Under review as a conference paper at ICLR 2026

WEBGEN-R1: INCENTIVIZING LLLMS TO GENERATE
FUNCTIONAL AND AESTHETIC WEBSITES WITH REIN-
FORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated strong capabilities in
functional-level code generation, yet their performance remains limited in project-
level scenarios such as generating large-scale multi-page websites. Such tasks re-
quire coherent multi-file structures, handling of intricate cross-page dependencies,
and visually appealing designs. Prior works address only partial aspects of this
challenge. For instance, WebDev Areneﬂ focuses exclusively on single-page static
sites, while agent-based frameworks decompose tasks into subtasks coordinated
through multi-turn execution, often relying on proprietary models and suffering
from fragile integration, particularly in visual coherence and stylistic consistency.
In this work, we introduce WebGen-R1, pushing toward a more ambitious and
practically relevant goal of training a small-scale LLM via reinforcement learn-
ing (RL) to generate the entire multi-page websites in an end-to-end manner. A
key obstacle lies in reward design. Unlike functional code generation where cor-
rectness can be verified by passing automated test suites, web aesthetics covering
layout harmony, typographic consistency, and stylistic alignment are inherently
subjective, and functional verification often requires dynamic execution across
pages where rule-based reward function tend to be brittle. To address these limi-
tations, we design a vision—language—model-based reward model that jointly opti-
mizes functional correctness and aesthetic quality, enabling the model to produce
websites that are both visually coherent and faithful to the intended task speci-
fication. Extensive experiments across real-world benchmarks demonstrate that
WebGen-R1 consistently outperforms, or is comparable to, strong proprietary and
open-source baselines in a multi-dimensional evaluation protocol. To facilitate
future research in end-to-end multi-page website generation, we release our code
and data at https://anonymous.4open.science/r/WebGen—R1.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have markedly expanded their capabilities in
automated code generation (Jaech et al., 2024; Hui et al., 2024; Jiang et al., [2025; |Guo et al.|, 2025}
Team et al., 2025} Yang et al.||2025a;Zheng et al.,|2025)), achieving human competitive performance
on established functional-level benchmarks such as the HumanEval (Chen et al., [2021]) dataset or
even complex International Olympiad in Informatics (IOI) programming tasks (Li et al., [2022).
These achievements demonstrate impressive syntactic and semantic reasoning over standalone prob-
lems. However, moving from constrained, function-level snippets to project-level code generation
that meets real-world software engineering demands remains a frontier challenge (Jimenez et al.,
2023} Bi et al., [2024; |Zan et al., 2025} |[Badertdinov et al} [2025). Among the various categories of
such tasks, end-to-end website generation, encompassing multi-page routing, dynamic functional-
ity, modern user interface (UI) design, and responsive layouts, presents especially rich and conse-
quential opportunities for LLM research. Website generation represents a particularly challenging
instantiation of project-level code generation (Wan et al., [2024; Xiao et al., |2024; [Lu et al., 2025;
Zhang et al.,[2025). Unlike single-function problems, real-world websites demand consistent archi-
tectural patterns, multi-file codebases with intricate dependencies, long-range contextual coherence,

'https://blog.Imarena.ai/blog/2025/webdev-arena

https://anonymous.4open.science/r/WebGen-R1
https://blog.lmarena.ai/blog/2025/webdev-arena/

Under review as a conference paper at ICLR 2026

and conformity to design principles that balance functionality with visual appeal. This necessitates
reasoning not only over software engineering constraints but also over aesthetic and user-experience
considerations, which have traditionally been difficult to formalize and evaluate in automated code
generation.

Despite promising early steps, current approaches to LLM-driven website generation exhibit notable
limitations. One line of work has chosen to simplify the generation task drastically. For exam-
ple, WebDev Arena (LMArena, 2025)) is constrained to generating single-page static sites. While
this makes evaluation tractable, it abstracts away essential complexities such as dynamic routing,
state management, authentication flows, and cross-page navigation. Another line of research adopts
multi-agent orchestration frameworks, in which different specialized LLMs handle discrete subtasks
(UI layout, backend logic, testing), and their outputs are subsequently integrated (Hong et al.| 2023}
He et al., [2024azb; [Lu et all 2025). However, such modularity introduces brittle inter-agent de-
pendency chains, where small inconsistencies in contracts, file names, or interface definitions can
cascade into non-functional builds. Moreover, both paradigms rarely incorporate formal optimiza-
tion of aesthetic quality or human-aligned design sensibilities, an omission that leads to websites
which, while functional, often fail to meet the expectations of end-users in visual polish. Further
discussion of related work is provided in Appendix D}

In this work, we push toward a more ambitious and practically relevant goal of training a small-
scale LLM to generate an entire multi-page, functional, and visually aesthetic website project from
scratch, in an end-to-end manner, without external decomposition into subtasks. This departure in-
vites several formidable challenges: (I) Global structural reasoning over project-level architectures,
including framework-specific conventions (e.g., Next.js routing, Vue plugin registration) and modu-
lar directory organization. (2) Maintaining multi-file consistency for cross-referencing components,
dependencies, and dynamic import paths across the codebase. (3) Ensuring cohesive visual design
and modern aesthetics, beyond merely placing elements on a page, by rendering layouts that exhibit
balance, alignment, accessible color contrasts, and brand coherence. @) Capturing complex interac-
tive behaviors such as animations, drag-and-drop, and responsive state updates within the generated
code. () Overcoming limited long-context reasoning, as project code often exceeds the context win-
dow available in current LLMs, creating difficulties in tracking dependencies over hundreds of lines
across multiple files.

To address these challenges, we propose WebGen-R1, a novel framework that integrates reinforce-
ment learning (RL) directly into the end-to-end website generation process. Nevertheless, a central
obstacle in bringing RL into such open-ended generative tasks lies in the design of a reliable reward
signal (Guo et al., [2025} [Zeng et al., 2025 |Wen et al., 2025; [Yang et al., [2025b; Mroueh, [2025).
Different from tasks like complex mathematics and competitive programming, where correctness
is objectively verifiable by exactly matching unambiguous ground-truth answers or passing auto-
mated test suites, it faces a serious challenges with website generation: (1) Not all desired qualities
are reducible to scalar outcomes, as visual appeal, design cohesion, and user experience have no
trivial Boolean test. (2) Comprehensive functional verification for complex, multi-page websites
often requires running the site and inspecting behaviors in varied scenarios, making static rule defi-
nition brittle. (3) The scarcity of annotated, fully verifiable website outputs limits scalability for this
domain.

To overcome these limitations, we replace handcrafted rule-based scorers with a reward model that
incorporates both task specification cognition and visual rendering perception. Concretely, after the
model generates the complete web project code and directory structure, we execute a standardized
front-end development pipeline, which includes parsing and verifying the scaffolded file organi-
zation, installing dependencies, building the project, launching a local development or production
server, and rendering the pages in a browser. The rendered page screenshots, together with the orig-
inal task specification, are then fed into a state-of-the-art vision-language model (VLM) for joint
functional and aesthetic evaluation, producing a graded scalar reward. This pipeline preserves ver-
ifiability for functional aspects while enabling nuanced assessment of open-ended design quality,
making large-scale RL training both stable and meaningful.

We conduct extensive experiments on real-world benchmarks to evaluate the effectiveness of
WebGen-R1. When employing Qwen2.5-Coder-Instruct-7B as our base model, WebGen-R1 ex-
hibits substantial gains in multi-page website generation, achieving an improvement in functional
quality metrics from 1.59% to 29.21%, a 44.32% increase in aesthetic scoring, and a drastic increase

Under review as a conference paper at ICLR 2026

System Prompt

Step 1: Scaffold Parsing Step 2: Dependency Step 3: Source Build
& File Tree Validation Installation & Asset Bundling

por
tomatically generate complete,

production-ready, browser-

executable web applications...

