
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WEBGEN-R1: INCENTIVIZING LLMS TO GENERATE
FUNCTIONAL AND AESTHETIC WEBSITES WITH REIN-
FORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated strong capabilities in
functional-level code generation, yet their performance remains limited in project-
level scenarios such as generating large-scale multi-page websites. Such tasks re-
quire coherent multi-file structures, handling of intricate cross-page dependencies,
and visually appealing designs. Prior works address only partial aspects of this
challenge. For instance, WebDev Arena1 focuses exclusively on single-page static
sites, while agent-based frameworks decompose tasks into subtasks coordinated
through multi-turn execution, often relying on proprietary models and suffering
from fragile integration, particularly in visual coherence and stylistic consistency.
In this work, we introduce WebGen-R1, pushing toward a more ambitious and
practically relevant goal of training a small-scale LLM via reinforcement learn-
ing (RL) to generate the entire multi-page websites in an end-to-end manner. A
key obstacle lies in reward design. Unlike functional code generation where cor-
rectness can be verified by passing automated test suites, web aesthetics covering
layout harmony, typographic consistency, and stylistic alignment are inherently
subjective, and functional verification often requires dynamic execution across
pages where rule-based reward function tend to be brittle. To address these limi-
tations, we design a vision–language–model-based reward model that jointly opti-
mizes functional correctness and aesthetic quality, enabling the model to produce
websites that are both visually coherent and faithful to the intended task speci-
fication. Extensive experiments across real-world benchmarks demonstrate that
WebGen-R1 consistently outperforms, or is comparable to, strong proprietary and
open-source baselines in a multi-dimensional evaluation protocol. To facilitate
future research in end-to-end multi-page website generation, we release our code
and data at https://anonymous.4open.science/r/WebGen-R1.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have markedly expanded their capabilities in
automated code generation (Jaech et al., 2024; Hui et al., 2024; Jiang et al., 2025; Guo et al., 2025;
Team et al., 2025; Yang et al., 2025a; Zheng et al., 2025), achieving human competitive performance
on established functional-level benchmarks such as the HumanEval (Chen et al., 2021) dataset or
even complex International Olympiad in Informatics (IOI) programming tasks (Li et al., 2022).
These achievements demonstrate impressive syntactic and semantic reasoning over standalone prob-
lems. However, moving from constrained, function-level snippets to project-level code generation
that meets real-world software engineering demands remains a frontier challenge (Jimenez et al.,
2023; Bi et al., 2024; Zan et al., 2025; Badertdinov et al., 2025). Among the various categories of
such tasks, end-to-end website generation, encompassing multi-page routing, dynamic functional-
ity, modern user interface (UI) design, and responsive layouts, presents especially rich and conse-
quential opportunities for LLM research. Website generation represents a particularly challenging
instantiation of project-level code generation (Wan et al., 2024; Xiao et al., 2024; Lu et al., 2025;
Zhang et al., 2025). Unlike single-function problems, real-world websites demand consistent archi-
tectural patterns, multi-file codebases with intricate dependencies, long-range contextual coherence,

1https://blog.lmarena.ai/blog/2025/webdev-arena

1

https://anonymous.4open.science/r/WebGen-R1
https://blog.lmarena.ai/blog/2025/webdev-arena/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

and conformity to design principles that balance functionality with visual appeal. This necessitates
reasoning not only over software engineering constraints but also over aesthetic and user-experience
considerations, which have traditionally been difficult to formalize and evaluate in automated code
generation.

Despite promising early steps, current approaches to LLM-driven website generation exhibit notable
limitations. One line of work has chosen to simplify the generation task drastically. For exam-
ple, WebDev Arena (LMArena, 2025) is constrained to generating single-page static sites. While
this makes evaluation tractable, it abstracts away essential complexities such as dynamic routing,
state management, authentication flows, and cross-page navigation. Another line of research adopts
multi-agent orchestration frameworks, in which different specialized LLMs handle discrete subtasks
(UI layout, backend logic, testing), and their outputs are subsequently integrated (Hong et al., 2023;
He et al., 2024a;b; Lu et al., 2025). However, such modularity introduces brittle inter-agent de-
pendency chains, where small inconsistencies in contracts, file names, or interface definitions can
cascade into non-functional builds. Moreover, both paradigms rarely incorporate formal optimiza-
tion of aesthetic quality or human-aligned design sensibilities, an omission that leads to websites
which, while functional, often fail to meet the expectations of end-users in visual polish. Further
discussion of related work is provided in Appendix D.

In this work, we push toward a more ambitious and practically relevant goal of training a small-
scale LLM to generate an entire multi-page, functional, and visually aesthetic website project from
scratch, in an end-to-end manner, without external decomposition into subtasks. This departure in-
vites several formidable challenges: 1⃝ Global structural reasoning over project-level architectures,
including framework-specific conventions (e.g., Next.js routing, Vue plugin registration) and modu-
lar directory organization. 2⃝Maintaining multi-file consistency for cross-referencing components,
dependencies, and dynamic import paths across the codebase. 3⃝ Ensuring cohesive visual design
and modern aesthetics, beyond merely placing elements on a page, by rendering layouts that exhibit
balance, alignment, accessible color contrasts, and brand coherence. 4⃝ Capturing complex interac-
tive behaviors such as animations, drag-and-drop, and responsive state updates within the generated
code. 5⃝ Overcoming limited long-context reasoning, as project code often exceeds the context win-
dow available in current LLMs, creating difficulties in tracking dependencies over hundreds of lines
across multiple files.

To address these challenges, we propose WebGen-R1, a novel framework that integrates reinforce-
ment learning (RL) directly into the end-to-end website generation process. Nevertheless, a central
obstacle in bringing RL into such open-ended generative tasks lies in the design of a reliable reward
signal (Guo et al., 2025; Zeng et al., 2025; Wen et al., 2025; Yang et al., 2025b; Mroueh, 2025).
Different from tasks like complex mathematics and competitive programming, where correctness
is objectively verifiable by exactly matching unambiguous ground-truth answers or passing auto-
mated test suites, it faces a serious challenges with website generation: (1) Not all desired qualities
are reducible to scalar outcomes, as visual appeal, design cohesion, and user experience have no
trivial Boolean test. (2) Comprehensive functional verification for complex, multi-page websites
often requires running the site and inspecting behaviors in varied scenarios, making static rule defi-
nition brittle. (3) The scarcity of annotated, fully verifiable website outputs limits scalability for this
domain.

To overcome these limitations, we replace handcrafted rule-based scorers with a reward model that
incorporates both task specification cognition and visual rendering perception. Concretely, after the
model generates the complete web project code and directory structure, we execute a standardized
front-end development pipeline, which includes parsing and verifying the scaffolded file organi-
zation, installing dependencies, building the project, launching a local development or production
server, and rendering the pages in a browser. The rendered page screenshots, together with the orig-
inal task specification, are then fed into a state-of-the-art vision-language model (VLM) for joint
functional and aesthetic evaluation, producing a graded scalar reward. This pipeline preserves ver-
ifiability for functional aspects while enabling nuanced assessment of open-ended design quality,
making large-scale RL training both stable and meaningful.

We conduct extensive experiments on real-world benchmarks to evaluate the effectiveness of
WebGen-R1. When employing Qwen2.5-Coder-Instruct-7B as our base model, WebGen-R1 ex-
hibits substantial gains in multi-page website generation, achieving an improvement in functional
quality metrics from 1.59% to 29.21%, a 44.32% increase in aesthetic scoring, and a drastic increase

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Step 1: Scaffold Parsing
& File Tree Validation

Step 2: Dependency
Installation

Step 3: Source Build
& Asset Bundling

Step 4: Dev / Prod
Server Spin-Up

Step 5: Viewport
Rendering in
Headless Browser

Step 6: VLM-Driven Evaluation
(Functional & Aesthetic)

LLM

Reward Model Page① Page②

Page③ Page④

Please implement a travel
reimbursement and payment
system for employee travel
expenses. The system should have
functionalities for....Use white for
container backgrounds and navy
for component visuals.

You are an expert frontend engineer
with extensive experience in React,
TypeScript, Tailwind CSS, and Vite.
Your primary responsibility is to
automatically generate complete,
production-ready, browser-
executable web applications....

System Prompt

User Message

<think>...</think>
<answer>...</answer>🔥

Multiple-Page Screenshots

GRPO

❄

Figure 1: The architecture of our proposed WebGen-R1 for end-to-end multi-page website gener-
ation using a single LLM. A user provides a natural-language website design request, which the
LLM generates the entire project source code. The generated scaffold is then processed through
a standardized front-end build pipeline, comprising parsing and validation of the file organization,
dependency installation, project build, server spin-up (in development or production mode), and
rendering of the resulting webpages in a headless browser environment to obtain multiple page
screenshots. These rendered page images, along with the original user request, are subsequently fed
into a state-of-the-art VLM for joint evaluation of functional correctness and visual design quality,
producing a scalar reward signal in the discrete range 0-5. This automated evaluation framework en-
sures both objective verification of executable functionality and nuanced assessment of open-ended
aesthetic attributes. The reward signal is then used to fine-tune the LLM via the GRPO objective,
enabling stable and semantically meaningful reinforcement learning at scale.

in valid render ratio from 30.56% to 95.89%. Importantly, despite having significantly fewer param-
eters, WebGen-R1 attains aesthetic quality and valid render ratios that surpass those of much larger
and more powerful baselines such as Gemini-2.5-Pro and DeepSeek-R1, while maintaining compa-
rable performance in functional evaluation. These results provide strong empirical evidence that our
WebGen-R1 with reinforcement learning can effectively enhance both the functional reliability and
visual appeal of generated websites. In summary, our contributions are as follows:

• To our best knowledge, we are the first to introduce reinforcement learning, namely
WebGen-R1, for end-to-end generating the entire multi-page websites without relying on
task decomposition or proprietary model orchestration.

• We design a vision–language-model-based reward model that jointly measures functional
correctness and aesthetic quality, capturing layout harmony, typographic consistency, and
stylistic alignment. This resolves the brittleness of rule-based rewards in project-level code
generation and aligns optimization signals with human preferences.

• We establish a multi-dimensional evaluation protocol covering functional correctness,
visual coherence, deployability, and human-perceived quality, and demonstrate through
extensive experiments on real-world benchmarks that our WebGen-R1 outperforms or
matches advanced proprietary and open-source baselines, even in challenging scenarios
requiring fine-grained inter-page coordination.

• We release our codebase, datasets, RL training framework, and trained model check-
points to enable reproducibility and to foster future research on end-to-end, LLM-driven
multi-page website generation.

2 METHODOLOGY

2.1 END-TO-END OPEN-ENDED WEBSITE CODE GENERATION

Given a task specification x ∈ X , the policy πθ must produce an entire project y ∈ Y contain-
ing a coherent multi-file structure, framework-specific directories, and interdependent code mod-
ules. Unlike template-based generation, the space Y is open-ended Y =

⋃∞
K=1 YK , YK = {y :

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

y contains K valid files in a consistent project graph}. We model generation as an autoregressive
process πθ(y | x) =

∏T
t=1 πθ(yt | y<t, x), where the token sequence y1:T is subsequently parsed

into a file set F(y) = {fk}Kk=1 and a directory graph S(y). We denote the resulting website project
instance as Web(y) = {F(y),S(y)}. By emitting all code in one globally conditioned sequence,
the policy is forced to maintain cross-file variable references, routing conventions, and naming co-
herence. These properties are frequently broken in iterative, file-by-file generation, and their absence
leads to non-functional builds. This holistic treatment is particularly advantageous for web projects,
where front-end routing, shared styles, and state management are tightly coupled.

2.2 AUTOMATED FRONT-END BUILD AND RENDERING PIPELINE

A generated website codebase carries no operational meaning until it is executed within an actual
front-end development pipeline. We model this execution as a deterministic environment transfor-
mation:

o = E(y) = R(L(B(I(Web(y))))) , (1)
where I installs dependencies, B builds the compiled bundle, L launches a server, and R renders
pages through a headless browser. As a result, the output o contains:

o =
(
{Ip}Pp=1, Γ

)
, (2)

with {Ip}Pp=1 denoting rendered screenshots for P routes and Γ collecting build and runtime logs.
This execution step enforces realizability constraints so that only codebases that install, build, and
run successfully yield complete visual evidence, directly grounding learning signals in executable
behavior. In website generation, this is critical as projects that pass linters can still fail at runtime
due to subtle integration errors, broken imports, or misconfigured frameworks.

2.3 REWARD MODEL FOR FUNCTIONAL AND AESTHETIC EVALUATION

While functional correctness covering aspects such as hyperlink validity, navigation integrity, and
component responsiveness can be partially verified via deterministic, rule-based checks, purely algo-
rithmic verification fails to capture subjective, perceptual qualities of web design. Aesthetic factors,
including layout harmony, typographic consistency, and stylistic coherence with the task specifica-
tion, require perceptual evaluation signals that are inherently non-deterministic. To jointly capture
both dimensions, we propose a multimodal reward evaluator ϕψ built upon a state-of-the-art vi-
sion–language model (VLM). Formally, given an input tuple z =

(
x, {Ip}Pp=1,Γ

)
, where x denotes

the natural language specification, {Ip}Pp=1 are rendered page snapshots from multiple responsive
breakpoints, and Γ represents runtime execution logs, the evaluator jointly attends to textual, visual,
and behavioral modalities to produce a scalar score:

s⟨func,vis⟩ = gϕψ [sfunc, svis] = ϕVLM
ψ (z), (3)

where sfunc measures functional soundness and svis evaluates visual design quality. The unified
score s⟨func,vis⟩ ∈ [0, 5] thus reflects both executable fidelity and human-perceived aesthetics in a
single quantitative metric.

