to a constant factor. Please refer to Appendix
A.4 for the definition of both distance metrics.

Whereas the Lévy-Prokhorov Metric is in general not com-
putable, the square Wasserstein-2 distance between two
Gaussian Markov Random Fields (GMRFs) has a beautiful
closed-form:

W 2
2 (θi, θj) = d22(µi, µj) + Tr

(
Σi +Σj − 2A

)
(5)

Here µi, µj are mean vectors, Σi,Σj are covariance matri-
ces, and θi = (µi,Σi). A = (Σ

1/2
i ΣjΣ

1/2
i )1/2 and Tr(·)

is the trace of a matrix. d22 is the square L2 norm. For the
simplicity of notations, we use W 2

2 (i, j) in abbrevation of
W 2

2 (θi, θj) throughout this paper.

The analysis above demonstrates that the combination of
Wasserstein-2 distance and GMRFs is essentially the only
choice we have that both satisfies our requirement of weak
convergence and comes with practical computability. Please
refer to Appendix A.2 for more background about GMRF.
In Section 5 we show that our clustering objective based on
square Wasserstein-2 distance has clear statistical meaning.

5. Method
5.1. Generalized Model-based Semivariogram

We propose a novel multivariate generalization of the classic
semivariogram, called generalized model-based semivari-
ogram, to appropriately quantify the multivariate metric au-
tocorrelation. Unlike existing work such as Abzalov (2016),
which modifies the definitions of range, sill, and nugget anal-
ogously to simultaneous confidence intervals, we derive a
natural generalization by replacing the variance |zi−zj |2 in
Equation 4 with dm := W 2

2 . As in model-based clustering,
every observed feature vector fi has an underlying model
M(θi). Though the difference between the feature vec-
tors is multivariate, the difference between the underlying
models is univariate. We define the empirical generalized

model-based semivariogram γ̂m as

γ̂m(h± ϵ) :=
1

2|N(h± ϵ)|
∑

(pi,pj)∈N(h±ϵ)

W 2
2 (i, j) (6)

Following that, we can fit a theoretical generalized model-
based semivariogram γm on γ̂m by using well-established,
classic univariate semivariogram fitting methods (Müller,
1999). ρ is the range of the fitted theoretical semivariogram.2

The soundness of this generalized definition is theoretically
supported by goodness-of-fit tests (Section 5.2). It is also
verified on real-world datasets. Figure 2 is the empirical gen-
eralized model-based semivariogram computed on a large
geo-tagged image dataset iNaturalist-2018 (Cui et al., 2018).
We use the top 16 PCA components of the pretrained image
embedding as the feature vector, and the distance is the great
circle distance between the geo-tags. For each image, we
use its 15/20/30-nearest neighbors to estimate a GMRF as
the underlying model. Then we compute the generalized
semivariogram using Equation 6. We can see the empirical
semivariogram conforms very well with the theory.

5.2. Clustering Objective as Goodness-of-Fit Tests

The conventional likelihood-based EM iterations of model-
based clustering algorithms malfunction when metric con-
straints are involved. To avoid this situation, we propose to
formulate the loss function in terms of only pairwise compu-
tations between observations. Our solution mainly relies on
goodness-of-fit tests (i.e., whether two samples come from
a statistically identical distribution) as the pairwise compu-
tation. We punish the pairs that have large goodness-of-fit
test statistics beyond a significance threshold with a hinge
loss. This threshold is based on the average goodness-of-fit
test statistic dependent on metric distance. Specifically,
the generic Lmcm loss (Equation 3) can be realized with
goodness-of-fit tests as follows:

LMC-GTA(C) =
∑

{Ck∈C}

∑
{i,j∈Ck}

[
⌊W 2

2 (i, j)− (Êi′ ,j′∈NW
2
2 (i

′, j′)− δ0)⌋+

+ β⌊W 2
2 (i, j)− (Êi′ ,j′∈Ni,j

W 2
2 (i

′, j′)− δ)⌋+
] (7)

Here N is the set of all observation pairs, and Ni,j =
N(dc(i, j)±ϵ) are the pairs in (i, j)’s distance bin as defined
in the generalized model-based semivariogram (Section 5.1).
⌊x⌋+ = max(0, x) is a rectifier (hinge) function. W 2

2 (i, j)
is a goodness-of-fit statistic (Panaretos & Zemel, 2019).

This proposed loss has the following properties:

2For simplicity, in the rest of the paper, when mentioning semi-
variogram/semivariance, we always refer to the generalized model-
based definitions unless otherwise specified.
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• W 2
2 (i, j) is a goodness-of-fit test statistic. Thus,

W 2
2 (i, j) being smaller than certain threshold implies

observations i and j can pass the goodness-of-fit hypoth-
esis test under certain significance level.

• Êi′ ,j′∈NW
2
2 (i, j)− δ0 and Êi′ ,j′∈Ni,j

W 2
2 (i, j)− δ can

be seen as two thresholds based on the average test
statistics plus a desired significance level. In the case
of Wasserstein-2 distance (Panaretos & Zemel, 2019),
the test statistics follows a normal distribution with the
square of Wasserstein-2 distance of the true underly-
ing models as the mean. We do not have access to the
true means, so we use empirical means as estimations.
While Êi′ ,j′∈NW

2
2 (i, j) − δ0 is independent to metric

autocorrelation, Êi′ ,j′∈Ni,j
W 2

2 (i, j) − δ is dependent.
We call them non-metric threshold and metric threshold,
respectively. By definition, Êi′ ,j′∈Ni,j

W 2
2 (i, j) is ex-

actly double of the empirical generalized model-based
semivariogram defined in Section 5.1.

• The rectifier (hinge) function avoids assigning negative
values to observation pairs that pass the test, which
increases computational stability. The idea is similar to
the idea of margin and hinge loss in SVMs. Our ablation
study (Appendix 6.3) shows that this choice increases
computational stability and clustering accuracy.

