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Abstract

Many causal systems such as biological processes in cells can only be observed indirectly1

via measurements, such as gene expression. Causal representation learning—the task of2

correctly mapping low-level observations to latent causal variables—could advance scientific3

understanding by enabling inference of latent variables such as pathway activation. In4

this paper, we develop methods for inferring latent variables from multiple related datasets5

(environments) and tasks. As a running example, we consider the task of predicting a6

phenotype from gene expression, where we often collect data from multiple cell types or7

organisms that are related in known ways. The key insight is that the mapping from8

latent variables driven by gene expression to the phenotype of interest changes sparsely9

across closely related environments. To model sparse changes, we introduce Tree-Based10

Regularization (TBR), an objective that minimizes both prediction error and regularizes11

closely related environments to learn similar predictors. We prove that under assumptions12

about the degree of sparse changes, TBR identifies the true latent variables up to some13

simple transformations. We evaluate the theory empirically with both simulations and14

ground-truth gene expression data. We find that TBR recovers the latent causal variables15

better than related methods across these settings, even under settings that violate some16

assumptions of the theory.17

1 Introduction18

Discovering new knowledge using machine learning is made ever more possible with the growing amounts19

of unstructured data that we collect, from images, video, and text to experimental measurements from20

large-scale biological assays. However, scientific discovery from such low-level measurements requires repre-21

sentation learning, the task of mapping low-level observations to a high-level feature space.22

As a running example, consider learning about drivers of disease from gene expression measurements, where23

genes drive protein abundance levels that mediate disease. If we want to discover meaningful features that24

could be causally linked to outcomes, we need methods to learn a disentangled representation. This can be25

done an encoder that maps observations to causally relevant latent variables, and not to transformations of26

these variables that change their meaning.27

Disentanglement is impossible from independent and identically distributed (IID) data without assumptions28

to constrain the solution space (Hyvärinen & Pajunen, 1999; Locatello et al., 2019), but by leveraging known29

structure such as non-stationarity (Hyvarinen & Morioka, 2017; Hyvarinen et al., 2019) or sparsity (Brehmer30

et al., 2022; Ahuja et al., 2022c; Lachapelle et al., 2022b), it is possible to identify latent variables. The chal-31

lenge is in finding assumptions that are strong enough to rule out spurious solutions, while remaining flexible32

enough to fit the domain of interest. To this end, this paper proposes Tree-Based Regularization (TBR), a33

new disentangled representation learning method that is particularly well-suited to biological settings. TBR34

leverages non-stationarity from multiple datasets – called environments – that are hierarchically related via35

a known tree.36

In our running biology example, the environments are defined by cell types, and their relations come from37

the tree describing the cell-type differentiation process Enver et al. (2005). We assume that the relationship38
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Figure 1: The causal directed acyclic graph (DAG) relating observations X, latents Z and target variable of
interest Y . The marginal of X and Z → Y relationship is specific to environment e.

between low-level observations and latent variables, represented by P (Z|X), is constant across these envi-39

ronments as it is driven by the underlying physics of the cell. However, the mechanism driving the outcome40

(e.g., disease), Pe(Y |Z), changes across environments, reflecting processes like variation across cell types or41

evolution.42

The key assumption we make is that across closely related environments, the effects of only a sparse set43

of true latents will vary. That is, changes to the conditional distributions Pe(Y |Z) are sparse, such that44

environments that are siblings in the known tree share the same functional form up to a few parameters, while45

more distant environments will have accumulated more changes. TBR enforces this structure via a sparsity-46

inducing penalty. These constraints reflect biological settings, where it is common to observe data across47

multiple cell types or model organisms with hierarchical relationship structures (e.g. a phylogenetic tree),48

and allow us to learn representations that identify the true latent variables up to irrelevant transformations.49

We show both theoretically and empirically that by enforcing this sparsity assumption on changes of the50

conditional distributions, it is possible to identify the ground truth latent variables up to a permutation and51

scaling factor, assuming the presence of a sufficient number of environments such that the effects of each52

variable are varied. We further analyze the sensitivity of TBR to assumption violations and find that it53

remains robust up to a point. Then, we apply TBR to a dataset of gene expression measurements across54

different cell types, where we hold out some genes as latent variables and simulate phenotypes derived55

from these latents. We find that TBR recovers the true latent variables with higher fidelity than standard56

representation learning approaches, which then leads to higher transfer learning performance, demonstrating57

a concrete benefit of the TBR approach.58

2 Problem Formulation59

We consider an input vector X (e.g., gene expression) and a target variable of interest Y (e.g., disease60

phenotype). We observe n iid samples (xe
i , ye

i )n
i=1 from E different environments where each e denotes the61

environment that produced the sample. Figure 1 illustrates the causal model of the data generating process,62

which we note is distinct from most causal representation learning works as Z is a causal descendant of X,63

rather than a causal ancestor. The inputs X drive latent features Z that mediate the effect on Y . P (Y |Z)64

varies across environments while P (Z|X) remains invariant. Specifically, we consider the following generative65

process:66

Z = Ψ(X) + η; Y e = w⊤
e Ze + ϵ (1)

There exists an environment-invariant continuous function Ψ relating X to Z, with noise term η, assumed to67

be within the space of functions approximable with a neural network (Cybenko, 1989). Additionally, there68

exists an environment-specific function Φe that relates latent factors Ze to Y e. In particular, we consider the69

case where Φe is a linear mapping with weights we ∈ Rk where k = |Z|, and ϵ is an environment-independent70

noise term. Linearity of the output map is clearly restrictive, but given that Φ(·) can be a basis function71

expansion of Z, this process could still capture a variety of nonlinear maps between latents and targets.72

Critically, we posit that the environments have diverged according to some evolution-like process. We denote73

directed tree T = (E , A), where environments E are the nodes of the tree, and A ⊂ E2 denotes the set of74

arcs1 between environments. The environment 0 ∈ E is assumed to be the root environment. In practice,75

