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Abstract—This paper addresses the fault estimation (FE)
problem for T-S fuzzy systems based on the switching observer
scheme. Firstly, a fuzzy FE observer with switching rules is
designed, where the product of time derivative of the membership
functions and Lyapunov matrix can be guaranteed to be negative
definite. Furthermore, to increase the robustness of the observer
against the persistence disturbance, an L∞ performance index
is considered for synthesizing the FE observer. Then, based on
the Lyapunov stability analysis method and the average dwell-
time technique, the synthesis conditions of the L∞ FE switching
observer are given in terms of linear matrix inequalities (LMIs).
The merit of the proposed method is that by using the switching
rules, the constraint in the conventional methods, where the state
should be limited into a local area, can be removed. Meanwhile,
based on the L∞ performance analysis, the developed approach
has a good FE performance for the systems with persistent
disturbance. Finally, an example is given to show the efficacy
of the presented FE scheme.

Index Terms—T-S fuzzy systems, fault estimation, switching
observer design, L∞ performance.

I. INTRODUCTION

Fault diagnose (FD) technology is an effective tool to ensure
the reliability and safety of the control systems. As a research
branch of the FD method, the fault estimation technology can
provide exact information of the fault, such as, the magnitude
or size of the fault, which is helpful for improving the effect
of FD. During the past years, the FE problem has received
considerable attentions and many interesting methods on this
topic have been reported in [1]- [3]. Among all the methods,
the FE method based on T-S fuzzy model has become a hot
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research topic due to the advantage of T-S fuzzy system in
dealing with the nonlinear problem. In recent years, many
researchers have devoted themselves to solving the FE problem
of T-S fuzzy systems and good FE performance for the
nonlinear systems have been achieved [5]- [7].

However, there is still some space to improve the design.
In some existing methods, the fuzzy Lyapunov function (FLF)
is used to analyze the stability of the systems, which can
decrease the conservatism of the design. However, when using
FLF, the derivatives of the membership functions will appear
in the Lyapunov inequalities which makes the the synthesis
conditions of the observer non-convex. In order to avoid
coping with the derivatives of FLFs, the constraint where the
state of the systems should be restricted into a local area
is imposed in some literatures. This limits the application
range of the methods. To solve the problem, a new switching
observer scheme is proposed in [8] to estimate the state of the
system. By utilizing the switching rules, there is no need to
handle with the derivative of the membership functions in the
synthesis of the fuzzy observer. Inspired by the [8], the design
of the switching FE observer scheme is studied in this paper
to remove the above-mentioned constraints.

Another interesting research area is the H∞ observer design.
The H∞ technology can provide an effective way to decrease
the influence of the disturbance on the estimated error of the
observer such that it has been widely used to solve the design
problem of the robust observer [9]- [11]. Under the framework
of the H∞ observer schemes, there is an important assumption
where the disturbance considered should be energy-bounded.
However, in real applications, the disturbance signals to which
the systems are subjected are usually persistent rather than
energy-bounded. To make the method more applicable for the
persistent disturbance, we resort to an alternative method, i.e.,
L∞ analysis method, so as to present the FE observer scheme.

Observing the afore-mentioned points, the design problem



of L∞ switched FE observer scheme is investigated in this
paper. The contributions of this paper are listed as follows:

(1) Motivated by [8], an FE scheme with the switching
rules is proposed in this paper. By using the switching rules,
the difficulty in solving LMIs introduced by fuzzy Lyapunov
functions can be overcome. In addition, different from [8],
the membership functions in the proposed switching rules
depend on state estimations such that the proposed method
can be applicable for the system with unmeasurable premise
variables.

(2) Based on the average dwell-time technique, the synthesis
conditions for the switching L∞ FD observer are obtained
such that the robustness of the developed method against the
persistent disturbance can be increased.

The paper is organized as follows: In Section II, the T-S
fuzzy systems under consideration are described and the L∞
switching FE observer strategy is presented. The sufficient
condition of the existence of the FE observer is given in
Section III. An example with respect to the mass-spring-
damper system is provided in Section IV to demonstrate the
advantage of the developed FE observer scheme. Section V
draws the conclusion.