User Message
Please implement & fravel
reimbursement and payment |
system for employee travel 1
expenses. The system should have
fuinctionalities for....Use white for
container backgrounds and navy
for component visuals.

l ? GRPO

Reward Model -] °
oSy —— T ﬁ'
8fo~o ---------
,’,Step 5: Viewport ~ Step 4: Dev / Prod

/ Rendering in Server Spin-Up
/
Headless Browser

Step 6: VLM-Driven Evaluation
(Functional & Aesthetic)

Multiple-Page Screenshots

Figure 1: The architecture of our proposed WebGen-R1 for end-to-end multi-page website gener-
ation using a single LLM. A user provides a natural-language website design request, which the
LLM generates the entire project source code. The generated scaffold is then processed through
a standardized front-end build pipeline, comprising parsing and validation of the file organization,
dependency installation, project build, server spin-up (in development or production mode), and
rendering of the resulting webpages in a headless browser environment to obtain multiple page
screenshots. These rendered page images, along with the original user request, are subsequently fed
into a state-of-the-art VLM for joint evaluation of functional correctness and visual design quality,
producing a scalar reward signal in the discrete range 0-5. This automated evaluation framework en-
sures both objective verification of executable functionality and nuanced assessment of open-ended
aesthetic attributes. The reward signal is then used to fine-tune the LLM via the GRPO objective,
enabling stable and semantically meaningful reinforcement learning at scale.

in valid render ratio from 30.56% to 95.89%. Importantly, despite having significantly fewer param-
eters, WebGen-R1 attains aesthetic quality and valid render ratios that surpass those of much larger
and more powerful baselines such as Gemini-2.5-Pro and DeepSeek-R1, while maintaining compa-
rable performance in functional evaluation. These results provide strong empirical evidence that our
WebGen-R1 with reinforcement learning can effectively enhance both the functional reliability and
visual appeal of generated websites. In summary, our contributions are as follows:

* To our best knowledge, we are the first to introduce reinforcement learning, namely
WebGen-R1, for end-to-end generating the entire multi-page websites without relying on
task decomposition or proprietary model orchestration.

* We design a vision—language-model-based reward model that jointly measures functional
correctness and aesthetic quality, capturing layout harmony, typographic consistency, and
stylistic alignment. This resolves the brittleness of rule-based rewards in project-level code
generation and aligns optimization signals with human preferences.

* We establish a multi-dimensional evaluation protocol covering functional correctness,
visual coherence, deployability, and human-perceived quality, and demonstrate through
extensive experiments on real-world benchmarks that our WebGen-R1 outperforms or
matches advanced proprietary and open-source baselines, even in challenging scenarios
requiring fine-grained inter-page coordination.

* We release our codebase, datasets, RL training framework, and trained model check-
points to enable reproducibility and to foster future research on end-to-end, LLM-driven
multi-page website generation.

2 METHODOLOGY

2.1 END-TO-END OPEN-ENDED WEBSITE CODE GENERATION

Given a task specification x € X, the policy myp must produce an entire project y €) contain-
ing a coherent multi-file structure, framework-specific directories, and interdependent code mod-
ules. Unlike template-based generation, the space) is open-ended) = U;(o:1 Y, YV ={y:

Under review as a conference paper at ICLR 2026

y contains K valid files in a consistent project graph}. We model generation as an autoregressive
process y(y | x) = Hthl 7o(yt | y<t, x), where the token sequence y.7 is subsequently parsed
into a file set F(y) = {fx}1£ | and a directory graph S(y). We denote the resulting website project
instance as Web(y) = {F(y),S(y)}. By emitting all code in one globally conditioned sequence,
the policy is forced to maintain cross-file variable references, routing conventions, and naming co-
herence. These properties are frequently broken in iterative, file-by-file generation, and their absence
leads to non-functional builds. This holistic treatment is particularly advantageous for web projects,
where front-end routing, shared styles, and state management are tightly coupled.

2.2 AUTOMATED FRONT-END BUILD AND RENDERING PIPELINE

A generated website codebase carries no operational meaning until it is executed within an actual
front-end development pipeline. We model this execution as a deterministic environment transfor-
mation:

0= Ely) = RIL(BI(Web(y))))), (1)
where 7 installs dependencies, 5 builds the compiled bundle, £ launches a server, and R renders
pages through a headless browser. As a result, the output o contains:

o=({L,})_., 1), 2)
with {I,,} 5:1 denoting rendered screenshots for P routes and I' collecting build and runtime logs.
This execution step enforces realizability constraints so that only codebases that install, build, and
run successfully yield complete visual evidence, directly grounding learning signals in executable

behavior. In website generation, this is critical as projects that pass linters can still fail at runtime
due to subtle integration errors, broken imports, or misconfigured frameworks.

2.3 REWARD MODEL FOR FUNCTIONAL AND AESTHETIC EVALUATION

While functional correctness covering aspects such as hyperlink validity, navigation integrity, and
component responsiveness can be partially verified via deterministic, rule-based checks, purely algo-
rithmic verification fails to capture subjective, perceptual qualities of web design. Aesthetic factors,
including layout harmony, typographic consistency, and stylistic coherence with the task specifica-
tion, require perceptual evaluation signals that are inherently non-deterministic. To jointly capture
both dimensions, we propose a multimodal reward evaluator ¢, built upon a state-of-the-art vi-
sion—language model (VLM). Formally, given an input tuple z = (m, {I, }5:1, I‘), where x denotes
the natural language specification, {Ip}g’:1 are rendered page snapshots from multiple responsive
breakpoints, and I' represents runtime execution logs, the evaluator jointly attends to textual, visual,
and behavioral modalities to produce a scalar score:

S(func,vis) = Yo, [sfunm Svis] = qbXLM(Z)a 3
where sy, measures functional soundness and syis evaluates visual design quality. The unified
SCOI€ S (func,vis) € [0, 5] thus reflects both executable fidelity and human-perceived aesthetics in a
single quantitative metric.

Beyond these two primary criteria, we incorporate additional signals to enforce structural and rea-
soning quality in generated code. Inspired by (Guo et al., 2025), we assess code format correctness
5(code)» Where the generated website code is parsed into a file set F(y) = { fx < | and a corre-
sponding directory graph S(y). This check ensures that the output can be executed without modi-
fication, providing a direct, verifiable reward signal for structural validity. Moreover, to incentivize
long-horizon and explicit reasoning in project organization, such as planning directory hierarchies,
configuring frameworks appropriately, and maintaining coherent shared state, we define a reasoning
format reward s(cot). Here, the model is required to externalize its reasoning process between ded-
icated <think>...</think>tags, enabling downstream parsing and reward estimation on reasoning
quality. Finally, these components are fused into a multi-dimensional scalar reward:

R(y) = S{func,vis) + S(code) + A S{cot)» “4)
with weight coefficients v, A € [0, 1] controlling the contribution of code format and reasoning
quality to the overall signal. Thus, in the context of LLM-based website generation, this integrative
scoring mitigates the common pitfall of over-optimizing for mechanically verifiable checks at the
expense of human-perceived functionality and visual appeal, thereby aligning model outputs more
closely with end-user expectations.

Under review as a conference paper at ICLR 2026

2.4 GROUP RELATIVE POLICY OPTIMIZATION FOR WEBSITE GENERATION

We formulate our reinforcement learning objective as maximizing the expected task-specific reward
under the learned policy mp maxg E,up, yory(|2) [R(y)] , where = denotes a website generation
prompt, y is a candidate structured website output, and R(-) measures a composite reward capturing
both functional correctness and visual quality (see Eq.). Unlike standard PPO(Schulman et al
2017), GRPO (Shao et al., 2024} |Guo et al., 2025} [Yu et al.,[2025) removes the need for an explicit
value function by normalizing rewards within a group of sampled responses for the same prompt,
enabling more stable optimization and mitigating inter-prompt variance in difficulty. Specifically,
for each website specification z, we sample a group of G candidate responses {y;}$* ; from the
behavior policy 7y, (- |), where each sequence is tokenized as y; = (yi,1,¥i,2,- - -, Yi,|y,|)- We
obtain a scalar reward R; for each y; by executing the generated website and evaluating functional
validation and visual fidelity score. The group-relative normalized advantage for token position ¢ in
response ¢ is then defined as:

. R; — mean({Rj}jG:l)

A

o std({R;15,)

&)

Following the PPO-style clipped surrogate objective with an explicit KL penalty to constrain diver-
gence from a frozen reference policy m..f, the GRPO objective is:

G ZI'L
1
Jaerro(f) = Ea:ND {yi}& ~mo, g () el Z |y | Z
- (©6)
@¢wmmww>gua}ﬂmmmwmmmﬂ
ra(s) & TolWit |2 0<t) 0

T0o1a (yi,t | xZ, Z/i,<t) ’
where € > 0 is the clipping parameter, and [controls the strength of the KL regularization. The
detailed procedure of the algorithm is presented in Algorithm[T](see Appendix [A).