1An arc is a directed edge between two nodes.
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we will often observe samples only from leaf environments, and not from internal nodes in the tree (which76

represent historical environments, such as ancestral species or transient progenitor cells), but our framework77

is agnostic to this.78

We assume that the environment-specific parameters we are subject to mutations between parent-child79

environment pairs. In addition, we assume that these mutations are sparse, such that across each arc80

a = (em, en), there exists a subset of indices S ⊂ {1, ...k} such that ∀i ∈ S, wem
[i] ̸= wen

[i], and the81

components of wem
and wen

are equal otherwise. We denote the vector of differences in parameters across82

arc a as δa = wen
− wem

. Note that the weights for any environment we can be expressed as the sum of the83

root weights w0 and the relevant mutation vectors:84

we := w0 +
∑

a∈path(0,e)

δa (2)

where path(0, e) denotes the set of arcs forming the path from the root environment 0 to environment e. We85

denote ∆ ∈ R|A|×k as the matrix whose rows are the set of vectors δa for each arc a ∈ A.86

Figure 2 illustrates an example data-generating process involving a tree with 5 environments and 3 leaves.87

The proposed evolution-like process relating environments via sparse local changes causes the distributions88

P e(Y | Z) to gradually change. This model of evolution aligns with many observed processes in nature89

where sparse genetic or epigenetic changes alter the process leading to a given phenotype, such as cell type90

differentiation and species evolution.91

2.1 Tree-based regularization92

We approximate Ψ with an arbitrary deep neural network Ψ̂θ with parameters θ:93

Ẑ = Ψ̂θ(X) (3)

We estimate a set of weights ŵ0 ∈ Rk, along with a matrix ∆̂ ∈ R|A|×k, whose rows contains the estimates94

δ̂a for each a ∈ A, permitting estimation of each ŵe in the form of Eq. 2.95

We jointly optimize Ψ̂θ, ŵ0 and ∆̂ to produce optimal predictions Ŷe across all environments. Additionally,96

we regularize our estimate ∆̂ with a sparsity-inducing norm ||∆̂||0.97

Assuming that we only observe data samples in a subset of environments L ⊂ E , typically the leaves in T ,98

this yields the following loss function:99

Loss =
∑
e∈L

(w⊤
e Ψ̂θ(Xe) − Y e)2 + λ||∆̂||0 (4)

where λ > 0 is a scaling parameter. The first term in Eq. 4 is a standard prediction error term, minimizing the100

mean-squared error (MSE) for predictions of Ŷ . The second term regularizes the L0 norm of the matrix ∆.101

Since parameters in ∆ are the differences across each arc in A, by maximizing the sparsity of ∆, we encourage102

parent-child environment pairs to learn similar predictors. This captures the essence of our motivation, that103

the mechanisms controlling P (Y | Z) should only change rarely. We will denote our method, optimizing104

Eq. 4, as tree-based regularization (TBR).105

3 Identifiability via Sparse Tree-Based Regularization106

This section presents our main theoretical contribution on disentanglement. More formally, we will show107

that the learned Ẑ identifies the true latent variables Z up to permutation and element-wise rescaling, i.e.,108

Ẑ = DPZ where D is an invertible diagonal matrix and P is a permutation. It is necessary that the109

dimension |Ẑ| = |Z|. We discuss estimation of |Z|, should it be unknown, in § 4.110

The problem of non-identifiability arises because the first term in the loss function in Eq. 4, which penalizes111

prediction errors, admits many solutions for Ẑ. Consider the generative process specific to environment A112

in Figure 2:113

Y = (w0 + δA)⊤Z + ϵ (5)
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E[yA |X] = (w0 + δE,A)⊤Ψ(X)

E[yB |X] = (w0 + δE,D + δD,B)⊤Ψ(X)

E[yC |X] = (w0 + δE,D + δD,C)⊤Ψ(X)

Figure 2: An example of posited DGP and corresponding TBR parameterization for a dataset with samples
originating from three different environments (A, B, and C). A set of weights W0 is associated to the root. A
trainable update We is associated to each edge e. The prediction function fu at node u will make predictions
on data samples originating from environment u. Adapted from Layne et al. (2020).

We can see that the distribution of Y remains unchanged if Z is subject to some linear transformation L, so114

long as an inverse transformation is applied to w0 and ∆:115

Y = (w⊤
0 L−1 + δ⊤

AL−1)LZ + ϵ (6)

However, the solution Ẑ = LZ potentially linearly entangles the components of the true features Z. For116

tasks that require the learned features to be semantically faithful to the true features, e.g., inferring causal117

effects of the features, this entanglement will lead to biased conclusions.118

The second term in the loss in Eq. 4 plays a key role in selecting disentangled solutions among all solutions119

that achieve optimal prediction error. This is because the regularization term λ||∆̂||0 is generally not120

invariant to linearly entangled solutions such as LZ, as because for most choices of L, ||∆||0 ̸= ||∆L−1||0,121

unless L = PD (when the representation is disentangled).122

The core of the theory in this section lies in establishing assumptions under which the only linear transfor-123

mations that can be applied to ∆ while maintaining the same level of sparsity, and thus the regularization124

penalty in equation 4, are permutation and scaling operations. Combined with a result demonstrating the125

identifiability of Z up to linear transformation, this regularization constraint permits disentanglement of126

both ∆ and the latent features Z.127

Our intuition focused on linearly entangled solutions Ẑ = LZ but in general, the hidden layer of a neural128

network could produce arbitrarily entangled solutions. As such, we prove the identifiability of features learned129

using tree-based regularization in two parts. First, we establish conditions under which the features learned130

with a nonlinear function, e.g., a neural network, are identified up to linear transformations, bringing us back131

to the linearly entangled case. This result builds on proof techniques found in the literature Khemakhem132

et al. (2020b;a); Roeder et al. (2021); Ahuja et al. (2022a); Lachapelle et al. (2022a).133

Second, we show that with some assumptions, the sparsity constraint on ||∆̂||0 permits further identification134

of Z up to permutation and scaling. Specifically, we show that any ∆ with at most one non-zero value per135

row cannot be entangled without a resulting increase in regularization cost.136
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3.1 Linear Identification of Z137