Notation: Rn is the n-dimensional Euclidean space. P > 0
denotes that the matrix P is positive definite. ||y(t)||∞ =
sup
t≥0
||y(t)||2 stands for the L∞ norm of a signal y(t), where

||y(t)||2 =
√
yT (t)y(t). For a matrix X , λmin(X) and

λmax(X) represent its smallest and largest eigenvalues, re-
spectively.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. System description

The nonlinear systems under consideration are approximat-
ed by the following T-S fuzzy systems:

Plant Rule i:
IF ξ1(t) is Mi1 and ξ2(t) is Mi2, · · · , ξp(t) is Mip

THEN ẋ(t) = Aix(t) +Biu(t) + Fif(t) +Diω(t)

y(t) = Cx(t) (1)

where x(t) ∈ Rnx is the state of the system and u(t) ∈ Rnu
represents the system input; ω(t) ∈ Rnω and f(t) ∈ Rnf
denote the disturbance and fault signals, respectively; ξ(t) =
[ξ1(t), ξ2(t), . . . , ξp(t)] is the vector of the premise variables
which are assumed to be unmeasurable; Mij(i = 1, · · · , r, j =
1, · · · , p) represent the fuzzy sets; r and p denote the number
of the fuzzy rules and the premise variables, respectively; Ai,
Bi, Fi Di and C are the real constant matrices with compatible
dimensions.

By using the standard modeling process, the global model
of the system (1) is given as follows:

ẋ(t) =

r∑
i=1

hi
(
ξ(t)

)[
Aix(t) +Biu(t) + Fif(t) +Diω(t)

]
y(t) =Cx(t) (2)

where hi
(
ξ(t)

)
=

µi

(
ξ(t)
)

r∑
i=1

µi

(
ξ(t)
) and µi

(
ξ(t)

)
=

p∏
j=1

Mij

(
ξj(t)

)
.

Assume that µi
(
ξ(t)

)
≥ 0, i = 1, · · · , r, then we have

r∑
i=1

hi
(
ξ(t)

)
= 1 and hi

(
ξ(t)

)
≥ 0. (3)

To obtain the switch rule of the FE observer, an important
property of ḣ

(
ξ(t)

)
is discussed here. In light of the condition

(3), one can obtain the following property.
r∑
i=1

ḣi
(
ξ(t)

)
= 0. (4)

B. The scheme of the FE observer

Before introducing the FE observer scheme, the following
output feedback controller is considered to stabilize the system
(2)

u(t) = Ky(t) (5)

Then, substituting the control law (5) into (2), we can obtain

ẋ(t) =

r∑
i=1

hi
(
ξ(t)

)[
Āix(t) + Fif(t) +Diω(t)

]
y(t) =Cx(t) (6)

where Āi = Ai +BiKC.
Remark 1. This paper mainly concerns the problem of FE
observer design rather than the design of the controller.
Thus, the controller is assumed to have been synthesized
by designer in advance. As for how to design an effective
controller scheme, the readers can refer to some effective
control literatures such as [12]- [13].
Next, a switching-type FE observer is designed for the system
(6):

˙̂x(t) =

r∑
i=1

hi
(
ξ̂(t)

)[
Āix̂(t) + Lqi (y(t)− ŷ(t)) + Fif̂(t)

]
ŷ(t) =Cx̂(t)

˙̂
f(t) =

r∑
i=1

hi
(
ξ̂(t)

)
Hq
i

(
y(t)− ŷ(t)

)
(7)

where x̂(t), ŷ(t) and f̂(t) represent the estimations of the
state, output and fault signal, respectively. Hq

i and Lqi , (i =
1, · · · , r, q = 1, · · · , 2r−1) are switching observer gain matri-
ces which are determined later.
Remark 2. In this paper, the premise variables ξ(t) are as-
sumed to depend on the unmeasurable state. As a consequence,
to achieve the FE observer design, the premise variables of
the observer (7) depend on x̂(t) instead of x(t).