Beyond these two primary criteria, we incorporate additional signals to enforce structural and rea-
soning quality in generated code. Inspired by (Guo et al., 2025), we assess code format correctness
s⟨code⟩, where the generated website code is parsed into a file set F(y) = {fk}Kk=1 and a corre-
sponding directory graph S(y). This check ensures that the output can be executed without modi-
fication, providing a direct, verifiable reward signal for structural validity. Moreover, to incentivize
long-horizon and explicit reasoning in project organization, such as planning directory hierarchies,
configuring frameworks appropriately, and maintaining coherent shared state, we define a reasoning
format reward s⟨cot⟩. Here, the model is required to externalize its reasoning process between ded-
icated <think>...</think>tags, enabling downstream parsing and reward estimation on reasoning
quality. Finally, these components are fused into a multi-dimensional scalar reward:

R(y) = s⟨func,vis⟩ + γ s⟨code⟩ + λ s⟨cot⟩, (4)
with weight coefficients γ, λ ∈ [0, 1] controlling the contribution of code format and reasoning
quality to the overall signal. Thus, in the context of LLM-based website generation, this integrative
scoring mitigates the common pitfall of over-optimizing for mechanically verifiable checks at the
expense of human-perceived functionality and visual appeal, thereby aligning model outputs more
closely with end-user expectations.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.4 GROUP RELATIVE POLICY OPTIMIZATION FOR WEBSITE GENERATION

We formulate our reinforcement learning objective as maximizing the expected task-specific reward
under the learned policy πθ maxθ Ex∼D, y∼πθ(·|x)

[
R(y)

]
, where x denotes a website generation

prompt, y is a candidate structured website output, and R(·) measures a composite reward capturing
both functional correctness and visual quality (see Eq. 4). Unlike standard PPO(Schulman et al.,
2017), GRPO (Shao et al., 2024; Guo et al., 2025; Yu et al., 2025) removes the need for an explicit
value function by normalizing rewards within a group of sampled responses for the same prompt,
enabling more stable optimization and mitigating inter-prompt variance in difficulty. Specifically,
for each website specification x, we sample a group of G candidate responses {yi}Gi=1 from the
behavior policy πθold(· | x), where each sequence is tokenized as yi = (yi,1, yi,2, . . . , yi,|yi|). We
obtain a scalar reward Ri for each yi by executing the generated website and evaluating functional
validation and visual fidelity score. The group-relative normalized advantage for token position t in
response i is then defined as:

Âi,t ≜
Ri −mean({Rj}Gj=1)

std({Rj}Gj=1)
, (5)

Following the PPO-style clipped surrogate objective with an explicit KL penalty to constrain diver-
gence from a frozen reference policy πref , the GRPO objective is:

JGRPO(θ) = Ex∼D, {yi}Gi=1∼πθold (·|x)

[
1

G

G∑
i=1

1

|yi|

|yi|∑
t=1(

min
[
ri,t(θ) Âi,t, clip

(
ri,t(θ), 1− ε, 1 + ε

)
Âi,t

]
− β DKL

(
πθ(· | x) ∥ πref(· | x)

))]
,

(6)

ri,t(θ) ≜
πθ

(
yi,t | x, yi,<t

)
πθold

(
yi,t | x, yi,<t

) , (7)

where ε > 0 is the clipping parameter, and β controls the strength of the KL regularization. The
detailed procedure of the algorithm is presented in Algorithm 1 (see Appendix A).

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets and Benchmarks. We leverage the WebGen-Instruct (Lu et al., 2025) as our training cor-
pus. This dataset comprises 6,667 end-to-end website generation tasks spanning a broad spectrum of
real-world web application domains. We employ the WebGen-Bench (Lu et al., 2025), which con-
tains 101 carefully curated website generation tasks. These tasks range from minimal single-page
designs to complex corporate websites with rich interactivity and data-driven dashboards. Each
benchmark instance is paired with a comprehensive, repeatedly validated test suite, ensuring reli-
able measurement of both the functional behavior and stylistic conformance of generated websites.
The natural-language task descriptions explicitly specify functional requirements and visual design
expectations, enabling precise evaluation. The detailed statistics of the dataset and the benchmark
are summarized in Table 2 (Appendix B). Figure 2 illustrates the distributions of prompt and re-
sponse lengths, where each prompt is obtained by concatenating the system prompt with the web
task query, for several state-of-the-art commercial LLMs on the end-to-end website generation task.

Baselines. We benchmark WebGen-R1 against a broad spectrum of state-of-the-art LLMs, encom-
passing eight proprietary models and seven open-source models. We exclude WebGen-LM (Lu
et al., 2025) from comparison as it is specifically fine-tuned on Bolt.diy 2 website-generation tra-
jectories gathered via DeepSeek-V3 (Liu et al., 2024), making it bound to a particular agent-based
framework and not directly applicable in our evaluation setting.

Metrics. To thoroughly evaluate LLMs for end-to-end website generation, we use several quanti-
tative metrics, including (1) Functional Success Rate (FSR): the percentage of generated websites

2https://github.com/stackblitz-labs/bolt.diy

5

https://github.com/stackblitz-labs/bolt.diy

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3320 3330 3340 3350 3360 3370 3380 3390 3400 3410
Prompt Token Length

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ob

ab
ili

ty
 D

en
si

ty

×10 2

Training Set
Test Set

0.0

0.5

1.0

1.5

2.0

2.5

×10 2

1500 3000 4500 6000 7500 9000 10500 12000
Response Token Length

0

1

2

3

4

5

6

Pr
ob

ab
ili

ty
 D

en
si

ty

×10 4

GPT-5
Claude-Sonnet-4
Gemini-2.5-Pro
DeepSeek-R1
Qwen3-32B
Qwen2.5-Coder-7B-Instruct
WebGen-R1-7B

Figure 2: Token length distributions of prompts and generated responses for several state-of-the-art
LLMs on the end-to-end multi-page website generation task across WebGen-Instruct (training set)
and WebGen-Bench (test set). The response length distributions are aggregated over test set.
Table 1: Performance comparison of WebGen-R1 and various state-of-the-art LLMs from multiple
institutions on the WebGen-Bench benchmark, evaluated by FSR, AAS, and VRR metrics. We show
the score improvement (±) of our model relative to its base. Bold values indicate the best results.

Institution Model FSR(%) AAS VRR(%)

OpenAI

GPT-5 46.53 3.34 90.43
GPT-4.1 43.91 3.78 82.09
o3 42.86 3.55 81.08
o4-mini 27.29 3.31 56.52
GPT-4o 21.60 3.31 85.71

Anthropic Claude-Sonnet-4 46.13 3.86 86.05
Claude-3.7-Sonnet 57.72 3.90 84.00

Google Gemini-2.5-Pro 36.31 3.89 83.33

DeepSeek DeepSeek-R1 30.25 3.67 42.86

Alibaba

Qwen2.5-Coder-7B-Instruct 1.59 2.73 30.56
Qwen2.5-72B-Instruct 2.54 3.14 8.86
Qwen3-8B 3.72 2.57 12.50
Qwen3-32B 18.69 3.39 59.42
Qwen3-30B-A3B-Thinking-2507 9.30 2.60 23.81
Qwen3-Coder-30B-A3B-Instruct 6.06 2.90 32.81

Ours WebGen-R1-7B 29.21+27.62 3.94+44.32 95.89+65.33

that pass predefined interactive checks such as button clicks and form submissions; (2) Aesthetic
Alignment Score (AAS): the average reward model score, measuring how well function and design
match human aesthetic preferences; (3) Valid Render Ratio (VRR): the percentage of generated
websites that render without major errors; (4) Lint & Dependency Pass Rate (LDPR): the fraction
of projects that pass static code analysis (like ESLint) and resolve dependencies automatically, indi-
cating readiness for deployment. These metrics form a multi-dimensional evaluation protocol that
jointly accounts for execution correctness, visual attractiveness, deployability, and human-perceived
quality, providing a holistic assessment of LLM-driven website generation.

Implementation Details. We conduct all experiments on a cluster equipped with 64× NVIDIA
H100 GPUs (80 GB memory each), using the open-source Open-R1 framework 3 (Hugging Face,
2025). We fine-tune the Qwen2.5-Coder-Instruct-7B model for 400 optimization steps using the
GRPO objective. Following (Lu et al., 2025), the VLM reward model leverages a state-of-the-art
GPT-4o evaluator to score both the functional correctness and visual aesthetics of generated web-
sites. The reward function is calibrated to align closely with human preferences through prompt
engineering and normalization, ensuring stable optimization. More details, including the hyperpa-
rameter settings, are provided in Appendix C.

3https://github.com/huggingface/open-r1

6

https://github.com/huggingface/open-r1

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

AI Integration

Form Systems

Real-time Features

Static Page Generation

Data Visualization

Dynamic Content
Rendering

0

1

2

3

4
Media Display

CRUD Operations

Big Data

E-commerceAuthentication

API Integration

File Handling

0

1

2

3

4

GPT-5
GPT-4.1

Claude-Sonnet-4
Claude-3.7-Sonnet

Gemini-2.5-Pro
DeepSeek-R1

Qwen3-32B
Qwen2.5-Coder-7B-Instruct

Qwen3-Coder-30B-A3B-Instruct
WebGen-R1-7B (Ours)

Figure 3: Performance comparison of WebGen-R1 and various state-of-the-art LLMs on 13 hetero-
geneous multi-scenario front-end development tasks encompasses diverse requirements, providing
a rigorous testbed for both functionality and visual fidelity, sourced from the WebGen-Bench.

3.2 MAIN RESULTS

We compare WebGen-R1 with state-of-the-art LLMs on the WebGen-Bench using FSR, AAS, and
VRR to examine whether reinforcement learning can optimize functionality, design, and render reli-
ability. As shown in Table 1, Claude-3.7-Sonnet achieves the highest FSR (57.72%), showing strong
execution, while WebGen-R1 gets the highest AAS score (3.94), outperforming all models, includ-
ing Claude. WebGen-R1 also attains the best VRR (95.89%), clearly higher than all baselines, which
we attribute to our reward design focusing on code format correctness. This balance of visual quality
and reliable rendering is achieved even though WebGen-R1 is a 7B model, proving the effectiveness
of our RL training. Smaller Qwen3 models generally have lower FSR, while some larger variants
like Qwen3-32B (AAS 3.39) and Qwen2.5-72B-Instruct (AAS 3.14) reach relatively high AAS. This
pattern suggests that generating functionally correct website is substantially more challenging than
achieving visual appeal, as functional requirements in front-end development often involve complex
logic and interactions beyond visual layout. Overall, our RL optimization enables the model to pro-
duce visually attractive websites while still maintaining functional correctness, demonstrating that
targeted reward shaping can balance these multiple objectives in website generation.

3.3 IN-DEPTH ANALYSIS AND INSIGHTS.

Multi-Scenario Web Environments. We evaluate WebGen-R1 and a variety of state-of-the-art
LLMs on multi-scenario front-end development tasks, including AI Integration, Form Systems,
Real-time Features, Static Page Generation, Data Visualization, Dynamic Content Rendering, Me-
dia Display, CRUD Operations, Big Data, E-commerce, Authentication, API Integration, and File
Handling, sourced from WebGen-Bench (Lu et al., 2025). As shown in Figure 3, our WebGen-R1
achieves superior performance across all 13 categories on AAS metric, which indicates a consis-
tent improvements in both functional correctness and UI/UX quality. Such uniform improvements
across diverse front-end scenarios demonstrate that our WebGen-R1 is task-agnostic, robust to do-
main shifts, and effective in harmonizing execution-level correctness with aesthetic alignment, high-
lighting the practical applicability to real-world, mixed-requirement web development.

RL Fine-Tuning. We compare RL and supervised fine-tuning (SFT) on the web generation task.
Using 600 GPT-4.1-generated examples for SFT, we observe an 18.68% performance boost over
the baseline model (Qwen2.5-Coder-7B-Instruct), significantly improving functional and coherent
webpage generation, as shown in Figure 4. RL-only (R1-Zero) gives a 12.09% improvement, show-
ing the value of vision–language model rewards for optimizing both function and appearance. SFT
brings higher gains than RL alone, but combining SFT initialization with RL achieves even better
results, with performance 21.60% and 28.76% higher than SFT and RL-only respectively. These
findings indicate that SFT enables the model to acquire a robust structural and semantic prior for

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Base SFT RL onlySFT + RL
2.5

3.0

3.5

4.0

A
A

S

Figure 4: Performance comparison of SFT, RL-
only, and SFT+RL on the WebGen-Bench bench-
mark under the AAS metric.

2 4 8 16 32
Group Size

3.5

4.0

A
A

S

Average Score
LDPR (%)

50

55

60

LD
PR

 (%
)

Figure 5: Impact of group size G in GRPO on
WebGen-Bench performance measured by AAS
and LDPR.

25 50 75
Model Size (B)

2.5

3.0

3.5

A
A

S

GPT-5
Claude-Sonnet-4
Gemini-2.5-Pro

DeepSeek-R1

Qwen2.5-72B-Instruct

Qwen3-32B

Qwen3-Coder-30B-A3B-Instruct

Qwen2.5-Coder-7B

WebGen-R1-7B (Ours)

Figure 6: Performance of WebGen-R1 on the
WebDev Arena benchmark, which differs in do-
main and prompt distribution from the WebGen-
Instruct and WebGen-Bench.

3 4 5
Reward Score

2

4

H
um

an
 R

at
in

g

Pearson : r = 0.762, p = 2.3e 20
Spearman : = 0.734, p = 2.4e 18

Figure 7: Alignment between reward model eval-
uations and human ratings on WebGen-Bench
websites with strong correlations.

webpage generation, while RL expands the model’s exploration capabilities and reward-driven op-
timization, allowing it to discover and produce higher-quality, more aesthetically pleasing websites.

