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Abstract

Convex-composite optimization, which minimizes an objective function represented by the
sum of a differentiable function and a convex one, is widely used in machine learning and
signal/image processing. Fast Iterative Shrinkage Thresholding Algorithm (FISTA) is a
typical method for solving this problem and has a global convergence rate of O(1/k?).
Recently, this has been extended to multi-objective optimization, together with the proof
of the O(1/k?) global convergence rate. However, its momentum factor is classical, and the
convergence of its iterates has not been proven. In this work, introducing some additional
hyperparameters (a,b), we propose another accelerated proximal gradient method with a
general momentum factor, which is new even for the single-objective cases. We show that
our proposed method also has a global convergence rate of O(1/k?) for any (a,b), and
further that the generated sequence of iterates converges to a weak Pareto solution when a
is positive, an essential property for the finite-time manifold identification. Moreover, we
report numerical results with various (a,b), showing that some of these choices give better
results than the classical momentum factors.

1 Introduction

We consider the following convex-composite single (m = 1) or multi-objective (m > 2) optimization problem:

minimize F(x)

subject to = € R™,

(1)

where F: R" — (R U {00})™ is a vector-valued function with F = (F,...,F,)". For simplicity, we
write (1) in this paper as

i F(x).

Hereinafter, we assume the following properties.

Assumption 1.1
Each component F;: R™ — R U {oo} is given by

Fi(z) = fi(z) + gi(x) foralli=1,...,m

with convexr and continuously differentiable functions f;: R™ — R,i = 1,...,m and closed, proper and
convez functions g;: R" - RU{oo}, i =1,...,m, and each V f; is Lipschitz continuous.

As suggested in Tanabe et al. (2019), this problem involves many important classes. For example, it can
express a convex-constrained problem if each g; is the indicator function of a convex set S, i.e.,

Yo (2) = {0, ifrxels, @)

oo, otherwise.
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Multi-objective optimization Miettinen (1998) has many applications in engineering Eschenauer et al. (1990),
statistics Carrizosa & Frenk (1998), and machine learning (particularly multi-task learning Sener (2018); Lin
et al. (2019), neural architecture search Kim et al. (2017); Dong et al. (2018); Elsken et al. (2019), and the
accuracy-fairness trade-offs Liu & Vicente (2022)). In the multi-objective case, no single point minimizes
all objective functions simultaneously in general. Therefore, we use the concept of Pareto optimality. We
call a point weakly Pareto optimal if there is no other point where the objective function values are strictly
smaller. This generalizes the usual optimality for single-objective problems. In other words, single-objective
problems are considered to be included in multi-objective ones. Hence, in the following, unless otherwise
noted, we refer to (1) as multi-objective, including the case where m = 1.

One of the main strategies for multi-objective problems is the scalarization approach Gass & Saaty (1955);
Geoffrion (1968); Zadeh (1963), which reduces the original multi-objective problem into a parameterized
(or weighted) scalar-valued problem. However, it requires an a priori parameters (or weights) selection,
which might be challenging. In fact, an example of convex bicriteria problem is provided in (Fliege et al.,
2009, Section 7), where almost all choices of parameters fail, leading to unbounded scalarized problems. The
meta-heuristics Gandibleux et al. (2004) is also popular, but it has no theoretical convergence properties
under reasonable assumptions.

Many descent methods have been developed in recent years Fukuda & Grana Drummond (2014), overcoming
those drawbacks. They decrease one or more objectives at each iteration or within some iterations, and
their global convergence property can be analyzed under reasonable assumptions. This type of method is
suitable for improving tentative solutions, since it always generates a solution that improves the starting
point. Empirically, it is also known to obtain a variety of Pareto solutions by starting from different initial
points. For example, the steepest descent method Fliege & Svaiter (2000); Fliege et al. (2019); Désidéri
(2012) converges globally to Pareto solutions for differentiable multi-objective problems. From a practical
point of view, its applicability has also been reported in multi-task learning Sener (2018); Lin et al. (2019).
Afterwards, the projected gradient Fukuda & Grana Drummond (2013), Newton’s Fliege et al. (2009);
Gongalves et al. (2022), trust-region Carrizo et al. (2016), and conjugate gradient methods Lucambio Pérez
& Prudente (2018) were also considered. Moreover, the proximal point Bonnel et al. (2005) and the inertial
forward-backward methods Bot & Grad (2018) can solve infinite-dimensional vector optimization problems.

For (1), the proximal gradient method Tanabe et al. (2019; 2023a) is effective. Using it, the merit func-
tion Tanabe et al. (2023c), which returns zero at the Pareto solutions and strictly positive values otherwise,
converges to zero with rate O(1/k) under reasonable assumptions. It is also shown that the generated se-
quence of iterates converges to a weak Pareto solution Bello Cruz et al. (2022). On the other hand, the
accelerated proximal gradient method Tanabe et al. (2023b), which generalizes the Fast Iterative Shrinkage
Thresholding Algorithm (FISTA) Beck & Teboulle (2009) for convex-composite single-objective problems to
multi-objective optimization, has also been considered, along with a proof of the merit function’s O(1/k?)
convergence rate. However, the momentum factor used there is classical (t; = 1,t541 = \/t7 + 1/4 4+ 1/2),
and the iterates’ convergence is not proven.

This paper generalizes the associated factor by t1 = 1,t,41 = \/t5 — aty, + b+ 1/2 with hyperparameters a €
[0,1),b € [a®/4,1/4]. This is new even in the single-objective context, and it generalizes well-known factors.
For example, when a = 0 and b = 1/4, it reduces to ¢; = 1,t,41 = \/t7 + 1/4 4+ 1/2, proposed in Nesterov
(1983); Beck & Teboulle (2009), and when b = a?/4, it gives tx = (1 — a)k/2 + (1 + a)/2, suggested
in Chambolle & Dossal (2015); Attouch & Peypouquet (2016); Attouch et al. (2018); Su et al. (2016). We
show that the merit function converges to zero with rate O(1/k?) for any (a,b). In addition, we prove the
iterates’ convergence to a weak Pareto solution when a > 0. While the generalization of the momentum factor
is an important aspect of our work, it is crucial to emphasize that our primary contribution lies in addressing
the challenge of ensuring convergence in accelerated gradient methods for multi-objective optimization. As
discussed in Section 4, this suggests that the proposed method might achieve finite-iteration manifold (active
set) identification Sun et al. (2019) without the assumption of strong convexity.

