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Abstract

Orthogonal and 1-Lipschitz neural network lay-
ers are essential building blocks in robust deep
learning architectures, crucial for certified ad-
versarial robustness, stable generative models,
and reliable recurrent networks. Despite sig-
nificant advancements, existing implementations
remain fragmented, limited, and computation-
ally demanding. To address these issues, we
introduce Orthogonium , a unified, efficient,
and comprehensive PyTorch library providing
orthogonal and 1-Lipschitz layers. Orthogo-
nium provides access to standard convolution
features—including support for strides, dilation,
grouping, and transposed-while maintaining strict
mathematical guarantees. Its optimized imple-
mentations reduce overhead on large scale bench-
marks such as ImageNet. Moreover, rigorous
testing within the library has uncovered critical
errors in existing implementations, emphasizing
the importance of standardized and reliable tools.
Orthogonium thus significantly lowers adoption
barriers, enabling scalable experimentation and in-
tegration across diverse applications requiring or-
thogonality and robust Lipschitz constraints. Or-
thogonium is available here.

1. Introduction
1-Lipschitz neural networks constrain transformations to
preserve input norms, providing tight, certifiable robust-
ness against adversarial attacks (Szegedy et al., 2014; Anil
et al., 2019). Orthogonal layers reinforce the 1-Lipschitz
constraint by requiring an exact unity constant in almost
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Figure 1: Orthogonium offers a standardized API to use,
and create 1-Lipschitz layers, allowing a user to construct,
test, and improve easily such a kind of network

all directions, providing tighter global certification guaran-
tees. Besides robustness, these layers benefit normalizing
flows (Kingma & Dhariwal, 2018; Behrmann et al., 2019),
Wasserstein GANs (Arjovsky et al., 2017; Gulrajani et al.,
2017), stable recurrent architectures (Kiani et al., 2022; Qi
et al., 2020; Bansal et al., 2018), and physics-informed mod-
els.

Motivations. Over the last decade, the
certifiable-robustness community has produced an impres-
sive toolbox of 1-Lipschitz building blocks—orthogonal
and norm-controlled layers, specialized activations, residual
schemes, and normalization layers. Unfortunately, these
ingredients remain scattered across dozens of papers
and repositories. For practitioners who simply “need a
1-Lipschitz backbone”—be they working on Wasserstein
GANs, stable RNNs, privacy-preserving analytics, or
safety-critical perception—the landscape is opaque: Which
methods are still maintained? Which supports modern CNN
staples such as stride, dilation, grouping, or transposed
convolutions? Which combinations scale to ImageNet?

Constructing a truly 1-Lipschitz network exacerbates the
problem. Every layer in every branch must respect the
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global constraint, yet many recent proposals cover only the
vanilla 3 × 3 convolution and ignore grouped, dilated, or
strided variants that dominate contemporary architectures
(Liu et al., 2022; Tan & Le, 2019; Sandler et al., 2018;
Ronneberger et al., 2015). In practice, researchers resort to
copy-pasting the original authors’ code—sometimes years
out of date—because re-implementing and validating the
underlying mathematics (let alone optimizing kernels) is
prohibitively time-consuming. Convolutional layers are a
prime example: half a dozen orthogonalization schemes
exist, but none has achieved field-wide consensus, and their
relative merits are hard to benchmark because no common
interface or test-bed exists.

Training itself is also expensive. Certifiable objectives typ-
ically require longer schedules to converge, and per-batch
cost grows as soon as weights are iteratively projected or
parameter matrices inflated for numerical stability. Here,
implementation details matter: an efficient CUDA kernel
or memory-lean fusion can translate directly into larger
batches, deeper models, or simply more optimization steps
on the same hardware budget.

These main points motivate Orthogonium . By centralizing
published methods behind a unified PyTorch API, standard-
izing their signatures and test coverage, and prioritizing
efficient, scalable kernels, the library (i) turns method com-
parisons into one-liner swaps, (ii) lowers the entry-barriers
for neighboring fields to adopt 1-Lipschitz layers, and (iii)
makes large-scale experiments—ImageNet-1K or semantic
segmentation tasks—practically feasible.

Our Contributions. To address these challenges, we in-
troduce Orthogonium , a unified, efficient library that
combines theoretical rigor and practical implementation.
Our main contributions are:

• Unified, Explicit API: A comprehensive, PyTorch-
friendly implementation covering dense, convolutional,
and hybrid orthogonal layers, explicitly constructed in
the spatial domain for straightforward integration.