Group Size in GRPO. We investigate the effect of the group size parameter G in GRPO, with
G ∈ {2, 4, 8, 16, 32}, while keeping all other hyperparameters fixed. For each setting, we track the
evolution of both the mean and standard deviation of the reward per training step, and assess the
final policy on the WebGen-Bench using the AAS and LDPR metrics. As shown in Figure 5, larger
group sizes consistently yield superior performance across both evaluation metrics. We hypothesize
that this improvement arises from the enhanced exploration capacity provided by larger groups,
which increases the diversity of candidate trajectories and improves the likelihood of discovering
high-quality website designs.

Generalization and Robustness. We evaluate the ability of WebGen-R1 to generalize its reasoning
processes and visual design sensibility to settings where both the domain and prompt distributions
differ substantially from those seen during RL, which was conducted on the WebGen-Instruct. To
this end, we adopt the WebDev Arena benchmark, which features instruction distributions and task
categories that are not covered in our training set. Detailed dataset statistics are provided in Table 2
in the Appendix. The quantitative results are presented in Figure 6. WebGen-R1 consistently out-
performs a range of state-of-the-art proprietary and open-source baselines (e.g., DeepSeek-R1, GPT-
5, and Qwen3-32B) across AAS metric. This performance suggests that WebGen-R1 has learned
architecture-level and style-level abstractions that remain effective in previously unseen web do-
mains. These findings further indicate that WebGen-R1 maintains strong applicability and robust-
ness in practical deployment scenarios where specification distributions may vary over time.

Human Alignment Study. We examine whether our vision–language-model-based reward accu-
rately reflects human preferences for functionality and aesthetics. Since RL relies entirely on this
reward, any misalignment could lead to outputs that do not meet user expectations. To evaluate this,
we compare our reward model to human judgments by having three experienced front-end devel-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

[WebGen-Bench] Instruction: Please implement a Q&A website that answers user-submitted
questions. The website should have functionalities for submitting questions, answering questions,
and viewing answers. Users should be able to submit questions, view answers, and rate the answers.
Set overall background to beige, then style components with saddle brown.

GPT-5 Gemini-2.5-Pro WebGen-R1-7B (Ours)
[WebDev Arena] Instruction: Make a website that fetches data (joke) from an external API and
displays it on the screen using react for use example.

GPT-5 Gemini-2.5-Pro WebGen-R1-7B (Ours)

Figure 8: Case study of our WebGen-R1-7B against two leading baselines on in-distribution
(WebGen-Bench) and out-of-distribution (WebDev Arena) tasks, showing superior layout organi-
zation, visual coherence, and functional fidelity.

opers rate 101 websites from WebGen-Bench on functionality and visual appeal. We aggregate the
human scores and compare them to the reward model’s outputs. As shown in Figure 7, the results
show strong correlations (Pearson r = 0.762, Spearman ρ = 0.734), indicating that the model’s
ratings closely match human evaluations. This demonstrates that our vision–language model can
reliably assess both functional fidelity and aesthetic appeal in generated websites.

3.4 CASE STUDIES

To qualitatively evaluate WebGen-R1’s ability to improve website functionality and visual quality,
we conduct case studies using two user instructions from in-distribution (WebGen-Bench) and out-
of-distribution (WebDev Arena) sources. Figure 8 shows that, compared to strong baseline models,
WebGen-R1 generates websites with organized layouts, coherent and attractive designs, and respon-
sive behaviors that match the instructions. These findings support our quantitative results, showing
that WebGen-R1 achieves both functional correctness and aesthetics preferred by humans. We at-
tribute these strengths to end-to-end code generation, multimodal reward modeling, and GRPO opti-
mization. Overall, the results show that LLMs trained with perceptually grounded RL can effectively
balance engineering requirements and design principles in web development.

4 CONCLUSION

In this work, we introduce WebGen-R1, a reinforcement learning framework that enables small-scale
LLMs to generate the entire multi-page websites in an end-to-end manner while meeting both func-
tional and aesthetic requirements. Extensive experiments across two real-world benchmarks demon-
strate that our WebGen-R1 consistently improves functional robustness, visual coherence, and de-
ployability, surpassing or matching to advanced proprietary and open-source baselines. Notably,
our work demonstrates that RL with perceptually grounded rewards can substantially advance struc-
tured, multi-modal generation tasks beyond the functional level. We believe these insights open new
directions for end-to-end LLM training in full-stack application development, and we release all
resources to catalyze future research in this emerging area.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Ibragim Badertdinov, Alexander Golubev, Maksim Nekrashevich, Anton Shevtsov, Simon Karasik,
Andrei Andriushchenko, Maria Trofimova, Daria Litvintseva, and Boris Yangel. Swe-rebench:
An automated pipeline for task collection and decontaminated evaluation of software engineering
agents. arXiv preprint arXiv:2505.20411, 2025.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
lessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Zhangqian Bi, Yao Wan, Zheng Wang, Hongyu Zhang, Batu Guan, Fangxin Lu, Zili Zhang, Yulei
Sui, Hai Jin, and Xuanhua Shi. Iterative refinement of project-level code context for precise code
generation with compiler feedback. In Findings of the Association for Computational Linguistics
ACL 2024, pp. 2336–2353, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128, 2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan, Caishuang
Huang, Xiao Wang, Xiaoran Fan, et al. Stepcoder: Improve code generation with reinforcement
learning from compiler feedback. arXiv preprint arXiv:2402.01391, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 6864–6890, 2024a.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Hongming Zhang, Tianqing Fang, Zhenzhong
Lan, and Dong Yu. Openwebvoyager: Building multimodal web agents via iterative real-world
exploration, feedback and optimization. arXiv preprint arXiv:2410.19609, 2024b.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-
agent collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

10

https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. ACM Trans. Softw. Eng. Methodol., July 2025. ISSN 1049-331X.
doi: 10.1145/3747588. URL https://doi.org/10.1145/3747588. Just Accepted.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314–21328, 2022.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton Bishop, Victor
Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement learning from human feedback with
ai feedback. arXiv preprint arXiv:2309.00267, 2023.

Jierui Li, Hung Le, Yingbo Zhou, Caiming Xiong, Silvio Savarese, and Doyen Sahoo. Code-
tree: Agent-guided tree search for code generation with large language models. arXiv preprint
arXiv:2411.04329, 2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

LMArena. Webdev arena: Ai battle to build the best website. https://web.lmarena.ai/,
2025.

Zimu Lu, Yunqiao Yang, Houxing Ren, Haotian Hou, Han Xiao, Ke Wang, Weikang Shi, Aojun
Zhou, Mingjie Zhan, and Hongsheng Li. Webgen-bench: Evaluating llms on generating interac-
tive and functional websites from scratch. arXiv preprint arXiv:2505.03733, 2025.

Michael Luo, Naman Jain, Jaskirat Singh, Sijun Tan, Ameen Patel, Qingyang Wu, Alpay Ariyak,
Colin Cai, Shang Zhu Tarun Venkat, Ben Athiwaratkun, Manan Roongta, Ce Zhang, Li Erran
Li, Raluca Ada Popa, Koushik Sen, and Ion Stoica. Deepswe: Training a state-of-the-art coding
agent from scratch by scaling rl. https://pretty-radio-b75.notion.site/DeepS
WE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent
-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33, 2025a. Notion Blog.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
Deepcoder: A fully open-source 14b coder at o3-mini level. https://pretty-radio-b75
.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-min
i-Level-1cf81902c14680b3bee5eb349a512a51, 2025b. Notion Blog.

Youssef Mroueh. Reinforcement learning with verifiable rewards: Grpo’s effective loss, dynamics,
and success amplification. arXiv preprint arXiv:2503.06639, 2025.

Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Is self-repair a silver bullet for code generation? In The Twelfth International Conference
on Learning Representations, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

11

https://doi.org/10.1145/3747588
https://web.lmarena.ai/
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan, Bing Geng, An Fu, Muhan Zeng, Ailun Yu,
Jichuan Ji, Jingyang Zhao, et al. Pangu-coder2: Boosting large language models for code with
ranking feedback. arXiv preprint arXiv:2307.14936, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K Reddy. Execution-based code gen-
eration using deep reinforcement learning. Transactions on Machine Learning Research, 2023.

Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. Repository-level prompt generation for
large language models of code. In International Conference on Machine Learning, pp. 31693–
31715. PMLR, 2023.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Yuxuan Wan, Yi Dong, Jingyu Xiao, Yintong Huo, Wenxuan Wang, and Michael R Lyu. Mrweb:
An exploration of generating multi-page resource-aware web code from ui designs. arXiv preprint
arXiv:2412.15310, 2024.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 13484–13508, 2023.

Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu, Shengyu Ye, Zhirong Wu, Xiao Liang, Yang
Wang, Junjie Li, Ziming Miao, et al. Reinforcement learning with verifiable rewards implicitly
incentivizes correct reasoning in base llms. arXiv preprint arXiv:2506.14245, 2025.

Jingyu Xiao, Yuxuan Wan, Yintong Huo, Zhiyao Xu, and Michael R Lyu. Interaction2code: How
far are we from automatic interactive webpage generation? arXiv e-prints, pp. arXiv–2411, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Zhicheng Yang, Zhijiang Guo, Yinya Huang, Yongxin Wang, Dongchun Xie, Yiwei Wang, Xiaodan
Liang, and Jing Tang. Depth-breadth synergy in rlvr: Unlocking llm reasoning gains with adaptive
exploration. arXiv preprint arXiv:2508.13755, 2025b.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu,
Xiaojian Zhong, Aoyan Li, et al. Multi-swe-bench: A multilingual benchmark for issue resolving.
arXiv preprint arXiv:2504.02605, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chenchen Zhang, Yuhang Li, Can Xu, Jiaheng Liu, Ao Liu, Shihui Hu, Dengpeng Wu, Guanhua
Huang, Kejiao Li, Qi Yi, et al. Artifactsbench: Bridging the visual-interactive gap in llm code
generation evaluation. arXiv preprint arXiv:2507.04952, 2025.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation. In Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 2471–2484, 2023.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation with
tool-integrated agent systems for real-world repo-level coding challenges. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 13643–13658, 2024.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1: WebGen-R1: GRPO for End-to-End Website Generation with a Single LLM
Input: Task distribution Dwebgen, initial policy πθ0 , frozen reference policy πref , multimodal

reward evaluator ϕVLM
ψ , group size G, clip parameter ε, learning rate η, KL coefficient β

1 for iter = 1 to Niter do
2 Sample prompt x ∼ Dwebgen

3 Initialize reward listR ← [] and θold ← θ
4 for i = 1 to G do

// Generate candidate website sequence
5 yi ∼ πθold(· | x)

// Parse, install, build, launch, and render in the
sandbox environment

6 ({Ii,p}Pp=1,Γi)← E(yi) = R(L(B(I(Web(yi)))))

// Multimodal functionality and aesthetics evaluation
7 s⟨func,vis⟩ ← ϕVLM

ψ (x, {Ii,p}Pp=1,Γi)

8 s⟨code⟩ ← CHECKCODEFORMAT(yi)
9 s⟨cot⟩ ← CHECKREASONINGFORMAT(yi)

// Final fused reward (Eq. 4)
10 Ri ← s⟨func,vis⟩ + γ s⟨code⟩ + λ s⟨cot⟩
11 Append Ri toR

// Compute group-relative normalized advantages
12 R̄← mean(R), σR ← std(R)
13 for i = 1 to G do
14 for t = 1 to |yi| do
15 Âi,t ← (Ri − R̄)/σR

16 ri,t(θ)← πθ(yi,t|x,yi,<t)
πθold (yi,t|x,yi,<t)

17 Li,t ← min
(
ri,t(θ) · Âi,t, clip(ri,t(θ), 1− ε, 1 + ε) · Âi,t)

// Aggregate GRPO loss with KL regularization to reference
model

18 JGRPO(θ)← 1
G

∑G
i=1

1
|yi|

∑|yi|
t=1

[
Li,t − β DKL

(
πθ(· | x) ∥πref(· | x)

)]
// Gradient ascent step

19 θ ← θ + η∇θJGRPO(θ)

A ALGORITHM FOR WEBGEN-R1

B DATASET STATISTIC AND ANALYSIS

WebGen-Instruct and WebGen-Bench are based on web application categories distilled from real
freelance and crowdsourcing project listings on platforms such as Upwork, Freelancer, and Proginn,
which were further expanded through expert-generated specifications. This grounding in authen-
tic industry project distributions ensures that the datasets better reflect practical web development
scenarios.

As presented in Table 2, both WEBGEN-BENCH and WEBDEV ARENA constitute highly open-
ended web generation benchmarks, yet they differ substantially in the distribution of instruction
lengths and in the coverage of web development categories. WEBGEN-BENCH comprises 101 sam-
ples with moderately long natural language instructions (median 84 tokens, mean 86.06, max 135)
and 647 executable test cases, and covers 13 heterogeneous front-end development scenarios ranging
from static and dynamic rendering to AI integration and big data handling. This configuration indi-
cates tasks with rich functional requirements and multi-modal constraints, compelling the model to
interpret specifications that couple precise functional logic with explicit visual styling instructions.
In contrast, WEBDEV ARENA contains 119 carefully selected tasks characterized by substantially
shorter instructions (median 20 tokens, mean 23.13, max 119), yet encompassing a wider thematic

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 2: Statistics for the WEBGEN-BENCH and WEBDEV ARENA benchmarks including sample
number, variations in instruction length (in tokens, measured by tiktoken’s cl100k base tokenizer),
number of test cases, technical categories, and an example.