Furthermore, we carry out numerical experiments with various (a, b) and observe that some (a, b) yield better
results than the classical factors. However, it is important to note that the primary focus and significance of
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our work lies in the theoretical advancement of convergence assurance rather than in the specific properties
of the new momentum factor.

The outline of this paper is as follows. We present some notations and definitions used in this paper in
Section 2.1. Section 2.2 recalls the accelerated proximal gradient method for (1) and its associated results.
We generalize the momentum factor and prove that it preserves an O(1/k?) convergence rate in Section 3,
and we demonstrate the convergence of the iterates in Section 4. Finally, Section 5 provides numerical
experiments and compares the numerical performances depending on the hyperparameters.

2 Preliminaries

2.1 Definitions and notations

For every natural number d, write the d-dimensional real space by R?, and define
R‘fr = {veRd | v; > 0,1 = 1,...,d}.

This induces the partial orders: for any v',v? € R%, v! < v? (alternatively, v? > o!) if v2 — ot € Rjir
and v' < v? (alternatively, v? > v') if v — v! € intR%?. In other words, v* < v? and v! < v? mean
that v} < v? and v} < v? for all i = 1,...,d, respectively. Furthermore, let (-,-) be the Euclidean inner
product in R%, i.e., (v*,v?) = S>%, vle2, and let ||| be the Euclidean norm, i.e., ||v]| := y/{v, v). Moreover,

(R
we define the ¢;-norm and {o-norm by ||v||, = Y |v;| and [Jv]| = max;—1,.q4|vi|, respectively.

We introduce some concepts used in the problem (1). Recall that z* € R™ is Pareto optimal if there is
no x € R™ such that F(x) < F(z*) and F(x) # F(z*). Likewise,

X" :={a* € R" | There does not exist z € R" such that F(z) < F(z*)} (3)

is the set of weakly Pareto optimal solutions for (1). When m = 1, X* reduces to the optimal solution set. It
is known that all Pareto optimal points are weakly Pareto optimal, and the converse is true if every objective
function is strictly convex. Moreover, define the effective domain of F' by

dom F :={x € R" | F(z) < oo},
and write the level set of F' on c € R™ as
Lp(c)={zxeR"| F(z) <c}. (4)
Furthermore, we express the image of A C R™ and the inverse image of B C (R U {00})™ under F as
F(A)={F(zx)eR™| x€ A} and F YB):={xecR"| F(z) € B},
respectively.

Finally, let us recall the merit function ug: R™ — R U {oco} for (1) proposed in Tanabe et al. (2023c):

uog(x) == sup min [F;(x) — F;(z)], (5)
zeRn i=1,...m

which returns zero at optimal solutions and strictly positive values otherwise. Because of its many desirable
properties proved in Tanabe et al. (2023c), we can think of ug(x) representing, in a sense, how far z is from
the Pareto solution. For example, the following theorem shows that wug is a merit function in the Pareto
sense.
Theorem 2.1
(Tanabe et al., 2023¢, Theorem 3.1) Let ug be defined by (5). Then, ug(x) > 0 for allz € R™. Moreover, x €
R" is weakly Pareto optimal for (1) if and only if up(z) = 0.

Note that when m = 1, we have
uo(z) = Fi(x) — FY,

where F7* is the optimal objective value. Clearly, this is a merit function for scalar-valued optimization.
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2.2 The accelerated proximal gradient method for multi-objective optimization

This subsection recalls the accelerated proximal gradient method for (1) proposed in Tanabe et al. (2023b)
and its main results. Recall that each F; is the sum of a continuously differentiable function f; and a closed,
proper, and convex function g;, and that V f; is Lipschitz continuous with Lipschitz constant L; > 0. Define

L:= max L;.
i=1,....m

The method solves the following subproblem at each iteration for given z € dom F, y € R™, and ¢ > L:

: acc .
min - ¢p*(z2,y), (6)
where ’
2
vi ()= max [(Vfily).z —y) +9i(2) + fily) — Fi@)] + 5llz =yl
Note that if f; = 0 for every ¢ and £ = 0, then we have up(z) = —min, p3°°(z;2,y). From the strong
convexity, (6) has a unique optimal solution p3°°(x,y), i.e.,
P (@, y) = argmin (2 2,9). (7)
zeR"

The following proposition characterizes weak Pareto optimality in terms of the mapping pj°c.

Proposition 2.1
(Tanabe et al., 2023b, Proposition 4.1) Let p3°°(x,y) be defined by (7). Then, the following statements
hold.

(i) y € R™ is weakly Pareto optimal for (1) if and only if p3°°(z,y) =y for some v € R™.

acc

(1t) p§°° is locally Holder continuous with exponent 1/2, i.e., for any bounded set W C R™, there ex-
ists M > 0 such that

acc

1p3° (2, 9) — pE° (&, Pl < M|(2,9) — (& )"/
forall z,9,2,y € W.

This implies that using ||p}*°(z,y) — yl|, < & for some £ > 0 is reasonable as the stopping criteria. We state
below the accelerated proximal gradient method for (1).

Algorithm 1 Accelerated proximal gradient method for (1)

Input: Set 2° = y' € dom F,¢ > L,e > 0.

Output: zF € dom F: An approximate weak Pareto optimal solution
1: k<0
2: 1 <1
3: repeat

k+—k+1

l’k — p?cc(l.k717 yk)

thp1 < Vit +1/4+1/2

5
6:
7: Vi < (tg — 1) /tgsr
8
9

>

gLk oy (b — k)
s until |lof — ¥ <e

Algorithm 1 generates {z*} such that {ug(z*)} converges to zero with rate O(1/k?) under the following
assumption. This assumption is also used to analyze the proximal gradient method without acceleration Tan-
abe et al. (2023a) and is not particularly strong as suggested in (Tanabe et al., 2023a, Remark 5.3); it is
satisfied for level bounded functions such as ¢;-norm, for example.
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Assumption 2.1
(Tanabe et al., 2023a, Assumption 5.1) Let X* and Lr be defined by (3) and (4), respectively. Then, for
all z € Lp(F(2°)), there exists x* € X* such that F(z*) < F(z) and

R = sup inf |2 - x0H2 < 0. (8)

F*eF(X*NLp(F(20)) 2€F~ ({F*})

Theorem 2.2
(Tanabe et al., 2023b, Theorem 5.2) Under Assumptions 1.1 and 2.1, Algorithm 1 generates {xk} such that

2(R
Uo(ggk) S m fOT’ all k 2 1,

where R > 0 is given by (8), and ug is a merit function defined by (5).