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets and Benchmarks. We leverage the WebGen-Instruct (Lu et al.,[2025)) as our training cor-
pus. This dataset comprises 6,667 end-to-end website generation tasks spanning a broad spectrum of
real-world web application domains. We employ the WebGen-Bench (Lu et al.| 2025)), which con-
tains 101 carefully curated website generation tasks. These tasks range from minimal single-page
designs to complex corporate websites with rich interactivity and data-driven dashboards. Each
benchmark instance is paired with a comprehensive, repeatedly validated test suite, ensuring reli-
able measurement of both the functional behavior and stylistic conformance of generated websites.
The natural-language task descriptions explicitly specify functional requirements and visual design
expectations, enabling precise evaluation. The detailed statistics of the dataset and the benchmark
are summarized in Table 2] (Appendix [B). Figure 2] illustrates the distributions of prompt and re-
sponse lengths, where each prompt is obtained by concatenating the system prompt with the web
task query, for several state-of-the-art commercial LLMs on the end-to-end website generation task.

Baselines. We benchmark WebGen-R1 against a broad spectrum of state-of-the-art LLMs, encom-
passing eight proprietary models and seven open-source models. We exclude WebGen-LM (Lu
et al., 2025) from comparison as it is specifically fine-tuned on Bolt.diy E] website-generation tra-
jectories gathered via DeepSeek-V3 (Liu et al., 2024), making it bound to a particular agent-based
framework and not directly applicable in our evaluation setting.

Metrics. To thoroughly evaluate LL.Ms for end-to-end website generation, we use several quanti-
tative metrics, including (1) Functional Success Rate (FSR): the percentage of generated websites

“https://github.com/stackblitz-labs/bolt.diy

https://github.com/stackblitz-labs/bolt.diy

Under review as a conference paper at ICLR 2026

= -2 4

x10 x10 x10
[Training Set [GPT5
2.5 [Test Set -25 61 [Claude-Sonnet-4
Gemini-2.5-Pro
2 251 [DeepSeck-R1
z 20 200z [Qwen3-32B
] g4l N\ 1 Qwen2.5-Coder-7B-Instruct
z1s S5 o2 / \ [WebGen-R1-7B
Z 2’/
< 1.0 -1.0 2
5] SR
A~ A~
0.5 -0.5 1
e

0.0 4= T T T T T T T T =~ 0.0 0-
3320 3330 3340 3350 3360 3370 3380 3390 3400 3410 1500 3000 4500 6000 7500 9000 10500 12000
Prompt Token Length Response Token Length

Figure 2: Token length distributions of prompts and generated responses for several state-of-the-art
LLMs on the end-to-end multi-page website generation task across WebGen-Instruct (training set)
and WebGen-Bench (test set). The response length distributions are aggregated over test set.

Table 1: Performance comparison of WebGen-R1 and various state-of-the-art LLMs from multiple
institutions on the WebGen-Bench benchmark, evaluated by FSR, AAS, and VRR metrics. We show
the score improvement (4) of our model relative to its base. Bold values indicate the best results.

Institution \ Model \ FSR(%) AAS VRR(%)
GPT-5 46.53 3.34 90.43
GPT-4.1 4391 3.78 82.09
® OpenAl 03 42.86 3.55 81.08
04-mini 27.29 3.31 56.52
GPT-40 21.60 3.31 85.71
A\ Anthropic Claude-Sonnet-4 46.13 3.86 86.05
P Claude-3.7-Sonnet 57.72 3.90 84.00
G Google \ Gemini-2.5-Pro \ 36.31 3.89 83.33
¥ DeepSeek \ DeepSeek-R1 \ 30.25 3.67 42.86
Qwen2.5-Coder-7B-Instruct 1.59 2.73 30.56
Qwen2.5-72B-Instruct 2.54 3.14 8.86
7 Alibaba Qwen3-8B 3.72 2.57 12.50
Qwen3-32B 18.69 3.39 59.42
Qwen3-30B-A3B-Thinking-2507 9.30 2.60 23.81
Qwen3-Coder-30B-A3B-Instruct 6.06 2.90 32.81

Ours | WebGen-R1-7B | 29.21:27.60 3.94:4232 95.89+6533

that pass predefined interactive checks such as button clicks and form submissions; (2) Aesthetic
Alignment Score (AAS): the average reward model score, measuring how well function and design
match human aesthetic preferences; (3) Valid Render Ratio (VRR): the percentage of generated
websites that render without major errors; (4) Lint & Dependency Pass Rate (LDPR): the fraction
of projects that pass static code analysis (like ESLint) and resolve dependencies automatically, indi-
cating readiness for deployment. These metrics form a multi-dimensional evaluation protocol that
jointly accounts for execution correctness, visual attractiveness, deployability, and human-perceived
quality, providing a holistic assessment of LLM-driven website generation.

Implementation Details. We conduct all experiments on a cluster equipped with 64x NVIDIA
H100 GPUs (80 GB memory each), using the open-source Open-R1 framework E| (Hugging Facel
2025). We fine-tune the Qwen2.5-Coder-Instruct-7B model for 400 optimization steps using the
GRPO objective. Following (Lu et al., [2025), the VLM reward model leverages a state-of-the-art
GPT-4o0 evaluator to score both the functional correctness and visual aesthetics of generated web-
sites. The reward function is calibrated to align closely with human preferences through prompt
engineering and normalization, ensuring stable optimization. More details, including the hyperpa-
rameter settings, are provided in Appendix [C}

*https://github.com/huggingface/open-rl

https://github.com/huggingface/open-r1

Under review as a conference paper at ICLR 2026

Al Integration Media Display
4 4

CRUD Operations
Dynamic Content \
Rendering

Form Systems

~

i “A 5, 0L
API Integration / Big Data
| \
Lé .
SN Z :
Data Visualization / Real-time Features
Authentication E-commerce
Static Page Generation

— GPT-5 Claude-Sonnet-4 —— Gemini-2.5-Pro Qwen3-32B Qwen3-Coder-30B-A3B-Instruct
— GPT4.1 —— Claude-3.7-Sonnet —— DeepSeek-R1 —— Qwen2.5-Coder-7B-Instruct —— WebGen-R1-7B (Ours)

Figure 3: Performance comparison of WebGen-R1 and various state-of-the-art LLMs on 13 hetero-
geneous multi-scenario front-end development tasks encompasses diverse requirements, providing
a rigorous testbed for both functionality and visual fidelity, sourced from the WebGen-Bench.

3.2 MAIN RESULTS

We compare WebGen-R1 with state-of-the-art LLMs on the WebGen-Bench using FSR, AAS, and
VRR to examine whether reinforcement learning can optimize functionality, design, and render reli-
ability. As shown in Table[I] Claude-3.7-Sonnet achieves the highest FSR (57.72%), showing strong
execution, while WebGen-R1 gets the highest AAS score (3.94), outperforming all models, includ-
ing Claude. WebGen-R1 also attains the best VRR (95.89%), clearly higher than all baselines, which
we attribute to our reward design focusing on code format correctness. This balance of visual quality
and reliable rendering is achieved even though WebGen-R1 is a 7B model, proving the effectiveness
of our RL training. Smaller Qwen3 models generally have lower FSR, while some larger variants
like Qwen3-32B (AAS 3.39) and Qwen?2.5-72B-Instruct (AAS 3.14) reach relatively high AAS. This
pattern suggests that generating functionally correct website is substantially more challenging than
achieving visual appeal, as functional requirements in front-end development often involve complex
logic and interactions beyond visual layout. Overall, our RL optimization enables the model to pro-
duce visually attractive websites while still maintaining functional correctness, demonstrating that
targeted reward shaping can balance these multiple objectives in website generation.

3.3 IN-DEPTH ANALYSIS AND INSIGHTS.

Multi-Scenario Web Environments. We evaluate WebGen-R1 and a variety of state-of-the-art
LLMs on multi-scenario front-end development tasks, including Al Integration, Form Systems,
Real-time Features, Static Page Generation, Data Visualization, Dynamic Content Rendering, Me-
dia Display, CRUD Operations, Big Data, E-commerce, Authentication, API Integration, and File
Handling, sourced from WebGen-Bench (Lu et al., 2025). As shown in Figure E} our WebGen-R1
achieves superior performance across all 13 categories on AAS metric, which indicates a consis-
tent improvements in both functional correctness and UI/UX quality. Such uniform improvements
across diverse front-end scenarios demonstrate that our WebGen-R1 is task-agnostic, robust to do-
main shifts, and effective in harmonizing execution-level correctness with aesthetic alignment, high-
lighting the practical applicability to real-world, mixed-requirement web development.