Benchmark Samples Instruction Length # Test Cases Category Examples
Min # Median # Max # Avg.

WebGen-Bench 101 52 84 135 86.06 647

Static Page Generation
Dynamic Content Rendering
Data Visualization
Media Display
Form Systems
Authentication
Real-time Features
E-commerce
AI Integration
CRUD Operations
API Integration
Big Data
File Handling

Please develop a web-based Texas
Hold’em poker game with features
such as game lobby, table games,
and chat functionality. Users
should be able to create or join
game rooms, play Texas Hold’em,
view game records, and manage
their account information. The
game lobby should display avail-
able game rooms, current game sta-
tus, and player information. The
table game should display player
hand cards, community cards, bet-
ting information, and action but-
tons. Implement azure for the page
background and midnight blue for
the elements.

WebDev Arena 119 3 20 119 23.13 0

Website Design
Game Development
Clone Development
App Development
Web Development
UI Design
Digital Tools
App Design
AI Applications
Simulations
Creative Humor

Make me a clone of WhatsApp Chat
App.

3270 3285 3300 3315 3330 3345 3360 3375 3390
Prompt Token Length

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ob

ab
ili

ty
 D

en
si

ty

×10 2

Test Set

1500 3000 4500 6000 7500 9000 10500 12000
Response Token Length

0

1

2

3

4

5

6

7

Pr
ob

ab
ili

ty
 D

en
si

ty

×10 4

GPT-5
Claude-Sonnet-4
Gemini-2.5-Pro
DeepSeek-R1
Qwen3-32B
Qwen2.5-Coder-7B-Instruct
WebGen-R1-7B

Figure 9: Token length distributions of prompts and generated responses for several state-of-the-art
commercial LLMs on the end-to-end website generation task on WebDev Arena. For each in-
stance, the prompt is constructed by concatenating the system prompt with the corresponding
natural-language web design instruction. The response length distributions are aggregated over the
WebDev Arena, providing a quantitative characterization of input–output verbosity across models,
which is relevant for assessing model efficiency and design complexity in realistic web generation
scenarios.

spectrum, including creative design, simulations, and game/app cloning. Unlike WEBGEN-BENCH,
these tasks do not include predefined test cases, rendering evaluation criteria inherently more sub-
jective and loosely specified. Consequently, models must make higher-level design decisions and
infer multiple underspecified details, a defining aspect of open-ended generation tasks. This duality
of explicit, testable functional requirements and underspecified creative objectives produces a non-
trivial unified setting, in which attaining robust performance requires models to (i) process prompts
of variable length and varying informational density, (ii) jointly address discrete source code genera-
tion and consistent aesthetic design, and (iii) adapt to fundamentally different reward structures. The
resulting open-endedness expands the effective policy search space and induces optimization land-

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

scapes with heterogeneous and non-uniform reward geometry, making the environment an effective
stress test for generalization in RL-based web generation.

Figure 2 depicts the distributions of prompt and response lengths for several state-of-the-art LLMs in
the end-to-end website generation task. Each prompt is formed by concatenating the system prompt
with the task-specific query. Prompt lengths (see the left side of Figure 2) are concentrated between
3.2k and 3.3k tokens, whereas response length distributions (see the right side of Figure 2) vary con-
siderably across models. Claude-sonnet-4 produces the longest responses, with most outputs around
12k tokens, followed by Gemini-2.5-pro at approximately 6k tokens and Qwen3-32 at roughly 4.5k.
Interestingly, GPT-5 and our RL-trained WEBGEN-R1-7B exhibit similar distributions centered
near 3.5k tokens, closely matching DeepSeek-R1. Qwen2.5-Coder-7B-Instruct generates shorter
outputs clustered around 2k tokens. Notably, compared with Qwen2.5-Coder-7B-Instruct, which
is the base model used for our RL training, our WEBGEN-R1-7B consistently produces longer
outputs, indicating that RL optimization enhances reasoning in open-ended website generation.

C MORE IMPLEMENTATION DETAILS

Baselines. For the proprietary category, we evaluate via official API access the latest
general-purpose models, including GPT-5, GPT-4.1, o3, o4-mini, GPT-4o, Claude-Sonnet-4,
Claude-3.7-Sonnet, and Gemini-2.5-Pro. For open-source models, we include high-performing
models with publicly available weights such as DeepSeek-R1, Qwen2.5-Coder-7B-Instruct,
Qwen2.5-72B-Instruct, Qwen3-8B, Qwen3-32B, Qwen3-30B-A3B-Thinking-2507, and
Qwen3-Coder-30B-A3B-Instruct.

Hyperparameter Settings. The key hyperparameters are global batch size of 256, group size G =
8, clipping parameter ϵ = 0.2, learning rate lr = 5 × 10−6, KL-divergence coefficient β = 0.01,
reward weighting factors γ = 0.1, λ = 0.1, and rollout number nrollout = 16. The maximum
context length is set to 4,096 tokens for prompts and 8,192 tokens for model outputs. For text
generation during rollouts, we adopt a decoding temperature of 0.7 and a nucleus sampling (topp)
value of 0.95, which we empirically find to balance exploration and output determinism.

Website Generation and Execution Framework. To ensure both functional correctness and visual
design quality of LLM-generated websites, all generated website source code is executed within
an isolated and secure sandbox environment. This controlled setting supports full compilation, ex-
ecution, and rendering while preventing interference with external systems. Directly adapting or
switching between heterogeneous sandbox environments can cause significant training latency and
engineering complexity in reinforcement learning loops. To balance efficiency and reproducibil-
ity, we adopt a standardized web development framework inspired by prior works (Lu et al., 2025)
and (LMArena, 2025), defining a predefined project bootstrap and technology stack. All generated
web projects must initialize from the ‘vite-react-typescript-starter’ template 4, strictly preserving its
directory structure, entry points, and configuration conventions. In cases where template defaults
conflict with downstream requirements, necessary modifications or additional files must be intro-
duced to ensure complete compliance. The core stack consists of React (function components with
hooks where applicable), TypeScript with strict typing, Vite as both build and development tool, and
Tailwind CSS for styling. For complex or reusable user interface elements, the Ant Design (‘antd’)
library is mandated, providing consistent styling and interaction patterns. Any usage of ‘shadcn/ui’,
‘shadcn-ui’, or similar variants is explicitly prohibited to avoid style inconsistencies. Routing func-
tionality is implemented through React Router DOM v6. In scenarios where visualizations such
as charts or graphs are explicitly requested, Recharts is the only permitted charting library, ensur-
ing predictable rendering behaviors and compatibility across environments. This unified framework
eliminates variability during rendering and interaction phases, thereby enabling stable functional
and aesthetic evaluation in RL training loops.

Supervised Fine-Tuning (SFT). The training pipeline begins with a supervised fine-tuning stage to
provide a strong initialization for subsequent RL optimization. From the WebGen-Instruct dataset,
we sample 600 instances based on the ‘application type’ data field to preserve the original domain
distribution. This sampling ensures that the model receives an equal representation of application

4https://github.com/vitejs/vite/tree/main/packages/create-vite/template
-react-ts

16

https://github.com/vitejs/vite/tree/main/packages/create-vite/template-react-ts
https://github.com/vitejs/vite/tree/main/packages/create-vite/template-react-ts

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

scenarios, mitigating the risk of distribution shift and maintaining generalization across diverse web
development tasks. For each sampled task-specific query, website generation data is distilled from
the advanced model ‘GPT-4.1-2025-04-14’ under controlled inference parameters, with the tem-
perature set to 0.6 to balance creativity and determinism, top p set to 0.95 for controlled sampling
diversity, and a maximum token limit of 8,192 to ensure complete project generation within a single
inference step. We then fine-tune the Qwen2.5-Coder-7B-Instruct model using the Open-R1 train-
ing framework 5. Training hyperparameters include a learning rate of 1.0× 10−5, batch size of 32,
maximum sequence length of 32k tokens, warmup ratio of 0.03, and 2 training epochs.

UI Functional Evaluation with WebVoyager. Following (Lu et al., 2025), we employ WebVoy-
ager 6, a large multimodal model (LMM) powered web agent capable of executing user instructions
end-to-end by interacting directly with rendered websites. WebVoyager performs pre-defined inter-
active behaviors such as button clicks, form submissions, and multi-page navigation, while observ-
ing DOM changes and UI responses (He et al., 2024a). The Functional Success Rate (FSR) is com-
puted as the proportion of tasks that successfully pass all behavior checks defined in WebGen-Bench
benchmark. This automated interaction testing provides a scalable and reproducible evaluation of
functional correctness of generated websites without requiring human annotators.

Vision–Language–Model-based Reward Model. Inspired by prior work Lu et al. (2025) demon-
strating the reliability and efficiency of GPT-4o for webpage design aesthetic assessment, we incor-
porate GPT-4o-1120 as the vision–language–model-based reward model. During RL training, the
rendered multiple page images, together with the original user request, is passed to GPT-4o-1120
for joint functional and aesthetic evaluation. The model produces a scalar reward within the discrete
range [0, 5], where higher scores denote better overall compliance with the requested functionality
and visual design quality. This reward model enables simultaneous optimization toward both func-
tional correctness and aesthetic appeal, ensuring that generated websites are not only operational but
also meet professional design standards. The joint optimization objective is critical for real-world
deployment scenarios in which usability and appearance are equally important, thereby aligning
LLM outputs more closely with user-centric quality expectations.

Prompt Design. We present the full system prompt used for website generation in Prompt G.1, the
reward evaluation prompts for assessing functionality and visual aesthetics in Prompt G.2, and the
prompt employed for WebDev Arena data selection in Prompt G.3.

D RELATED WORK

D.1 LARGE LANGUAGE MODELS FOR PROJECT-LEVEL CODE GENERATION

Large language models (LLMs) have demonstrated remarkable proficiency in functional-level code
generation, achieving near-human performance in competitive programming and standard bench-
marks such as HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), and IOI problems (Li
et al., 2022). Advances in instruction tuning (Ouyang et al., 2022; Wang et al., 2023; Chung et al.,
2024) and tool-augmented prompting have further enhanced zero-shot and few-shot code genera-
tion capabilities. However, these achievements predominantly concern single-file or self-contained
scripts, often constrained to producing one function or module per task. Such settings abstract
away complexities of real-world software engineering, where projects span multiple files, require
intricate inter-module dependencies, and must adhere to both functional and non-functional require-
ments. Compared to functional-level coding, project-level generation poses qualitatively different
challenges. Prior attempts to extend LLMs to multi-file outputs include hierarchical prompting
(Shrivastava et al., 2023; Zhang et al., 2023), iterative refinement (Chen et al., 2023; Olausson et al.,
2023; Shinn et al., 2024), and agent-based pipelines (Li et al., 2024; Zhang et al., 2024; Luo et al.,
2025a). In the specific context of web development, benchmarks such as WebDev Arena (LMArena,
2025) provide automated evaluation, but their scope is typically limited to single-page static sites,
neglecting the broader demands of large-scale, interactive, multi-page applications. Multi-agent ap-
proaches partition functionality across specialized LLMs, such as front-end generation, API design,
and testing. However, integration often suffers from inconsistent shared states and fragile inter-

5https://github.com/huggingface/open-r1
6https://github.com/MinorJerry/WebVoyager

17

https://github.com/huggingface/open-r1
https://github.com/MinorJerry/WebVoyager

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0
 (Code Format Weight)

0.0

0.2

0.4

0.6

0.8

1.0

 (R
ea

so
ni

ng
 F

or
m

at
 W

ei
gh

t)

0

1

2

3

4

5

Figure 10: Performance heatmaps over (γ, λ)
configurations in the RL training, showing the
joint effects of web code format and reasoning
format rewards on AAS.

0 2 4
Reward Score

0

2

4

H
um

an
 R

at
in

g

Pearson : r = 0.903, p = 7.8e 45
Spearman : = 0.888, p = 2.2e 41

Figure 11: Alignment between reward model
evaluations and human ratings on WebGen-
Bench websites, with strong correlations (Pear-
son r = 0.903, Spearman ρ = 0.888) indicating
reliable automatic assessment of functional cor-
rectness and aesthetic quality.

component linking. These shortcomings may result in generated projects that compile but fail to
align with the holistic end-to-end specifications of real-world sites.

D.2 REINFORCEMENT LEARNING FOR CODE GENERATION

Reinforcement Learning (RL) has emerged as a crucial technique to align LLM behavior with hu-
man preferences and task-specific objectives, as exemplified by RLHF (Ouyang et al., 2022; Achiam
et al., 2023) and RLAIF (Bai et al., 2022; Lee et al., 2023). Yet, applying RL to open-ended
code generation introduces unique obstacles such as the vast search space, undefined or ambigu-
ous ground truths, and outputs that cannot be trivially benchmarked against static gold standards.
Reinforcement Learning with Verifiable Rewards (RLVR) (Shao et al., 2024; Guo et al., 2025; Team
et al., 2025; Yu et al., 2025) addresses part of this issue via deterministic, binary success checks
(e.g., unit test pass rates), which work well for algorithmic correctness but fail to capture subjective
quality dimensions such as style, maintainability, or visual experience. Existing RL applications in
code (Le et al., 2022; Shen et al., 2023; Shojaee et al., 2023; Dou et al., 2024; Luo et al., 2025b)
thus typically optimize for purely functional scores, leaving large gaps for domains like website
generation where aesthetics and interaction design are first-class objectives. While prior research
has advanced LLM-based code generation, none simultaneously addresses multi-file structural co-
herence, execution validity, and visual quality within an integrated RL framework.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 WEB CODE FORMAT AND REASONING FORMAT REWARDS

We investigate the role of two complementary reward signals in our multi-objective RL setup. The
first is the web code format reward s⟨code⟩, which promotes the generation of syntactically correct,
structurally coherent, and executable web code. The second is the reasoning format reward s⟨cot⟩,
designed to encourage logically consistent, step-by-step reasoning traces that guide the code gen-
eration process. The relative contributions of these rewards are modulated by weighting factors γ
for web code format and λ for reasoning format. To systematically examine their interaction, we
evaluate seven representative (γ, λ) configurations, with each weight taking values in {0, 0.1, 1.0}.
These settings span low–low, low–high, high–low, and high–high regions of the reward space. All
models are trained under identical conditions and assessed using our proposed AAS metric. Fig-
ure 10 presents the resulting (γ, λ)-conditioned heatmaps. The observed trends indicate that in-
creasing γ consistently boosts AAS, highlighting the importance of optimizing web code structure
for functional correctness and structural validity. In contrast, increasing λ primarily enhances AAS

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

by improving the coherence and logical rigor of design rationales, which facilitates better layout
organization and more structured visual composition. These results suggest that the two reward
components act synergistically, with web code format optimization ensuring technical soundness,
and reasoning format shaping design clarity and aesthetic consistency.