The following corollary shows the global convergence of Algorithm 1.

Corollary 2.1

(Tanabe et al., 2023b, Corollary 5.2) Suppose that Assumptions 1.1 and 2.1 hold. Then, every accumulation
point of {xk} generated by Algorithm 1 is weakly Pareto optimal for (1).

3 Generalization of the momentum factor and convergence rate analysis

This section generalizes the momentum factor {t;} used in Algorithm 1 and shows that the O(1/k?) con-
vergence rate also holds in that case. First, we describe below the algorithm in which we replace line 6 of
Algorithm 1 by a formula using given constants a € [0,1) and b € [a?/4,1/4]:

Algorithm 2 Accelerated proximal gradient method with general stepsizes for (1)

Input: Set 2° =y' € dom F,¢ > L,e > 0,a € [0,1),b € [a*/4,1/4].
Output: zF € dom F: An approximate weak Pareto optimal solution
1 k<0
2: 1«1
3: repeat
4: k< k+1
rk « p?cc(xk—17yk)
the1 < \/t2 —atp +b+1/2

5
6
7 Y < (tk — 1)/tk+1
8
9:

syt e 2P o (af — 2P
until [[2% —y*|| <e

The sequence {t;} defined in lines 2 and 6 of Algorithm 2 generalizes the well-known momentum factors
in single-objective accelerated methods. For example, when ¢ = 0 and b = 1/4, they coincide with the
one in Algorithm 1 and the original FISTA Nesterov (1983); Beck & Teboulle (2009) (t; = 1 and tg41 =
(1++/1+4t3)/2). Moreover, if b = a*/4, then {t;} has the general term ¢, = (1 — a)k/2 + (1 +a)/2, which
corresponds to the one used in Chambolle & Dossal (2015); Su et al. (2016); Attouch & Peypouquet (2016);
Attouch et al. (2018). This means that our generalization allows a finer tuning of the algorithm by varying a
and b.

We present below the main theorem of this section.

Theorem 3.1
Let {xk} be a sequence generated by Algorithm 2 and recall that ug is given by (5). Then, under Assump-
tion 1.1, the following two equations hold:

(i) F;(z*) < F;(2°) for alli=1,...,m and k > 0;
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(ii) uo(x*) = O(1/k?) as k — oo under Assumption 2.1.

Claim (i) means that {z*} C Lp(F(2°)), where L denotes the level set of F (cf. (4)). Note, however,
that the objective functions are generally not monotonically non-increasing. Claim (ii) also claims the global
convergence rate.

Before proving Theorem 3.1, let us give several lemmas. First, we present some properties of {¢} and {74 }.

Lemma 3.1
Let {tx} and {yi} be defined by lines 2, 6 and 7 in Algorithm 2 for arbitrary a € [0,1) and b € [a?/4,1/4].
Then, the following inequalities hold for all k > 1.

1 1 1
(i) tost > th + —— and ty > ——k + ;’a;

1—a+vib—a? 1—a+vih—a?
(ii) tepr < ti + a+2 T oand ty < a+2 Ch—1)+1<k;

1
(iii) t% — tZ_H +itpr1 =atp — b+ 1 > aty;

k—1
) < < :
(ZU)O_Vk_kJrl/T
9 1
(v) 1—~p>—.
125

Proof. Claim (i): From the definition of {¢;}, we have

1 2 2 1
mﬂzwﬁ—mmw+2:¢@—;)+0—i>+2 )

Since b > a?/4, we get
thar > ’t a’ 41
ki1 2 b= 5|+ 5
Since t; =1 > a/2, we can quickly see that ¢; > a/2 for any k by induction. Thus, we have

1—a
Tl =t + 5

Applying the above inequality recursively, we obtain

1—a 1—a 1+a
k—1)+t = k .
2 ( )+h 5 "t

ty >

Claim (ii): From (9) and the relation v/a + 8 < /a + /B with a, 8 > 0, we get the first inequality. Using
it recursively, it follows that

<1—a+\/4b—a2 1—a++4b — a?

tr 5 (k—l)-i—tl: 5

(k—1)+1.

Since a € [0,1),b € [a?/4,1/4], we observe that

1—a++4b—a? < l1—a++V1—a? <1
2 - 2 -

Hence, the above two inequalities lead to the desired result.



Under review as submission to TMLR

Claim (iii): An easy computation shows that

2
1 1
th =ty + e =t — [,/ti—atk+b+ 2] +\/ti—atk+b+§
1
zatk—b—i—ZZatk,

where the inequality holds since b < 1/4.

Claim (iv): The first inequlity is clear from the definition of v since claim (i) yields ¢, > 1. Again, the
definition of 7 and claim (i) give

< =1- .
tht1 ty + (1 —a)/2 2t +1 —a

T D | 3-a
Combining with claim (ii), we get

3—a
(1-—a+V4b—a®) (k—1)+3—a
(1—a+V4b—a?) (k1)

e <1 —

= 10
(1-a+Vab—0a®)(k—1)+3-a (10)
B k—1
k—1+(B-a)/(1—a+vib—a?)
On the other hand, it follows that
min s-a = min _ dma 3 (11)
ac0.)bela?/4,1/4] 1 —a+V4b— a2  a€l0)1—a++v1—a2 2
where the second equality follows from the monotonic non-decreasing property implied by
d — 2v/1 — a? -1
( s-a ): a+3§ >0 forallac€l0,1).
da \1-a+V1-a? (Vi—a2—a+1)" v1-a?
Combining (10) and (11), we obtain v, < (k—1)/(k + 1/2).
Claim (v): claim (i) implies that t541 > tx > 1. Thus, the definition of 7 implies that
t—1\° te—1\> 2 —1 _ 22—t 1
1—V£=1—(k ) Zl_(k >: k2 > k2k:7.
th t 2 2 t
O

As in Tanabe et al. (2023b), we also introduce o: R™ - R U {—0c0} and pi: R™ — R for k& > 0 as follows,
which assist the analysis:

1=1,..., m , (12)
pr(z) = ”tk+lxk+l — (thy1 — D)z¥ — z||”.

The following lemma on oy is helpful in the subsequent discussions.