Based on the property (4) and the dynamic (7), the switching
rule of the FE observer is given in Lemma 1.
Lemma 1 [8]. For any membership function-dependent matri-

ces Ṗĥ, where Ṗĥ =
r∑
i=1

ḣi
(
ξ̂(t)

)
Pi and Pi > 0, the following



conditions hold

Ṗĥ =

r−1∑
i=1

ḣi
(
ξ̂(t)

)
Pi + ḣr

(
ξ̂(t)

)
Pr

=

r−1∑
i=1

ḣi
(
ξ̂(t)

)(
Pi − Pr

)
< 0 (8)

if the following switch rule is satisfied for ∀i ∈ {1, . . . , r}{
If ḣi

(
ξ̂(t)

)
≤ 0, Then Pi − Pr > 0,

If ḣi
(
ξ̂(t)

)
> 0, Then Pi − Pr < 0.

(9)

Remark 3. From Lemma 1, it is clear that Ṗĥ < 0 can
be guaranteed by the switching rule (9). A more detailed
discussion about the switching rule could be seen in [8].
Besides, it should be pointed out that there exists a difference
between the proposed switching rule (9) and the one in [8].
In [8], the switching rule depends on measurable premise
variables. However, in this paper, the premise variables (PVs)
are assumed to be immeasurable so that PVs in the switching
rule (9) depends on x̂(t).

Define the state estimation error and fault estimation error as
ex(t) = x(t)− x̂(t) and ef (t) = f(t)− f̂(t). Then, combined
with (6) and (7), the estimation error dynamics can be obtained
as follows:

˙̃x(t) =

r∑
i=1

r∑
j=1

hi(t)ĥj(t)
[
Ãij x̃(t)− L̃qj C̄x̃(t) + D̃iω̄(t)

]
(10)

where x̃(t) = [xT (t) eTx (t) eTf (t)]T , C̄ = [C 0 0], L̃qj =[
0 (Lqj)

T (Hq
j )T
]T

, ω̄(t) =
[
ωT (t) fT (t) ḟT (t)

]T
,

Ãij =

Ai +BiKC 0 0
Ai −Aj Aj Fi

0 0 0

 , D̃i =

Di Fi 0
Di 0 0
0 0 I

 ,
hi(t) =hi

(
ξ(t)

)
, ĥi(t) = hi

(
ξ̂(t)

)
for brevity.

In the following, two useful definitions are given for ob-
taining the main result.

Definition 1. ( [14]) Under the zero initial condition, i.e.,
x̃(t0) = 0, the system has an L∞ performance index bound γ
if the following inequality is satisfied

||x̃(t)|| ≤ γ̄||ω̃(t)||∞. (11)

Definition 2. ( [15]) For the switched system (10), if the
following condition holds in the interval [t1, t2)

N(t1, t2) ≤ N0 +
t2 − t1
Ta

(12)

then, Ta is said to be the average dwell time, where N(t1, t2)
represents the number of switching in the time interval [t1, t2)
and N0 denotes chattering bound which is generally assumed
to be 0.

The main problem of the this paper is formulated as: to
find the switching FE observer gain matrices Hq

i and Lqi in

(7) such that the error system (10) satisfies the following two
requirements:

(1) When ω̃(t) = 0, the system (10) is exponentially
asymptotically stable.

(2) When ω̃(t) 6= 0, the system (10) satisfies L∞ perfor-
mance index (11).

III. MAIN RESULTS

In this section, an L∞ FE observer scheme is presented
to solve the problem formulated in Section II and the corre-
sponding synthesis conditions of the FE observer are given in
Theorem 1.