• Full Feature Parity: Native support for essential con-
volutional operations—striding, dilation, transposition,
and grouping—allowing seamless integration into mod-
ern network architectures.

• Efficient and Scalable Implementation: Optimized
kernels provide high performance, with minimal over-
head (approximately 10% slowdown) compared to un-
constrained convolutions on large-scale benchmarks
like ImageNet (Deng et al., 2009).

• Cross-Fertilization and Flexibility: Orthogonium
provides modularity to swiftly explore hybrid ap-
proaches, enhancing existing methods such as SOC,

SLL, and Sandwich layers, promoting broader adop-
tion.

• Extensive Validation and Testing: Our rigorous unit
testing identified and corrected subtle implementation
errors in published repositories, improving reliability
and correctness across all supported methods.

By unifying orthogonality, flexibility, and computational
efficiency, Orthogonium represents a significant advance-
ment, enabling researchers and practitioners to integrate
orthogonal layers seamlessly into a wide variety of deep
learning applications. The remainder of the paper is struc-
tured as follows: Section 2 introduces our dense layer imple-
mentations, Section 3 covers orthogonal convolutions, and
Section 4 covers the approach we used to unit test all our
layers. The issues identified in certain approaches under-
score the importance of open source tools for safety-critical
applications.

2. Dense Orthogonal Layers
Orthogonium provides an efficient and flexible implementa-
tion of orthogonal dense layers with a straightforward, drop-
in PyTorch interface, OrthoLinear, supporting several
orthogonalization methods. This approach simplifies inte-
gration into existing workflows and allows users to choose
methods suited to their computational constraints and stabil-
ity requirements. Below, we outline the supported methods
and their characteristics:

Unified API with OrthoLinear. The provided
OrthoLinear class extends torch.nn.Linear, en-
suring seamless integration into standard PyTorch models.
It enforces orthogonality constraints through parameteriza-
tions registered via the customizable OrthoParams ob-
ject, which encapsulates both spectral normalization and
orthogonalization methods.

Supported Orthogonalization Methods. Orthogonium
supports five distinct orthogonalization algorithms, each
appropriate for different scenarios: Björck–Bowie It-
erative Projection, Exponential Map method, Modified
Gram–Schmidt (QR Decomposition), Cayley Transform,
Cholesky Decomposition. These parametrizations are fully
compatible with the PyTorch parametrize API.

Spectral Normalization. To ensure numerical stability
and enforce Lipschitz constraints, spectral normalization via
batched power iteration is applied optionally before orthog-
onalization. This preconditioning enhances the stability and
convergence of the orthogonalization processes. Spectral
normalization can also be used in a standalone way, leading
to 1-Lipschitz layers.
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Flexibility and Extensibility. Users can easily customize
orthogonalization and normalization methods through the
OrthoParams object. Orthogonium provides several
predefined configurations depending on the desired method.

Implementation Efficiency. Implementation and effi-
ciency are crucial factors in the selection of a layer. This
is why Orthogonium provides layers with some non-trivial
modifications in order to be more scalable.

By providing a unified API and efficient implementations,
Orthogonium ’s dense orthogonal layers enable easy integra-
tion, rigorous validation, and high-performance execution
in diverse deep learning applications.

3. Orthogonal Convolutions
Orthogonium implements multiple classes of 1-Lipschitz
and orthogonality-preserving convolutions—allowing for a
user to choose between exactness, speed, and architectural
flexibility— plus two 1-Lipschitz extensions that embed
the convolutions inside higher-order residual blocks. Ta-
ble 2 summarizes their properties, while the paragraphs
below describe design choices and implementation tweaks;
algorithmic derivations are deferred to Appendix B. As the
exposed layers can differ significantly from their original im-
plementations, original layers are available in the legacy
module.

Adaptive Orthogonal Convolution
(AOC). AOC is the default constructor,
AdaptiveOrthoConv2d/ConvTranspose2d,
and generalizes BCOP kernels (Li et al., 2019) to any kernel
size, stride, dilation, groups natively (i.e, without resorting
to reshaping tricks or FFTs). Transposed convolutions
are also supported natively. It is based on the method
described in (Boissin et al., 2025). The layer materializes
an explicit weight tensor whose forward path is a single call
to torch.nn.Conv2d This approach yields a ≤ 1.13×
wall-time over plain Conv2d on ImageNet-1k at batch
size 256.