Lemma 3.2
(Tanabe et al., 2023b, Lemma 5.1) Let {ack} and {yk} be sequences generated by Algorithm 2. Then,
under Assumption 1.1, the following inequalities hold for all z € R™ and k > 0:

(Z) 0k+1(z) < _g (2<$k+1 _ yk+1’yk+1 _ z> + ka+1 o yk+1H2) _ e;LHmk-',-l _ yk+1H2§
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/ {—L
(i) o(2) — opi1(z) > 3 (2<Ik+1 Y xk> + ka+1 _ yk+1||2> I TszH _ yk+1”2'

Therefore, from Lemma 3.1 (v), we can obtain the following result quickly in the same way as in the proof
of (Tanabe et al., 2023b, Corollary 5.1).

Lemma 3.3

Let {xk} and {yk} be sequences generated by Algorithm 2. Then, under Assumption 1.1, we have

kg*l
o) =on )2 § (I =t o oty 5 Lt
k=k1

for any ko > k1 > 1.

We can now show the first part of Theorem 3.1.

Theorem 3.1 (i). From Lemma 3.3, we can prove this part with similar arguments used in the proof of (Tan-
abe et al., 2023b, Theorem 5.1). |

The next step is to prepare the proof of Theorem 3.1 (ii). First, we mention the following relation, used
frequently hereafter:

o2 = o[ + 2002 = 01,01 = %) = o2 = 0¥~ [lo! = o, (13)
DD A= > 4 "
s=1p=1 p=1s=p

for any vectors v',v% v3 and sequence {A,}. With these, we show the lemma below, which is similar

to (Tanabe et al., 2023b, Lemma 5.2) but more complex due to the generalization of {¢;}.
Lemma 3.4

Let {xk} and {yk} be sequences generated by Algorithm 2. Also, let o and py be defined by (12). Then,
under Assumption 1.1, we have

2, 2

L0~

1 1
. — {t%ﬁ-l — atg1 + (4 - b) k] Ot1(2)

L 1
+ m |:G/(ti+1 — tk+1) + <4 — b) k:| ’|$k+1 — $k||2

/ K 1 p—t,+a(ty,—1) 12
e I R ) e N L

¢ (— L&
+50(2) + = D et =
p=1

forallk >0 and z € R™.
Proof. Let p > 1 and z € R™. Recall that Lemma 3.2 gives

_ ap+1(z) > g {2(;5?“ _ yp-i-l’yp-‘rl _ z> + ||xp+1 . yp+1H2}

{—L
gt =y

N

[2<$p+1 — Pty ) 4 et - yp+1H2}

{—L
+ S =y

op(2) = op41(2) 2
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We then multiply the second inequality above by (t,4+1 — 1) and add it to the first one:

(tpr1 — 1op(2) — tpr10p41(2)
K 2
> 2 [t = PP 2(a = P Pt = (e — Da? — z)}

{—L
gty [l =y

Multiplying this inequality by ¢, and using the relation ¢ = >, | —t, 11+ (at,—b+1/4) (cf. Lemma 3.1 (iii)),
we get

¢ 2
tiap(z) - t129+10p+1(z) > 3 {Htpﬂ(xpﬂ an

+ 2t (2P — Pt P = (tpyn — 1)a? — Z>}

+£ 2L 12, |27+ yp+1|‘2+<atp—b+i>ap(z).

Applying (13) to the right—hand side of the last inequality with
L=y _Hyp+1 v = tp+1xp+1, 3 = (tp+1 —1)aP + 2.

we get
tfﬂp(z) - t?y+10p+1(z)

é
Z 5 [Ht 2 = (typr = Da? = 27 = [tppapt = (tpar — 1)a? - ZH2]
{— L

Rl = (aty 0k ) ().

Recall that p,(z) = Htp+1l'p+1 — (tp41 — 1)aP — zH2 Then, considering the definition of y? given in line 8
of Algorithm 2, we obtain

{— L 2 1
[op(2) — pp—1(2)] + Tt127+1|‘$p+1 _ yp+1|| + (atp —b+ 4> op(2).

Now, let k£ > 0. Lemma 3.3 with (k1,k2) = (p, k + 1) implies

l\')\%

tf)ap(z) - t;27+1‘7p+1( ) >

~

{—L 2
t?)Up(Z) _t§+1f"p+1( ) > 3 [op(2) — pp—1(2)] + Tt2-|r1||$ple ZJPHH

1 ¢ ko1
r=p

Adding up the above inequality from p = 1 to p = k, the fact that t; = 1 and pg(z) = Hxl — z||2 leads to

l
()~ i (2) 2 & [~ ! =] + §)+mﬂ“—wﬂw
k 1 14 2
+ (ath + (4 — b) k) |:Uk+1(2) + 5[l =2t }
p=1
‘g 1 p_ .pt1]?
_QZ(atp—b+4 |2 — 2241
p=1
0 L1 "1
#33 (at 0t ) X gl a I )

r=p
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Let us write the last two terms of the right-hand side for (15) as S; and Sa, respectively. Equation (14)

yields

E a - 1 1 T r—1 2
52:522 atp—b—kz t—H:E —x ||
kK p
= ;ZZ (atr —b+ i) %pr —gcp_IHQ.
P

Hence, it follows that

—1112
|27 = 2|

(a1 1 1
SI+S2:§Z tz(atr_b+4>_(atp_b+4>

p=1 Py

Il
-

p=1 r=
Again t; = 1 gives
p—1 p—1
2ty = (—thy F e 1) = (—(1—a)tT—b+
r=1 r=1

—<1—a>§tr+ (i —b) (1),

where the second equality comes from Lemma 3.1 (iii). Thus, we get

-1
pzt:tz%_tp_i_ 1 \p-
" 1—a 4 1—a’

r=1

Substituting this into (16), it follows that

k
S1+ Sp = 1—a Z|:a t —1) (i_b)p—tp-i-ta(tp—l)} Hmp_xp—1H2.
p

p:l
Combined with (15) and (17), we have

01(2) = thy10k41(2)

12
> = on(e) — o — 2] + £ zt e

1 1 . ,
T [a(tiﬂ — tp41) + <4 - b) k] [akﬂ(z) + §||gc’“+1 — 2| }

k
1 p—t,+a(t
a0 ()

p=1

10

2= o 1|,

= 2 1 -1
: [ (Zt ‘%“p) +(3Y) “"t“] o — 1. (16)

(17)
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Easy calculations give

14
o1(2) + 5l = 2|
> 1 g t AP
=l LS B e or+1(2)
14 1 2
+ m |:a(t%.+1 — tk;+1) + (4 — b) k:| ||xk+1 — :L'k”