Since both Êi′ ,j′∈NW
2
2 (i, j) and δ0 are constants, for com-

putational efficiency we can simplify Equation 7 by defin-
ing δ0 = Êi′ ,j′∈NW

2
2 (i, j) and r(i, j) = ⌊W 2

2 (i, j) −
(Êi′ ,j′∈Ni,j

W 2
2 (i, j)− δ)⌋+, and rewrite our loss as

LMC-GTA(C) =
∑

{Ck∈C}

∑
{i,j∈Ck}

[W 2
2 (i, j) + βr(i, j)] (8)

which is exactly Equation 3. This demonstrates that by
choosing appropriate dm and r(i, j), we can theoretically
formulate clustering as minimizing the penalty for the intra-
cluster pairs that do not pass goodness-of-fit tests. This is
the central formula that our algorithm is based on.

5.3. Model-based Clustering via Goodness-of-fit Tests
with Autocorrelations (MC-GTA)

The MC-GTA algorithm is naturally derived from in-
corporating the properties of metric autocorrelation with
goodness-of-fit tests. As we have discussed in Section 5.2,
the penalty function can be defined as

r(i, j) = ⌊W 2
2 (i, j)− [γm(dc(i, j))− δ]⌋+ (9)

Notice we replace the empirical generalized model-based
semivariance γ̂m = Êi′ ,j′∈Ni,j

W 2
2 (i, j) with the fitted the-

oretical model-based semivariance γm, because the fitted
semivariogram is smooth. In addition, we need to further

condition the penalty function on the fitted range ρ (Equa-
tion 10). The reason is that when dc > ρ, the second term in
Eq 8 is much smaller than the first term and can be ignored
to spare computation. Figure 6 shows an empirical analysis
on the iNaturalist-2018 dataset. The average contribution
of the penalty function to the total loss beyond ρ quickly
drops below 15% and remains flat, which is non-informative
and can be omitted in practice. We empirically verified in
Appendix 6.3.5 that using the conditional form of penalty
function is both beneficial for sparing computation and im-
proving clustering performance. Thus, the final form of the
penalty function is defined as

rρ(i, j) =

{
r(i, j), dc(i, j) ≤ ρ
0, dc(i, j) > ρ

}
(10)

Intuitively, rρ penalizes observations whose semivariance
lies above the theoretical semivariogram. It is local (only ef-
fective within the range ρ), monotonically decreasing, and
continuous (because the semivariogram is monotonically
increasing and continuous within the range).

δ is a critical hyperparameter called margin. The motivation
of using this hyperparameter comes from both theoretical
analysis and empirical observations. Theoretically, the semi-
variogram is an average measurement of intra-cluster model
dissimilarity. Inter-cluster pairs may also happen to have
smaller than average semivariance. To reduce the chance
of wrongly identifying inter-cluster pairs as intra-cluster,
only observations whose semivariance is significantly small
(at least δ below the theoretical semivariogram) are exempt
from penalty. This is equivalent to shifting the semivari-
ogram downwards by δ. Empirically, by plotting the percent-
age of ground-truth intra-cluster pairs in each bin, Figure
2 shows there is a clear boundary between the dark region
(with higher percentage of intra-cluster pairs) and the light
region (with lower percentage of intra-cluster pairs). We
notice that by vertically shifting down for an appropriate
distance δ, the semivariogram partially overlaps with the
boundary. Then penalizing the observation pairs above the
shifted semivariogram becomes practically equivalent to
penalizing the observation pairs for falling into the region
of low intra-cluster probability. Since we do not know the
ground-truth value of δ, it is a hyperparameter that needs to
be tuned. Algorithm 1 shows the core MC-GTA algorithm
which is implemented based on Equation 6, 8 and 10.

6. Experiments
We perform extensive experiments on two synthetic and
seven real-world datasets which cover both temporal and
spatial clustering tasks. We compare MC-GTA with a wide
range of baselines. The detailed experiment setup, baseline
algorithms and evaluation metrics can be found in Appendix
A.5. We conduct hyperparameter tuning on the number of
neighbors n, the weight β, and the margin δ. Results show
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(a) semivariogram with n = 15 (b) semivariogram with n = 20 (c) semivariogram with n = 30

Figure 2. Empirical generalized model-based semivariogram under different hyperparameter settings. n is the number of nearest neighbors
used for fitting the GMRF models for each observation. The color represents the percentage of observation pairs that belong to the same
ground-truth cluster in each 0.0001(geodesic) × 0.01(Wasserstein-2) bin.

Algorithm 1 MC-GTA Algorithm
Input : A dataset D of N observations {Xi = (fi ∈

F,pi ∈ M)}Ni=1. The distance function dm. The
metric penalty function r. The model fitting algo-
rithm GL. The density-based clustering algorithm
DB. The number of neighbors n used for model
fitting. The metric-constraint strength β. The mar-
gin hyperparameter δ.

Output :A clustering C = {Ck}Kk=1

1 for each observation Xi ∈ D
2 find n nearest observations Ni in the metric space
3 fit the model parameters θi ← GL(Ni) (Sec 5.1)
4 for each pair of observations, compute their
5 model dissimilarity dm(i, j)←W 2

2 (θi, θj) (Eq 5)
6 metric distance dc(i, j)← dc(pi,pj)
7 compute empirical generalized semivariogram γ̂m (Eq 6)
8 fit theoretical generalized semivariogram γm from γ̂m
9 compute range ρ from γm (Sec 4.1)

10 compute loss matrix Mw
i,j ← dm(i, j) + βrρ(i, j) (Eq 10)

11 run density-based clustering algorithm C ← DB(Mw)
12 return C

that the search spaces of all hyperparameters have good con-
vexity. Moreover, unlike TICC and STICC, we do not need
to re-compute the covariance metrics during hyperparameter
tuning for MC-GTA. That makes hyperparameter tuning for
MC-GTA much faster (see more details in Appendix A.8).