Theorem 1. For given positive scalars α, β, θ̄, ε1 and ε2, if
there exist matrices P kj > 0, X and Qkj such that the following
inequalities hold for ∀i = 1, . . . , r, j = 1, . . . , r, k,m =
1, . . . , 2r − 1Ωkij −ε1X − ε1(XÃij −Qkj C̄)T + P kj ε1XD̃i

∗ −ε2He(X) ε2XD̃i

∗ ∗ −θ̄I

 < 0,

(13)

Pmj < βP kj ,∀m 6= k (14)

I < P kj (15)

where Ωkij = He(XÃij − Qkj C̄) + αP kj and γ̄ =
√

θ̄
lnβ
Ta −α

,
then, the error system (10) is exponentially asymptotically
stable with L∞ performance index bound γ̄ for arbitrary
switching signal with average dwell time Ta > lnα

β . Moreover,
the matrices L̃ki can be calculated by L̃ki = X−1Qkj .

Proof: Select the Lyapunov functional as

V (t) = x̃T (t)

r∑
j=1

ĥj(t)P
k
j x̃(t), k = 1, · · · , 2r−1 (16)

Calculating V̇ (t) yields

V̇ (t) =x̃T (t)

r∑
j=1

ĥj(t)P
k
j

˙̃x(t) + ˙̃xT (t)

r∑
j=1

ĥj(t)P
k
j x̃(t)

+ x̃T (t)

r∑
j=1

˙̂
hj(t)P

k
j x̃(t)

=x̃T (t)

r∑
j=1

ĥj(t)P
k
j

˙̃x(t) + ˙̃xT (t)

r∑
j=1

ĥj(t)P
k
j x̃(t)

+ x̃T (t)

r−1∑
j=1

˙̂
hj(t)(P

k
j − P kr )x̃(t) (17)

Based on the switching rule (9) and (17), we have

V̇ (t) ≤ x̃T (t)

r∑
j=1

ĥj(t)P
k
j

˙̃x(t) + ˙̃xT (t)

r∑
j=1

ĥj(t)P
k
j x̃(t)

(18)



On the other hand, on the basis of the dynamic (7), the
following zero equation can be derived

r∑
i=1

r∑
j=1

hi(t)ĥj(t)

{
2
[
x̃T (t)ε1X + ˙̃xT (t)ε2X

]
×
[
Ãij x̃(t)

− L̃kj C̄x̃(t) + D̃iω̄(t)− ˙̃x(t)
]}

= 0 (19)

where the given scalars ε1 > 0 and ε2 > 0; X is an invertible
matrix.

Combining with (18) and (19) and making variable change
Qkj = XLkj , one has

V̇ (t) + αV (t)− θ̄ω̄T (t)ω̄(t)

≤χT (t)

r∑
i=1

r∑
j=1

hi(t)ĥj(t)Ξ
k
ijχ(t) (20)

where

Ξkij =

Ωkij −ε1X − ε1(XÃij −Qkj C̄)T + P kj ε1XD̃i

∗ −ε2He(X) ε2XD̃i

∗ ∗ −θ̄I

.

It can be known from (20) that if the condition (13) holds,
then

V̇ (t) ≤ −αV (t) + θ̄ω̄T (t)ω̄(t). (21)

Consider the case ω̄(t) = 0, then, it follows from (21) that

V̇ (t) ≤ −αV (t)⇒
d
(
eαtV (t)

)
dt

< 0 (22)

Integrating the condition (22) from tn to t gives

V (t) < e−α(t−tn)V (tn) (23)

where tn denotes the n-th switching time; t ∈ [tn, tn+1).
On the other hand, based on (14), we have

V
(
x̃(tn)

)
< βV

(
x̃(t−n )

)
(24)

Taking (23) and (24) into consideration, one can obtain

V
(
x̃(t)

)
<e−α(t−tn)βV

(
x̃(t−n )

)
< e−α(t−tn−1)βV

(
x̃(tn−1)

)
< e−α(t−tn−1)β2V

(
x̃(t−n−1)

)
< · · ·

< e−α(t−t0)βN(t0,t)V
(
x̃(t0

)
(25)

With Definition 2, we have

V
(
x̃(t)

)
< e−(t−t0)(α− lnβTa )V

(
x̃(t0

)
). (26)

Based on the properties λ̄min(P )||x̃(t)||2 < V
(
x̃(t)

)
and

V
(
x̃(t0)

)
≤ λ̄max(P )||x̃(t0)||2, one can get

λ̄min(P )||x̃(t)||2 < V
(
x̃(t)

)
< e−(t−t0)(α− lnβTa )V

(
x̃(t0

)
≤ λ̄max(P )e−(t−t0)(α− lnβTa )||x̃(t0)||2 (27)

where

λ̄min(P ) = min{λmin(P 1
1 ), λmin(P 2

1 ), · · · , λmin(P 2r−1
r )}

and

λ̄max(P ) = max{λmax(P 1
1 ), λmax(P 2

1 ), · · · , λmax(P 2r−1
r )}.