Assumption 3.1 (Data-generating process (DGP)). For each environment e, we assume the pairs (x, y) are138

drawn i.i.d from a distribution satisfying139

E[Y | X, e] = w⊤
e Ψ(X) . (7)

Additionally, we assume the support of p(x | e), denoted by X ∈ Rd, is fixed across environments.140

Assumption 3.2 (Sufficient task variability). We assume that there exist environments e1, . . . , ek ∈ E such141

that the matrix [we1 , ...wek
] is invertible.142

Assumption 3.3 (Sufficient representation variability). We assume there exist x1, ..., xk ∈ X such that the143

matrix [Ψ(x1), ..., Ψ(xk)] is invertible.144

Taken together, these assumptions establish our first requirement, by implying that the latents are identified145

up to a linear transformation L,146

Proposition 3.4. Suppose Assumptions 3.1, 3.2 & 3.3 hold. Moreover, consider the learned parameters147

ŵ0 and {δ̂a}a∈A and the learned encoder function Ψ̂(x). Analogously to equation 2, we define ŵe := ŵ0 +148 ∑
a∈path(0,e) δ̂a for all e ∈ E. If for all X ∈ X and all e ∈ E we have E[Y |X, e] = ŵ⊤

e Ψ̂(X), then, there exists149

an invertible matrix L ∈ Rk×k such that150

1. For all x ∈ X , Ψ(x) = LΨ̂(x);151

2. For all e ∈ E, w⊤
e L = ŵ⊤

e ; and152

3. For all a ∈ A, δ⊤
a L = δ̂⊤

a .153

The proof is included in Appendix A.1.154

Identification Up To Scaling and Permutation155

The previous section shows that we can identify every δa up to some common invertible linear transformation156

L. Recall ∆, ∆̂ ∈ R|A|×k are simply the concatenations of the δa and δ̂a, respectively. This means we can157

write ∆L = ∆̂. We now show that penalizing the L0-norm of our estimate ∆̂ allows us to identify ∆ up to158

a permutation and scaling.159

Assumption 3.5 (1-sparse perturbations). Each δa has at most one nonzero value.160

Assumption 3.6 (Sufficient perturbations). For all i ∈ {1, . . . , k}, there exists a ∈ A such that δa,i ̸= 0.161

Proposition 3.7 (Disentanglement via 1-sparse perturbations). Suppose Assumptions 3.5 & 3.6 hold, let L162

be an invertible matrix and let ∆̂ := ∆L. If ||∆̂||0 ≤ ||∆||0, then L is a permutation-scaling matrix.163

Proof sketch To understand the crux of proving this result, recall the aspect of TBR that drives the result164

in the first place: the L0 norm prefers solutions ∆̂ that are sparse. For this regularization to choose the165

disentangled solution, Ẑ = ZDP, we have to show that ∆̂ = Z⊤L−1, the result of linearly entangled solution,166

cannot be sparser than ∆̂ for the disentangled solution. To this end, our strategy will be to fix the amount167

of sparsity in the ground-truth matrix ∆. Then, we will show by contradiction that there exists a mapping168

between the columns of ∆ and ∆̂ such that each column in ∆ is at least as sparse as the corresponding169

column in ∆̂. Using this result, we then show that to meet our constraint on the sparsity of ∆̂, it must be170

the case that L is a permutation-scaling matrix.171

While Assumption 3.5, which requires all rows in ∆ to have at most 1 non-zero entry, is unlikely to hold in172

many practical applications of interest, we do note that we empirically consider violations of this assumption173

in § 4, and find the results promising. Some further discussion about relaxation of the 1-sparse assumption174

is included in Appendix A.2.175
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3.2 Proof of Proposition 3.7176

This result builds on arguments from both Freyaldenhoven (2020) and Lachapelle et al. (2022b).177

Proof. By Lemma A.1, there exists a permutation π such that for each column i in L, there is an index π(i)178

where Lπ(i),i is a non-zero value α. Thus ∆̂:,i is equal to some linear combination of columns in ∆ where179

column ∆:,π(i) has coefficient α. Details are included in Appendix A.180

We use operator S to denote the “sparsity pattern” of a matrix. The sparsity pattern of ∆ is denoted as S∆,181

and is equal to the set of indices of non-zero elements in ∆. Sc
∆ indicates the complement of the sparsity182

pattern: the set of indices corresponding to entries with value zero. Similarly, S∆:,i
denotes the sparsity183

pattern of ∆ at column i.184

Our proof builds upon a series of column-wise comparisons. For each index i ∈ {1, . . . , k}, we compare the185

L0 norm of column ∆:,π(i) and column ∆̂:,i.186

We define two sets of indices, Ωi and Γi,187

Ωi := S∆:,π(i) ∩ Sc
∆̂:,i

(8)

Γi := Sc
∆:,π(i)

∩ S∆̂:,i
(9)

Thus, Ωi represents nonzero entries that were present in ∆:,π(i), but not in ∆̂:,i and Γi represents the opposite,188

i.e. nonzero entries that were not present in ∆:,π(i) but that are present in ∆̂:,i. Thus, the following equality189

holds:190

||∆̂:,i||0 = ||∆:,π(i)||0 + |Γi| − |Ωi| (10)

We now show that Ωi is empty by contradiction. Assume there exists a ∈ Ωi. This means ∆a,π(i) ̸= 0191

and ∆̂a,i = ∆a,:L:,i = 0. By the 1-sparse assumption, ∆a,−π(i) = 0. This further implies that ∆a,:L:,i =192

∆a,π(i)Lπ(i),i = 0, which is a contradiction. We thus conclude that Ωi is empty.193

Therefore, for arbitrary column i, it will always be the case that ||∆̂:,i||0 ≥ ||∆:,π(i)||0.194

We rewrite the original sparsity constraint:195

||∆̂||0 ≤ ||∆||0 (11)∑
i

||∆̂:,i||0 ≤
∑

i

||∆:,i||0 (12)∑
i

||∆̂:,i||0 ≤
∑

i

||∆:,π(i)||0 (13)∑
i

(||∆̂:,i||0 − ||∆:,π(i)||0) ≤ 0 (14)