Adaptive-SOC. Skew Orthogonal Convolution
(SOC) offers orthogonal training by parameterizing
the kernel as the exponential of a skew-symmetric
filter (Singla & Feizi, 2021b). Orthogonium ’s
AdaptiveSOCConv2d/ConvTranspose2d fuses
SOC with AOC’s stride-aware approach, stores the
explicit exponential once per update (making its cost
independent of the batch size), and supports grouped,
dilated or transposed variants out-of-the-box—reducing
memory (See Appendix B.2). Also, this method relies on a
normalization step. We used ”AOL” instead of the original
”fantastic four”(Singla & Feizi, 2021a) approach, making

the convergence quicker than the original method. (3-4
iterations instead of the original 6).

Almost-Orthogonal Layers (AOL). When strict orthogo-
nality is unnecessary, AOLConv2d implements the almost-
orthogonal method of Prach & Lampert (Prach & Lampert,
2022). The re-parametriser is registered through PyTorch’s
parametrize API and guarantees a layer Lipschitz con-
stant ≤ 1, while remaining fast. Orthogonium implements
a multi-step variant, making use of the proximity between
this approach and the Gram iteration described by (Delattre
et al., 2024). This variant allows a tighter normalization
than the original method.

SDP-based Lipschitz Layers (SLL). (Araujo et al.,
2023) defined a 1-Lipschitz residual blocks that bundle a
σ(·)-non-linearity inside the convolution, while offering
a tight Lipschitz normalization. We extended the origi-
nal SDPBasedLipschitzConv to support groups and
dilation. We also designed its down-sampling equivalent
SLLxAOCLipschitzResBlockwhich allows for stride
and dimension change with an AOC kernel at their core to
enable strides and channel changes, similarly as the Resnet
downsampling blocks (Fig. 3); details are given in Ap-
pendix B.3.

Sandwich-AOC. Finally, Orthogonium replaces the
costly frequency-domain Cayley step of “sandwich layers”
(Wang & Manchester, 2023) with an explicit AOC kernel,
removing complex-valued FFTs, making this layer efficient
for large input images (e.g, 224 × 224 ); details are given
in Appendix B.4. This layer is still under development and
will be available soon.

Other Modules: Activations, Normalization, and Resid-
ual Blocks. Beyond convolutions, Orthogonium cen-
tralises the necessary layers needed to build fully 1-
Lipschitz networks.

Activations. Five gradient-norm-preserving non-
linearities are shipped in custom activations: Abs,
SoftHuber, MaxMin, HouseHolder, and its second-
order variant. Each is unit-Lipschitz by construction; for
the Householder family we patched the missing 1/

√
2 scale

factor, restoring σmax(J) = 1 to machine precision (see
Appendix C). Detailed APIs appear in the online docs.

Normalization. Instead of BatchNorm—which
destroys Lipschitz control— Orthogonium offers
BatchCentering and LayerCentering. Both
subtract running means but leave variances untouched,
so they preserve feature-map norms at inference; their
implementation lives in normalization.py.

Since the usual residual connection is not 1-Lipschitz,
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Figure 2: Implemented convolutional layers in Orthogonium . All run on GPU, accept stride, dilation, groups,
padding mode, and have (when possible) parity with nn.Conv2d.

Layer Orthogonality Key use-case Internal method

AOC (AdaptiveOrthoConv2d) exact general CNN backbones lifted BCOP / RKO
Adaptive-SOC exact depthwise / small kernel size exponential skew filter
AOL ≤ 1-Lip. (≈) fast training multi-step projection
SLL / SLL-AOC ≤ 1-Lip. (tight) residual blocks AOL + SDP constraint
Sandwich-AOC ≤ 1-Lip. (tight) tight Lipschitz estimation without orthogonality AOC pair

Orthogonium provides several lightweight residual wrap-
pers designed to combine an arbitrary internal function
fn—typically an orthogonal convolution followed by non-
linear activation—with a skip connection, ensuring that
the resulting residual blocks remain exactly 1-Lipschitz.
These wrappers, implemented as minimal ‘torch.nn.Module‘
classes, preserve the benefits of skip connections while
strictly enforcing global Lipschitz constraints.