1 k 5 1 p—ty,+a(t,—1) 12
+2(1_a);{a (tp1)+<4b> - ]prxp ||

¢ (— L&
+5o(z) + —— St fat - s
p=1

Lemma 3.2 (i) with £ = 0 and y' = 2% and (13) with (v!,v% v3) = (2%, 21, 2) lead to

¢ (—L
o1(2) < =5 [Ie" =<l = e = oI - 5 E et -
From the above two inequalities and the fact that £ > L, we can derive the desired inequality. O

Let us define the linear function P: R — R and quadraticones Q1: R - R, Q2: R - R, and @3: R - R
by

P(a) = T=D,

Q1(a) 521;aa2+[1—;+ﬁ]a+1, -
_a(l—a) a 1—4b

Q2(a) = TCVQ + |:2 + 4(1—a):| Q,

Qs(a) = (1;@@4_1)2.

The following lemma provides the key relation to evaluate the convergence rate of Algorithm 2.

Lemma 3.5
Under Assumptions 1.1 and 2.1, Algorithm 2 generates a sequence {zk} such that

¢ s { Z’“ 12
5 = Q1 (k)uo(z* 1) + §Qz(k)}|w’““ -2+ ip—lp(p)pr — P
(— L& 5
t o LA v

for all k > 0, where R > 0 and P,Q1,Q2,Q3: R — R are given in (8) and (18), respectively, and ug is a
merit function defined by (5).

Proof. Let k > 0. With similar arguments used in the proof of Theorem 2.2 (see (Tanabe et al., 2023b,
Theorem 5.2)), we get

i = k+1
sup inf op+1(2) = up(z .
FreF(X*NLp(F(20))) 2€F 1 ({F*}) k+1( ) O( )

11
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Since pg(z) > 0, Lemma 3.4 and the above equality lead to

2 " 1-a
bl a4 () k|t -
2(1—@) k+1 k+1 4
14 b 5 1 p—t,+a(t,—1) b p—1|2
+2(1_a);[a(t,}—l)+<4—b> 5 Mx o

(— L&
T S E
p=1

We now show that the coefficients of the four terms on the right-hand side can be bounded from below by
the polynomials given in (18). First, by using the relation

1 —
thpr > Tak+ 1 (19)

obtained from Lemma 3.1 (i) and a € [0, 1), we have

1 1 1 1
T4 |:ti+1 — atgi + (4 - b) k] =1 [tk+1(fk+1 —a)+ <4 - b> k}

zﬁ Kl;“kﬂ) (1;ak+1—a>+<i—b>k} = Qi (k).

1 a 1—4b
|:a(t£+1 - tk+1) + <4 - b) k‘:l = 1 tk+1(tk+1 — 1) + mk

—a
a 1—a l1—a 1—4b
> k+1 k k= Qa(k).
_1a( 2 +>< 2 )+4(1a) @2(k)
Moreover, since ¢, < p (cf. Lemma 3.1 (ii)), ¢x > 1 (cf. Lemma 3.1 (i), and b € (a®/4,1/4], we obtain

ﬁ [a2(tp—1)+ (i—b) Pty +t:(tp—1)] > la_:(tp—l) > P(p).

Again, (19) gives

1
1—a

It is also clear from (19) that
2,1 > Qs(p).

Thus, combining the above five inequalities, we get the desired inequality. O

Then, we can finally prove the main theorem.
Theorem 3.1 (ii). 1t is clear from Lemma 3.5 and Q1 (k) = O(k?) as k — oo. O

Remark 3.1
Lemma 3.5 also implies the following other claims than Theorem 3.1 (ii):

o O(1/k?) convergence rate of {Hx’”‘l — kaQ} when a > 0;
o the absolute convergence of {kak“ - kaz} when a > 0;

e the absolute convergence of {kQka — kaQ} when £ > L.

Note that the second one generalize (Chambolle € Dossal, 2015, Corollary 3.2) for single-objective problems.

12
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4 Convergence of the iterates

While the last section shows that Algorithm 2 has an O(1/k?) convergence rate like Algorithm 1, this section
proves the following theorem, which is more strict than Corollary 2.1 related to Algorithm 1:

Theorem 4.1
Let {xk} be generated by Algorithm 2 with a > 0. Then, under Assumptions 1.1 and 2.1, {xk} converges to
a weak Pareto optimum for (1).

This claim is also significant in application. For example, finite-time manifold (active set) identification,
which detects the low-dimensional manifold where the optimal solution belongs, essentially requires only the
convergence of the generated sequence to a unique point rather than the strong convexity of the objective
functions Sun et al. (2019).

Again, we will prove Theorem 4.1 after showing some lemmas. First, we mention the following result, obvious
from Assumption 2.1 and Theorem 3.1 (i).

Lemma 4.1
Let {xk} be generated by Algorithm 2 and Assumption 1.1 hold. Then, for any k > 0, there exists z €
X*NLp(F(2%) (see (3) and () for the definitions of X* and Lr) such that

ox(z) >0 and Hz — .TOH2 <R,
where R > 0 is given by (8).

The following lemma also contributes strongly to the proof of the main theorem.

Lemma 4.2
Let {4} be defined by line 7 in Algorithm 2. Then, under Assumption 1.1, we have

T P
ZH% <2(s—1) foralls,r>1.

p=s4g=s

Proof. By using Lemma 3.1 (iv), we see that

Let I and B denote the gamma and beta functions defined by

*° 1
T ::/ 7 lexp(=7)dr and B(a,f) ::/ 71— 1) Ldr, (20)
0 0
respectively. Applying the well-known properties:
I'(a)l’

we get

- L(p)/T(s - 1) B(p,3/2)
quq STp+3/2/Ms+1/2)  B(s—1,3/2)
This implies

S T <3 B.3/2)/B(s —1,3/2).

p=s q=s p=1

13
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Then, it follows from the definition (20) of B that

ZH’Y{; Z/ P71 1/2d7'/B(sfl 3/2)

p=s q=s

/ ZTP Y(1-7)'/?dr/B(s - 1,3/2)

:/ ekl 1 T = )2 dr/B(s — 1,3/2)
o -7

_ B(s,1/2) = B(r+1,1/2) _  B(s,1/2)
N B(s—1,3/2) = B(s—1,3/2)

Using again (21), we conclude that

(/2)/T(s+1/2) 0
;CIHJ‘J = r ) B/2)/Ts 12 2L

O

Now, we introduce two functions wi: R™ — R and v;: R™ — R for any k > 1, which will help our analysis,
by

wi(z) = max (O, ka - zH2 — [Ja*t - zHQ) ; (22)

k
v(2) = ||a¥ — sz - ng(z) (23)

The lemma below describes the properties of wy and vg.