E.2 HUMAN ALIGNMENT STUDY ON WEBDEV ARENA

Consistent with the analysis presented in Figure 7, we extend our evaluation to the WebDev Arena
benchmark, which contains instruction distributions and task categories that are not included in
WebGen-Instruct (training data) and WebGen-Bench (test data). We sample 119 website instances
from this benchmark, as described in Section C. Each instance is independently evaluated by three
experienced front-end practitioners, who assign quantitative scores for functionality and visual aes-
thetics on a discrete scale from 0 to 5 following standardized evaluation protocols. The Human
scores are aggregated across annotators and then compared with the outputs of our reward model.
As shown in Figure 11, there is a strong and statistically significant alignment between reward
scores and human judgments, with Pearson’s correlation coefficient r = 0.903 (p = 7.8 × 10−45)
and Spearman’s rank correlation ρ = 0.888 (p = 2.2 × 10−41). The close agreement between
these correlation measures indicates that the vision–language reward model’s assessments are highly
monotonic with respect to human ratings and approximately linear in scale. Moreover, the high con-
sistency between the results on WebDev Arena as an out-of-distribution evaluation set and those
on WebGen-Bench as an in-distribution benchmark provides strong empirical evidence that the re-
ward model used in our reinforcement learning process is robust and exhibits minimal risk of reward
hacking.

40

60

80

100

N
um

be
r o

f T
as

ks

Reasoning Format

40

60

80

100

N
um

be
r o

f T
as

ks

Code Format

0 1 2 3 4 5
0

20

40

60

80

N
um

be
r o

f T
as

ks

Functionality and Aesthetics
GPT-5
Claude-Sonnet-4
Gemini-2.5-Pro

DeepSeek-R1
Qwen2.5-Coder-7B
Qwen2.5-72B-Instruct

Qwen3-32B
Qwen3-Coder-30B-A3B-Instruct
WebGen-R1-7B (Ours)

Figure 12: Website quality score distributions for multiple advanced proprietary and open-source
models on WebGen-Bench. WebGen-R1 demonstrates perfect reasoning and code format adherence,
consistently high functionality and aesthetics scores, and robust generation reliability, validating the
effectiveness of reinforcement learning with explicit format and quality-oriented rewards.

E.3 WEBSITE QUALITY SCORE DISTRIBUTION AND ANALYSIS

To obtain an in-depth understanding of model capabilities in the end-to-end multi-page website gen-
eration task, we conduct a detailed evaluation across both reasoning format adherence and code
format compliance, as well as the distribution of functionality and aesthetics scores on two bench-
marks, WebGen-Bench and WebDev-Arena. This analysis is performed on a diverse set of advanced
proprietary and open-source models, including our proposed WebGen-R1, with the goal of provid-
ing deeper insight into their generation reliability and overall website quality. In terms of reasoning

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

40

60

80

100

120

N
um

be
r o

f T
as

ks

Reasoning Format

60

80

100

120

N
um

be
r o

f T
as

ks

Code Format

0 1 2 3 4 5
0

20

40

60

80

N
um

be
r o

f T
as

ks

Functionality and Aesthetics
GPT-5
Claude-Sonnet-4
Gemini-2.5-Pro

DeepSeek-R1
Qwen2.5-Coder-7B
Qwen2.5-72B-Instruct

Qwen3-32B
Qwen3-Coder-30B-A3B-Instruct
WebGen-R1-7B (Ours)

Figure 13: Website quality score distributions for multiple advanced proprietary and open-source
models on WebDev Arena. WebGen-R1 demonstrates perfect reasoning and code format adherence,
consistently high functionality and aesthetics scores, and robust generation reliability, validating the
effectiveness of reinforcement learning with explicit format and quality-oriented rewards.

format adherence, results in Figures 12 and 13 show that GPT-5 and WebGen-R1 achieve perfect
compliance on both benchmarks, consistently producing outputs that fully conform to the prede-
fined <think >...</think><answer>...</answer> structure across all tasks. This
indicates a high degree of controllability and reliability in structured reasoning output. Claude-
Sonnet-4, on the other hand, demonstrates reduced adherence due primarily to the omission of clos-
ing tags, such as missing </answer>, which was confirmed through careful manual inspection.
DeepSeek-R1 does not report usable reasoning format result due to internal configuration docu-
mented in the public issue tracker 7. Interestingly, Qwen3-32B reliably produces the first <think
>...</think> block but occasionally omits the second <answer>...</answer> block,
instead completing the answer directly. Similarly, Qwen3-Coder-30B-A3B-Instruct does not employ
the prescribed two-block <think >...</think><answer>...</answer> sequence.
Instead, it frequently uses a hybrid structure starting with <tool call >...</tool call >
followed by <answer>...</answer>, and in some cases omits any explicit reasoning phase,
proceeding directly to the final output. For code format compliance, WebGen-R1 again achieves a
perfect 100% success rate on both benchmarks. This outcome can be directly attributed to the ex-
plicit code format reward incorporated into our reinforcement learning objective, which consistently
biases the model toward generating code in the exact target structure. GPT-5, Gemini-2.5-Pro,
and Qwen2.5-72B-Instruct also exhibit strong adherence in this aspect, indicating that zero-shot
prompting can produce highly reliable code formatting behavior owing to their powerful instruction-
following capabilities. When examining the distribution of functionality and aesthetics scores, we
observe that our WebGen-R1 attains the highest number of tasks receiving a score of 4 across both
benchmarks. This suggests that WebGen-R1 has acquired transferable abstractions at both archi-
tectural and stylistic levels, enabling it to produce functional and visually appealing websites even
in domains not encountered during training. Furthermore, in the distribution of maximum scores,
tasks scoring 5 are most frequently achieved by Gemini-2.5-Pro, highlighting its superior ability to
simultaneously satisfy functional requirements and achieve high aesthetic quality under the given
task constraints. Overall, this multi-faceted analysis reveals that our WebGen-R1 exhibits both strict
structural compliance and consistently high-quality generation, while also shedding light on sub-
tle deviations and nuances in other competitive models. These insights confirm that reinforcement

7https://github.com/open-webui/open-webui/issues/9488

20

https://github.com/open-webui/open-webui/issues/9488

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

learning with explicit format and quality-oriented rewards can substantially improve reliability and
performance in complex website generation tasks.

E.4 REWARD DYNAMICS AND OPTIMIZATION STABILITY

To better understand how reinforcement learning fine-tuning affects the balance between functional
correctness and visual appeal in website generation, we analyze the evolution of three reward com-
ponents during RL training, providing insights into the interaction between multiple objectives and
highlighting factors that influence the stability of RL optimization. We track the three distinct re-
ward components we design during training, namely s⟨func,vis⟩ for functional correctness and visual
design quality, s⟨code⟩ for code formatting compliance, and s⟨cot⟩ for correctness in reasoning for-
mat. In addition, we examine how the three reward components are affected under different settings,
including the weighting coefficients associated with s⟨code⟩ and s⟨cot⟩, the group size parameter in
GRPO’s rollout sampling, and different fine-tuning strategies including RL-only and SFT+RL. The
corresponding trends are illustrated in Figure 14 (a), (b), and (c). Our observations can be summa-
rized as follows:

• When the coefficient γ controlling s⟨code⟩ is set to zero, the overall code formatting remains
largely unaffected. This suggests that rewards targeting functional and visual aspects im-
plicitly promote code formatting consistency, possibly because improvements in semantics
and structure encourage properly formatted output. In contrast, setting λ = 0 for s⟨cot⟩
leads to instability in reasoning format compliance, with a pronounced collapse in the later
stages of training followed by partial recovery, indicating that omitting format-specific re-
wards for reasoning can disrupt optimization stability.

• Increasing the group size in GRPO generally results in higher mean values for all three
rewards and smoother convergence profiles. For example, with group size = 2, we observe
volatile fluctuations and temporary collapses around step 200. Larger group sizes, such as
32, improve stability for s⟨func,vis⟩ and s⟨code⟩, yet the improvement for s⟨cot⟩ becomes less
pronounced. This suggests diminished benefits due to over-expansion of the exploration
space, where low-quality samples might become more prevalent.

• The SFT+RL strategy offers clear advantages over RL-only. For s⟨func,vis⟩, RL-only begins
to converge around step 60, whereas SFT+RL continues to improve steadily beyond that
point, reaching higher final values. For s⟨code⟩ and s⟨cot⟩, the SFT+RL setting demonstrates
greater stability, while RL-only exhibits late-stage oscillations and declines, particularly in
s⟨cot⟩. These results indicate that initialization via supervised fine-tuning equips the model
with robust formatting adherence, while subsequent RL optimization expands exploration
and leverages reward signals to discover and generate higher-quality, aesthetically refined
websites.

Overall, this analysis underscores that fine-grained reward design, appropriate group sizing, and hy-
brid SFT+RL training are crucial for stabilizing multi-objective optimization in LLM-based website
generation. The observed dynamics highlight that certain objectives are implicitly reinforced by oth-
ers, whereas others require explicit reward shaping to prevent collapse, offering valuable guidance
for future multi-objective RL frameworks.

E.5 REASONING BEHAVIOR IN WEBSITE GENERATION

We conduct a qualitative comparison of reasoning traces and find that, under identical task instruc-
tions sampled from WebGen-Bench benchmark, our WebGen-R1 produces a more complete and
implementation-ready plan for the credit repair lead-generation website, as shown in Figure 16. In
the context of front-end development, the advantages are clear. WebGen-R1 explicitly maps user re-
quirements to a structured routing scheme and coherent page-component hierarchy, ensuring main-
tainability and scalability. It integrates styling decisions directly into the architectural plan, spec-
ifying how Tailwind CSS overrides and Ant Design components achieve consistent visual themes
and responsiveness. Accessibility is embedded at the reasoning stage through ARIA attributes and
keyboard navigation, a consideration absent in the baseline model. State management is also more
concrete, with precise handling of client-side data storage and strict TypeScript typing for form mod-
els, which increases robustness in generated code. These elements, specifically clear route planning,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 200 400
Steps

1

2

3
s <

fu
nc

,v
is

>

= 0.0, = 0.0
= 0.0, = 0.1
= 0.0, = 1.0

= 0.1, = 0.0
= 0.1, = 0.1
= 0.1, = 1.0

= 1.0, = 0.0
= 1.0, = 0.1
= 1.0, = 1.0 0 200 400

Steps

0.25

0.50

0.75

1.00

s <
co

de
>

= 0.0, = 0.0
= 0.0, = 0.1
= 0.0, = 1.0

= 0.1, = 0.0
= 0.1, = 0.1
= 0.1, = 1.0

= 1.0, = 0.0
= 1.0, = 0.1
= 1.0, = 1.0

(a) Reward weighting
coefficients.

0 200 400
Steps

0.6

0.8

1.0

s <
co

t>

= 0.0, = 0.0
= 0.0, = 0.1
= 0.0, = 1.0

= 0.1, = 0.0
= 0.1, = 0.1
= 0.1, = 1.0

= 1.0, = 0.0
= 1.0, = 0.1
= 1.0, = 1.0

0 200 400
Steps

0

1

2

3

s <
fu

nc
,v

is
>

Group Size=2
Group Size=4
Group Size=8
Group Size=16
Group Size=32

0 200 400
Steps

0.25

0.50

0.75

1.00

s <
co

de
>

Group Size=2
Group Size=4
Group Size=8
Group Size=16
Group Size=32

(b) GRPO group size.

0 200 400
Steps

0.4

0.6

0.8

1.0

s <
co

t>

Group Size=2
Group Size=4
Group Size=8
Group Size=16
Group Size=32

0 200 400
Steps

0

1

2

3

s <
fu

nc
,v

is
>

RL only
SFT + RL

0 200 400
Steps

0.25

0.50

0.75

1.00

s <
co

de
>

RL only
SFT + RL

(c) Fine-tuning strategy.

0 200 400
Steps

0.25

0.50

0.75

1.00

s <
co

t>

RL only
SFT + RL

Figure 14: Reward trajectories for functional-visual quality s⟨func,vis⟩, code formatting s⟨code⟩, and
reasoning format s⟨cot⟩ under different weighting coefficients, GRPO group sizes, and fine-tuning
strategies, showing that multi-objective stability benefits from hybrid SFT+RL and careful reward
component design.

style-system integration, accessibility, and state handling, are central to modern front-end engineer-
ing, and the reasoning path of WebGen-R1 demonstrates stronger alignment with production-grade
development practices than the baseline.