RL Fine-Tuning. We compare RL and supervised fine-tuning (SFT) on the web generation task.
Using 600 GPT-4.1-generated examples for SFT, we observe an 18.68% performance boost over
the baseline model (Qwen2.5-Coder-7B-Instruct), significantly improving functional and coherent
webpage generation, as shown in Figure[d RL-only (R1-Zero) gives a 12.09% improvement, show-
ing the value of vision—-language model rewards for optimizing both function and appearance. SFT
brings higher gains than RL alone, but combining SFT initialization with RL achieves even better
results, with performance 21.60% and 28.76% higher than SFT and RL-only respectively. These
findings indicate that SFT enables the model to acquire a robust structural and semantic prior for

Under review as a conference paper at ICLR 2026

4.0 - 60
4.0 1
S
» 3.5 2 EREbvi
< b &
< 3.51)
3.0 Average Score ~ 50—
LDPR (%)
2.5 T T T 2I éll é 1I6 3I2
Base SFT RL OIIIYSFT +RL Group Size

Figure 4: Performance comparison of SFT, RL- Figure 5: Impact of group size G in GRPO on
only, and SFT+RL on the WebGen-Bench bench- WebGen-Bench performance measured by AAS

mark under the AAS metric. and LDPR.
Gemini-2.5-Pro
WebGen-R1-7B (Ours) Claude-Sonnet-4
e -~~~ T GPT- - A
3 5 . ©Qwen3-32B DeepSeek-R1 o >
. %Q .7 -
op! Qwen3-Coder-30B-A3B-Instruct = 2
N -
< 4 nl sS4 -~
< 3.0 -
g - 7
2] -
g ¥
2.54 Qwen2.5-72B-lnslruclO E
Qwen2.5-Coder-7B 2 Pearson: r=0.762, p=2.3e—-20
2'5 5'0 7'5 Spearman: p=0.734, p=2.4e—18
T T T
Model Size (B) 3 4 5

Reward Score

Figure 6: Performance of WebGen-R1 on the

WebDev Arena benchmark, which differs in do- Figure 7: Alignment between reward model eval-
main and prompt distribution from the WebGen- uations and human ratings on WebGen-Bench
Instruct and WebGen-Bench. websites with strong correlations.

webpage generation, while RL expands the model’s exploration capabilities and reward-driven op-
timization, allowing it to discover and produce higher-quality, more aesthetically pleasing websites.

Group Size in GRPO. We investigate the effect of the group size parameter G in GRPO, with
G € {2,4,8,16,32}, while keeping all other hyperparameters fixed. For each setting, we track the
evolution of both the mean and standard deviation of the reward per training step, and assess the
final policy on the WebGen-Bench using the AAS and LDPR metrics. As shown in Figure [5] larger
group sizes consistently yield superior performance across both evaluation metrics. We hypothesize
that this improvement arises from the enhanced exploration capacity provided by larger groups,
which increases the diversity of candidate trajectories and improves the likelihood of discovering
high-quality website designs.

Generalization and Robustness. We evaluate the ability of WebGen-R1 to generalize its reasoning
processes and visual design sensibility to settings where both the domain and prompt distributions
differ substantially from those seen during RL, which was conducted on the WebGen-Instruct. To
this end, we adopt the WebDev Arena benchmark, which features instruction distributions and task
categories that are not covered in our training set. Detailed dataset statistics are provided in Table 2]
in the Appendix. The quantitative results are presented in Figure[6] WebGen-R1 consistently out-
performs a range of state-of-the-art proprietary and open-source baselines (e.g., DeepSeek-R1, GPT-
5, and Qwen3-32B) across AAS metric. This performance suggests that WebGen-R1 has learned
architecture-level and style-level abstractions that remain effective in previously unseen web do-
mains. These findings further indicate that WebGen-R1 maintains strong applicability and robust-
ness in practical deployment scenarios where specification distributions may vary over time.

Human Alignment Study. We examine whether our vision—language-model-based reward accu-
rately reflects human preferences for functionality and aesthetics. Since RL relies entirely on this
reward, any misalignment could lead to outputs that do not meet user expectations. To evaluate this,
we compare our reward model to human judgments by having three experienced front-end devel-

Under review as a conference paper at ICLR 2026

[WebGen-Bench] Instruction: Please implement a Q&A website that answers user-submitted
questions. The website should have functionalities for submitting questions, answering questions,
and viewing answers. Users should be able to submit questions, view answers, and rate the answers.
Set overall background to beige, then style components with saddle brown.

GPT-5 Gemini-2.5-Pro WebGen-R1-7B (Ours)

[WebDev Arena] Instruction: Make a website that fetches data (joke) from an external API and
displays it on the screen using react for use example.

Random Joke Finder
Random Joke Generator Fetch and enjoy a random joke from the JokeAPI!
Random Joke

GPT-5 Gemini-2.5-Pro WebGen-R1-7B (Ours)

Figure 8: Case study of our WebGen-R1-7B against two leading baselines on in-distribution
(WebGen-Bench) and out-of-distribution (WebDev Arena) tasks, showing superior layout organi-
zation, visual coherence, and functional fidelity.

opers rate 101 websites from WebGen-Bench on functionality and visual appeal. We aggregate the
human scores and compare them to the reward model’s outputs. As shown in Figure[7] the results
show strong correlations (Pearson r = 0.762, Spearman p = 0.734), indicating that the model’s
ratings closely match human evaluations. This demonstrates that our vision—language model can
reliably assess both functional fidelity and aesthetic appeal in generated websites.

3.4 CASE STUDIES

To qualitatively evaluate WebGen-R1’s ability to improve website functionality and visual quality,
we conduct case studies using two user instructions from in-distribution (WebGen-Bench) and out-
of-distribution (WebDev Arena) sources. Figure 8] shows that, compared to strong baseline models,
WebGen-R1 generates websites with organized layouts, coherent and attractive designs, and respon-
sive behaviors that match the instructions. These findings support our quantitative results, showing
that WebGen-R1 achieves both functional correctness and aesthetics preferred by humans. We at-
tribute these strengths to end-to-end code generation, multimodal reward modeling, and GRPO opti-
mization. Overall, the results show that LLMs trained with perceptually grounded RL can effectively
balance engineering requirements and design principles in web development.

4 CONCLUSION

In this work, we introduce WebGen-R1, a reinforcement learning framework that enables small-scale
LLMs to generate the entire multi-page websites in an end-to-end manner while meeting both func-
tional and aesthetic requirements. Extensive experiments across two real-world benchmarks demon-
strate that our WebGen-R1 consistently improves functional robustness, visual coherence, and de-
ployability, surpassing or matching to advanced proprietary and open-source baselines. Notably,
our work demonstrates that RL with perceptually grounded rewards can substantially advance struc-
tured, multi-modal generation tasks beyond the functional level. We believe these insights open new
directions for end-to-end LLM training in full-stack application development, and we release all
resources to catalyze future research in this emerging area.

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Ibragim Badertdinov, Alexander Golubev, Maksim Nekrashevich, Anton Shevtsov, Simon Karasik,
Andrei Andriushchenko, Maria Trofimova, Daria Litvintseva, and Boris Yangel. Swe-rebench:
An automated pipeline for task collection and decontaminated evaluation of software engineering
agents. arXiv preprint arXiv:2505.20411, 2025.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
lessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Zhanggian Bi, Yao Wan, Zheng Wang, Hongyu Zhang, Batu Guan, Fangxin Lu, Zili Zhang, Yulei
Sui, Hai Jin, and Xuanhua Shi. Iterative refinement of project-level code context for precise code
generation with compiler feedback. In Findings of the Association for Computational Linguistics
ACL 2024, pp. 2336-2353, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xinyun Chen, Maxwell Lin, Nathanael Schérli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128, 2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. Journal of Machine Learning Research, 25(70):1-53, 2024.

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan, Caishuang
Huang, Xiao Wang, Xiaoran Fan, et al. Stepcoder: Improve code generation with reinforcement
learning from compiler feedback. arXiv preprint arXiv:2402.01391, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 6864—6890, 2024a.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Hongming Zhang, Tianqing Fang, Zhenzhong
Lan, and Dong Yu. Openwebvoyager: Building multimodal web agents via iterative real-world
exploration, feedback and optimization. arXiv preprint arXiv:2410.19609, 2024b.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-
agent collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

Hugging Face. Open rl: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open—-rll

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,

Bowen Yu, Keming Lu, et al. Qwen?2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

10

https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

Under review as a conference paper at ICLR 2026

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. ACM Trans. Softw. Eng. Methodol., July 2025. ISSN 1049-331X.
doi: 10.1145/3747588. URL https://doi.org/10.1145/3747588. Just Accepted.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314-21328, 2022.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton Bishop, Victor
Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement learning from human feedback with
ai feedback. arXiv preprint arXiv:2309.00267, 2023.