Among the various strategies, ConcatResidual splits the
input along the channel dimension, applies a function fn
to one half, and concatenates it back with the untouched
half, ensuring the resulting block remains 1-Lipschitz if
fn is. L2NormResidual combines the identity and resid-
ual branches using an ℓ2 average, specifically outputting√

1
2x

2 + 1
2 fn(x)

2 + ε (with small ε for numerical stabil-
ity), ensuring exact 1-Lipschitz continuity. AdditiveResidual
and its variation, PrescaledAdditiveResidual, form convex
combinations of the identity and transformed branches us-
ing a learnable scalar gate α: the former via interpolation
αx+ (1− α)fn(x) (with α constrained by a sigmoid), and
the latter by premultiplying the input as x+fn(αx)

1+|α| , where α

unconstrained.

4. Unit testing of constrained layers
Despite theoretical guarantees, empirical verification re-
mains crucial to detect (i) numerical instabilities (e.g.,
floating-point precision errors) and (ii) implementation dis-
crepancies (e.g., padding mismatch, missing factor), ensur-
ing orthogonality in practice. More details about our unit
testing scheme are available in Appendix C.

Unit testing of convolutional layers. Orthogonality de-
pends on training hyperparameters and convolution pa-
rameters (stride, group, dilation, transposition). We en-
sure correctness by combining two methods: (i) ex-
plicit SVD on Toeplitz matrices for precise validation
on small inputs, and (ii) scalable spectral methods (from
conv.singular values) for practical, large-scale val-
idation (as it uses parametrization-aware optimizations). All
tests maintain singular value tolerance ranging from 10−4

to 5e−3 (for some methods).

We used both of these approaches in our unit tests. This
enables us to ensure that the second method (which is faster
and more scalable) is correct and effectively checks for layer
orthogonality. We also added several unit tests to ensure
that impossible theoretical configurations—as described in
(Achour et al., 2022)—are rejected.

Unit testing of non-linear layers. To guarantee that ac-
tivations and higher-order residual blocks do not silently
violate the global 1-Lipschitz constraint, we complement
the linear checks described above with a non-linear test suite
based on the empirical Jacobian (computed with automatic
differentiation) computed on randomly sampled and opti-
mized tensors. This verified that the optimizer updates kept
the block weights within the desired constraints.

Issues uncovered using unit-testing Crucially, these tests
uncovered a flaw in the original HouseHolder activation
(Singla & Feizi, 2022): the reflection missed a 1/

√
2 nor-

malization and was therefore
√
2-Lipschitz. Re-scaling the

kernel collapses all singular values to 1± 10−5, after which
the layer satisfies our criteria.

Overall, this test bank was of precious use to confirm that
all parameters can be combined in practice (i.e., A strided-
grouped-transposed convolution with a dilation factor is still
orthogonal). The library achieves 94% test coverage overall.

5. Conclusion
Orthogonium unifies a decade of advances in orthogonal
and Lipschitz-constrained layers into a single, efficient, and
comprehensive PyTorch library. By providing native sup-
port for strided, dilated, grouped, and transposed convolu-
tions—alongside rigorous validation and optimized code—it
significantly reduces implementation overhead, fosters re-
liable experimentation, and promotes adoption in critical
applications such as certified robustness, generative model-
ing, and stable recurrent architectures. Furthermore, open-
sourcing Orthogonium facilitates rigorous testing and val-
idation by the broader community, uncovering subtle im-
plementation errors and enabling ongoing verification and
improvements. Orthogonium thus serves as a foundational
resource, bridging theory and practice to enable scalable,

4

https://github.com/deel-ai/orthogonium/
https://github.com/deel-ai/orthogonium/
https://github.com/deel-ai/orthogonium/
https://github.com/deel-ai/orthogonium/
https://github.com/deel-ai/orthogonium/
https://github.com/deel-ai/orthogonium/


Orthogonium : A Unified, Efficient Library of Orthogonal and 1-Lipschitz Building Blocks

robust, and provably stable deep learning architectures.

Acknowledgements
This work was carried out within the DEEL project,1 which
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A. Orthogonalization methods available for 2D
weights matrices

A.1. QR Factorization via Modified Gram–Schmidt

We implement the Modified Gram–Schmidt (MGS) algo-
rithm (LaPlace, 1820) for numerically stable QR factoriza-
tion. Starting from W = [wi]

C−1
i=0 ∈ RC×C , we orthogonal-

ize one column at a time, correcting rounding errors at each
step:

To enforce a unique factorization and improve stability, we
post-multiply Q by sign(diag(R)) so that all diagonal en-
tries of R are positive.