F THEORETICAL ANALYSIS OF GRPO WITH INCREASING GROUP SIZE

We provide a theoretical justification of why, in Group Relative Policy Optimization (GRPO) (Shao
et al., 2024; Guo et al., 2025), increasing the group size G yields policy gradient estimates that
asymptotically converge to the analytic optimal-baseline gradient, and why this convergence leads
to improved reinforcement learning optimization performance.

We start by restating the GRPO setting more formally. For a given question-answer pair (q, a) from
dataset D, the behavior policy πθold samples a group of G responses {oi}Gi=1, with each response
oi = (oi,1, oi,2, . . . , oi,|oi|). For each token position t within oi, the group-relative normalized
advantage is defined as:

Âi,t ≜
Ri −mean({Rj}Gj=1)

std({Rj}Gj=1)
, (8)

where Ri is the (scalar) reward obtained by the i-th response. This normalization eliminates the
need for a separately learned value function and ensures that within the group, credit assignment is
relative to other members.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 200 400
Steps

0

1

2

3

(s
<

fu
nc

,v
is

>
)

Group Size=2
Group Size=4
Group Size=8
Group Size=16
Group Size=32

0 200 400
Steps

1.0

1.5

(s
<

fu
nc

,v
is

>
)

Group Size=2
Group Size=4
Group Size=8
Group Size=16
Group Size=32

0 200 400
Steps

0.25

0.50

0.75

1.00

(s
<

co
de

>
)

Group Size=2
Group Size=4
Group Size=8
Group Size=16
Group Size=32

0 200 400
Steps

0.2

0.4

(s
<

co
de

>
)

Group Size=2
Group Size=4
Group Size=8
Group Size=16
Group Size=32

Figure 15: Effect of increasing G on reinforcement learning performance. Higher values of G
yield reward curves with elevated mean rewards and reduced variance across training episodes,
demonstrating enhanced learning stability and accelerated convergence of the RL training.

Following the PPO-style clipping strategy with an explicit KL penalty, the GRPO objective can be
expressed as:
JGRPO(θ) = E(q,a)∼D, {oi}Gi=1∼πθold (·|q) 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
ri,t(θ) Âi,t, clip(ri,t(θ), 1− ε, 1 + ε) Âi,t

)
− β DKL(πθ ∥πref)

) ,

(9)
where the importance ratio is given by:

ri,t(θ) ≜
πθ(oi,t | q, oi,<t)
πθold(oi,t | q, oi,<t)

. (10)

Analytical Gradient with Optimal Baseline. In the ideal case (without clipping and KL penalty),
policy gradient theory states that the gradient of the expected reward objective with an optimal
variance-minimizing baseline is:

g⋆ = Eo∼πθold (·|q), t
[
∇θ log πθ(ot | q, o<t)

R(o)− b⋆

σR

]
, (11)

where b⋆ = E[R(o)] is the optimal constant baseline and σR is the standard deviation of R(o) under
πθold . The normalization by σR is included to match Eq. 8. This g⋆ represents the oracle gradient
direction with minimal variance.

GRPO gradient estimator. From Eq. 9–Eq. 10 (without clipping and KL terms for the theoretical
analysis), the per-batch gradient estimate under GRPO can be expressed as:

ĝ(G) =
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

zi,t
Ri −R

(G)

S(G)
, (12)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

where zi,t ≜ ∇θ log πθ(oi,t | q, oi,<t), R
(G)

≜ 1
G

∑G
j=1 Rj is the sample mean reward over the

group, and S(G) ≜
√

1
G

∑G
j=1(Rj −R

(G)
)2 is the sample standard deviation.

Consistency of the Group-relative Baseline. Note that R
(G)

and S(G) are unbiased and consis-
tent estimators of the true mean b⋆ and standard deviation σR, respectively, provided E[|R(o)|2] <
∞. Specifically, by the strong law of large numbers:

R
(G) a.s.−−→ b⋆, S(G) a.s.−−→ σR,

1

G|oi|

G∑
i=1

|oi|∑
t=1

zi,t
a.s.−−→ 0. (13)

The last identity follows from the score function property E[∇θ log πθ(ot | · · ·)] = 0.

Convergence of ĝ(G) to g⋆. We can decompose the error between the GRPO gradient estimate
and the analytical gradient:

ĝ(G) − g⋆ =

 1

G

∑
i,t

zi,t
Ri − b⋆

σR
− E

[
zt
R− b⋆

σR

]
︸ ︷︷ ︸

ε
(G)
1

+

(
1

S(G)
− 1

σR

)
1

G

∑
i,t

zi,t(Ri − b⋆)︸ ︷︷ ︸
ε
(G)
2

− R
(G) − b⋆

S(G)
· 1
G

∑
i,t

zi,t︸ ︷︷ ︸
ε
(G)
3

. (14)

By Eq. 13 and the assumption of bounded second moments, each ε
(G)
k converges to 0 almost surely

as G→∞. Therefore:
ĝ(G) a.s.−−→ g⋆, (15)

showing that with large group size, GRPO recovers the oracle optimal-baseline policy gradient.

Variance Reduction and Improved Optimization. Applying the multivariate central limit theo-
rem to Eq. 14, we have: √

G
(
ĝ(G) − g⋆

)
D−→ N (0,Σg) ,

where Σg is the finite covariance matrix of the per-sample gradient contributions. This implies:

Var
[
ĝ(G)

]
= O

(
1

G

)
. (16)

A smaller group-level gradient variance directly improves the stability of gradient ascent, allowing
for larger step sizes without instability, thereby accelerating convergence to high-reward policies.
This establishes a direct theoretical link between G and reinforcement learning optimization quality
in GRPO: larger G not only yields unbiased and consistent recovery of g⋆, but also ensures that
training dynamics benefit from reduced stochasticity, leading to more monotonic and efficient policy
improvement.

Extension to PPO Clipping and KL Penalty. The above convergence proof relies on an idealized
setting where both the clipping term min

(
ri,t(θ)Âi,t, clip(ri,t(θ), 1 − ε, 1 + ε)Âi,t

)
and the KL

penalty term in Eq. 9 are omitted. We now extend the analysis to the practical GRPO objective Eq.
9, where these terms impact both bias and variance of the gradient estimate.

Let fclip(r, Â) denote the clipped surrogate term:

fclip(r, Â) ≜ min
(
r Â, clip(r, 1− ε, 1 + ε) Â

)
.

With the KL term included, the per-token contribution to the gradient becomes:

g̃(G) =
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

[
∇θfclip

(
ri,t(θ), Âi,t

)
− β∇θDKL

(
πθ(· | q, oi,<t) ∥πref(· | q, oi,<t)

)]
.

(17)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Bias from Clipping. Observe that in expectation, replacing ri,t(θ)Âi,t with fclip
(
ri,t(θ), Âi,t

)
yields a lower bound on the unclipped surrogate objective (Schulman et al., 2017), i.e.,

E
[
fclip

(
ri,t(θ), Âi,t

)]
≤ E

[
ri,t(θ) Âi,t

]
, (18)

with the gap vanishing as ε→∞. This implies that g̃(G) is in general a biased estimator of g⋆ even
for G→∞, with bias magnitude proportional to the probability mass of {(i, t) : |ri,t(θ)− 1| > ε}.

Nevertheless, this clipping-induced bias depends only on the distribution of (ri,t, Âi,t) and is or-
thogonal to the group size G. Hence the variance reduction effect from increasing G established in
Eq. 16 continues to hold in the clipped case, yielding:

Var
[
g̃(G)

]
= O

(
1

G

)
, (19)

while the bias term remains O(1) in G unless ε is increased or the policy nears the trust region
|ri,t − 1| ≤ ε almost surely. Therefore, larger G still improves stability and optimization efficiency,
but the achievable optimum is shifted by the clipping bias.

Effect of the KL Penalty. The KL term in Eq. 17 can be viewed as adding a deterministic gradient
component

−β E(q,o<t) [∇θDKL (πθ(· | q, o<t) ∥πref(· | q, o<t))] ,
which biases the ascent direction toward staying close to πref and can be interpreted as the gradient
of a regularized objective:

max
θ

E[R]− β E[DKL(πθ ∥πref)].

Because the KL term is a smooth deterministic functional of πθ, its gradient variance is negligible
compared to that of the stochastic surrogate term. As G increases, the stochastic variance from the
advantage-weighted likelihood term falls as O(1/G) per Eq. 19, hence the relative influence of the
KL penalty becomes more pronounced in the total gradient, effectively stabilizing policy updates in
large-G regimes.

Combined Convergence Behavior. Putting this together, the gradient estimate under practical
GRPO with clipping and KL penalty can be written as:

g̃(G) = g⋆ + δclip + δKL + ξ(G), (20)

where δclip and δKL are G-independent bias terms due to clipping and regularization, and ξ(G) is a
zero-mean noise term with Var[ξ(G)] = O(1/G). Therefore:

lim
G→∞

g̃(G) = g⋆ + δclip + δKL a.s.,

and increasing G monotonically improves optimization stability and convergence speed by reducing
Var[g̃(G)], even though the asymptotic limit may differ from the exact analytic gradient due to
practical bias terms. Importantly, in high-G regimes, the training dynamics approximate those of
a deterministic gradient ascent on the regularized clipped objective, which is highly favorable for
stable policy improvement in large-scale LLM fine-tuning.

G PROMPT DESIGN

G.1 SYSTEM PROMPT FOR WEBSITE GENERATION

You are an expert frontend engineer with extensive experience in React←↩
, TypeScript, Tailwind CSS, and Vite. Your primary responsibility ←↩
is to automatically generate complete, production-ready, browser-←↩
executable web applications for execution in a browser-based ←↩
WebContainer environment. All generated projects must strictly ←↩
adhere to best practices in modern frontend development, UI/UX ←↩
design, and maintainability.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Environment & Execution Constraints:
- WebContainer: Assume browser-based Node.js execution. No native ←↩

binaries, pip, g++, or system-wide dependencies.
- Files & Shell: Interact with filesystem via explicit shell commands ←↩

as described in the output manifest.
- Git: Unavailable-generate every required file from scratch.
- No Partial Output: Always write full content for every generated ←↩

file.
- Scripting: Prefer Node.js scripts when scripting is necessary.
- Database: Support only SQLite/libsql-if persistence required, use ←↩

these exclusively.
- No Unlisted Paths/Patterns: Never create or reference files or ←↩

folders outside the prescribed structure.

Project Bootstrap & Tech Stack:
- Template Foundation: Every project must start from the ‘vite-react-←↩

typescript-starter‘ template, strictly following its directory, ←↩
entry point, and configuration conventions. If following guidelines←↩
conflict with the template defaults, you must modify/add files to ←↩

fully satisfy the requirements below.
- Core Technologies:
- React (function components & hooks where possible)
- TypeScript (strive for strict, precise typing everywhere)
- Vite (as the build and development tool)
- Tailwind CSS (for styling)
- UI Libraries:
- ‘antd‘ (Ant Design) (preferred for all reusable or complex UIs)
- Do NOT use ‘shadcn/ui‘, ‘shadcn-ui‘, or ‘shadcnui‘
- Routing: React Router DOM v6
- Charts: Use Recharts only if charts/graphs are explicitly requested.

Base Template ‘vite-react-typescript-starter‘:
‘‘‘xml
<webArtifact id="unique-id" title="Project Title">
<!-- Core Configuration Files from Starter Template -->
<webAction type="file" filePath="eslint.config.js">
import js from ’@eslint/js’
import globals from ’globals’
import reactHooks from ’eslint-plugin-react-hooks’
import reactRefresh from ’eslint-plugin-react-refresh’
import tseslint from ’typescript-eslint’

export default tseslint.config(
{ ignores: [’dist’] },
{

extends: [js.configs.recommended, ...tseslint.configs.recommended],
files: [’**/*.{ts,tsx}’],
languageOptions: {
ecmaVersion: 2020,
globals: globals.browser,

},
plugins: {
’react-hooks’: reactHooks,
’react-refresh’: reactRefresh,

},
rules: {
...reactHooks.configs.recommended.rules,
’react-refresh/only-export-components’: [

’warn’,
{ allowConstantExport: true },

],
},

},
)
</webAction>

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

<webAction type="file" filePath="index.html">
<!doctype html>
<html lang="en">
<head>

<meta charset="UTF-8" />
<link rel="icon" type="image/svg+xml" href="/vite.svg" />
<meta name="viewport" content="width=device-width, initial-scale←↩
=1.0" />

<title>Vite + React + TS</title>
</head>
<body>

<div id="root"></div>
<script type="module" src="/src/main.tsx"></script>

</body>
</html>
</webAction>

<webAction type="file" filePath="package.json">
{
"name": "vite-react-typescript-starter",
"private": true,
"version": "0.0.0",
"type": "module",
"scripts": {

"dev": "vite",
"build": "vite build",
"lint": "eslint .",
"preview": "vite preview"

},
"dependencies": {

"lucide-react": "ˆ0.344.0",
"react": "ˆ18.3.1",
"react-dom": "ˆ18.3.1",
"react-router-dom": "ˆ6.3.0"

},
"devDependencies": {

"@eslint/js": "ˆ9.9.1",
"@types/react": "ˆ18.3.5",
"@types/react-dom": "ˆ18.3.0",
"@vitejs/plugin-react": "ˆ4.3.1",
"autoprefixer": "ˆ10.4.18",
"eslint": "ˆ9.9.1",
"eslint-plugin-react-hooks": "ˆ5.1.0-rc.0",
"eslint-plugin-react-refresh": "ˆ0.4.11",
"globals": "ˆ15.9.0",
"postcss": "ˆ8.4.35",
"tailwindcss": "ˆ3.4.1",
"typescript": "ˆ5.5.3",
"typescript-eslint": "ˆ8.3.0",
"vite": "ˆ5.4.2"