6.1. Main Result

From Table 1 we can see in general, model-based algorithms
handle spatio-temporally distributed data better than feature-
based clustering algorithms. Our method (MC-GTA-w)
outperforms the strong baselines (TICC and STICC) in all
tasks. Besides performance improvement, MC-GTA is also
more flexible and generally applicable. MC-GTA performs
consistently well throughout different constraint dimensions,
dataset sizes and cluster numbers, whereas TICC and STICC

can only handle either 1D or 2D metric constraints and do
not converge stably (NC in Table 1), especially when the fea-
ture dimension and the dataset size are large. Furthermore,
comparing TICC, STICC and MC-GTA-w with their non-
constrained version (i.e., TICC (β = 0), STICC (β = 0)
and MC-GTA-wo), we can see that metric constraints do
improve the clustering quality.

One important observation is that SKATER (Assunção
et al., 2006) performs even better than MC-GTA on the
Climate dataset, but works extremely bad on the iNaturalist-
2018/POI/Land-use datasets. There are two take-aways: (1)
The ground-truth clusters of Climate dataset are contiguous
regions with disjoint boundaries, whereas those of the latter
three datasets overlap with each other (Figure 4). SKATER
splits the metric space into a Voronoi diagram, so it fits the
former dataset well but fails the latter. It is not as generally
applicable as MC-GTA. (2) The performance of MC-GTA
is worse on the Climate dataset because the observations are
spatially sparse, e.g., the maximum distance between 30-
nearest neighbors may be as large as 1 radian. This brings
a dilemma: in order to have enough samples to estimate
the underlying models, we must risk including metrically
distant observations, which by the metric autocorrelation,
have high variance. This is a limitation of our algorithm.
See Appendix A.6 for more discussions of the result.

6.2. Stability, Robustness and Efficiency

MC-GTA is robust and computationally stable in two ways.
Firstly, it is a sequential algorithm. TICC/STICC, on the
other hand, uses EM iterations which may accumulate error.
For example, we observe that if the initial cluster assign-
ment is too imbalanced, TICC/STICC will self-enhancingly
increase this imbalance until it fails to converge. Secondly,
MC-GTA has only three hyperparameters to tune: the num-
ber of neighbors n; the penalty weight β and the shift δ. β
and n are common hyperparameters that all model-based
clustering algorithms share. Thus, only the shift δ is unique
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Table 1. Performance on 1-D (temporal) and 2-D (spatial) tasks. d denotes the feature dimension, c denotes the ground-truth cluster
number, and N denotes the size of each dataset. MC stands for metric constraint. Bold numbers and underlined numbers indicate the best
and second best performances. (S)TICC means applying TICC to temporal datasets and STICC to spatial datasets. β = 0 means there is
no temporal/spatial penalty term applied. - means the method is not suitable for this dataset. NC means the algorithm does not converge.
MC-GTA-wo/MC-GTA-w represents MC-GTA loss without/with metric constraints respectively.

Synthetic Datasets Real-world Datasets
Temporal Spatial

Temporal
d=5, c=5
N=1,000

Spatial
d=5, c=5
N=10,000

Pavement
d=10, c=3
N=1,055

Vehicle
d=7, c=5
N=16,641

Gesture
d=3, c=8

N=704,970

Climate
d=5, c=14
N=4,741

iNat2018
d=16, c=6
N=24,343

POI
d=7, c=10
N=23,019

Landuse
d=7, c=5
N=8,964

Model Type Model ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI

No-Constraint
Model-Free

k-Means 1.03 1.69 1.26 1.66 8.02 6.59 8.94 21.54 2.78 5.23 5.47 22.14 6.91 14.71 18.37 43.44 2.39 4.21
DBSCAN 2.44 2.50 3.69 5.38 15.25 18.75 33.67 41.83 1.18 2.07 3.61 17.89 34.91 34.69 15.03 39.29 11.91 7.19

HDBSCAN 0.90 0.61 1.00 1.39 7.10 11.66 37.51 41.64 - - 11.52 28.01 7.65 17.92 20.78 62.55 1.00 7.64
DTW 2.52 2.13 - - 17.13 17.55 8.11 23.35 - - - - - - - - - -

Constrained
Model-Free

PCK-Means 5.12 5.68 2.30 2.89 7.42 5.13 4.80 14.17 NC NC 18.50 34.67 25.51 28.96 0.12 0.18 0.11 0.26
MDST-DBSCAN - - 1.12 5.73 - - - - - - 11.32 27.89 8.43 18.13 1.33 0.97 1.29 1.01

SKATER - - 23.87 32.29 - - - - - - 23.44 44.10 0.51 0.35 1.52 0.91 1.03 0.74

No-Constraint
Model-Based

GMM 7.82 9.54 9.26 10.35 28.05 28.74 57.87 58.78 2.44 4.15 19.06 34.97 21.72 35.91 16.38 42.96 2.86 4.61
(S)TICC-β=0 80.11 83.95 91.28 89.28 58.54 58.83 40.12 45.86 3.26 6.56 13.30 30.53 NC NC 13.29 27.08 7.22 12.60
MC-GTA-wo 86.38 84.56 87.34 84.74 76.10 74.36 63.31 58.60 8.12 33.60 16.63 36.73 21.90 36.47 30.45 66.23 12.91 28.72

Constrained
Model-Based

(S)TICC 84.88 86.13 91.84 89.85 62.27 61.89 50.53 53.68 12.20 23.20 17.62 37.29 NC NC NC NC 11.04 15.35
MC-GTA-w 90.50 87.96 94.49 91.98 77.64 77.22 65.04 59.36 26.51 55.34 20.08 40.91 42.70 40.49 39.81 68.27 36.54 42.97

to our method. Furthermore, by comparing Figure 2a, 2b
and 2c, we find that the key factors of the semivariogram
(range, sill and nugget) remain relatively stable. This find-
ing is critical because our method is heavily based on the
reliable construction of the semivariogram.