It can be inferred from (27) that the system (10) is exponen-
tially asymptotically stable when ω̄(t) = 0.

Next, we will proof that the error system (10) satisfies the
L∞ performance index (11).

Similar to the procedure of the previous proof, the following
condition can be obtained if we have the condition (21).

V
(
x̃(t)

)
< e−α(t−tn)V

(
x̃(tn)

)
+

∫ t

tn

θ̄ω̄T (s)ω̄(s)ds (28)

where t ∈ [tn, tn+1).
Following the method in [16] and considering the condition

(14), one can get

V
(
x̃(t)

)
<βe−α(t−tn)V

(
x̃(t−n )

)
+

∫ t

tn

e−α(t−s)θ̄ω̄T (s)ω̄(s)ds

<βne−α(t−t0)V
(
x̃(t0)

)
+

∫ t

tn

e−α(t−s)θ̄ω̄T (s)ω̄(s)ds+∫ tn

tn−1

βe−α(t−s)θ̄ω̄T (s)ω̄(s)ds+

∫ tn

tn−1

β2e−α(t−s)θ̄ω̄T (s)

ω̄(s)ds+ · · ·+
∫ t1

t0

βne−α(t−s)θ̄ω̄T (s)ω̄(s)ds (29)

Under the zero initial condition, it follows from (29) that

V
(
x̃(t)

)
<

∫ t

t0

eN(s,t)lnβ−α(t−s)θ̄ω̄T (s)ω̄(s)ds

<

∫ t

t0

e( lnβTa −α)(t−s)θ̄ω̄T (s)ω̄(s)ds

<
θ̄

lnβ
Ta − α

||ω(s)||2 (30)

where N(s, t) is the function which take the value 0, 1, · · · ,
N(t0, t), respectively, when s ∈ [tn, t), [tn−1, tn), . . . , [t0, t1).

On the other hand, according to (15), we can obtain

||x̃(t)||2 < x̃T (t)

(
r∑
i=1

ĥiP
k
i

)
x̃(t) = V

(
x̃(t)

)
(31)

By virtue of (30) and (31), one has

||x̃(t)|| <

√
θ̄

lnβ
Ta − α

||ω(s)|| <

√
θ̄

lnβ
Ta − α

||ω(s)||∞ (32)

Here, the proof is completed.

IV. EXAMPLE

In this paper, an example with respect to a mass-spring-
damper system is given to show the effectiveness of the
presented approach. The dynamic of the mass-spring-damper
system considered in this paper is given as follows:

Ms̈+ g(s, ṡ) + q(s) + ϕ1(s)d = ϕ2(s)u (33)

where M is the mass; u is the force of the system; The
displacement of the system is represented by s; ϕ1(t), ϕ2(t),
g(s, ṡ) and q(s) are the nonlinear functions with respect to
disturbance, input, damper and spring, respectively.



In this example, suppose that ϕ1(s) = 0.2, ϕ2(s) = 1,
M = 1, g(s, ṡ) = −0.75ṡ, q(s) = 0.67s3 − 0.05s.

Next, select the state variables as x1(t) = s and x2(t) = ṡ
and using the T-S fuzzy system to represent the dynamic (33)
on the compact set S =

{
x(t)

∣∣|x1(t)| < 1.5
}

, we can get

ẋ(t) =

2∑
i=1

hi(t)
[
Aix(t) +Biu(t) + Fif(t) +Diω(t)

]
y(t) =Cx(t) (34)

where h1(t) = 1− x2
1(t)

2.25 , h2(t) = 1−h1(t), C =
[
1.05 2.75

]
,

A1 =

[
0 1

0.05 0.75

]
, A2 =

[
0 1

−1.4575 0.75

]
, B1 =

[
0
1

]
,

B2 =

[
0
1

]
, D1 = D2 =

[
0

0.2

]
, F1 = F2 =

[
0
1

]
.