}
}
</webAction>

<webAction type="file" filePath="postcss.config.js">
export default {
plugins: {

tailwindcss: {},
autoprefixer: {},

},
}
</webAction>

<webAction type="file" filePath="src/App.tsx">

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

import React from ’react’

function App() {
return (

<div className="min-h-screen bg-gray-100 flex items-center justify-←↩
center">
<p>Start prompting (or editing) to see magic happen</p>

</div>
)
}

export default App
</webAction>

<webAction type="file" filePath="src/index.css">
@tailwind base;
@tailwind components;
@tailwind utilities;
</webAction>

<webAction type="file" filePath="src/main.tsx">
import { StrictMode } from ’react’
import { createRoot } from ’react-dom/client’
import App from ’./App.tsx’
import ’./index.css’

createRoot(document.getElementById(’root’)!).render(
<StrictMode>

<App />
</StrictMode>,
)
</webAction>

<webAction type="file" filePath="src/vite-env.d.ts">
/// <reference types="vite/client" />
</webAction>

<webAction type="file" filePath="tailwind.config.js">
/** @type {import(’tailwindcss’).Config} */
export default {
content: [

"./index.html",
"./src/**/*.{js,ts,jsx,tsx}",

],
theme: {

extend: {},
},
plugins: [],
}
</webAction>

<webAction type="file" filePath="tsconfig.app.json">
{
"compilerOptions": {

"target": "ES2020",
"useDefineForClassFields": true,
"lib": ["ES2020", "DOM", "DOM.Iterable"],
"module": "ESNext",
"skipLibCheck": true,
"moduleResolution": "bundler",
"allowImportingTsExtensions": true,
"isolatedModules": true,
"moduleDetection": "force",
"noEmit": true,
"jsx": "react-jsx",

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

"strict": true,
"noUnusedLocals": true,
"noUnusedParameters": true,
"noFallthroughCasesInSwitch": true

},
"include": ["src"]
}
</webAction>

<webAction type="file" filePath="tsconfig.json">
{
"files": [],
"references": [

{ "path": "./tsconfig.app.json" },
{ "path": "./tsconfig.node.json" }

]
}
</webAction>

<webAction type="file" filePath="tsconfig.node.json">
{
"compilerOptions": {

"target": "ES2022",
"lib": ["ES2023"],
"module": "ESNext",
"skipLibCheck": true,
"moduleResolution": "bundler",
"allowImportingTsExtensions": true,
"isolatedModules": true,
"moduleDetection": "force",
"noEmit": true,
"strict": true,
"noUnusedLocals": true,
"noUnusedParameters": true,
"noFallthroughCasesInSwitch": true

},
"include": ["vite.config.ts"]
}
</webAction>

<webAction type="file" filePath="vite.config.ts">
import { defineConfig } from ’vite’
import react from ’@vitejs/plugin-react’

export default defineConfig({
plugins: [react()],
optimizeDeps: {

exclude: [’lucide-react’],
},
server: {

allowedHosts: [
’.csb.app’

]
}
})
</webAction>

<!-- Installation Command -->
<webAction type="shell">npm install</webAction>

<!-- Start Command -->
<webAction type="start">npm run dev</webAction>
</webArtifact>
‘‘‘

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Implementation Standards:
Visual & Interaction Design:
- Use Tailwind utility classes for styling. Leverage responsive design←↩

and accessible color schemes out of the box.
- All interactive components must:
- Be functionally self-contained (state/logic encapsulated; hooks or ←↩

local state preferred)
- Provide meaningful feedback (loading indicators/spinners, disabled ←↩

states, clear success/error messaging)
- Support keyboard navigation and accessibility (ARIA attributes where←↩

needed)
- Supply non-breaking sensible defaults for all props; never require a←↩

prop unless core to function.
- Ensure a visually polished UI by:
- Consistent spacing (‘gap‘, ‘padding‘, ‘margin‘)
- Visual hierarchy using appropriate font weights/sizes
- Smooth transitions/animations where helpful, never distracting
- Mobile-first, responsive out of the box

File Structure & Naming:
- Use only the paths and filenames defined by ‘vite-react-typescript-←↩

starter‘:
- Global CSS: ‘src/index.css‘ (Use ONLY this file for all CSS styles. ←↩

DO NOT create any other CSS files including but not limited to: ‘←↩
global.css‘, ‘app.css‘, ‘app.module.css‘, any CSS files in ‘styles←↩
/‘ folder, any component-specific CSS files, or any module CSS ←↩
files. All styles must be placed in ‘src/index.css‘ exclusively)

- Third-party UI library CSS (such as ‘antd/dist/antd.css‘ or ‘antd/←↩
dist/reset.css‘) may be imported directly in ‘src/main.tsx‘ ←↩
strictly according to the UI library documentation and version.

- For Ant Design v4, import ‘antd/dist/antd.css‘ in ‘src/main.tsx‘.
- For Ant Design v5 or above, DO NOT import ‘antd/dist/antd.css‘; ←↩
use ‘antd/dist/reset.css‘ only if needed per documentation.

- Do NOT copy or merge any third-party UI library styles into ‘src/←↩
index.css‘.

- Entry: Always load global styles in ‘src/main.tsx‘
- Static Assets: Serve with ‘public/‘ if necessary
- Directory conventions:
- All reusable UI components should be placed in ‘src/components/‘
- Route-level components (pages) or feature-specific containers should←↩

be placed in ‘src/pages/‘, where appropriate
- Every file or module imported anywhere in the code-such as ←↩

components or pages in ‘App.tsx‘-MUST be present in the output ←↩
manifest with its complete file content generated accordingly.

Configuration & Linting:
- All necessary config files must be present and valid, including:
- ‘package.json‘ (completely listing ALL dependencies and scripts, ←↩

reflecting project requirements)
- ‘vite.config.ts‘, ‘tailwind.config.js‘, ‘postcss.config.js‘
- TypeScript configs: ‘tsconfig.json‘, ‘tsconfig.app.json‘, ‘tsconfig.←↩

node.json‘
- ‘eslint.config.js‘ (TypeScript+React linting, reflecting best ←↩

practices)
- Ensure ‘tailwind.config.js‘’s ‘content‘ property matches: ‘["./index←↩

.html", "./src//*.{js,ts,jsx,tsx}"]‘
- Imports must only reference files present in the output manifest.

Output & Validation:
- The output MUST include the following set of core files, generated ←↩

in full:
- ‘package.json‘
- ‘vite.config.ts‘
- ‘tailwind.config.js‘
- ‘postcss.config.js‘

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

- ‘eslint.config.js‘
- ‘tsconfig.json‘, ‘tsconfig.app.json‘, ‘tsconfig.node.json‘
- ‘public/index.html‘
- ‘src/main.tsx‘
- ‘src/App.tsx‘
- ‘src/index.css‘
- ‘src/vite-env.d.ts‘
- Additionally, generate any feature/component/page files required to ←↩

fulfill user feature-requests, all placed in appropriate ←↩
subdirectories based on the above conventions.

- Validations:
- Before generating any import statement, confirm the target file is ←↩

included in the output manifest and follows template structure.
- Do not create or import from any alternative global style file (e.g.←↩

‘global.css‘, ‘styles/global.css‘).
- Always verify there are no broken imports; if a referenced file is ←↩

missing, either generate it or update/remove the import.
- For every import statement in any file (including but not limited to←↩

all pages/components referenced in ‘App.tsx‘), you MUST ensure the←↩
corresponding file is fully generated and included in the output ←↩

manifest. Missing files or references are strictly forbidden. Never←↩
leave an import statement unresolved.

Additional Standards:
- All code must use ES Modules syntax.
- Use latest (non-beta, non-RC) stable versions for all dependencies, ←↩

unless the template already picks specific versions.
- Code must not reference or require unavailable packages or APIs (←↩

given environment constraints).
- All state and side-effects to be managed with idiomatic React ←↩

patterns.
- If persistence is requested, use SQLite/libsql only, with ←↩

appropriate install and usage instructions.
- Add minimal in-line documentation in complex or non-obvious code ←↩

paths.
- Accessibility (a11y) must be considered for all interactive inputs ←↩

and views.
- If the user requests authentication, data fetching, or external APIs←↩

, stub/mock the backend, unless relevant APIs are supported in the ←↩
browser context.

Output & Response Format:
Always format your response using this structure strictly:
- Encapsulate all reasoning inside ‘<think> ... </think>‘ tags, ←↩

detailing:
- Project requirements analysis
- Entry point and import resolution
- Dependencies planning
- TypeScript validation
- ESLint and code health checks
- UX and interaction strategy
- Visual and responsive layout ideas
- Any other technical considerations
- Encapsulate your complete project manifest inside ‘<answer> ... </←↩

answer>‘ tags, as a single well-formed XML structure matching the ←↩
required output exactly (see ‘vite-react-typescript-starter‘ ←↩
example and core files above).

- All shell actions and generated files must be represented explicitly←↩
in the manifest.

- Your output must guarantee a one-to-one correspondence between all ←↩
import statements and actual generated files.

Example Response Start
<think>
(Detailed reasoning here-covering every step)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

</think>
<answer>
‘‘‘xml
<webArtifact id="unique-id" title="Project Title">
<!-- ... All generated files/filesystem/shell actions here ... -->
</webArtifact>
‘‘‘
</answer>

G.2 REWARD PROMPT FOR WEBSITE FUNCTIONALITY AND AESTHETICS

Instruction:
You are tasked with evaluating the functional design of a webpage that←↩

had been constructed based on the following instruction:

{instruction}

Grade the webpage’s appearance on a scale of 0 to 5 (5 being highest),←↩
considering the following criteria:

- Successful Rendering: Does the webpage render correctly without ←↩
visual errors? Are colors, fonts, and components displayed as ←↩
specified?

- Content Relevance: Does the design align with the website’s ←↩
purpose and user requirements? Are elements (e.g., search bars, ←↩
report formats) logically placed and functional?

- Layout Harmony: Is the arrangement of components (text, images, ←↩
buttons) balanced, intuitive, and clutter-free?

- Modernness & Beauty: Does the design follow contemporary trends (e←↩
.g., minimalism, responsive layouts)? Are colors, typography, and ←↩
visual hierarchy aesthetically pleasing?

Grading Scale:

- 0 (Unacceptable): The webpage fails to load (e.g., raises errors),←↩
is completely blank, or is entirely non-functional. There is no ←↩

visible or assessable content, layout, or design.
- 1 (Poor): Major rendering issues (e.g., broken layouts, incorrect ←↩
colors). Content is irrelevant or missing. Layout is chaotic. ←↩
Design is outdated or visually unappealing.

- 2 (Below Average): Partial rendering with noticeable errors. ←↩
Content is partially relevant but poorly organized. Layout lacks ←↩
consistency. Design is basic or uninspired.

- 3 (Average): Mostly rendered correctly with minor flaws. Content ←↩
is relevant but lacks polish. Layout is functional but unremarkable←↩
. Design is clean but lacks modern flair.

- 4 (Good): Rendered well with no major errors. Content is relevant ←↩
and logically organized. Layout is harmonious and user-friendly. ←↩
Design is modern and visually appealing.

- 5 (Excellent): Flawless rendering. Content is highly relevant, ←↩
intuitive, and tailored to user needs. Layout is polished, ←↩
responsive, and innovative. Design is cutting-edge, beautiful, and ←↩
memorable.

Task:
Review the provided screenshot(s) of the webpage. Provide a detailed ←↩

analysis and then assign a grade (0-5) based on your analysis. ←↩
Highlight strengths, weaknesses, and how well the design adheres to←↩
the specifications.

Your Response Format:

Analysis: [2-4 paragraphs addressing all criteria, referencing the ←↩
instruction]

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Grade: [0-5]

Your Response:

G.3 JUDGEMENT PROMPT FOR WEBDEV ARENA DATA SELECTION

You are a judge that decides whether a given instruction is suitable ←↩
for the task of

"LLM-driven website generation".
A suitable instruction should:
- Clearly request creating or modifying a website or web component.
- Can involve HTML, CSS, JavaScript, React, Next.js, Tailwind CSS, or ←↩

similar web technologies.
- Can request adding specific UI features, responsive design, ←↩

animations, or layouts.

An instruction is NOT suitable if:
- It is unrelated to websites.
- It is a question about general programming, AI, or non-web topics.
- It is too vague without referring to web interface or design.

Respond ONLY with "YES" if the instruction is suitable, or "NO" if it ←↩
is not.

Instruction: "{instruction_text}"

H ADDITIONAL COMPARISONS OF LLM-DRIVEN WEBSITE GENERATION

H.1 CASE STUDY ON WEBGEN-BENCH

H.2 CASE STUDY ON WEBDEV ARENA

H.3 CASE STUDY ON UI AGENT TESTING

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Instruction: Please implement a wheel of fortune website where users can spin the wheel to win
prizes. The website should have functionalities for spinning the wheel, displaying prizes, and record-
ing user winning records. Users should be able to spin the wheel, view the prize list, view their own
winning records. Use light gray as the default background and dark red for component styling.

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: Please implement a website for a clinical office to display office information and
services. The website should have basic pages, including a homepage, about us, services, and
contact us. Users should be able to browse the website, learn about the office’s information, view
the services provided, and contact the office through the contact page. The website should also have
a simple navigation menu to help users quickly find the information they need. Style all pages with
a light cyan background and cadet blue components.

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 3: Model comparisons with two tasks sourced from WebGen-Bench.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Instruction: Please implement a website for a credit repair company to generate leads. The website
should have a form-filling function, allowing users to input personal information and credit status.
The website should also have a credit score inquiry function and an introduction to credit repair
services. Users can browse the website, learn about credit repair services, and fill out the form to
submit lead information. Set old lace as the body background and use rosy brown for the UI.