The above combined with ||∆̂:,i||0 − ||∆:,π(i)||0 ≥ 0 implies that, for all i, ||∆̂:,i||0 = ||∆:,π(i)||0. This means196

Γi is empty as well.197

Because Γi is empty for all i, we have that198

∀i, a, ∆a,π(i) = 0 =⇒ ∆̂a,i = 0 , (15)

or, equivalently,199

∀i, a, ∆a,i = 0 =⇒ ∆̂a,π−1(i) = 0 , (16)
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Choose an arbitrary i. By Assumption 3.5 & 3.6, there exists an a such that ∆a,π(i) ̸= 0 and ∆a,−π(i) = 0.200

By equation 16, we have201

∆a,−π(i) = 0 =⇒ ∆̂a,π−1(−π(i)) = 0 (17)
∆̂a,−i = 0 (18)

∆a,:L:,−i = 0 (19)
∆a,π(i)Lπ(i),−i = 0 , (20)

which implies Lπ(i),−i = 0 (since ∆a,π(i) ̸= 0). This holds for all i, thus L is a permutation-scaling matrix.202

203

4 Empirical Studies204

The goal of the empirical studies is to demonstrate that TBR recovers disentangled latents, which further205

lead to accurate causal inference and transfer learning. To that end, we conduct studies with simulated data206

and gene expression data across cell types to investigate the behaviour of TBR under various generative207

settings, robustness to violations of Assumption 3.5 , and potential downstream benefits to disentangled208

representations. For all these experiments, we compare the representations produced by TBR to those from209

a baseline method: a standard linear map w∗ fit to the target label Y on top of the learned nonlinear210

representation Ψ̂, yielding the following optimization objective:211

Lossbaseline =
∑
e∈L

(w∗⊤Ψ̂θ(Xe) − Y e)2 (21)

We note that throughout experimentation, the regularization of ||∆̂||0 was approximated via regulariza-212

tion of ||∆̂||1, following the practice of other sparsity-based disentanglement methods (Lachapelle et al.,213

2022a;b). This approximation introduces a slight bias into our model by shrinking the non-zero values of214

||∆̂||. Additional implementation details are included in Appendix A.5. All results are averaged over 10215

repetitions unless otherwise specified. Additionally, in the simulation study, we consider a second baseline,216

which we refer to as the “Sparse Predictors” method, following the approach developed by Lachapelle et al.217

(2022b). This method learns predictors for multiple tasks that share a representation Ẑ such that each218

task Y depends sparsely on the components of the true underlying latents Z. We implement this method219

by training environment-specific weights we with L1 regularization to induce sparsity. Although Lachapelle220

et al. (2022b) show that this form of sparsity regularization suffices to recover disentangled features Ẑ, the221

sparse dependence assumption does not hold in our settings, where mechanism changes– not mappings –are222

sparse. As such, we hypothesize that the Sparse Predictors approach will not produce disentangled features223

in our studies.224

Performance metric In Figure 3a, we evaluate the disentanglement of Ẑ using the mean correlation225

coefficient (MCC). The MCC between Z and Ẑ is defined by:226

arg max
π∈P

1
k

k∑
i=1

|| Pearson((Ẑπ(i)), Zi) ||, (22)

where P is the set of possible permutations of Ẑ and we calculate the Pearson correlation coefficient.227

An MCC score of 1.0 indicates an estimated representation is equal to the ground truth up to permutation228

and scaling.229
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Simulation details The general simulation procedure is: we generate a balanced binary tree T , of depth230

7 with a total of 128 leaves. In each non-root environment, we sample 3000 datapoints according to,231

x ∈ R16 ∼ N (0, 1)
z ∈ R5 ∼ N (Φ(x), 0.1)

Φ(x) = tanh(w⊤x); w ∼ N (0, 1)
w0 ∼ N (0, 1)

(23)

Each arc a in T is assigned a sparse δa ∈ R5, with non-zero Gaussian values (σ2 = 0.25) at a random subset232

of S indices, where S denotes the number of non-zero entries and is varied throughout experimentation. we233

is generated using Equation 2, and the target Y is sampled according to Equation 1, with ϵ ∼ N (0, 0.1). In234

Appendix A.5, we show results for an equivalent simulation where only leaf nodes are observed, more closely235

matching biological applications.236

Disentanglement. To study the first question about validating our disentanglement theory, we evaluated237

the MCC of the representations learned by TBR and the baseline methods while varying the level of sparsity238

in ∆, from S = 0, indicating that each δ ∈ ∆ is a null vector, to S = 5, resulting in a fully dense ∆.The239

results, displayed in Figure 3a, align with our theoretical findings. With S = 0, ∆ is completely sparse, and240

Ψ̂ is free to entangle Ẑ without any increase in regularization cost. In this setting, TBR, “Sparse Predictors”241

and the baseline methods each learn entangled representations , exhibiting mean MCC of approximately 0.5.242

In the S = 1 setting, which uniquely satisfies Assumption 3.5, TBR elicits mean MCC scores of 0.98 ± 0.01243

indicating that the representations of Ẑ are almost fully disentangled. “Sparse Predictors” exhibits mean244

MCC scores of 0.81 ± 0.12, and the baseline method achieves mean MCC of 0.47 ± 0.06245

Sensitivity to assumption violations. The settings of S ≥ 2 test the robustness of our method to246

violations of Assumption 3.5, which require 1-sparse changes across environments. As S increases, we see247

that the MCC scores obtained by TBR gradually decline, a reasonable result given that the guarantees of § 3248

no longer hold. However, TBR remains notably stronger than the baseline methods with S <= 4, indicating249

that tree-based regularization incentivizes partial disentanglement even in settings not covered by our theory.250

Some additional results exploring further variations on our simulation setting are included in Appendix A.5,251

showing robustness to all-linear DGPs, more complex X → Z relationships, varied distributions of X and252

more stochastic amounts of variation in ∆.253

Predictive performance. We evaluate the MSE of Ŷ for each method while varying the sparsity level S254

for each δ ∈ ∆. Figure 3b highlights these results. When S = 0, E[Y |Z] is invariant across environments,255

matching the model fit by the standard baseline as well as TBR and Sparse Predictors. As expected, all256

methods perform well in this case. As S increases, TBR and Sparse Predictors maintain low prediction257

error, while the performance of the baseline method quickly degrades. This aligns with expectations, as the258

baseline method lacks the capacity to fit the environment-specific effects of the latents Z.259