Lemma 4.3

Let {:ck} be generated by Algorithm 2 and recall that X*, L, wi, and vy, are defined by (3), (4), (22) and (23),
respectively. Moreover, suppose that Assumptions 1.1 and 2.1 hold and that = € X* N Lr(F(2°)) satisfies
the statement of Lemma 4.1 for some k > 1. Then, it follows for all r =1,... k that

(i) Y wi(z) <Y (65 —5)||a° — "~
(i7) vry1(z) < vp(2).

Proof. Claim (i): Let k > p > 1. From the definition of y?*! given in line 8 of Algorithm 2, we have

lo# = ||~ fla? — |
— _||zPtY — P p+l _  p+l p+l _ P _ pp—1 o+l
||x T H +2<17 yP z>+2'yp<3: P~ x z>
S po2 2Pt Pt Pt ) o|aptt - yp+1H2
+ 2y, (2P — 2P 2P — 7).
On the other hand, Lemma 3.2 (i) gives

2<xp+1 gttt z> < —%Uerl(Z) _ %TTLHWH _ yp+1H2.

Moreover, Lemma 3.3 with (k1,k2) = (p+ 1,k + 1) implies

2 2 "
_ZJPH(Z) < _Zakﬂ(z) _ ||3ck+1 _ xk||2 T Hmpﬂ _poQ _ T:zp;l EHCET _ xrﬂHQ

14
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where the second inequality comes from the assumption on z. Combining the above three inequalities, we
get

o+ =l = o =l < et =+ 2fa? — oL 042

= %Hw”“ —y P (e = 2P = et = 2] [l = e 4 2aP - ar 7 ar - o)),

Using the relation |27 — y”'HH2 + 2yp(aP — aP~h 2Pt — gP) = 2Pt — x””2 + 72||2P — xp_1||2, which

holds from the definition of y*, we have
1 2 2 (—L 1 )2 1 2
o = 2P = =i < =t | o )
3 (e = 21 = a2 = 2||°) + (3 + Do — o2
Since 0 < 7, <1 from Lemma 3.1 (iv) and ¢ > L, we obtain

o2+ =l = o7 217 < 3 (1o = 1 = a2~ =5l 4 2 =27 ) = o7

2

)

< (wp(2) + 2|z — 27 H|") + [Jar*t — a7

where the second inequality follows from the definition (22) of w,. Since the right-hand side is nonnega-
tive, (22) again gives

wpt1(2) < p (wp(z) +2||2? — xp—1H2> + [[2Ptt — po2.

Let s < k. Applying the above inequality recursively and using y; = 0, we get

<3ZH%H$”—$IJ I +2H’yq||w =2+ fla* 2

p2qp

<33 TLulle? — o 4 o — a1

p=2q=p

Adding up the above inequality from s =1 to s = r < k, we have

§%<wzznﬁwfww+zw 21

elplqp

—3 3 [Tl —om P +Z||x o

p=1s=p q=p

> (5Tt I -

p=sg=s

-1

where the first equality follows from (14). Thus, Lemma 4.2 implies

Zws(z) < 2(63 - 5)Hx5 - xs_luz.
s=1 s=1

15
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Claim (ii): Equation (23) yields
9 T
vrt1(z) = er+1 - ZH —wrt1(2) — Zws(z)
s=1

T
= [|a" " — ZH2 — max (O, | zH2 —|jz" — z||2> - Zws(z)

where the second and third equalities come from the definitions (22) and (23) of w,4+1 and v,., respectively.
O

Let us now prove the following lemma.

Lemma 4.4
Let {mk} be generated by Algorithm 2 with a > 0. Then, under Assumptions 1.1 and 2.1, {xk} s bounded,
and it has an accumulation point.

Proof. Let k > 1 and suppose that z € X* N Lp(F(2°)) satisfies the statement of Lemma 4.1, where X*
and Lp are given by (3) and (4), respectively. Then, Lemma 4.3 (ii) gives

vi(z) <n(z) = ||lo' - 2H2 —wi(2)
= |l = 2|J” — max (0, | — =||* - [|+° — =[*)
2 2 2 2
<ot = 2[” = (lla* = =|* = [+ = 2I") = fla® ~ 2",

where the second equality follows from the definition (22) of w;. Considering the definition (23) of v, we
obtain

k
et = 2l < [l <l + Do)
s=1

Taking the square root of both sides and using (22), we get

k
Jlo* = 2] < y|ll2® = 21 + " (65— 5)ja* — 2>,
s=1

Applying the reverse triangle inequality ||z* — 20| — ||2° — z|| < ||2* — z|| to the left-hand side leads to
k
= 29| < [Ja = o + | 120 — 2 + 326 — ) — 212
s=1

k
<SVR+ (|R+ D (65— 5)[a — 251,
s=1

where the second inequality comes from the assumption on z. Moreover, since a > 0, the right-hand side is
bounded from above according to Lemma 3.5. This implies that {z*} is bounded, and so it has accumulation
points. O

Before proving Theorem 4.1, we show the following lemma.

16
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Lemma 4.5
Let {xk} be generated by Algorithm 2 with a > 0 and suppose that Assumptions 1.1 and 2.1 holds. Then,
if z is an accumulation point of {xk}, then {ka — ZH} s convergent.

Proof. Assume that {z%/} C {z*} converges to z. Then, we have oy, () — 0 by the definition (12) of oy, .
Therefore, we can regard z to satisfy the statement of Lemma 4.1 at k = oo, and thus the inequalities of
Lemma 4.3 hold for any » > 1 and z. This means {v,(2)} is non-increasing and bounded, i.e., convergent.
Hence {ka — EH} is convergent. O

Finally, we finish the proof of the main theorem.