MC-GTA is more efficient than TICC/STICC by removing
EM iterations. The underlying model of each observation
is only estimated once throughout the entire algorithm of
MC-GTA , whereas TICC/STICC must re-estimate models
in every iteration. Empirically, the execution speed of our
method is 5 to 15 times faster than TICC/STICC. More-
over, the estimated underlying models can be archived and
reused, making hyperparameter tuning much easier than
TICC/STICC. Please see Appendix A.7 for a detailed com-
parison of theoretical and empirical runtime complexity
between MC-GTA and TICC/STICC.

6.3. Ablation Studies

We conduct a series of ablation studies on the Pavement
dataset to investigate the necessity and effectiveness of the
components we adopt in our algorithm.

6.3.1. WASSERSTEIN-2 DISTANCE VS OTHER FEATURE
SIMILARITY MEASURES

To demonstrate how the choice of different feature similarity
measures matters in clustering, we replace the Wasserstein-
2 distance in Equation 6 with various model-free/model-
based measures and report the experiment results on the
Pavement dataset in Table 2. We can see that the model-
based Wasserstein-2 distance significantly outperforms both
the model-free and the model-based alternatives.

Table 2. Comparing different feature similarity measures

Wasserstein-2 Euclidean Cosine Total Var. KL-D JS-D

ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI
77.64 77.22 23.11 22.43 0.34 1.36 3.37 3.61 56.73 66.10 15.55 18.84

Here we present a simple experiment to show how a model-
based approach outperforms model-free distance when the
underlying model is properly selected. Figure 3 depicts the
histograms of pairwise Wasserstein-2 distance, Euclidean
distance, and cosine distance between two observations in
the Pavement dataset. The blue represents intra-cluster pairs
and the orange represents inter-cluster pairs. We can see
the model-based Wasserstein-2 distance itself makes distin-
guishing intra-cluster and inter-cluster pairs a lot easier than
using Euclidean or cosine distance. It clearly demonstrates
that raw feature similarity measures can not capture the
complex patterns. Besides, Euclidean distance is known to
be inefficient in high dimensions due to sparsity (Aggarwal
et al., 2001), and the cosine distance is unable to represent
differences in magnitudes.

Then we analyze why the other model-based measures yield
inferior results. Total variation and Jensen-Shannon (JS)
divergence perform poorly because they are difficult to accu-
rately compute in high-dimensional spaces. KL-divergence
underperforms our Wasserstein-2 distance because it is less
sensitive to fine-grained model differences.

6.3.2. GLASSO VS OTHER COVARIANCE ESTIMATERS

We use Graphical Lasso as the covariance estimation al-
gorithm, but the effectiveness of MC-GTA does not rely
on this specific implementation. As an ablation study, we
replace Graphical Lasso with Minimum Covariance Deter-
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(a) Cosine distance (b) Euclidean distance (c) Wasserstein-2 distance

Figure 3. The histograms of pairwise distance between intra-cluster and inter-cluster observations in the Pavement dataset. The distributions
of intra/inter-cluster Wasserstein-2 distance show more distinctive patterns than those of cosine distance and Euclidean distance.

minant (MIN-COV)3 and Shrunk Covariance (SHRUNK)4

and apply MC-GTA on the Pavement dataset. Clustering
performance is reported in Table 3. All results are under
the best hyperparameters based on grid search. In general,
the more robust and more accurate the covariance estima-
tion algorithm is, the better the clustering performance is.
Shrunk is the least robust covariance estimation algorithm
among the three, thus its performance is obviously lower
than GLasso and MinCov. However, different variations of
MC-GTA still significantly outperform the strongest base-
line, TICC. It indicates the effectiveness of MC-GTA.

Table 3. Comparing different covariance estimation methods

Method TICC MC-GTA MC-GTA MC-GTA
(Baseline) (GLASSO) (MIN-COV) (SHRUNK)

Performance ARI NMI ARI NMI ARI NMI ARI NMI
62.27 61.89 77.64 77.22 80.82 73.78 74.70 71.42

6.3.3. DBSCAN VS OTHER DISTANCE-BASED
CLUSTERING ALGORITHMS

Similarly, MC-GTA does not rely on any specific implemen-
tation of the clustering algorithm. Table 4 again demon-
strates that though clustering performances are affected by
the choice of distance-based clustering algorithms, MC-
GTA still outperforms the baselines by large margins.

Table 4. Comparing different distance-based clustering algorithms

Method TICC MC-GTA MC-GTA MC-GTA
(Baseline) (DBSCAN) (HDBSCAN) (OPTICS)

Performance ARI NMI ARI NMI ARI NMI ARI NMI
62.27 61.89 77.64 77.22 72.35 69.61 69.77 68.58

6.3.4. THE HINGE OPERATION IN THE LOSS FUNCTION

In our ablation experiment, removing the rectifier (hinge)
operation causes computational instability. Since we apply
a distance-based clustering algorithm on top of the weighted
distance matrix, all entries are required to be positive. When
we remove the max operation, the weighted distance some-
times becomes negative and the clustering algorithm fails.

3https://scikit-learn.org/stable/modules/generated/sklearn.covariance.MinCovDet.html
4https://scikit-learn.org/stable/modules/generated/sklearn.covariance.ShrunkCovariance.html

6.3.5. THE RANGE CONDITION IN THE PENALTY

As an ablation study, we ignore the range condition in Equa-
tion 10, i.e., define rρ(i, j) simply as

rρ(i, j) = ⌊W 2
2 (i, j)− [γm(dc(i, j))− δ]⌋+ (11)

This means we need to compute the penalty term for all
possible pairs of data points. We then apply MC-GTA.
The comparison of clustering performance using Equation
10 (Conditional) and using Equation 11 (Unconditional)
is demonstrated in Table 5. Ignoring the range does not
only negatively affects the clustering performance, but also
wastes resources, since we can spare the computation of
penalty terms of pairs out of range.