Prediction error and estimating latent dimension. We further find evidence that varying the di-260

mension of |Ẑ| in order to minimize predictive error can enable estimation of the true dimension of |Z| if261

it is unknown, satisfying a key assumption of our method. We measured the MSE of Ŷ achieved by the262

baseline and TBR when varying dimensionality of Ẑ from 1 to 8, while setting the average sparsity to half263

the dimensionality by setting each entry in ∆ to zero with probability 0.5. For both methods, and for four264

different values of the dimension |Z|, setting |Ẑ| ≤ |Z| resulted in elevated MSE. Notably, the MSE achieved265

by TBR distinctly plateaued after reaching the correct dimensionality, as is shown in Figure 4. While not266

conclusive, these results suggest that there is indeed potential in the analysis of prediction error with TBR267

as a method of estimating the number of latent features present.268

Causal effect estimation. We estimated the causal effects of the high-level latent variables Z on the269

target Y using the representation Ẑ produced by each method as a substitute for the true latents. The goal270

is to investigate whether disentangled representation learning is necessary for tasks such as causal inference271

where the semantics of the variables involved matter. Formally, we estimate the average treatment effect272
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Figure 3: Assessment of model performance across various simulation settings. The x-axis indicates the
number of non-zero entries in each δ. Left: A comparison of the MCC between Z and the estimates Ẑ
produced by TBR and the baseline methods. TBR achieves near perfect disentanglement when S = 1.
Right: Comparison of prediction error produced by TBR and the baseline methods when estimating Y .

Figure 4: An analysis on the effects of changing the dimension of Ẑ on MSE, across various dimensionalities
of Z. For |Z| ∈ {4, 5, 6}, TBR achieved minimal predictive loss when |Ẑ| = |Z|. In contrast, the baseline
method had no cases where the global minimum for MSE occurred when the estimated and true latent
vectors were of the same dimension.

(ATE) of each latent Zk on Y ,273

ATEk = E[Y ; do(Zk = z + δ)] − E[Y ; do(Zk = z)]

which measures the change in the mean of Y when we intervene (indicated by the do operator) and increase274

the value of Zk by some constant δ. Since each ATE is not identified from observational data without275

assumptions, we follow the necessary assumptions that: (i) there are no hidden confounding variables affect276
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both Z and Y and (ii) for all values z̃ of Z−k, 0 < P (Zk = z|Z−k = z̃) < 1. Following Pearl et al. (2000),277

with these assumptions, and from the graphical model in Figure 1, each causal effect is identified by,278

ATEk = EZ−k

[
E[Y |Z−k, Zk = z + δ] − E[Y |Z−k, Zk = z]

]
As a consequence of the linearity in the mapping from Z to Y , each ATE can be estimated by including all279

variables Z in a linear regression of Y and reading off the fitted linear coefficients.280

In our experiments, we estimate ATEk in ten randomly selected environments in the 1-sparse setting. We281

fit ordinary least squares regression to Y using the representations Ẑ learned using TBR and the baseline282

methods and compared the estimated effects to those estimated when using the ground truth Z. We nor-283

malized the representation values and calculated the mean squared error of the absolute coefficient values,284

to ignore the effects of scaling. Table 3, included in the appendix, shows the results from this study. We see285

that the disentangled representation obtained by TBR yields highly accurate effects (MSE=0.05 ± 0.07) in286

this setting while the baseline method produces representations that severely introduce bias into the effect287

estimates (MSE=1.51 ± 1.8). Further details are presented in Appendix A.6.288

4.1 Single-cell RNA-seq experimentation289

In addition to analyzing the behavior of TBR in simulation, we evaluated the ability of our method to learn290

disentangled representations of ground-truth gene expression data, with simulated downstream cell-state291

phenotypes.292

In our setup, both X and Z consisted of real gene expression data observed across different cells. We selected293

genes from within a set of 11 broadly expressed house-keeping genes(Eisenberg & Levanon, 2013) to hold294

out as latent variables. For X, we extracted all transcription factors (TFs) annotated as regulators of Z, in295

the hTFtarget database (Zhang et al., 2020). We removed from consideration two weakly regulated house-296

keeping genes, resulting in a set of nine candidate Z genes (see Appendix A.5), each regulated by 18 to 95297

TFs within X. We performed all experimentation on the publicly available GTEx V8 snRNA-Seq dataset,298

described by Eraslan et al. (2022). We consider the 43 epithelial cell types as the set of environments E .299

Preprocessing All preprocessing of the GTEx data was performed using standard functions within the300

Scanpy library (Wolf et al., 2018). To denoise the data and adjust for dropout during sequencing, we first301

applied across the entire dataset the MAGIC function developed in Van Dijk et al. (2018). The resulting302

dataset was highly imbalanced, with a small number of cell types comprising the majority of examples.303

To prevent these cell types from dominating our analysis, we randomly selected a subset of each cell-type304

population such that no individual environment had more than 1000 samples, resulting in a final dataset of305

15256 cells.306

We constructed the tree T relating the cell types by running the dendrogram method in the Scanpy library,307

such that the 43 epithelial cell types made up the leaves in T . We simulated phenotype Y using latent gene308

expression Z and cell type tree T via the simulation procedure outlined in § 4.309

Results We repeatedly sampled subsets of 5 candidate genes to serve as Z and the corresponding TF310

expression X, and compared the performance of TBR and our previously described baseline method across311

30 different simulated phenotypes, for each sparsity level S.312

The performance of the two methods in disentangling the latent gene expression values are depicted in313

Figure 5a. TBR and the baseline method exhibit equivalent average MCC scores of 0.51±0.01 and 0.50±0.01314

respectively in the S = 0 setting, when there is no variation between environments. Once variation is315

introduced, the performance of TBR increases, exhibiting an average MCC of 0.61 ± 0.02 with both S = 1316

and S = 2, while the performance of the baseline method degrades rapidly to 0.31 ± 0.02 as K increases317

to 2. Globally, MCC scores are lower than observed in simulation. We expect that much of this gap in318

performance can be attributed to the high levels of endogenous noise within the X → Z relationship.319

Generalization to unseen environments. Since parameter values across related environments only320

sparsely vary when we consider the true latents, but densely vary when we consider incorrect transformations321
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(a) Disentanglement performance (MCC)
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(b) Prediction error (MSE) on unseen test cell types.