2

Proof of Theorem 4.1. Suppose that {xk;} and {xki} converges to z' and z2, respectively. From
Lemma 4.5, we see that

2 2
i ([~ -) = o (= o).
j—o0o j—o0
This yields that ||z — Z2H2 = —||z' - z2|| and so ||zt — 52”2 =0, i.e., {z¥} is convergent. Let 2% — z*.
Since Hx’“‘l — ;kaz — 0, {yk} is also convergent to z*. Therefore, Proposition 2.1 shows that x* is weakly
Pareto optimal for (1). O

5 Numerical experiments

This section compares the performance between Algorithm 2 with various a and b and Algorithm 1 (a =
0,b = 1/4) through numerical experiments. Our newly introduced generalized momentum factor, while
not primarily focused on improving convergence rates, serves to provide a theoretical link between different
accelerated gradient methods. The primary goal of the numerical experiments is to confirm that our proposed
method performs as theoretically expected. At the same time, it suggests that some momentum factors
may potentially lead to better results. We run all experiments in Python 3.9.9 on a machine with 2.3
GHz Intel Core i7 CPU and 32 GB memory. For each example, we test 15 different hyperparameters
combining a = 0,1/6,1/4,1/2,3/4 and b = a?/4, (a® +1)/8,1/4, i.e.,

(0,0),(0,1/8),(0,1/4),
(1/6,1/144),(1/6,37/288), (1/6,1/4),
(a,b) = { (1/4,1/64),(1/4,17/128), (1/4,1/4),
(1/2,1/16),(1/2,5/32), (1/2,1/4),
(3/4,9/64), (3/4,25/128), (3/4,1/4)

)

and we set ¢ = 1077 for the stopping criteria. The source code we used is available as open source at
https://github.com/zalgo3/zfista.

5.1 Artificial test problems (bi-objective and tri-objective)

First, we focus on solving multi-objective test problems, which are generally formulated as in problem (1).
Specifically, we use part of the test problems of Tanabe et al. (2023b), whose objective functions are defined

17
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by
1 2 1 2
Fue) =~ el o) = e — 20, 01 (2) = ga(a) =0, (10s1)
Fu(@) = 2l fo@) = ~lle = 20, 01(2) = el 92(2) = 5o = 1], (JOSL-LY)
fi(z) = % i(xi — i), fa(x) = exp (Z g:;) +
=1 . =1 (FDS)
) = gy Dl =+ ) expl—),4(0) = (o) = gule) =0,
Fie) = 5 > i = i) fola) = e (Z j) + ol
i=1 i i=1 (FDS-CON)
(@) = gy Do i+ D). 1(0) = 3(0) = () = X 0,

1=1

where x € R",n = 50 and XR? is an indicator function (2) of the nonnegative orthant. These problems

include modifications inspired by Jin et al. (2001); Fliege et al. (2009). We have chosen the problems
because they cover bi-objective and tri-objective problems with non-differentiable or constrained cases. While
Tanabe et al. (2023b) covers more problems, we have narrowed down the problems to avoid complicating the
publication of the results since this numerical experiment involves numerous problems with different (a,b)
problems. The solver is open source and can be used by anyone, so readers interested in results for other
problems are welcome to follow up.

We choose 1000 initial points, commonly for all pairs (a,b), and randomly with a uniform distribution
between ¢ and ¢, where ¢ = (—2,...,—2) T and ¢ = (4,...,4) " for (JOS1) and (JOSI-L1), ¢ = (=2,...,—2) T
and ¢ = (2,...,2)T for (FDS), and ¢ = (0,...,0)" and ¢ = (2,...,2)" for (FDS-CON). Moreover, we use
backtracking for updating ¢, with 1 as the initial value of ¢ and 2 as the constant multiplied into ¢ at each
iteration (cf. (Tanabe et al., 2023b, Remark 4.1 (v))). Furthermore, at each iteration, we transform the
subproblem (6) into their dual as suggested in Tanabe et al. (2023b) and solve them with the trust-region
interior point method Byrd et al. (1999) using the scientific library SciPy.

Figure 1 and Table 1 present the experimental results. Figure 1 plots the objective function values at
the points where the stopping criteria is satisfied for each problem. We only show the cases (a,b) =
(0,1/4),(3/4,1/4), but other combinations also yield similar plots, including a wide range of Pareto so-
lutions. Table 1 lists the average time and average number of iterations until satisfying the stopping criteria
for each initial point, for each problem, and for each a,b. This shows that the new momentum factors are
fast enough to compete with the existing ones ((a,b) = (0,1/4) or b = a?/4) and better than them in some
cases.

5.2 Image deblurring (single-objective)

Since our proposed momentum factor is also new in the single-objective context, we also tackle deblurring the
cameraman test image via a single-objective ¢2-¢; minimization, inspired by Beck & Teboulle (2009). This
experiment also aims to show that our momentum coefficients, which combine existing well-known momentum
coefficients while ensuring convergence of the point sequence, perform comparably well for application tasks.
Several methods for f5-f1 minimization are known, such as ISTA and TWIST Bioucas-Dias & Figueiredo
(2007), but comparisons between them and FISTA have already been made in Beck & Teboulle (2009) and
others. Therefore, in this paper we only compare FISTA with the proposed new momentum coefficients.
In detail, as shown in Figure 2, to a 256 X 256 cameraman test image with each pixel scaled to [0,1], we
generate an observed image by applying a Gaussian blur of size 9 x 9 and standard deviation 4 and adding
a zero-mean white Gaussian noise with standard deviation 1073.
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(a,b) = (0,1/4)

(ll, b) = (3/47 1/4)

3.04° 309°
254 1 254\
2.0 2.0
SRR & 15
1.0 1 1.0
0.5 057
0.0 4 .- 004 ' ' ""
0 1 5 3 0 1 2 3
P P
(a) (JOSI)

(a,b) = (0,1/4) (a,0) = (3/4,1/4)

(c) (FDS)

175
1.50
1.25
1.00
0.75
0.50

F3

(a,b) = (0,1/4)

(a,b) = (3/4,1/4)

3.0 3.0
254 4 254
2.0 4 2.0 4
o 9
M s 151
1.0 4 1.0
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(b) (JOSI-L1)

@h) = (0.1/4) (a,b) = (3/4,1/4)

18040q
4045
s %000

(d) (FDS-CON)

Figure 1: Pareto solutions obtained with some (a, )

(a) Original

(b) Blurred and noisy

Figure 2: Deblurring of the cameraman
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Table 1: Average computational costs to solve the multi-objective examples

(a) (JOS1)
a b Time [s] Iterations
0 0 6.442 97.0
0 1/8 5.158 81.217
0 1/4 4207 65.0