Jierui Li, Hung Le, Yingbo Zhou, Caiming Xiong, Silvio Savarese, and Doyen Sahoo. Code-
tree: Agent-guided tree search for code generation with large language models. arXiv preprint
arXiv:2411.04329, 2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092—-1097, 2022.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

LMArena. Webdev arena: Ai battle to build the best website. https://web.lmarena.ai/,
2025.

Zimu Lu, Yunqgiao Yang, Houxing Ren, Haotian Hou, Han Xiao, Ke Wang, Weikang Shi, Aojun
Zhou, Mingjie Zhan, and Hongsheng Li. Webgen-bench: Evaluating llms on generating interac-
tive and functional websites from scratch. arXiv preprint arXiv:2505.03733, 2025.

Michael Luo, Naman Jain, Jaskirat Singh, Sijun Tan, Ameen Patel, Qingyang Wu, Alpay Ariyak,
Colin Cai, Shang Zhu Tarun Venkat, Ben Athiwaratkun, Manan Roongta, Ce Zhang, Li Erran
Li, Raluca Ada Popa, Koushik Sen, and Ion Stoica. Deepswe: Training a state-of-the-art coding
agent from scratch by scaling rl. https://pretty-radio-b75.notion.site/DeepS
WE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent
-by-Scaling—-RL-22281902c1468193aabbe9%a8c59%bbe33, 2025a. Notion Blog.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
Deepcoder: A fully open-source 14b coder at 03-mini level. https://pretty-radio-b75
.notion.site/DeepCoder—-A-Fully—-Open—-Source—14B-Coder—at-03-min
i-Level-1c£81902c14680b3beeb5eb349a512a51, 2025b. Notion Blog.

Youssef Mroueh. Reinforcement learning with verifiable rewards: Grpo’s effective loss, dynamics,
and success amplification. arXiv preprint arXiv:2503.06639, 2025.

Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Is self-repair a silver bullet for code generation? In The Twelfth International Conference
on Learning Representations, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

11

https://doi.org/10.1145/3747588
https://web.lmarena.ai/
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan, Bing Geng, An Fu, Muhan Zeng, Ailun Yu,
Jichuan Ji, Jingyang Zhao, et al. Pangu-coder2: Boosting large language models for code with
ranking feedback. arXiv preprint arXiv:2307.14936, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K Reddy. Execution-based code gen-
eration using deep reinforcement learning. Transactions on Machine Learning Research, 2023.

Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. Repository-level prompt generation for
large language models of code. In International Conference on Machine Learning, pp. 31693—
31715. PMLR, 2023.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Yuxuan Wan, Yi Dong, Jingyu Xiao, Yintong Huo, Wenxuan Wang, and Michael R Lyu. Mrweb:
An exploration of generating multi-page resource-aware web code from ui designs. arXiv preprint
arXiv:2412.15310, 2024.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 13484—-13508, 2023.

Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu, Shengyu Ye, Zhirong Wu, Xiao Liang, Yang
Wang, Junjie Li, Ziming Miao, et al. Reinforcement learning with verifiable rewards implicitly
incentivizes correct reasoning in base llms. arXiv preprint arXiv:2506.14245, 2025.

Jingyu Xiao, Yuxuan Wan, Yintong Huo, Zhiyao Xu, and Michael R Lyu. Interaction2code: How
far are we from automatic interactive webpage generation? arXiv e-prints, pp. arXiv—2411, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Zhicheng Yang, Zhijiang Guo, Yinya Huang, Yongxin Wang, Dongchun Xie, Yiwei Wang, Xiaodan
Liang, and Jing Tang. Depth-breadth synergy in rlvr: Unlocking 1lm reasoning gains with adaptive
exploration. arXiv preprint arXiv:2508.13755, 2025b.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source 1lm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu,
Xiaojian Zhong, Aoyan Li, et al. Multi-swe-bench: A multilingual benchmark for issue resolving.
arXiv preprint arXiv:2504.02605, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-

zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

12

Under review as a conference paper at ICLR 2026

Chenchen Zhang, Yuhang Li, Can Xu, Jiaheng Liu, Ao Liu, Shihui Hu, Dengpeng Wu, Guanhua
Huang, Kejiao Li, Qi Yi, et al. Artifactsbench: Bridging the visual-interactive gap in llm code
generation evaluation. arXiv preprint arXiv:2507.04952, 2025.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation. In Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 2471-2484, 2023.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation with
tool-integrated agent systems for real-world repo-level coding challenges. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 13643-13658, 2024.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yugiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

13

1
2
3
4

10
11

13
14

15

17

19

Under review as a conference paper at ICLR 2026

Algorithm 1: WebGen-R1: GRPO for End-to-End Website Generation with a Single LLM

Input: Task distribution Dyepgen, initial policy 7y, , frozen reference policy 7qf, multimodal
reward evaluator (;%LM, group size G, clip parameter ¢, learning rate 1, KL coefficient 5
for iter = 1 to Njier do
Sample prompt & ~ Dyebgen
Initialize reward list R < [] and 8,14 < 6
fori=1to G do
// Generate candidate website sequence
Yi ~ T (- | 2)
// Parse, install, build, launch, and render in the
sandbox environment
({Tip}p=1.Ti) < E(yi) = RILIB(Z(Web(y:)))))
// Multimodal functionality and aesthetics evaluation
S(func,vis) € ¢XLM(:E7 {Iiyp}gzlﬂ FZ)
5(code) <~ CHECKCODEFORMAT (y;)
5(cot) <~ CHECKREASONINGFORMAT(y;)
// Final fused reward (Eqg. E])
R; S(func,vis) T Y S{code) T A S(cot)
Append R; to R
// Compute group-relative normalized advantages
R < mean(R), or + std(R)
fori=1to G do
for t = 1to |y;| do
Ai,t — (Rl — R)/UR

) o (Yi,t|T,yi,<t)
rit(0) Tog1a (Vi t 1Ty, <t)

L;; + min (7"1-7,5(9) . /L',t, clip(ri+(8),1 —¢e,1+¢) - flzt)

// RAggregate GRPO loss with KL regularization to reference
model

Jarpo(0) < & S5y i S [Liy = B Dxw(mol- | @) | et (- |)]
// Gradient ascent step
0+—0+n ngGRpQ(Q)

A ALGORITHM FOR WEBGEN-R1

B DATASET STATISTIC AND ANALYSIS

WebGen-Instruct and WebGen-Bench are based on web application categories distilled from real
freelance and crowdsourcing project listings on platforms such as Upwork, Freelancer, and Proginn,
which were further expanded through expert-generated specifications. This grounding in authen-
tic industry project distributions ensures that the datasets better reflect practical web development
scenarios.

As presented in Table 2} both WEBGEN-BENCH and WEBDEV ARENA constitute highly open-
ended web generation benchmarks, yet they differ substantially in the distribution of instruction
lengths and in the coverage of web development categories. WEBGEN-BENCH comprises 101 sam-
ples with moderately long natural language instructions (median 84 tokens, mean 86.06, max 135)
and 647 executable test cases, and covers 13 heterogeneous front-end development scenarios ranging
from static and dynamic rendering to Al integration and big data handling. This configuration indi-
cates tasks with rich functional requirements and multi-modal constraints, compelling the model to
interpret specifications that couple precise functional logic with explicit visual styling instructions.
In contrast, WEBDEV ARENA contains 119 carefully selected tasks characterized by substantially
shorter instructions (median 20 tokens, mean 23.13, max 119), yet encompassing a wider thematic

14

Under review as a conference paper at ICLR 2026

Table 2: Statistics for the WEBGEN-BENCH and WEBDEV ARENA benchmarks including sample
number, variations in instruction length (in tokens, measured by tiktoken’s c1100k_base tokenizer),

number of test cases, technical categories, and an example.