A.2. Cayley Transform

The Cayley transform (Cayley, 1846) maps any skew-
symmetric A (AT = −A) to an orthogonal Q via:

Q = (I −A)(I +A)−1

For rectangular W ∈ RM×C (M ≥ C), we follow the
partitioning and “augmented” Cayley of (Pauli et al., 2023):

Algorithm 1 Augmented Cayley Transform
Require: W ∈ RM×C

Ensure: Ŵ ∈ RM×C , orthogonal columns
0: procedure CAYLEY TRANSFORM(W )

0: Partition W =

[
U
V

]
, U ∈ RC×C

0: A← U −UT + V TV {not strictly skew but yields
correct block}

0: B ← (I +A)−1

0: Ŵ1 ← B (I −A), Ŵ2 ← −2V B
0: Ŵ ← [ Ŵ1; Ŵ2 ]
0: return Ŵ
0: end procedure=0

Matrix inversion can be a bottleneck, so in practice we cache
and reuse factorizations where possible.

A.3. Exponential Map

Using the Lie-group exponential exp(A) of a skew-
symmetric A = W − WT yields an orthogonal matrix
since exp(A)T = exp(−A). We normalise A by its spec-
tral norm to avoid overflow and truncate the power series
after p terms (Singla & Feizi, 2021b):

Algorithm 2 Exponential Map with Spectral Normalization
Require: W ∈ RC×C , p ∈ N
Ensure: Ŵ = exp(A) with A = −AT

0: procedure LIPSCHITZ EXPONENTIAL(W,p)
0: A←W −WT

0: Â← A/∥A∥2 {spectral normalization}
0: Ŵ ← IC , Âk ← IC
0: for k = 1, . . . , p do
0: Âk ← 1

k Âk Â

0: Ŵ ← Ŵ + Âk

0: end for
0: return Ŵ
0: end procedure=0

This method parametrizes only SO(C) and its accuracy
depends on p.

A.4. Cholesky Decomposition

Following (Hu et al., 2023), we form the Gram matrix C =
WWT + εI (ε > 0 for PD), compute its Cholesky C =
LLT , and solve

LŴ = W =⇒ Ŵ = L−1W,

which enforces Ŵ ŴT = I . This triangular solve is O(C3)
but highly tuned in modern BLAS libraries.

A.5. Björck–Bowie Iterative Projection

The Björck–Bowie algorithm (Björck & Bowie, 1971) finds
the nearest orthogonal matrix by fixed-point iteration

Wt+1 = (1 + β)Wt − βWtW
⊤
t Wt, β ∈

(
0, 1

2

]
.

With spectral normalization of W0 and β = 1
2 , convergence

is fast: 12–25 iterations suffice in practice (Anil et al., 2019).
We reuse a cached power-iteration estimate of the top singu-
lar vector across updates to further accelerate each step.

B. Technical details of improved orthogonal
convolution methods

B.1. Improving BCOP (AOC)(Boissin et al., 2025)

Orthogonium introduces Adaptive Orthogonal Convolution
(AOC),(Boissin et al., 2025), combining the strengths of
BCOP (Li et al., 2019) and Reshaped Kernel Orthogonal-
ization (RKO) (Serrurier et al., 2021). BCOP constructs
explicit orthogonal convolution kernels by composing ele-
mentary orthogonal building blocks (such as 1×1, 1×2, and
2×1 convolutions), but originally lacks support for advanced
convolutional operations like stride, dilation, transposition,
or grouped convolutions. Conversely, RKO supports native
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striding but typically achieves only approximate orthogonal-
ity.

AOC addresses these limitations by integrating BCOP and
RKO into a single orthogonal convolutional kernel. Specifi-
cally, given a desired stride s = k, AOC defines the convo-
lutional kernel as:

AOC = RKO ⊛KBCOP (1)

The resulting kernel maintains strict orthogonality and ex-
plicitly supports stride, dilation, grouping, and transposed
convolutions natively. Crucially, orthogonality is preserved
through a careful choice of internal channel dimensions, en-
suring both flexibility and computational efficiency (Boissin
et al., 2025).

AOC is rigorously proven orthogonal for any valid con-
figuration (k ≥ s), (Achour et al., 2022), offering signif-
icant practical advantages over existing methods that rely
on computationally expensive reshaping or Fourier-based
operations.

Native Strided Convolution. Unlike prior methods that
emulate striding via tensor reshaping—leading to substan-
tial computational overhead—AOC implements native strid-
ing. This approach avoids the exponential computational
complexity of reshaped methods, making orthogonal convo-
lutions feasible for large-scale applications.