Figure 5: Left panel: A comparison of the MCC between Ẑ and Z across various settings of sparsity in
the simulation procedure, when X and Z are both ground-truth gene expression measurements. Results are
averaged over 30 simulated phenotypes for each of 75 random choices of genes to serve as Z. Right panel:
MSE exhibited when generalizing trained instances of TBR and the baseline method to unseen cell types
with 1-Sparse generative parameters changes, while varying the S setting of training environments. Results
are averaged over 10 simulated phenotypes each for 50 random choices of Z and 4 held-out test cell types.

of these latents, we further expect that better disentanglement should lead to lower error when we transfer322

our learned predictor to an unseen but similar environment. Thus, to demonstrate the value of learning323

partially disentangled representations of gene expression, we evaluated the ability of our methods to predict324

phenotype in environments that were unobserved during training. We selected cell types to use as a test set,325

and completely excluded them from training.326

We compared the performance between our baseline method, trained on the closest neighboring cell-type327

to the test type, and TBR, using the parameters from the closest environment to the test type in T . To328

maximize the potential performance from the baseline, we only considered test cell types whose closest329

neighbor had a large population (pop. size >= 1000). Additionally, we restricted analysis to test types with330

a population size >= 100.331

As in the previous experiment, we repeatedly sampled random choices of genes to make up Z and generated332

simulated phenotypes with varying settings of S. In all cases, the unobserved environments had wtest ex-333

hibiting 1-sparse changes from the closest observed environment in T , resulting in a non-trivial generalization334

challenge even when S = 0 for the training environments. The results averaged across all choices of Z are335

presented in Figure 5b.336

Notably, training TBR with S = 0 resulted in a test MSE of 1.10±0.58 in the unseen cell types, a significantly337

higher error rate than the S = 1 and S = 2 settings (respective MSE of 0.49 ± 0.22 and 0.47 ± 0.20). This338

improvement in MSE when S > 0 is expected, as the 1-sparse changes in the unseen wtest could become339

more widely distributed across the entangled estimated of Ẑ. This reduction in generalization risk in the340

S >= 1 setting illustrates the value of even partially disentangled representations. The baseline method341

exhibits significantly higher MSE in all settings, which may be due to the inherent limitations of training on342

only closely related cell types, restricting sample size.343

11



Under review as submission to TMLR

5 Related work344

Several papers have shown that with samples from multiple environments, auxiliary labels, and assumptions345

on the data generating process, we can learn disentangled representations (Hyvarinen & Morioka, 2016;346

2017; Hyvarinen et al., 2019; Khemakhem et al., 2020a;b; Von Kugelgen et al., 2021; Shen et al., 2021;347

Klindt et al., 2021; Gresele et al., 2019). Most of these previous works assume the latent variables are causal348

ancestors of the observed variables, whereas we consider latent variables which are causal descendants of349

the observations, enabling use of the target distribution as a signal for latent identification, rather than a350

reconstruction objective. Within the research on disentanglement, this paper relates most closely to two351

lines of work that exploit sparsity to guarantee disentangled solutions to the representation learning task.352

Sparse changes to latents. One line of work focuses on temporal observations (Lippe et al., 2022) or353

paired samples (Locatello et al., 2019; Ahuja et al., 2022b; Von Kugelgen et al., 2021) generated by vary-354

ing only a small number of generative factors. Similarly, Lachapelle et al. (2022b; 2024) leverage sparse355

interactions between latent factors across time and/or with auxiliary variables to learn disentangled repre-356

sentations. Instead of sparse latent differences between paired samples or units across time, recent works357

Ahuja et al. (2023); Buchholz et al. (2023); Squires et al. (2023); Zhang et al. (2023); Varici et al. (2024);358

von Kügelgen et al. (2023) consider unpaired data from multiple environments that sparsely differ due to359

single-node interventions to the latent generative factors. In this paper, instead of leveraging sparse shifts in360

the distribution over latent variables P (Z), we exploit sparse changes in P (Y |Z), the mechanism by which361

the latent variables affect a target variable.362

Sparse mappings. Another line of work exploits sparsity in the mappings from latent to observed variables363

to establish disentanglement. In the case of generative factors, Moran et al. (2022); Brady et al. (2023); Zheng364

et al. (2022) assume that each latent factor affects a subset of the components of the observation. In the365

latent features setting that we also study in this paper, Lachapelle et al. (2022a); Fumero et al. (2023) observe366

multiple targets of interest that depend sparsely on the latent features. In contrast, in this paper, we focus367

on sparse changes in the mapping from latent features to the single target variable of interest. Another key368

distinction is that we leverage a hierarchical structure over environments. This allows us to enforce that369

mechanism changes be sparse locally while still admitting changes that are dense between environments that370

have diverged significantly. Thus we do not need to constrain all pairs of environments to vary sparsely.371

Tree based regularization Layne et al. (2020) employ regularization scheme similar to TBR, with the goal372

of improving generalization performance when modelling phylogenetically distributed datasets. Layne et al.373