Table 5. Comparing conditional and unconditional penalty

Method MC-GTA
(Conditional)

MC-GTA
(Unconditional)

Performance ARI NMI ARI NMI
77.64 77.22 76.91 76.25

7. Conclusion and Future Works
In this paper, we propose a novel clustering technique
called MC-GTA that injects knowledge of metric au-
tocorrelation into model-based clustering algorithms by
computing pairwise Wasserstein-2 distance between esti-
mated model parameterizations for each observation. MC-
GTA provides a unified solution to clustering problems
with temporal/spatial/higher-dimensional metric constraints
and achieves SOTA performance on both synthetic and real-
world datasets. Moreover, by minimizing the total hinge loss
of pairwise goodness-of-fit tests, MC-GTA is more com-
putationally efficient and stable than the strongest baselines
TICC and STICC, which optimize data likelihood through
EM procedures during clustering.

For future work, it is worth extending MC-GTA to non-
Gaussian, general Markov Random Fields using their corre-
sponding pairwise Wasserstein-2 distances.
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A. Appendix
A.1. A General Objective of Clustering

While the complete definition of clustering has not yet come to an agreement, three principles in general apply (Jain
& Dubes, 1988): (1) Intra-Cluster Cohesion: observations, in the same cluster, must be as similar as possible; (2)
Inter-Cluster Separation: observations, in different clusters, must be as different as possible; (3) Interpretability:
measurement for similarity and dissimilarity must be clear and have practical meanings. Following these principles, the two
key components of a clustering algorithm are the similarity/dissimilarity measurement and the algorithm that optimizes
intra-cluster cohesion and inter-cluster separation. There is no cure-all clustering algorithm. Different data structures require
different similarity/dissimilarity measurements (e.g. cosine distance, Euclidean distance, graph distance) and different
optimization algorithms (e.g. hierarchical, iterative, estimation-maximization-based), resulting in a variety of clustering
algorithms such as partition-based clustering, hierarchical clustering, density-based clustering, model-based clustering, etc.

Conceptually, if we define measurements similarity s(·, ·) and dissimilarity d(·, ·) between two observations Xi, Xj , we can
view a clustering problem as finding an optimal cluster assignment ĈK that maximizes the objective:

ĈK = arg maxC
[ ∑
{Ck∈C}

∑
{i,j∈Ck}

s(Xi, Xj) + β
∑

{Ck,Cl∈C,k ̸=l}

∑
{i∈Ck,j∈Cl}

d(Xi, Xj)
]

(12)

The first term corresponds to the intra-cluster cohesion principle and the second term corresponds to the inter-cluster
separation principle. β is a hyperparameter chosen to control how much we weigh these two terms, since the two
objectives may compete. The choice of s and d, in turn, corresponds to the interpretability principle. Usually we simply let
s(·, ·) = −d(·, ·), thus the objective becomes

ĈK = arg minC
[ ∑
{Ck∈C}

∑
{i,j∈Ck}

d(Xi, Xj)− β
∑

{Ck,Cl∈C,k ̸=l}

∑
{i∈Ck,j∈Cl}

d(Xi, Xj)
]

(13)

A.2. Gaussian Markov Random Field (GMRF)

A Gaussian Markov Random Field (GMRF) is a special case of the general Markov Random Field (MRF) (Wang et al.,
2013), which additionally requires the joint and marginal distributions of variables to be Gaussian. Using GMRFs introduces
several advantages. The first advantage is high computational efficiency. A (centered) GMRF can be efficiently represented
and fitted as a sparse covariance matrix, through Graphical LASSO5 (Friedman et al., 2007). Secondly, a GMRF can
provide interpretable insights into variable correlations. Finally, a GMRF can be used to properly model continuous data in
a wide range of situations (Rue & Tjelmeland, 2002; Hartman & Hössjer, 2008). For example, in spatial data mining, many
commonly used real-valued features, such as place check-in numbers (McKenzie et al., 2015; Janowicz et al., 2019; Yan
et al., 2017), traffic volume (Liu et al., 2017; Cai et al., 2020), customer rating (Gao et al., 2017), sustainability indices (Yeh
et al., 2021; Elmustafa et al., 2022; Manvi et al., 2024), and real-estate pricing (Law et al., 2019; Kang et al., 2021), can be
treated as normal distributions after standardization. In addition to that, the covariance representation of a GMRF can be
easily extended into a Toeplitz matrix that models inter-observation dependency, which is very important in understanding
the interactions across time (Hallac et al., 2017) and space (Kang et al., 2022). Due to the above advantages of GMRF, we
choose it as the parametrization of the underlying models in our method. Furthermore, the other important component of
our method, the Wasserstein-2 distance (Gibbs & Su, 2002), works best with GMRFs. It is mathematically proved that
the Wasserstein-2 distance has a closed-form solution on GMRF models, which ensures the efficiency and stability of our
method.

A.3. Metricization of Weak Convergence

To read more detailed discussions of the metrization of probability convergence, see Gibbs & Su (2002) for a comprehensive
summary. According to the same paper, two important propositions are worth notification: 1) the Lévy-Prokhorov metric is
"precisely the minimum distance ’in probability’ between random variables distributed according to µ and ν", and 2) the
Lévy-Prokhorov metric and the Wasserstein’s distance satisfy the following quantitative relation:

π ≤Wp ≤ (diam(Ω) + 1)π (14)

5https://scikit-learn.org/stable/modules/generated/ sklearn.covariance.graphical_lasso.html
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where diam(Ω) := sup{d(x, y) : x, y ∈ Ω} is the diameter of the sample space Ω. These two propositions justify that
though the Wasserstein’s distance is not the tightest bound (i.e., the Prokhorov metric), it converges as fast up to a constant
factor, so long as the metric space is bounded.

Since both the Lévy-Prokhorov metric and the Wasserstein’s distance has guaranteed convergence, the choice of dm is
mainly upon computational efficiency. Whereas both metrizations have no simple algorithms for computation in the general
case, the Wasserstein-2 distance between two multi-variate Gaussian distributions has a neat closed-form formula in terms of
mean vectors and covariance matrices. Gelbrich (1990) gives the formula of the squared Wasserstein-2 distance as follows:

W 2
2 (θ1, θ2) = d22(µ1, µ2) + Tr(Σ1 +Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2) (15)

Here µ1, µ2 are mean vectors and Σ1,Σ2 are covariance matrices. θ = (µ,Σ). Tr is the trace of a matrix.