1/6  1/144  4.244 67.0

1/6 37/28%8  5.182 82.0

16 1/4  4.268 66.0

1/4  1/64  6.224 99.0

1/4 17/128  7.239  113.566

1/4  1/4  3.205 51.0

1/2  1/16 451 72.0

1/2  5/32 4562 71.0

1/2  1/4  4.466 70.0

3/4  9/64 4.323 67.998

3/4 25/128  3.104 49.0

3/4  1/4 3741 47.0

(c) (FDS)
a b Time [s] Tterations
0 0 29.24 204.438
0 1/8 29.797 210.595
0 1/4 30.565 214.934

1/6  1/144  24.964  174.393

1/6 37/288  25.375 177.944

16 1/4 26065  182.398

1/4  1/64 2294  159.737

1/4 17/128  23.311 162.629

1/4  1/4 23976 166.918

1/2 1/16 17.909 122.653

1/2 5/32 18.14 123.96

12 1/4 18221  125.697

3/4  9/64 13584  94.176

3/4 25/128  13.674 94.705

3/4  1/4 13795  94.868

20

(b) (JOSI-L1)

a b Time [s] Iterations
0 0 10.733 157.512
0 1/8 11.054 161.065
0 1/4 11.122 161.734
1/6  1/144 9.85 141.731
1/6 37/288  9.994  144.863
16 1/4 10399  150.592
14 1/64 9271  135.804
1/4 17/128  9.463  137.108
14 1/4 9662  139.848
1/2  1/16 7439  109.082
1/2 5/32 7.642 110.204
1/2 1/4 7.723 111.599
3/4  9/64 5253  77.366
3/4 25/128 5.39 79.425
3/4  1/4 5678 82.37
(d) (FDS-CON)
a b Time [s] Iterations
0 0 37.345 259.508
0 1/8 37.439 261.522
0 1/4 37.94 263.911
1/6  1/144  32.463  227.063
1/6 37/288  38.265 229.736
1/6 1/4 45.661 231.958
1/4  1/64 41434 209.35
1/4 17/128  33.664 211.69
1/4 1/4 30.772 213.811
1/2 1/16 22.92 158.448
1/2  5/32 231  159.685
1/2 1/4 23.539 162.226
3/4  9/64  17.092  118.616
3/4 25/128  17.123 118.063
3/4 1/4 17.115 118.844
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Letting 6, B, and W be the observed image, the blur matrix, and the inverse of the Haar wavelet trans-
form Haar (1910), respectively, consider the single-objective problem (1) with m = 1 and

filz) = |BWz —0|]> and gi(z) = A|z|,,

where A\ = 2 x 107° is a regularization parameter. Unlike in the previous subsection, we can com-
pute Vf’s Lipschitz constant by calculating (BW)T(BW)’s eigenvalues using the two-dimensional cosine
transform Hansen et al. (2006), so we use it constantly as £. Moreover, we use the observed image’s Wavelet
transform as the initial point.

Figure 3 shows the reconstructed image from the obtained solution. Although there are some quirks in the
way images are deblurred, such as the way stripes remain depending on the hyperparameters, it can be
observed that deblurring is generally successful for all parameters. Moreover, we summarize the numerical
performance in Table 2: each row represents the performance for each (a,b), and the columns “Time [s]”
and “Iteration counts” are the time and the number of iterations until the termination condition is met,
respectively, and the column “F;(22%°)” represents the objective function value at iteration 200. Like the
last subsection, this example also suggests that some of our new momentum factors may occasionally improve
the algorithm’s performance even for single-objective problems.

Table 2: Computational costs for the image deblurring

a b Total time [s] Iteration counts Fy(22°0)
0 0 85.391 517 10.285
0 1/8 85.037 517 10.367
0 1/4 85.128 517 10.456
1/6  1/144 80.692 480 8.867
1/6  37/288 80.833 480 8.88
1/6  1/4 81.449 480 8.904
1/4 1/64 71.583 417 8.491
1/4 17/128 71.165 417 8.459
1/4 1/4 48.997 416 8.442
/2 1/16 39.447 319 9.63
/2 5/32 41.76 318 9.351
1/2 1/4 41.122 318 9.125
3/4  9/64 47.621 399 23.558
3/4 25/128 43.671 393 21.832
3/4 1/4 40.17 388 20.493

6 Conclusion

We have generalized the momentum factor of the multi-objective accelerated proximal gradient algo-
rithm Tanabe et al. (2023b) in a form that is even new in the single-objective context and includes the
known FISTA momentum factors Beck & Teboulle (2009); Chambolle & Dossal (2015). Furthermore, with
the proposed momentum factor, we proved under reasonable assumptions that the algorithm has an O(1/k?)
convergence rate and that the iterates converge to Pareto solutions. To the best of our knowledge, the pro-
posed method is the first to demonstrate convergence of the iterates with the accelerated gradient method
for multi-objective optimization problems. Moreover, the numerical results reinforced these theoretical prop-
erties and suggested the potential for our new momentum factor to improve the performance. In practical
operation, hyperparameter tuning with our momentum factor for each type of task may lead to faster solu-
tions than conventional algorithms.
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(0.b) = (0, 0) (0.b) = (0,1/8) (a.b) = (0.1/4)

(a,b) = (1/4, 1/64)

(a,b) = (3/4,9/64) (a,b) = (3/4.25/128)

Figure 3: Deblurred image
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As we mentioned in Section 4, our proposed method has the potential to achieve finite-time manifold (active
set) identification Sun et al. (2019) without the assumption of the strong convexity (or its generalizations
such as PL conditions or error bounds Karimi et al. (2016)). Moreover, we took a single update rule of ¢}, for
all iterations in this work, but the adaptive change of the strategy in each iteration is conceivable. It might
also be interesting to estimate the Lipschitz constant simultaneously with that change, like in Scheinberg
et al. (2014). In addition, an extension to the inexact scheme like Villa et al. (2013) would be significant.
Furthermore, in single-objective optimization, non-convex objectives for FISTA have been proposed Li & Lin
(2015), and extending this approach to multi-objective optimization remains an open problem. Regarding the
application of our method in settings where only stochastic gradients are available, adapting our approach to
such scenarios is an interesting direction for future research. Recent studies in multi-objective optimization
with stochastic gradients Liu & Vicente (2021); Zhou et al. (2022) provide valuable insights and foundations
for such an adaptation. This is an open area for exploration, possibly in conjunction with techniques such
as dual averaging Xiao (2010). Those are issues to be addressed in the future.
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