Instruction Length

Benchmark S # Test Cases Category Examples
#Min #Median #Max # Avg.
Please develop a web-based Texas
Hold’em poker game with features
Static Page Generation such as game lobby, table games,
Dynamic Content Rendering and chat functionality. Users
Data Visualization should be able to create or join
Media Display game rooms, play Texas Hold’em,
Form Systems view game records, and manage
Authentication their account information. The
WebGen-Bench 101 52 84 135 86.06 647 Real-time Features game lobby should display avail-
E-commerce able game rooms, current game sta-
Al Integration tus, and player information. The
CRUD Operations table game should display player
API Integration hand cards, community cards, bet-
Big Data ting information, and action but-
File Handling tons. Implement azure for the page
background and midnight blue for
the elements.
Website Design
Game Development
Clone Development
App Development
Web Development
WebDev Arena 119 3 20 119 2313 0 Ul Design Make me a clone of WhatsApp Chat
Digital Tools PP
App Design
AT Applications
Simulations
Creative Humor
x10°~° x10™*
254 [0 Test Set [GPT-5
’ 1 [Claude-Sonnet-4
Gemini-2.5-Pro
220 ,;»6‘ [DeepSeek-R1
é é s [Qwen3-32B
o) =) 1 Qwen2.5-Coder-7B-Instruct
=197 24 1 WebGen-RI-7B
§ 1.0 £ 3
) S
& &5l
0.54
1
0.0 T T T T T T T T T 0- T T v T T
3270 3285 3300 3315 3330 3345 3360 3375 3390 1500 3000 4500 6000 7500 9000 10500 12000
Prompt Token Length Response Token Length

Figure 9: Token length distributions of prompts and generated responses for several state-of-the-art
commercial LLMs on the end-to-end website generation task on WebDev Arena. For each in-
stance, the prompt is constructed by concatenating the system prompt with the corresponding
natural-language web design instruction. The response length distributions are aggregated over the
WebDev Arena, providing a quantitative characterization of input—output verbosity across models,
which is relevant for assessing model efficiency and design complexity in realistic web generation
scenarios.

spectrum, including creative design, simulations, and game/app cloning. Unlike WEBGEN-BENCH,
these tasks do not include predefined test cases, rendering evaluation criteria inherently more sub-
jective and loosely specified. Consequently, models must make higher-level design decisions and
infer multiple underspecified details, a defining aspect of open-ended generation tasks. This duality
of explicit, testable functional requirements and underspecified creative objectives produces a non-
trivial unified setting, in which attaining robust performance requires models to (i) process prompts
of variable length and varying informational density, (ii) jointly address discrete source code genera-
tion and consistent aesthetic design, and (iii) adapt to fundamentally different reward structures. The
resulting open-endedness expands the effective policy search space and induces optimization land-

15

Under review as a conference paper at ICLR 2026

scapes with heterogeneous and non-uniform reward geometry, making the environment an effective
stress test for generalization in RL-based web generation.

Figure[2]depicts the distributions of prompt and response lengths for several state-of-the-art LLMs in
the end-to-end website generation task. Each prompt is formed by concatenating the system prompt
with the task-specific query. Prompt lengths (see the left side of Figure2)) are concentrated between
3.2k and 3.3k tokens, whereas response length distributions (see the right side of Figure[2) vary con-
siderably across models. Claude-sonnet-4 produces the longest responses, with most outputs around
12k tokens, followed by Gemini-2.5-pro at approximately 6k tokens and Qwen3-32 at roughly 4.5k.
Interestingly, GPT-5 and our RL-trained WEBGEN-R1-7B exhibit similar distributions centered
near 3.5k tokens, closely matching DeepSeek-R1. Qwen2.5-Coder-7B-Instruct generates shorter
outputs clustered around 2k tokens. Notably, compared with Qwen2.5-Coder-7B-Instruct, which
is the base model used for our RL training, our WEBGEN-R1-7B consistently produces longer
outputs, indicating that RL optimization enhances reasoning in open-ended website generation.

C MORE IMPLEMENTATION DETAILS

Baselines. For the proprietary category, we evaluate via official API access the latest
general-purpose models, including GPT-5, GPT-4.1, 03, 04-mini, GPT-40, Claude-Sonnet-4,
Claude-3.7-Sonnet, and Gemini-2.5-Pro. For open-source models, we include high-performing
models with publicly available weights such as DeepSeek-R1, Qwen2.5-Coder-7B-Instruct,
Qwen2.5-72B-Instruct, Qwen3-8B, Qwen3-32B, Qwen3-30B-A3B-Thinking-2507, and
Qwen3-Coder-30B-A3B-Instruct.

Hyperparameter Settings. The key hyperparameters are global batch size of 256, group size G =
8, clipping parameter ¢ = 0.2, learning rate Ir = 5 x 10~°, KL-divergence coefficient 3 = 0.01,
reward weighting factors v = 0.1, A = 0.1, and rollout number n,j10yt = 16. The maximum
context length is set to 4,096 tokens for prompts and 8,192 tokens for model outputs. For text
generation during rollouts, we adopt a decoding temperature of 0.7 and a nucleus sampling (top,,)
value of 0.95, which we empirically find to balance exploration and output determinism.

Website Generation and Execution Framework. To ensure both functional correctness and visual
design quality of LLM-generated websites, all generated website source code is executed within
an isolated and secure sandbox environment. This controlled setting supports full compilation, ex-
ecution, and rendering while preventing interference with external systems. Directly adapting or
switching between heterogeneous sandbox environments can cause significant training latency and
engineering complexity in reinforcement learning loops. To balance efficiency and reproducibil-
ity, we adopt a standardized web development framework inspired by prior works (Lu et al., [2025))
and (LMArena, [2025), defining a predefined project bootstrap and technology stack. All generated
web projects must initialize from the ‘vite-react-typescript-starter’ template ﬁf,strictly preserving its
directory structure, entry points, and configuration conventions. In cases where template defaults
conflict with downstream requirements, necessary modifications or additional files must be intro-
duced to ensure complete compliance. The core stack consists of React (function components with
hooks where applicable), TypeScript with strict typing, Vite as both build and development tool, and
Tailwind CSS for styling. For complex or reusable user interface elements, the Ant Design (‘antd’)
library is mandated, providing consistent styling and interaction patterns. Any usage of ‘shadcn/ui’,
‘shadcn-ui’, or similar variants is explicitly prohibited to avoid style inconsistencies. Routing func-
tionality is implemented through React Router DOM v6. In scenarios where visualizations such
as charts or graphs are explicitly requested, Recharts is the only permitted charting library, ensur-
ing predictable rendering behaviors and compatibility across environments. This unified framework
eliminates variability during rendering and interaction phases, thereby enabling stable functional
and aesthetic evaluation in RL training loops.

Supervised Fine-Tuning (SFT). The training pipeline begins with a supervised fine-tuning stage to
provide a strong initialization for subsequent RL optimization. From the WebGen-Instruct dataset,
we sample 600 instances based on the ‘application_type’ data field to preserve the original domain
distribution. This sampling ensures that the model receives an equal representation of application

4https://github.com/vitejs/vite/tree/main/packages/create—vite/template
—-react-ts

16

https://github.com/vitejs/vite/tree/main/packages/create-vite/template-react-ts
https://github.com/vitejs/vite/tree/main/packages/create-vite/template-react-ts

Under review as a conference paper at ICLR 2026

scenarios, mitigating the risk of distribution shift and maintaining generalization across diverse web
development tasks. For each sampled task-specific query, website generation data is distilled from
the advanced model ‘GPT-4.1-2025-04-14" under controlled inference parameters, with the tem-
perature set to 0.6 to balance creativity and determinism, top_p set to 0.95 for controlled sampling
diversity, and a maximum token limit of 8,192 to ensure complete project generation within a single
inference step. We then fine-tune the Qwen2.5-Coder-7B-Instruct model using the Open-R1 train-
ing frameworkﬂ Training hyperparameters include a learning rate of 1.0 x 10~?, batch size of 32,
maximum sequence length of 32k tokens, warmup ratio of 0.03, and 2 training epochs.

UI Functional Evaluation with WebVoyager. Following (Lu et al [2025), we employ WebVoy-
agerE], a large multimodal model (LMM) powered web agent capable of executing user instructions
end-to-end by interacting directly with rendered websites. WebVoyager performs pre-defined inter-
active behaviors such as button clicks, form submissions, and multi-page navigation, while observ-
ing DOM changes and Ul responses (He et al., [2024a)). The Functional Success Rate (FSR) is com-
puted as the proportion of tasks that successfully pass all behavior checks defined in WebGen-Bench
benchmark. This automated interaction testing provides a scalable and reproducible evaluation of
functional correctness of generated websites without requiring human annotators.