Native Transposed Convolution. By explicitly construct-
ing orthogonal kernels, AOC naturally supports transposed
convolutions, crucial for architectures requiring learnable
upsampling such as U-Nets (Ronneberger et al., 2015) and
Variational Autoencoders (VAEs) (Kingma, 2013).

Native Grouped Convolution. AOC efficiently supports
grouped convolutions, widely used in contemporary mod-
els such as EfficientNet and ResNeXt, by independently
orthogonalizing groups within the convolutional layer.

Dilation. Orthogonality under dilation follows naturally
from AOC’s explicit kernel construction, providing enlarged
receptive fields without additional parameter overhead or
loss of orthogonality.

These native implementations allow AOC to maintain a
minimal overhead (approximately 10%) compared to uncon-
strained convolutional models, even at ImageNet scales.

In this section, we will explore how the content of this paper
can be used to improve existing layers from the state of the
art.

B.2. Improving skew orthogonal convolution
(SOC)(Singla & Feizi, 2022)

This method, introduced by (Singla & Feizi, 2022) uses
the fact that an exponential of a skew-symmetric matrix
is orthogonal. The initial implementation builds a skew-
symmetric kernel and computes the exponential convolution.
However, without proper tools to compute the exponential
of a convolution kernel, this exponential was computed
implicitly for each input by using the Taylor expansion of
the exponential (see Eq. (2)).

Theorem B.1 (Explicit conv exponential). We can use the
block convolution operator 2 to compute explicitly the expo-
nential of a kernel K:

x+
K ∗ x
1!

+
K ∗K ∗ x

2!
+ . . . (2)

=

(
Id+K+

K⊛K

2!
+

K⊛K⊛K

3!
+ . . .

)
∗ x (3)

Equation (3) shows that we can compute the exponential of
a convolution kernel a single time, while the formulation in
Eq. (2) needs to be done for each input x. In other words,
we can apply one conv instead of niter convs. Note that
the resulting kernel is then larger than the original one. In
theory, this could unlock large speedups, but the gain is
limited in practice as the implementation of convolution
layers is optimized for small kernels and large images (Ding
et al., 2022). However, the original implementation requires
the storage of niter maps, whereas our implementation only
one. This, in practice, unlocks larger networks and batch
sizes.

Also, it is possible to handle a change in the number of
channels and striding using a similar approach as AOC
layers.

B.3. Improving SDP-based Lipschitz Layers (SLL)
(Araujo et al., 2023)

SLL layer for convolutions, proposed in (Araujo et al.,
2023), is a 1-Lipschitz layer defined as:

y = x− 2KT ⋆ (σ(K ⋆ x+ b))

Note that in the original paper, the equation is noted with
product of two matrices WT− 1

2 , for convolutions it repre-
sents toeplitz matrix, i.e. WT− 1

2 = K.

SLL layer does not natively support neither strides nor

2Block convolution operator allows to fuse the kernels of two
convolutions to construct the kernel of a convolution equivalent to
the composition of the two convolutions. It is defined in (Li et al.,
2019), and an efficient implementation is available in (Boissin
et al., 2025)
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Figure 3: The ⊛ can be used to enable s ̸= 1 and ci ̸= co
configurations on SLL. The flexibility of the ⊛ allows for
operations resulting in a block with a similar structure as
the original ResNet block.

changes in the channel size. We propose to use the ⊛ to de-
rive a block, based on SLL, that supports stride and ci ̸= co,
and can replace the strided convolutions of the residual
branch in architectures like ResNet.

A natural first step is to append a strided convolution after a
SLL block. This layer, convKpost

◦ SLL, can then be fused
in the SLL block thanks to block convolution operator 3:

y =Kpost ⋆s (x− 2KT ⋆ (σ(K ⋆ x+ b)))

=Kpost ⋆s x− 2(Kpost ⊛KT ) ⋆s (σ(K ⋆ x+ b)))

This allows to build a block based on SLL and that supports
stride and channel changes. However, this creates an asym-
metry between the convolution before the activation and the
one after the activation (that has a larger kernel size).