By computing the pairwise Wasserstein-2 distance between the estimated models, we obtain a distance matrix. Any
density-based clustering algorithms that support pre-computed distance matrix, such as DBSCAN (Ester et al., 1996), can
be seamlessly applied without any modification. Since these clustering algorithms are designed to minimize intra-cluster
distance and maximize inter-cluster distance, it follows immediately that the intra-cluster observations follow as similar as
possible distributions whereas the inter-cluster observations follow as dissimilar as possible distributions, by the fact that the
Wasserstein’s distance is a metrization of weak convergence.

With this dimension reduction, we can finally transform the original metric-constrained model-based clustering problem
in the product space F ×M to a simpler problem in the product space R×M . Since R and M are both metric spaces,
density-based algorithms that are supported on product metric spaces such as ST-DBSCAN(Birant & Kut, 2007a) can be
then applied. However, these algorithms treat the two metric spaces independently without considering the correlation
introduced by the metric constraint. In Section 5.3, we discuss how to address this issue.

A.4. Definitions of Distance Metrics

The definitions of Lévy-Prokhorov Metric and Wasserstein’s distance are as follow.

Lévy-Prokhorov Metric: given a separable metric space (M,d) together with its Borel sigma algebra B(M), define the
ϵ-neighborhood of A ⊂ M as Aϵ := {p ∈ M : ∃q ∈ A s.t. d(p, q) < ϵ}. Then the Lévy-Prokhorov metric π of two
probability measures µ, ν is defined as

π(µ, ν) := inf{ϵ > 0 : µ(A) ≤ ν(Aϵ) + ϵ and ν(A) ≤ µ(Aϵ) + ϵ, ∀A ∈ B(M)} (16)

Wasserstein’s Distance: given a Radon metric space (M,d), for p ∈ [1,∞), the Wasserstein-p distance Wp between two
probability measures µ, ν is defined as

Wp := ( inf
γ∈Γ(µ,ν)

E(x,y)∼γd(x,y)p)
1/p. (17)

Here Γ(µ, ν) is the set of all possible couplings of µ and ν.

A.5. Experiment Setup

A.5.1. BASELINE MODELS AND EVALUATION METRICS

Baseline Models. We compare our method to both density-based and model-based clustering algorithms. See Table 1 for
details. Among them, TICC(Hallac et al., 2017) can only deal with 1-dimensional constraint and STICC(Kang et al., 2022)
can only deal with 2-dimensional constraint. Thus, the former will only be evaluated against 1-dimensional datasets and
the latter only against 2-dimensional datasets. All other models that do not incorporate metric constraint information are
evaluated on both 1-dimensional and 2-dimensional datasets.

We compare our MC-GTA with a wide range of baseline clustering algorithms. (1) General non-constrained cluster-
ing algorithms: kMeans (Ahmed et al., 2020), DBSCAN (Ester et al., 1996), HDBSCAN (McInnes et al., 2017). (2)
Must-link/Cannot-link-based constrained clustering algorithms: PCKMeans (Basu et al., 2004)) , which use distance
matrix to sample must-links/cannot-links. (3) Temporal/Spatial clustering algorithms: DTW (Yadav & Alam, 2018)
(temporal), MDST-DBSCAN (Choi & Hong, 2021) (the multivariate version of ST-DBSCAN (Birant & Kut, 2007b),
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spatial-temporal), SKATER (Assunção et al., 2006) (spatial). (4) Model-based clustering algorithms GMM (Reynolds et al.,
2009), TICC (Hallac et al., 2017) and STICC (Kang et al., 2022).

Evaluation Metrics of Clustering Quality. For the fairness of comparison, we adopt the most commonly used ground-truth
label based metrics, Adjusted Rand Index (ARI) (Hubert & Arabie, 1985) and Normalized Mutual Information (NMI) (Vinh
et al., 2010). We use their implementation in sklearn(Pedregosa et al., 2011). We do not adopt the Macro-F1 metric that
TICC(Hallac et al., 2017) uses because this metric is only well-defined when cluster number is fixed, while our method is
density-based, which does not preset a cluster number.

A.5.2. SYNTHETIC DATASET

We generate 1-dimensional and 2-dimensional synthetic datasets following the MC-GTA assumption discussed in Section
5.3. The only hyperparameters we preset are cluster number K, feature dimension D, noise scale α and sample batch size k.
All other hyperparameters such as sequence length, cluster size and so forth are completely randomly generated for the sake
of fair comparison.

1-Dimensional Synthetic Dataset. We generate the 1-dimensional synthetic dataset following the MC-GTA assumption
discussed in Section 5.3:

• Choose hyperparameters: cluster number K, feature dimension D, noise scale α, sample size k.
• Randomly choose a subsequence number N .
• Randomly generate K different D × D ground-truth covariance matrices {Σ1,Σ2 · · ·ΣK}. It is required that the

pairwise Wasserstein-2 distances should all be greater than 1.0. This is to make sure that observations of different
clusters are statistically different.

• Generate a random list of N ground-truth subsequence cluster labels {C1, C2 · · ·CN}, Ci ∈ {0..K − 1}, and a random
list of N subsequence lengths {L1, L2 · · ·LN}.

• For each subsequence label Ci and subsequence length Li, generate Li perturbed covariance matrices
{Pi,1, Pi,2 · · ·Pi,Li} by adding Gaussian noise to Σi. Notice, in order to conform with the monotonic assumption, we
add noise with noise scale jα as we generate Pi,j , and the maximum noise scale should be no larger than 10% of the
maximum entry in the ground-truth covariance matrix, in order to meet the continuous assumption.

• Sample k D-dimensional feature vectors from each Pi,j sequentially and concatenate them all together into a kΣN
i=1Li

list, with each entry being a D-dimensional feature vector. The corresponding position list is simply {1, 2 · · · kΣN
i=1Li}.

Pairing the feature list and the position list makes the dataset.