(2020) leveraged the assumption distributional shifts of the features or labels, and applied L2 regularization374

to changes in parameters across neighboring nodes in a phylogenetic tree in order to improve predictive375

performance. In contrast, in this work we explicitly assume that there are sparse changes in the effects of376

latent variables, and show how regularizing sparsity across neighboring environments can be used to learn377

disentangled representations of these latents.378

6 Conclusion379

The ability to learn disentangled representations is an important prerequisite for the use of representation380

learning in a number of scientific tasks, such as causal effect estimation. There is a growing attention in the381

literature to the use of sparse variations between environments to achieve disentanglement. We make several382

novel contributions towards this line of pursuit. We demonstrate that disentanglement is possible when383

data originates from a set of evolving environments, such as those resulting from cellular differentiation or384

species evolution, where parameter shifts along a given tree branch are sparse. Tree-branch sparsity suffices385

to enable disentanglement, even if the resulting pair-wise differences between observable environments may386

be dense.387

We present novel theoretical results, leveraging sparse tree-based regularization in parameter space to disen-388

tangle representations of learned features, downstream from the observable inputs in the causal graph. We389

validate the value of our approach through a series of simulation studies, that demonstrate improvements390

in disentanglement scores, prediction error, and estimation of the causal effects of the latent features. We391

further investigate the ability of TBR to learn disentangled representations of ground truth gene expres-392
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sion data, with simulated downstream cell phenotypes. While further improvements are required to achieve393

the full potential of causal representation learning on scRNA-seq data, we observe promising trends. Our394

findings suggest that there is value in leveraging information about cell-type differentiation with TBR-style395

methodology, both to assist in disentangling latent molecular mechanisms and to improve generalization396

performance.397

There are multiple directions for future work, including relaxing linearity in the mapping from latents to the398

target, better characterization of the number of environments required, further exploration into estimation of399

the number of latents, and expanding our results into more flexible generative processes, such as by relaxing400

the assumption that p(Z | X) remains invariant.401

Software and Data402

Relevant code for replicating experimentation is available at [anonymized version included for blind submis-403

sion]. Gene expression data can be retrieved via the GTEx portal website.404
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A Appendix523

A.1 Proof of Proposition 4.4524

Proof. By Assumption 3.1, and the conditions on Ŷ outlined in Proposition 4.4, we have525

E[Y |X, e] = ŵ⊤
e Ψ̂(X) (24)

w⊤
e Ψ(X) = ŵ⊤

e Ψ̂(X) (25)

Let e1, . . . , ek be the environments given by Assumption 3.2. We can define matrices

U =

w⊤
e1
...

w⊤
ek

 and Û =

ŵ⊤
e1
...

ŵ⊤
ek

 .

By Assumption 3.2, we know U is invertible, which allows us to write526

UΨ(x) = Û ˆΨ(x) (26)
Ψ(x) = U−1ÛΨ̂(x) (27)
Ψ(x) = LΨ̂(x) (28)

where L := U−1Û.527

By Assumption 3.3, we can create an invertible matrix Q = [Ψ(x1), ..., Ψ(xk)]. We can subsequently denote528

Q̂ = [Ψ̂(x1), ..., Ψ̂(xk)], allowing us to write Q = LQ̂. Since Q is invertible, both L and Q̂ must also be529

invertible.530

Combining equation 25 and equation 28 yields531

w⊤
e LΨ̂(x) = ŵ⊤

e Ψ̂(x) (29)
w⊤

e LQ̂ = ŵ⊤
e Q̂ (30)

w⊤
e L = ŵ⊤

e , (31)

where the last equation holds because Q̂ is invertible.532

Choose some a ∈ A and assume a = (e0, e′
0). Since equation 31 holds for all e, it holds in particular for e0533

and e′
0:534

w⊤
e0

L = ŵ⊤
e0

(32)
w⊤

e′
0
L = ŵ⊤

e′
0

. (33)

By substracting both equations above, we obtain535

(we′
0

− we0)⊤L = (ŵe′
0

− ŵe0)⊤ (34)
δ⊤

a L = δ̂⊤
a , (35)

where the last step above follows from the definition of we in equation 2. This concludes the proof.536

A.2 Useful Lemmas537

The argument for proving the following Lemma is taken from Lachapelle et al. (2022b).538

Lemma A.1 (Sparsity pattern of an invertible matrix contains a permutation). Let L ∈ Rm×m be an539

invertible matrix. Then, there exists a permutation π such that Li,π(i) ̸= 0 for all i.540
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Proof. Since the matrix L is invertible, its determinant is non-zero, i.e.541

det(L) :=
∑

π∈Sm

sign(π)
m∏

i=1
Li,π(i) ̸= 0 , (36)

where Sm is the set of m-permutations. This equation implies that at least one term of the sum is non-zero,542

meaning there exists π ∈ Sm such that for all i ∈ [m], Li,π(i) ̸= 0.543

A.3 Remarks on § 3544

A.3.1 On relaxing the 1-sparse assumption:545

Assumption 3.5 is particularly stringent, and many problem settings will not adhere to it in practice. We546

note some of the expected results of relaxing this assumption, as they relate to our theory.547

Central to our proof are the two sets Γi and Ωi. Ωi is the set of indices where entanglement by L decreases548

sparsity for column i, and Γi is the set of indices where sparsity is increased. We reformulate the definition549

of Ωi550

Ωi = {j ∈ S∆:,π(i) | ∆j,−π(i) · L−π(i),i = −α∆j,π(i)} (37)

One can see that the condition for index j to be in Ωi is equivalent to: ∆j,π(i) ·Lπ(i),i = 0. Thus, if the number551

of indices in Ωi = a for some a ≥ 2, it implies that there is a subset of a rows in ∆ where the columns552

are linearly dependent. Under the assumption that non-zero values of ∆ are generated independently, it553

seems intuitive that the likelihood of finding a rows with linearly dependent columns decreases rapidly as a554

increases, and the results in Figure 3a give some evidence towards this possibility. We leave for future work555

the possibility for formalizing a probabilistic bound on the size of a. We also note that Lachapelle et al.556

find an identification result for latent variables that holds in a setting with infinitely many environments557

but more general assumptions about sparsity, which may have some connections to the probabilistic line of558

reasoning we outline.559

An additional possible direction for future work towards generalizing our result is to investigate the use of560

"anchor environments", as used by Moran et al. to disentangle latent generative factors.561

A.4 Additional experimental details562

Implementation We instantiated Ψ̂ as a neural network with two hidden layers (256 units, 64 units) and563