We propose also to add a second convolution before the SLL
block, convKpost

◦ SLL ◦ convKpre
allowing better control

over the kernel size of each convolution:

y =Kpost ⋆s Kpre ⋆ x

− 2(Kpost ⊛KT ) ⋆s (σ(K ⋆ Kpre ⋆ x+ b)))

=(Kpost ⊛Kpre) ⋆s x

− 2(Kpost ⊛KT ) ⋆s (σ((K⊛Kpre) ⋆ x+ b)))

3as defined in (Li et al., 2019; Boissin et al., 2025)

The proposed block is still a 1-Lipschitz layer (as a com-
position of 1-Lipschitz and orthogonal layers), and support
efficiently strides and changes of kernel sizes. A visual
description is provided in Fig. 3. This approach is more
efficient than the explicit construction that uses 3 distinct
convolutions, as kernels are merged once per batch, and
intermediate activations of extra convolutions do not need
to be stored backward. Typically, when K, Kpre and Kpost

are 2× 2 convolutions, this results in a residual block with
two 3×3 convolutions in one branch and a single 4×4 con-
volution (with stride 2) in the second. This is very similar
to transition blocks found in typical residual networks.

B.4. Improving Sandwich Layers (Wang & Manchester,
2023)

Introduced by (Wang & Manchester, 2023), this approach
aims to construct a 1-Lipschitz network globally rather than
constraining each layer independently. In practice, this can
be done either by (i) adding constraints between layers or
(ii) creating layers that incorporate a non-linearity internally
(a.k.a. sandwich layers). However, sandwich layers require
an orthogonal matrix at their core. For convolutional layers,
this is achieved by performing the orthogonalization of the
layer in the Fourier domain, as described in the method from
(Trockman & Kolter, 2021) and shown in their Algorithm 1.

Algorithm 3 Sandwich convolutional layer (from (Wang &
Manchester, 2023))

Require: hin ∈ Rp×s×s, P ∈ R(p+q)×q×s×s, d ∈ Rq

0: ĥin ← FFT(hin)

0: Ψ← diag(ed),
[
Ã B̃

]∗ ← Cayley(FFT(P ))

0: ĥ[:, i, j]←
√
2B̃[:, :, i, j]ĥin[:, i, j]

0: ĥ← FFT(σ(FFT−1(ĥ) + b))

0: ĥout[:, i, j]←
√
2Ã[:, :, i, j]Ψĥ[:, i, j]

0: hout ← FFT−1(ĥout) =0

We can leverage AOC to construct the kernel of an orthog-
onal convolution, replacing the expensive operation per-
formed in the Fourier domain. Thus, we can construct two
kernels, A and B, with appropriate constraints between the
two and apply the rescaling and non-linearity directly in
pixel space:

hout =
√
2A⊤ ⋆ Ψσ

(√
2Ψ−1B ⋆ hin + b

)
In practice this is done by constructing an orthogonal kernel
with twice the number of channels that is split into two
kernels, namely A and B. This is expected to be more
efficient since the use of the Fourier transform is costly for
two reasons: first, it necessitates computation with complex
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values; and second, the cost of the operation depends on the
input size, which can be prohibitive in large-scale settings
with 224 × 224 images. Consequently, our approach can
make such a layer more scalable.

B.5. Extending Applicability to other methods.

Beyond the previously discussed approaches that show
meaningful opportunities for improvement, our method can
enhance a wide range of orthogonal convolutional layers.
Specifically, we can incorporate our framework into any
alternative orthogonal layers, enabling native support for
strides in those layers. Furthermore, our approach can un-
lock features such as grouped convolutions, transposed con-
volutions, and dilations, broadening its utility and adaptabil-
ity.

C. Technical details of our unit testing scheme
Evaluating the Lipschitz constant of a network Beyond
the creation of a constrained layer, the evaluation of the
Lipschitz constant of a layer is by itself an active field:
early work used fast Fourier transform to evaluate a lower
bound of the Lipschitz constant of a convolutional layer
with circular padding (Sedghi et al., 2018). This work was
later improved with a method that is quicker (Senderovich
et al., 2022), supports other types of padding (Grishina
et al., 2024), or allows the extraction of a larger part of the
spectrum (Boroojeny et al., 2024). The work of (Delattre
et al., 2023) (Delattre et al., 2024) allows us to compute
a certifiable upper bound efficiently under different types
of padding. It is worth recalling that inferring the global
Lipschitz constant of a network given the Lipschitz constant
of each layer is an NP-Hard problem(Virmaux & Scaman,
2018). Then, (Pauli et al., 2024; Fazlyab et al., 2019; Wang
et al., 2024) aim to tackle using SDP (Semi-definite pro-
gramming) tools. Our work can also contribute to this issue
as the orthogonal layer allows a tighter product bound (ie.
bound using the product of the Lipschitz constant of each
layer to evaluate the constant of the whole network).