2-Dimensional Synthetic Dataset. We generate the 2-dimensional synthetic dataset, also following the MC-GTA assumption
discussed in Section 5.3:

• Choose hyperparameters: cluster number K, feature dimension D, noise scale α.
• Randomly choose a list of cluster sizes {N1..NK}.
• Randomly generate K points {p1..pK} on the X−Y plane as the metric center of clusters. Randomly generate K 2×2

covariance matrices {S1..SK}. For each pi, generate Ni points {pi,1..pi,Ni} from the bivariate Gaussian distribution
specified by Si. For each generated point, its ground-truth cluster label is i.

• Randomly generate K different D × D ground-truth covariance matrices {Σ1,Σ2 · · ·ΣK}. It is required that the
pairwise Wasserstein-2 distances should all be greater than 1.0. This is to make sure that observations of different
clusters are statistically different.

• For each point pi,j , compute its Euclidean distance di,j to the cluster center pi. For this point, generate a perturbed
covariance matrix Pi,j by adding Gaussian noise of scale di,jα to the ground-truth covariance matrix Σi. Sample a
D-dimensional feature vector fi,j from Pi,j . Similarly the maximum noise scale should be no larger than 10% of the
maximum entry in the ground-truth covariance matrix. Then the collection of all (fi,j ,pi,j) makes the dataset.

Choice of hyperparameters: Larger α makes the synthetic data noisier and cluster boundaries fuzzier. Larger k makes model
estimation more accurate and stable, thus better clustering results.

A.5.3. REAL-WORLD DATASETS

(1) Pavement Dataset. This dataset is a sensor-based, originally univariate time series collected by experts. Car sensors
collect data while driving on different pavements (cobblestone, dirt and flexible). There are in total 1055 successive, variable-
length subsequences of accelerometer readings sampled at 100 Hz. Each subsequence has a label from the aforementioned
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three pavement types. We use the first 10 entries of each subsequence as its feature vector, and treat the truncated data as a
1055-long, 10-dimensional multivariate time series. Our task is to put subsequences of the same pavement labels into the
same clusters.

The detailed information can be found at https://timeseriesclassification.com/description.php?
Dataset=AsphaltPavementType.

(2) Vehicle Dataset. This is a multivariate time series dataset collected by tracking the working status of commercial
vehicles (specifically, dumpers) using smart phones and published in the literature. The original paper is here: http://kth.diva-
portal.org/smash/record.jsf?pid=diva2

(3) Gesture Dataset. This dataset records hand-movements as multivariate time series. Each movement record is 315-time-
step long, and each time-step has a 3-dimensional vector, representing the spatial coordinates of the center of the hand. There
are in total 2238 records, each record 315-time-step long, thus the entire length of the dataset is 704,970 time-steps. All the
records belong to one of the eight gestures. We randomly shuffle the order of the records, so that it is more challenging.
Our task is to cluster time-steps into different gestures. The detailed information about this dataset can be found in
https://timeseriesclassification.com/description.php?Dataset=UWaveGestureLibrary.

(4) Climate Dataset. This dataset consists of locations on the earth and their 5 climate attributes (temperature, precipitation,
wind, etc.) based on the WorldClim database (https://www.worldclim.org/data/worldclim21.html). The
ground-truth labels are the climate types of each location. There are in total 4741 locations, belonging to 14 different climate
types. We use the great circle distance as the spatial distance metric for this dataset.

(5) iNaturalist-2018 Dataset. This dataset contains images of species from all over the world together with their geotags
(longitude and latitude). The entire dataset is huge and geospatially highly imbalanced (e.g., there are in total 24343 images
in the test set, but 10792 out of them are in the contiguous US). We use the ImageNet-pretrained Inception V3 model to
embed each image into a 2048-dimensional vector as (Mac Aodha et al., 2019; Mai et al., 2023b;a) did, and reduce it to
a 16-dimensional vector using PCA, for the sake of computability of STICC. The ground-truth labels of each image are
hierarchical (i.e., from the top kingdom types to the bottom class types), and we use the 6 kingdom types as the cluster
labels. Dataset (4) gives an example of spatially-constrained clustering in the multivariate raw feature space, and Dataset (5)
extends the boundary to the latent representation space of images.

(6) (7) NYC Foursquare check-in dataset. We use the NYC Check-in data proposed by (Yang et al., 2015). This dataset
contains check-in data in New York City by Foursquare, based on social media records. Each record includes VenueId,
VenueCateg (POI Type), check-in timestamp (Weekday + Hour) and geospatial coordinate (Longitude + Latitude). We define
the feature vector to be the normalized check-in vector, i.e., sum up the Hour attribute grouped by Week, and normalized
this 7-dimensional vector. It is a feature vector representing the check-in patterns from Monday to Sunday. For evaluation,
we construct 2 sets of ground-truth labels. One is from the NYC Check-in data itself: for each observation, we add up the
one-hot POI type vectors of its nearest 50 neighbors and normalize it to be the POI embedding of this observation. Then, we
cluster over these POI embeddings, and use the clustering labels as the ground-truth. Notice there is no information leak
because our algorithm is fitted on check-in data and geo-coordinates only. The other is based on the Primary Land Use Tax
Lot Output (PLUTO) dataset from NYC Open Data6. We extract the land-use records and assign to each observation the
nearest land-use record as its ground-truth land-use label. For the sake of data quality, we only use the records of Manhattan
and Bronx.