Based on the output matrix C in (34), we know that the
premise variables h1(t) and h2(t) are unmeasurable. Thus,
the method in [17] is not applicable for this example, while
our method can be utilized to deal with the FE problem for
the T-S system (34) with immeasurable premise variables.

Assume that the output feedback controller u(t) has been
designed in advance and the control gain matrix K = −2.

Then, we can get the following closed-loop system

ẋ(t) =

r∑
i=1

hi
(
ξ(t)

)[
Āix(t) + Fif(t) +Diω(t)

]
y(t) =Cx(t) (35)

where

Ā1 =

[
0 1.00

−2.05 −4.75

]
, Ā2 =

[
0 1.00

−3.5575 −4.75

]
.

Set θ̄ =
√

2, ε1 = 20, ε2 = 4, β = 2 and α = 0.1, then,
by solving the LMIs in Theorem 1, the switching FE observer
gain matrices can be obtained as:

L1
1 =

[
0.434
16.622

]
, L2

1 =

[
0.426
15.091

]
, H1

1 = 91.490, H2
1 = 83.601,

L1
2 =

[
0.405
16.181

]
, L2

2 =

[
0.436
16.382

]
, H1

2 = 91.976, H2
2 = 92.552

With the initial condition x0 = [−0.2, 0.4] and suppose that
the disturbance signal to which the system is subjected is
d(t) = 0.1sin(t).

In addition, two cases of the fault signal are considered to
verify the effectiveness of the proposed method.
Case 1:

f(t) =


0, 0 ≤ t ≤ 30,

0.1(t− 30), 30 < t < 70,

4, t ≥ 70.

Case 2: f(t) = sin(0.2t).
The simulation results of FE for the fault in Case 1 are

shown in Figs. 1-3. Figs. 1-2 show the system state, fault signal
and their estimations, respectively. From Fig.1, it can be seen
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that the proposed method has a good state estimation and FE
performance. Fig. 3 depicts the fault estimation error generated
by our method and the FE method without L∞ performance
analysis. We can see from Fig. 3 that compared with the
method without L∞ performance analysis, the developed
method can get a smaller fault estimation error. It indicates
that the L∞ performance analysis is helpful for increasing the
robustness of the observer against the persistent disturbance.

The simulation results of FE for the fault in Case 2 are
shown in Figs. 4-6. Figs. 4-5 plot the trajectories of the

0 10 20 30 40 50 60 70 80 90 100
t(s) 

-1.5

-1

-0.5

0

0.5

1

1.5

2

F
a
u
lt
es
ti
m
a
ti
o
n
er
ro
r

The switched L∞ FE method

The method without L∞ performance index

Fig. 3. The error of fault estimation.
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Fig. 4. The states and their estimations for case 2.
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Fig. 5. The fault and its estimations for case 2.

state and FE estimations and their estimations. Fig. 6 gives
the comparison results between the presented method and the
approach without L∞ performance index. From these figures,
it is easy to see that the proposed method can well estimate
the state and fault of the system.

V. CONCLUSION

This paper studies with the FE problem for T-S fuzzy
systems with unmeasurable premise variables. Firstly, T-S
fuzzy systems are used to represent the nonlinear systems.
Secondly, by considering the controller which is designed
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Fig. 6. The error of fault estimation.

in advance, a closed-loop system is established. Based on
the closed-loop system, a switching-type L∞ FE observer
is designed. Thirdly, a sufficient condition for the existence
of the FE observer is given in terms of LMIs. In the end,
the effectiveness of the developed system is verified by the
example. In the future, we will concentrate on the filtering
problem for T-S fuzzy system via the switching strategy.
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