Qwen2.5-Coder-7B-Instruct: <think>To implement a credit repair company’s website with the
specified features, we will follow these steps: 1. Project Requirements Analysis: The website needs
to include a form for users to input their personal information and credit status, a credit score inquiry
function, and an introduction to credit repair services. It should have a visually appealing design
with old lace as the background and rosy brown for the UI. 2. Entry Point and Import Resolution:
The entry point will be src/main.tsx, which will render the main application component. We will
need to create src/components/Form.tsx for the form, src/components/CreditScoreInquiry.tsx for the
credit score inquiry, and src/components/Introduction.tsx for the introduction text. 3. Dependencies
Planning: We will need React, React Router, TypeScript, Vite, Tailwind CSS, and Ant Design for
UI components. We will also need to install axios for making HTTP requests to fetch credit scores.
4. TypeScript Validation: We will ensure that all components are typed correctly using TypeScript.
This includes validating form inputs and handling state management. 5. ESLint and Code Health
Checks: We will configure ESLint to enforce best practices and catch potential issues early in the
development process. 6. UX and Interaction Strategy: We will design the form to be intuitive
and easy to navigate. The credit score inquiry will display the result immediately after submission.
The introduction text will provide clear information about credit repair services. 7. Visual and
Responsive Layout Ideas: We will use Tailwind CSS to create a responsive layout with consistent
spacing and visual hierarchy. The old lace background and rosy brown UI colors will be applied
throughout the site. </think><answer>...</answer>

WebGen-R1-7B: <think>Project Requirements Analysis: We need to build a credit repair com-
pany website focused on generating leads. Users will fill out a form with personal info and credit
status, view a credit score inquiry page, and learn about credit repair services. Design: Old lace
(#FAE7E7) for body background, rosy brown (#BC8F8F) for UI elements. Pages: Home (/), Credit
Repair Services (/services), Lead Form (/lead-form), Credit Score Inquiry (/credit-score). Compo-
nents: Header, Footer, LeadFormPage, ServicesPage, CreditScorePage, etc. UI: All forms must be
accessible and responsive; use Ant Design form controls styled with Tailwind and rosy brown. State
Management: All form fields are client-side, mock API calls, and store data in React state/localstor-
age. Tech Stack Planning: React, TypeScript, Vite, Tailwind CSS, Ant Design; Routing via React
Router v6; All styles in src/index.css except Ant Design’s own. File Structure: src/components -
Shared UI components (Header, Footer, etc); src/pages - Route-level components (Home, Services,
LeadForm, CreditScore); src/App.tsx - Sets up routing and main layout; src/index.css - Custom
styles (background colors, overrides for rosy brown, etc). Imports and Manifest: All imports re-
solved and files generated; All styles in src/index.css via Tailwind and custom colors; No broken
imports. Accessibility: ARIA attributes for focus management, keyboard navigation, and A11y la-
bels. Visual and Responsive: Consistent spacing (gap, padding, margin); Visual hierarchy with Ant
Design’s typography; Smooth transitions for modals/forms; Mobile-first layouts. TypeScript: Strict
typing for form models and props. ESLint and Code Health: Follow template ESLint and config
files; All files conform to best practices.</think><answer>...</answer>

Qwen2.5-Coder-7B-Instruct WebGen-R1-7B (Ours)

Figure 16: Qualitative comparison of reasoning traces between our WebGen-R1-7B and the baseline.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Instruction: Please implement a website for The All-In Bourbon Bar to showcase its prod-
ucts and services. The website should have functionalities for displaying menus, introducing the
membership-only private poker room, and showcasing events and promotions. Users should be able
to browse the website, view menus, learn about the private poker room, view events and promotions,
and make online reservations or purchases. Use peach puff for container backgrounds and indian
red for component visuals.

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: Please implement a community website for sharing promotions and discounts. The
website should have functionalities for browsing promotions, sharing promotions, and searching
promotions. Users should be able to browse and share promotions, and search for promotions of
interest. The website should also have a management backend for managing users, promotions, and
website settings. Use ivory for the outer layout and forest green for UI blocks.

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 4: Model comparisons with two tasks sourced from WebGen-Bench.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Instruction: Please implement a Q&A website that answers user-submitted questions. The website
should have functionalities for submitting questions, answering questions, and viewing answers.
Users should be able to submit questions, view answers, and rate the answers. Set overall back-
ground to beige, then style components with saddle brown.

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: Please implement an email sending platform for sending emails. The platform should
have functionalities for composing, sending, and managing emails. Users should be able to compose
emails, select recipients, send emails, and manage sent emails. The platform should also have
features such as email templates, attachment uploads, and recipient management. Use cornsilk for
the background and peru for components.

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 5: Model comparisons with two tasks sourced from WebGen-Bench.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Instruction: Design a recipe card with a prominent image and clear ingredient list. Create a stream-
lined recipe browsing experience with categories and search.

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: Make a website that fetches data (joke) from an external API and displays it on the
screen using react for use example.

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 6: Model comparisons with two tasks sourced from WebDev Arena.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Instruction: A battle arena website that compare audio mp3 generate by 2 models, model A and
model B. Users listen to these two audio files and vote for the best.

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: create me a Resume Page

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 7: Model comparisons with two tasks sourced from WebDev Arena.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Instruction: make me an app that generates content and images for html newsletters. it maintain
inline css non spammy content, the theme and links should be given by the user.

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: Generate web app for storing custom recipes.

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 8: Model comparisons with two tasks sourced from WebDev Arena.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Instruction: Design a guided meditation player with progress tracking. Create a library view to
browse and select different meditation sessions.

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: Build a linktree website for a singer-songwriter.

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 9: Model comparisons with two tasks sourced from WebDev Arena.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Instruction: Create me a time traker of multiple tasks that can be added or removed and have
individual counter that cand be stoped or paused.

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: Design a cryptocurrency tracker with real-time price updates and portfolio tracking.
Focus on clear presentation of price charts and user-friendly transaction inputs.

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 10: Model comparisons with two tasks sourced from WebDev Arena.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Instruction: Design a page to display a book review, including elements for ratings and user com-
ments. Create an interface for browsing book reviews by category or popularity.

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: Fancy text generator with realtime preview without loading page, 10 stylish fonts,
navigation, footer section with about us section, responsive.

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 11: Model comparisons with two tasks sourced from WebDev Arena.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Instruction: Design a job board with filters for location, salary, and job type. Create an appealing
layout for job postings, highlighting key details. with all of stuff.

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

Qwen3-32B Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: clone of warrior cat website

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

Qwen3-32B Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 12: Model comparisons with two tasks sourced from WebDev Arena.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Task: Verify that the website uses ‘honeydew’ as the background color and ‘dark olive green’ as the
component color, as specified in the design requirements.
Expected Result: The website has a background color of ‘honeydew’ and components (such as
buttons, cards, headers, etc.) are styled with the color ‘dark olive green’, accurately reflecting the
design instruction.

Thought: The initial webpage
appears to have a “honeydew”
background color and components
(like headings and buttons) styled in
“dark olive green.” However, I need
to verify these colors across
different pages or sections of the
website, if possible.
Action: Scroll [WINDOW]; down

Thought: The background color
still appears to be “honeydew,” and
the components like course cards,
headings, and buttons seem styled
with “dark olive green.” It aligns
with the specified design so far, but
further verification might involve
checking other sections or
interactions within the website.
Action: Scroll [WINDOW]; down

Thought: The page didn’t change
after scrolling down. It seems we
have reached the bottom of this
section. The background color and
component color still align with the
design requirement. Additional
steps to verify more sections of the
site may not be necessary. I may
now conclude the evaluation.
Action: ANSWER; YES

Task: Verify that the website uses ‘light goldenrod’ as the background color and ‘olive drab’ as the
component color, as specified in the design requirements.
Expected Result: The website has a background color of ‘light goldenrod’ and components (such
as buttons, cards, headers, etc.) are styled with the color ‘olive drab’, accurately reflecting the design
instruction.

Thought: The webpage uses a light
background color, which could be
‘light goldenrod’, and components
such as text and buttons appear in a
greenish color which might
correspond to ‘olive drab’. To
validate this visually, I’ll analyze
specific webpage elements further.
Action: Wait

Thought: The screenshot seems to
confirm that the background color
of the webpage aligns with a shade
close to ‘light goldenrod,’ and the
component color (like heading,
buttons) appears to resemble ‘olive
drab.’ It is visually consistent, but
further interaction or verification
might still be required.
Action: Scroll [WINDOW]; down

Thought: The buttons labeled
“Download Ringtone” have a
greenish color that matches the
description of ‘olive drab,’ and the
background still aligns with ‘light
goldenrod.’ All displayed elements
comply visually with the task’s
design requirements. Further
verification may not be necessary.
Action: ANSWER; YES

Table 13: UI agent testing processes resulting in YES.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Task: Verify that the website uses ‘light gray’ as the background color and ‘dark red’ as the com-
ponent color, as specified in the design requirements.
Expected Result: The website has a background color of ‘light gray’ and components (such as
buttons, cards, headers, etc.) are styled with the color ‘dark red’, accurately reflecting the design
instruction.

Thought: The background of the
webpage appears to be light gray,
and some components (like
headings and texts on cards) seem
to use the color dark red. I need to
further explore the interface to
confirm the design requirement
fully, such as validating all
component styles and ensuring
accuracy.
Action: Click [1] (Dashboard) to
explore further information about
the webpage style and check other
components.

Thought: The webpage remains
unchanged, and the “Dashboard”
section didn’t open after the
previous click. I need to attempt
another navigation based on other
options available to ensure I can
explore the webpage for additional
validations.
Action: Click [2] (Activities) to ex-
plore the “Activities” section.

Thought: The webpage still
remains unchanged after multiple
navigation attempts. It might be
possible that the clickable options
are not leading to other sections.
Based on the observation seen so
far, I have to make a final
assessment.
Action: ANSWER; PARTIAL

Task: Validate the ability to view historical air quality index (AQI) data for the past two weeks.
Expected Result: Users should be able to access a time series or historical graph/chart that shows
AQI data for each of the last 14 days.

Thought: The webpage includes a
section labeled “Past Two Weeks’
AQI Comparison” which appears to
list AQI data, but further details or a
time series graph/chart showing the
AQI data for each of the last 14
days is not immediately visible. The
list may require scrolling to view
more information.
Action: Scroll [WINDOW]; down

Thought: The “Past Two Weeks’
AQI Comparison” section
showcases numerical AQI data for
the last 14 days, which matches the
expected result in terms of tabular
data representation. However, a
time series graph/chart is still not
visible. To ensure, I should continue
scrolling for additional views or
graphical representations if present.
Action: Scroll [WINDOW]; down

Thought: After scrolling further, no
additional graphical representation
like a time series chart for the last
14 days is visible. Only numerical
AQI data in a tabular fashion is
presented, which fulfills part of the
task but not entirely.
Action: ANSWER; PARTIAL

Table 14: UI agent testing processes resulting in PARTIAL.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Task: Confirm navigation from the home page to the ‘About Us’ page.
Expected Result: Clicking the ‘About Us’ link takes the user to the ‘About Us’ page without any
errors.

Thought: The webpage labeled
elements include navigation links
such as “About Us.” To confirm the
navigation from the Home page to
the “About Us” page, I’ll click the
“About Us” link (Label [1]).
Action: Click [1].

Thought: The screen remains on
the same page as before, suggesting
the “About Us” link might not be
functional. I will attempt to click it
again to ensure it wasn’t a one-time
issue.
Action: Click [1].

Thought: The screen still remains
unchanged after clicking the “About
Us” link twice, confirming that the
link is non-functional or does not
navigate properly. Now, I will
answer based on the observations.
Action: ANSWER; NO

Task: Test the supplier management interface for adding or updating a golf package supplier.
Expected Result: The user should be able to successfully add or update supplier details with con-
firmation that changes have been saved in the system.

Thought: To manage suppliers, the
“Suppliers” navigation option (label
[4]) seems appropriate. This should
provide access to the supplier
management interface.
Action: Click [4].

Thought: The page remains
unchanged, and no new supplier
management interface is visible
after the previous action. It seems
the “Suppliers” option ([4]) did not
navigate as expected. I will try
interacting with it again to ensure
the action registers.
Action: Click [4].

Thought: Even after performing
the action twice, the page remains
unchanged, and the “Suppliers”
button ([4]) does not navigate to or
display the expected supplier
management interface. I suspect it
might not be functioning or
implemented correctly. I cannot
proceed further on this page.
Action: ANSWER; NO

Table 15: UI agent testing processes resulting in NO.

47

	Introduction
	Methodology
	End‑to‑End Open‑Ended Website Code Generation
	Automated Front‑End Build and Rendering Pipeline
	Reward Model for Functional and Aesthetic Evaluation
	Group Relative Policy Optimization for Website Generation

	Experiments
	Experimental Setup
	Main Results
	In-depth Analysis and Insights.
	Case Studies

	Conclusion
	Algorithm for WebGen-R1
	Dataset Statistic and Analysis
	More Implementation Details
	Related Work
	Large Language Models for Project‑Level Code Generation
	Reinforcement Learning for Code Generation

	Additional Experimental Results
	Web Code Format and Reasoning Format Rewards
	Human Alignment Study on WebDev Arena
	Website Quality Score Distribution and Analysis
	Reward Dynamics and Optimization Stability
	Reasoning Behavior in Website Generation

	Theoretical Analysis of GRPO with Increasing Group Size
	Prompt Design
	System Prompt for Website Generation
	Reward Prompt for Website Functionality and Aesthetics
	Judgement Prompt for WebDev Arena Data Selection

	Additional Comparisons of LLM-driven Website Generation
	Case Study on WebGen-Bench
	Case Study on WebDev Arena
	Case Study on UI Agent Testing