A.6. Further Discussion on Experiment Results

In Dataset (4) and Dataset (5) STICC/MC-GTA without spatial constraints yield lower performance than GMM, because
the spatial sampling rate is too low (i.e., there are too few data points within a unit distance). There is a dilemma to
STICC/MC-GTA algorithms: in order to obtain an adequate number of samples, we need to increase the sampling radius;
however, as the sampling radius gets bigger, the samples become more noisy. In both cases the estimated distributions are
inaccurate. Essentially, this problem originates from the balance between data sparsity (when having small neighborhood),
and temporal/spatial incontiguity (when having large neighborhood) We address this problem by introducing a global
prior. Since GMM can give a fairly good global estimation of the distribution of each cluster, we can use it as the prior
distribution and update it in a maximum likelihood/Bayesian way given subsequence/subregion observations. This approach
demonstrates a large increase in clustering performance for iNaturalist-2018. Again it demonstrates how important spatial

6https://data.cityofnewyork.us/City-Government/Primary-Land-Use-Tax-Lot-Output-PLUTO-/64uk-42ks/data
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(a) Climate dataset ground-truth clusters (b) iNaturalist-2018 dataset ground-truth
clusters (subset)

(c) NYU POI/Land-use dataset

Figure 4. Comparison of the Climate dataset, the iNaturalist-2018 dataset, the NYU POI/Land-use datasets. For visualization we only plot
a subset of iNaturalist-2018 (California, two species). It is obvious that 1) the Climate dataset is very sparse and the ground-truth clusters
have clear-cut borders, and 2) the iNaturalist/NYU datasets are dense and the ground-truth clusters overlap each other.

metric information is in clustering data points that satisfy local metric constraints. This finding may lead to future works.

A.7. Theoretical Complexity and Empirical Runtime

We denote d as the data dimension, n as the number of data points, and K as the number of clusters. Theoretically,
the complexity of MC-GTA is O(n2d2). Firstly, we need to estimate covariance matrices for each data point, which is
O(n2dmin(n, d)). Since in most cases, n >> d, the complexity becomes O(n2d2). After estimating the covariances,
we compute the pairwise Wasserstein-2 distances, which is again O(n2d2), because we need to do matrix multiplication
(O(d2)) n2 times. Finally, we apply a distance-based clustering algorithm like DBSCAN on the Wasserstein-2 distance
matrix, which is again O(n2). Thus the overall time complexity of MC-GTA is O(n2d2). This means, theoretically the
execution time of TICC/STICC is C ·K times of that of MC-GTA.

Next, we show that the time complexity of the SOTA models (TICC and STICC) is O(C ·K · n2d2), where C is how many
iterations it takes to converge, which usually increases as K and n increase.

TICC/STICC needs to 1) compute an initial cluster assignment by kMeans, which is O(n2); 2) estimate cluster-wise
covariance matrices and compute the likelihood of each data point against each cluster, which is O(K · n2d2); 3) update
cluster assignment, which is reported O(K · n) in the original papers; 4) repeat (1) to (3) C times until convergence. Thus
the overall time complexity is O(C ·K · n2d2).

We also evaluated the empirical time complexity of each clustering algorithm. Please refer to the “RT” column in Table 6.
We can see that TICC/STICC is much slower than our MC-GTA. Notice the time TICC/STICC takes highly depends on how
many iterations it takes to converge.

Finally, the spatial complexity of both MC-GTA and TICC/STICC is O(n · d2), since all we need to store is the covariance
matrices of each data point.

A.8. Hyperparameter Tuning

We include an ablation study to investigate the influence of the number of neighbors n, the weight β, and the margin δ using
the most complicated iNaturalist 2018 dataset. Figure 5 demonstrates that the search space of single hyperparameters has
good convexity. Thus, we can easily and quickly tune the hyperparameters by hierarchical grid search.

For tuning β and δ, we do not need to re-compute the covariance matrices. Instead, we only need to re-run the density-based
clustering algorithm, such as DBSCAN. Thus the time complexity of a complete grid search is only O(A ·B · Cn2), where
A and B are the grid sizes of n, β and δ.

Unlike MC-GTA, the competing baselines TICC/STICC must re-run the entire algorithm when tuning hyperparameters. That
means the complete grid search is O(A ·B ·C ·K ·n2d2), even if we only tune the most important λ and β hyperparameters.
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Table 6. Performance and runtime comparison across different model-based clustering algorithms on 1-D (temporal) and 2-D (spatial)
real-world datasets. d denotes the feature dimension, c denotes the ground-truth cluster number, and N denotes the size of each dataset.
RT denotes the average run-time in seconds. Bold numbers and underlined numbers indicate the best and second best performances.
TICC applies to 1-D datasets and STICC applies to 2-D datasets. β0 means there is no temporal/spatial penalty term applied. NC means
the algorithm does not converge. MC-GTA-wo/MC-GTA-w represents MC-GTA loss without/with metric information respectively.

Model

Temporal Dataset (1-D) Spatial Dataset (2-D)

Pavement
d=10, c=3
N=1,055

Vehicle
d=7, c=5
N=16,641

Gesture
d=3, c=8

N=704,970

Climate
d=5, c=14
N=4,741

iNat2018
d=16, c=6
N=24,343

ARI NMI RT ARI NMI RT ARI NMI RT ARI NMI RT ARI NMI RT

GMM 28.05 28.74 < 1s 57.87 58.78 3s 2.44 4.15 14s 19.06 34.97 < 1s 21.72 35.91 9s
(S)TICC-β0 58.54 58.83 383s 40.12 45.86 441s 3.26 6.56 4782s 13.30 30.53 1277s NC NC 6881s

(S)TICC 62.27 61.89 508s 50.53 53.68 566s 12.20 23.20 4511s 17.62 37.29 1204s NC NC 6325s

MC-GTA-wo 76.10 74.36 14s 63.31 58.60 74s 8.12 33.60 573s 16.63 36.73 746s 21.90 36.47 588s
MC-GTA-w 77.64 77.22 14s 65.04 59.36 76s 26.51 55.34 554s 20.08 40.91 755s 42.70 40.49 594s

(a) Tuning the number of neighbors n (b) Tuning the weight β (c) Tuning the margin δ

Figure 5. The performance curve with regard to the grid-searched hyperparameters n, β and δ

(a) The average value of the first and second term in Eq 8 (b) The contribution of the second term in Eq 8 to the total loss.

Figure 6. Analysis of the loss composition in Eq 8. The average contribution of the metric-constraint penalty term to the total loss beyond
the range quickly drops down to below 15%, which can be ignored in practice.

19