Vision-Language-Model-based Reward Model. Inspired by prior work |Lu et al.| (2025)) demon-
strating the reliability and efficiency of GPT-40 for webpage design aesthetic assessment, we incor-
porate GPT-40-1120 as the vision—language-model-based reward model. During RL training, the
rendered multiple page images, together with the original user request, is passed to GPT-40-1120
for joint functional and aesthetic evaluation. The model produces a scalar reward within the discrete
range [0, 5], where higher scores denote better overall compliance with the requested functionality
and visual design quality. This reward model enables simultaneous optimization toward both func-
tional correctness and aesthetic appeal, ensuring that generated websites are not only operational but
also meet professional design standards. The joint optimization objective is critical for real-world
deployment scenarios in which usability and appearance are equally important, thereby aligning
LLM outputs more closely with user-centric quality expectations.

Prompt Design. We present the full system prompt used for website generation in Prompt[G.1} the
reward evaluation prompts for assessing functionality and visual aesthetics in Prompt[G.2] and the
prompt employed for WebDev Arena data selection in Prompt[G.3]

D RELATED WORK

D.1 LARGE LANGUAGE MODELS FOR PROJECT-LEVEL CODE GENERATION

Large language models (LLMs) have demonstrated remarkable proficiency in functional-level code
generation, achieving near-human performance in competitive programming and standard bench-
marks such as HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), and IOI problems (L1
et al} |2022). Advances in instruction tuning (Ouyang et al., [2022; Wang et al.| 2023} |Chung et al.,
2024) and tool-augmented prompting have further enhanced zero-shot and few-shot code genera-
tion capabilities. However, these achievements predominantly concern single-file or self-contained
scripts, often constrained to producing one function or module per task. Such settings abstract
away complexities of real-world software engineering, where projects span multiple files, require
intricate inter-module dependencies, and must adhere to both functional and non-functional require-
ments. Compared to functional-level coding, project-level generation poses qualitatively different
challenges. Prior attempts to extend LLMs to multi-file outputs include hierarchical prompting
(Shrivastava et al.| [2023} [Zhang et al.|[2023)), iterative refinement (Chen et al.,[2023} Olausson et al.,
2023} |Shinn et al. [2024), and agent-based pipelines (Li et al.| 2024} Zhang et al., [2024; [Luo et al.,
20254). In the specific context of web development, benchmarks such as WebDev Arena (LM Arena,
2025) provide automated evaluation, but their scope is typically limited to single-page static sites,
neglecting the broader demands of large-scale, interactive, multi-page applications. Multi-agent ap-
proaches partition functionality across specialized LLMs, such as front-end generation, API design,
and testing. However, integration often suffers from inconsistent shared states and fragile inter-

Shttps://github.com/huggingface/open-rl
®https://github.com/MinorJerry/WebVoyager

17

https://github.com/huggingface/open-r1
https://github.com/MinorJerry/WebVoyager

Under review as a conference paper at ICLR 2026

2 1.0 5
= o 7
2 0.8 4 £ 41 ”
~ ks et
é 06 1 3 g 2 ’/,
o -
[g Pl
% (.41 2 B o
= 0 ¥ Pearson: r=0.903, p="7.8¢—45
o Spearman: p=0.888, p=2.2¢—41
g 0.2 1 1 T > T i’ |p
& 0 2 4
~ 0.0 - =0 Reward Score
0.0 0.5 1.0

v (Code Format Weight) Figure 11: Alignment between reward model

evaluations and human ratings on WebGen-
Figure 10: Performance heatmaps over (v, A) Bench websites, with strong correlations (Pear-
configurations in the RL training, showing the son r = 0.903, Spearman p = (0.888) indicating
joint effects of web code format and reasoning reliable automatic assessment of functional cor-
format rewards on AAS. rectness and aesthetic quality.

component linking. These shortcomings may result in generated projects that compile but fail to
align with the holistic end-to-end specifications of real-world sites.

D.2 REINFORCEMENT LEARNING FOR CODE GENERATION

Reinforcement Learning (RL) has emerged as a crucial technique to align LLM behavior with hu-
man preferences and task-specific objectives, as exemplified by RLHF (Ouyang et al., 2022;[Achiam|
and RLAIF (Bai et al} 2022} [Lee et al} 2023). Yet, applying RL to open-ended
code generation introduces unique obstacles such as the vast search space, undefined or ambigu-
ous ground truths, and outputs that cannot be trivially benchmarked against static gold standards.
Reinforcement Learning with Verifiable Rewards (RLVR) (Shao et al.}[2024}; [Guo et al, 20235}, [Team
let all, 2025} [Yu et al.l [2025) addresses part of this issue via deterministic, binary success checks
(e.g., unit test pass rates), which work well for algorithmic correctness but fail to capture subjective
quality dimensions such as style, maintainability, or visual experience. Existing RL applications in
code (Le et al.| 2022} [Shen et al.l 2023} [Shojaee et al.l 2023} [Dou et al., 2024} [Cuo et al, [2025b)
thus typically optimize for purely functional scores, leaving large gaps for domains like website
generation where aesthetics and interaction design are first-class objectives. While prior research
has advanced LLM-based code generation, none simultaneously addresses multi-file structural co-
herence, execution validity, and visual quality within an integrated RL framework.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 WEB CODE FORMAT AND REASONING FORMAT REWARDS

We investigate the role of two complementary reward signals in our multi-objective RL setup. The
first is the web code format reward scqc), Which promotes the generation of syntactically correct,
structurally coherent, and executable web code. The second is the reasoning format reward s cot),
designed to encourage logically consistent, step-by-step reasoning traces that guide the code gen-
eration process. The relative contributions of these rewards are modulated by weighting factors v
for web code format and A for reasoning format. To systematically examine their interaction, we
evaluate seven representative (-y, A) configurations, with each weight taking values in {0,0.1,1.0}.
These settings span low—low, low—high, high—low, and high-high regions of the reward space. All
models are trained under identical conditions and assessed using our proposed AAS metric. Fig-
ure [10| presents the resulting (-, \)-conditioned heatmaps. The observed trends indicate that in-
creasing -y consistently boosts AAS, highlighting the importance of optimizing web code structure
for functional correctness and structural validity. In contrast, increasing A primarily enhances AAS

18

Under review as a conference paper at ICLR 2026

by improving the coherence and logical rigor of design rationales, which facilitates better layout
organization and more structured visual composition. These results suggest that the two reward
components act synergistically, with web code format optimization ensuring technical soundness,
and reasoning format shaping design clarity and aesthetic consistency.

E.2 HUMAN ALIGNMENT STUDY ON WEBDEV ARENA

Consistent with the analysis presented in Figure [/, we extend our evaluation to the WebDev Arena
benchmark, which contains instruction distributions and task categories that are not included in
WebGen-Instruct (training data) and WebGen-Bench (test data). We sample 119 website instances
from this benchmark, as described in Section [C] Each instance is independently evaluated by three
experienced front-end practitioners, who assign quantitative scores for functionality and visual aes-
thetics on a discrete scale from O to 5 following standardized evaluation protocols. The Human
scores are aggregated across annotators and then compared with the outputs of our reward model.
As shown in Figure [I1] there is a strong and statistically significant alignment between reward
scores and human judgments, with Pearson’s correlation coefficient r = 0.903 (p = 7.8 x 107%%)
and Spearman’s rank correlation p = 0.888 (p = 2.2 x 107%!). The close agreement between
these correlation measures indicates that the vision—language reward model’s assessments are highly
monotonic with respect to human ratings and approximately linear in scale. Moreover, the high con-
sistency between the results on WebDev Arena as an out-of-distribution evaluation set and those
on WebGen-Bench as an in-distribution benchmark provides strong empirical evidence that the re-
ward model used in our reinforcement learning process is robust and exhibits minimal risk of reward
hacking.

Reasoning Format Code Format
1001 7 = = 100 = =

2] »n
] =
= 807 S 801
G S

o =]

. =
& 60 2 60

: :
4 Z

401 H 40 H
/ ’_‘ 1
Functionality and Aesthetics
[GPT-5 [DeepSeek-R1 [Qwen3-32B [l
[0 Claude-Sonnet-4 [Qwen2.5-Coder-7B [Qwen3-Coder-30B-A3B-Instruct

,ﬁ 801 [Gemini-2.5-Pro [Qwen2.5-72B-Instruct [WebGen-R1-7B (Ours)

%]

<

£ 60

o

B

,Jé 40

=

Z 20

0 ; = [— [: ; =
0 1 2 3 4 5

Figure 12: Website quality score distributions for multiple advanced proprietary and open-source
models on WebGen-Bench. WebGen-R1 demonstrates perfect reasoning and code format adherence,
consistently high functionality and aesthetics scores, and robust generation reliability, validating the
effectiveness of reinforcement learning with explicit format and quality-oriented rewards.