The need for an empirical evaluation of the Lipschitz
constant of layers. Despite the theoretical guarantees en-
suring orthogonality in our construction, empirical checks
are necessary to confirm implementation correctness. Such
verification prevents two types of issues:

1. Checking of numerical Instabilities: Issues arising
from floating-point precision, such as those introduced
by small epsilon values added to avoid division by zero.

2. Checking for implementation discrepancies: Differ-
ences between mathematical formalism and its transla-
tion to popular frameworks (e.g., SOC proofs assume
circular padding, while its implementation uses zero

padding, it is hard to determine how this difference
affects the Lipschitz constant of such a layer).

Checking the orthogonality of a layer under stride,
group, transposition, and dilation conditions. Orthog-
onality is sensitive to convolutional parameters such as
stride, groups, dilation, and transposition, as well as train-
ing hyperparameters like learning rate, weight decay, and
orthogonalization iterations. To robustly validate orthogo-
nality, we combine two complementary approaches: (i) ex-
plicit singular-value decomposition (SVD) on convolution-
induced Toeplitz matrices, ensuring exactness for small-
scale inputs, and (ii) scalable spectral norm estimation
via conv.singular values, suitable for larger-scale
practical validation. We thoroughly test diverse configura-
tions—varying kernel sizes, strides, channel dimensions,
and padding—ensuring all singular values remain within a
stringent tolerance ranging from 10−4 to 5e−3 (for some
methods).

The numerical stability and the convergence of an orthog-
onal layer is dependent on the training hyper-parameters:
mainly the number of iterations used in most methods, but
the learning rate and weight decay can also play a significant
role. We then need an evaluation method that scales along
with the convolution and that can be used at the end of each
training. On the other hand, as scalable methods can be
imperfect, we also need a method that computes very pre-
cise bounds without making any assumptions on the layer
parameters (like padding, or stride). In order to overcome
this, we tested our layers with two distinct methods:

Explicit SVD on Toeplitz Matrices: Using the impulse
response approach, we construct the Toeplitz matrix for any
padding and stride, allowing direct computation of singular
values. This method, though accurate, is computationally ex-
pensive for large input images (in spite of full parallelization
of the matrix’s construction).

Evaluation from the conv.singular values mod-
ule: We use the more scalable methods (like (Delattre et al.,
2023; 2024; Grishina et al., 2024)) from this module to
check that the produced bounds from this module are valid.

We used both of these two approaches in our unit tests.
This enables us to ensure that the second method (which is
faster and more scalable) is correct to check that our layer
is effectively orthogonal.

We tested multiple values for kernel size, stride, dilation,
input channels, and output channels. For the kernel size,
along with standard configurations of 3×3 and 5×5 kernels,
we also covered cases for 1× 1 kernels and even-sized ker-
nels. For input/output channels, we covered various relevant
inequalities (for instance, when co > cis

2 as indicated in
(Achour et al., 2022)). We ran similar tests for transposed
convolution (to the extent of what PyTorch allows: notably,
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circular padding is not supported for transposed convolu-
tions and could not be tested). Also, as the computation
of the singular values using the explicit construction of the
Toeplitz matrix is quite expensive, we used it on small 8× 8
images; this is also a good way to check for padding issues,
as the kernel size is not negligible with respect to the im-
age size. All the checks over the singular values for both
methods were done with a tolerance of 1e−4.

Unit testing of non-linear layers. To guarantee that acti-
vations and higher-order residual blocks do not silently vio-
late the global 1-Lipschitz constraint, we complement the
linear checks described above with a non-linear test-suite.
For every candidate activation we sample small random
tensors, build the full Jacobian with, and compute its spec-
tral norm; checking maxσ(J) ≤ 1 + 10−4 and—when
applicable— minσ(J) ≥ 1 − 10−4, certifying both 1-
Lipschitzness and orthogonality. A similar strategy is ap-
plied to parametrized layers such as SLL, CPL or AOL
(Araujo et al., 2023; Xiao et al., 2018; Prach & Lampert,
2022) with the difference that before and after ten optimiza-
tion steps we re-measure their Jacobian’s spectral norm and
assert it never exceeds 1, ensuring that optimizer updates
cannot drift the block outside the desired constraint.

Because the Jacobian scales quadratically with the number
of activations, inputs are restricted to 8× 8 images or 64-d
vectors—small enough for tractable SVD yet large enough
to expose implementation bugs. Empirically, this design
provokes failures in under three seconds on a laptop GPU
and offers a pragmatic alternative to more expensive SDP-
based constants.
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