LeakyRelu activations. Performance was compared across two methods of estimating linear map Φ̂. First,564

a TBR implementation was used to directly estimate ŵ0 and ∆̂ in order to predict ŷ. Regularization of565

||∆̂||0 was approximated by instead regularizing ||∆̂||1. We compare against a baseline of training a single566

estimation of ŵ, without accounting for variation between environments.567

In each experiment, Ψ̂ and the relevant estimation of Φ̂ were jointly optimized with the Adam optimizer568

Kingma & Ba (2014). We trained models on 50% of the data. A validation set of 25% of the data was used569

to tune hyper-parameters (learning rate, λ for TBR models), and the remaining 25% was held out as a test570

set for evaluation. All models were implemented in PyTorch Paszke et al. (2019).571

Hyper-parameters572

Hyper-parameters are summarized in Table 1. Gene expression experiments were tuned individually per573

choice of Z and phenotype from the range listed.574
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Table 1: Summary of hyper-parameter settings.

Experiment / Dataset Parameter name Setting or range
Simulated λ 0.001
Simulated Learning rate 0.001
Gene Expression λ {0.0, 0.1, 0.01, 0.001, 0.0001}
Gene Expression Learning rate {0.001, 0.0001}

List of house-keeping genes575

Sets of genes for inclusion in Z described in § 4.1 were selected from the list in Table 2:576

Description of error estimates577

All results presented with a mean value accompanied by a ± error estimate indicate standard deviation,578

computed with a call to numpy’s np.std() command. Box plots, such as Figure 3a, include quantiles and579

outliers calculated by seaborn’s sns.catplot() function with default settings. Error bars on bar plots, such580

as Figure 5a indicate the 0.95CI and are computed by the errorbar function included in sns.catplot with581

default settings.582

Compute requirements583

Experimentation on the fully simulated dataset was performed on a MacBook Pro with 18GB memory and584

an M3 Pro CPU. Time to generate a simulated phenotype with K = 1 and fit an instance of TBR was585

estimated at 42.98 ± 13.40 over 10 repetitions.586

Experimentation on gene-expression data described in § 4.1 was performed on a shared compute server with587

a total of 755GB of ram and 96 CPU cores. Training leveraged shared use of a Quadro RTX 6000 GPU, with588

an average GPU memory usage of approximately 1GB. Run-time to fit an instance of TBR for a random589

choice of Z was estimated at 25.37 ± 2.53 seconds over 10 repetitions.590

A.5 Additional experiments and results591
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Table 2: House-keeping genes

Gene Name
C1orf43
CHMP2A
EMC7
PSMB2
PSMB4
REEP5
SNRPD3
VCP
VPS29
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(a) Disentanglement performance (MCC).
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(b) Prediction error (MSE).

Figure 6: Assessment of model performance across various simulation settings, with observations available
only that the leaf nodes.

Simulation with observations exclusively at leaves592

Complementary to the experimentation depicted in Figure 3, we performed an equivalent set of experiments593

with the simulation altered such that only leaf nodes had observations, which more closely matches our594

motivating biological applications. We increased the depth of the tree from 7 to 8, keeping the number of595

observable environments similar. The results display the same trends as discussed in the main text, with an596

MCC approaching 1.0 exhibited by TBR in the K = 1 setting, and a significant increase in entanglement597

observed by both methods when K = 0.598

Simulation with more complex X → Z relationship .599

We further tested the robustness of the TBR method when increasing the complexity of the function relating600

X to Z, by increasing the number of tanh layers from 1 to 2. MCC scores were slightly reduced across both601

methods for all settings, but MCC scores remained above 0.9 for TBR in the S = 1 setting. Results are602

depicted in Figure 7.603

Simulation with skewed distributions for X .604
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Figure 7: Assessment of model performance across various simulation settings with a more complex X → Z
function.
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Figure 8: Assessment of model performance across various simulation settings with non-Gaussian distribu-
tions of X.

We further tested the effects of considering alternative distribution for X in our simulation studies, by605

distributing each Xi as Gaussian with a skew value drawn uniformly from (−1.0, 1.0). Our simulation606

results appeared robust to this modification. Results are depicted in Figure 8.607

Causal effect estimation in simulation experiments.608
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Table 3: Mean-squared error of effect size estimates calculated using Ẑ, in comparison to estimates calculated
using ground-truth Z, computed over 10 trials per environment. TBR achieves a much smaller mean error
across all environments, showing that disentangled estimates of Ẑ allow for increased accuracy in determining
the effect sizes of latent features.

Environment TBR MSE Baseline MSE
Env 1 0.05 ± 0.07 0.87±0.76
Env 2 0.05 ± 0.07 1.08±0.91
Env 3 0.03 ± 0.04 1.29±1.67
Env 4 0.06 ± 0.09 1.68±1.72
Env 5 0.05 ± 0.08 1.96±3.58
Env 6 0.06 ± 0.09 2.55±2.14
Env 7 0.05 ± 0.08 1.3±0.94
Env 8 0.05 ± 0.07 1.85±1.3
Env 9 0.04 ± 0.06 1.19±1.11
Env 10 0.04 ± 0.06 1.3±1.29
Pooled 0.05±0.07 1.51±1.8

The results from estimating causal effects from the estimated Ẑ using either TBR or the baseline method,609

as described in § 4, are summarized in Table 3.610

All-linear data-generative process611

We tested the effect of an all-linear DGP, where Ψ(X) was replaced with a linear map with random weights.612

We maintained the neural network architecture of Ψ̂. We noticed minimal change in the MCC performance613

of TBR, results are included in Figure 9.614

Stochastic Deltas615

Additionally, we tested the effects of randomly selecting the number of non-zero values in each δa by drawing616

from a Bernoulli distribution, while varying the parameter π in order to control the expected level of sparsity.617

Results are displayed in Figure 10.618
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Figure 9: An equivalent plot to Figure 6a, obtained by using a linear map in place of Ψ(X).

Figure 10: An equivalent plot to Figure 6a, obtained by using a Bernoulli distribution of non-zero entries in
∆ in place of a fixed k-sparse setting.
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