E.3 WEBSITE QUALITY SCORE DISTRIBUTION AND ANALYSIS

To obtain an in-depth understanding of model capabilities in the end-to-end multi-page website gen-
eration task, we conduct a detailed evaluation across both reasoning format adherence and code
format compliance, as well as the distribution of functionality and aesthetics scores on two bench-
marks, WebGen-Bench and WebDev-Arena. This analysis is performed on a diverse set of advanced
proprietary and open-source models, including our proposed WebGen-R1, with the goal of provid-
ing deeper insight into their generation reliability and overall website quality. In terms of reasoning

19

Under review as a conference paper at ICLR 2026

Reasoning Format Code Format
1204 — - = 1201 a—
2 2
» 100 2 100 1
E E
4 S
o =]
5 807 5 80
E E
=3 =]
z 607 H Z 60 H
40 | ﬂ (|
Functionality and Aesthetics
80 [GPT-5 [DeepSeek-R1 [Qwen3-32B [l
[[Claude-Sonnet-4 [Qwen2.5-Coder-7B [Qwen3-Coder-30B-A3B-Instruct

E [Gemini-2.5-Pro [Qwen2.5-72B-Instruct [WebGen-R1-7B (Ours)

E 60 A

Gy

o

5 40

e

£

=

Z 20+ H»

0 : = ’_Ll_\ — = - I !_l_L I =i
0 1 2 3 4 5

Figure 13: Website quality score distributions for multiple advanced proprietary and open-source
models on WebDev Arena. WebGen-R1 demonstrates perfect reasoning and code format adherence,
consistently high functionality and aesthetics scores, and robust generation reliability, validating the
effectiveness of reinforcement learning with explicit format and quality-oriented rewards.

format adherence, results in Figures (12| and |13]| show that GPT-5 and WebGen-R1 achieve perfect
compliance on both benchmarks, consistently producing outputs that fully conform to the prede-
fined <think >...</think><answer>...</answer> structure across all tasks. This
indicates a high degree of controllability and reliability in structured reasoning output. Claude-
Sonnet-4, on the other hand, demonstrates reduced adherence due primarily to the omission of clos-
ing tags, such as missing </answer>, which was confirmed through careful manual inspection.
DeepSeek-R1 does not report usable reasoning format result due to internal configuration docu-
mented in the public issue trackerﬂ Interestingly, Qwen3-32B reliably produces the first <think
>...</think> block but occasionally omits the second <answer>...</answer> block,
instead completing the answer directly. Similarly, Qwen3-Coder-30B-A3B-Instruct does not employ
the prescribed two-block <think >...</think><answer>...</answer> sequence.
Instead, it frequently uses a hybrid structure starting with <tool_call >...</tool_call >
followed by <answer>...</answer>, and in some cases omits any explicit reasoning phase,
proceeding directly to the final output. For code format compliance, WebGen-R1 again achieves a
perfect 100% success rate on both benchmarks. This outcome can be directly attributed to the ex-
plicit code format reward incorporated into our reinforcement learning objective, which consistently
biases the model toward generating code in the exact target structure. GPT-5, Gemini-2.5-Pro,
and Qwen2.5-72B-Instruct also exhibit strong adherence in this aspect, indicating that zero-shot
prompting can produce highly reliable code formatting behavior owing to their powerful instruction-
following capabilities. When examining the distribution of functionality and aesthetics scores, we
observe that our WebGen-R1 attains the highest number of tasks receiving a score of 4 across both
benchmarks. This suggests that WebGen-R1 has acquired transferable abstractions at both archi-
tectural and stylistic levels, enabling it to produce functional and visually appealing websites even
in domains not encountered during training. Furthermore, in the distribution of maximum scores,
tasks scoring 5 are most frequently achieved by Gemini-2.5-Pro, highlighting its superior ability to
simultaneously satisfy functional requirements and achieve high aesthetic quality under the given
task constraints. Overall, this multi-faceted analysis reveals that our WebGen-R1 exhibits both strict
structural compliance and consistently high-quality generation, while also shedding light on sub-
tle deviations and nuances in other competitive models. These insights confirm that reinforcement

"nttps://github.com/open-webui/open-webui/issues/9488

20

https://github.com/open-webui/open-webui/issues/9488

Under review as a conference paper at ICLR 2026

learning with explicit format and quality-oriented rewards can substantially improve reliability and
performance in complex website generation tasks.

E.4 REWARD DYNAMICS AND OPTIMIZATION STABILITY

To better understand how reinforcement learning fine-tuning affects the balance between functional
correctness and visual appeal in website generation, we analyze the evolution of three reward com-
ponents during RL training, providing insights into the interaction between multiple objectives and
highlighting factors that influence the stability of RL optimization. We track the three distinct re-
ward components we design during training, namely s tnc,visy for functional correctness and visual
design quality, S(coqc) for code formatting compliance, and sty for correctness in reasoning for-
mat. In addition, we examine how the three reward components are affected under different settings,
including the weighting coefficients associated with s(code) and S(cot)» the group size parameter in
GRPO’s rollout sampling, and different fine-tuning strategies including RL-only and SFT+RL. The
corresponding trends are illustrated in Figure 14| (a), (b), and (c). Our observations can be summa-
rized as follows:

¢ When the coefficient y controlling s coqe) i8 set to zero, the overall code formatting remains
largely unaffected. This suggests that rewards targeting functional and visual aspects im-
plicitly promote code formatting consistency, possibly because improvements in semantics
and structure encourage properly formatted output. In contrast, setting A = 0 for s(cor)
leads to instability in reasoning format compliance, with a pronounced collapse in the later
stages of training followed by partial recovery, indicating that omitting format-specific re-
wards for reasoning can disrupt optimization stability.

* Increasing the group size in GRPO generally results in higher mean values for all three
rewards and smoother convergence profiles. For example, with group size = 2, we observe
volatile fluctuations and temporary collapses around step 200. Larger group sizes, such as
32, improve stability for s func,vis) and S(code)» yet the improvement for s .oty becomes less
pronounced. This suggests diminished benefits due to over-expansion of the exploration
space, where low-quality samples might become more prevalent.

* The SFT+RL strategy offers clear advantages over RL-only. For s gnc, vis)» RL-only begins
to converge around step 60, whereas SFT+RL continues to improve steadily beyond that
point, reaching higher final values. For s coq4e) and s(cot), the SFT+RL setting demonstrates
greater stability, while RL-only exhibits late-stage oscillations and declines, particularly in
S(cot)- These results indicate that initialization via supervised fine-tuning equips the model
with robust formatting adherence, while subsequent RL optimization expands exploration
and leverages reward signals to discover and generate higher-quality, aesthetically refined
websites.

Overall, this analysis underscores that fine-grained reward design, appropriate group sizing, and hy-
brid SFT+RL training are crucial for stabilizing multi-objective optimization in LLM-based website
generation. The observed dynamics highlight that certain objectives are implicitly reinforced by oth-
ers, whereas others require explicit reward shaping to prevent collapse, offering valuable guidance
for future multi-objective RL frameworks.

E.5 REASONING BEHAVIOR IN WEBSITE GENERATION

We conduct a qualitative comparison of reasoning traces and find that, under identical task instruc-
tions sampled from WebGen-Bench benchmark, our WebGen-R1 produces a more complete and
implementation-ready plan for the credit repair lead-generation website, as shown in Figure[T6] In
the context of front-end development, the advantages are clear. WebGen-R1 explicitly maps user re-
quirements to a structured routing scheme and coherent page-component hierarchy, ensuring main-
tainability and scalability. It integrates styling decisions directly into the architectural plan, spec-
ifying how Tailwind CSS overrides and Ant Design components achieve consistent visual themes
and responsiveness. Accessibility is embedded at the reasoning stage through ARIA attributes and
keyboard navigation, a consideration absent in the baseline model. State management is also more
concrete, with precise handling of client-side data storage and strict TypeScript typing for form mod-
els, which increases robustness in generated code. These elements, specifically clear route planning,

21

Under review as a conference paper at ICLR 2026

1.00
1.0
3 £ 0.75
g "% A 0.8
§2 g
[l Y (R
1 i atats — mmato ’ SR = W= Rt
025 L e o it e Loloe
0 200 200 V=i T =i
Steps 0 200 400
. . Steps
(a) Reward weighting
coefficients.
1.00 10
3
9 5 L 0.75 A 08
é j— Group Size=2 ?E —— Grouwpsize=2 v —— Group Size=2
A — Group Size=4 4 0.50 — Group Sires “ 0.6 —— Group Size—4
1 Group Size=8 Group Size=8 Group s!Le:s
—— Group Size=16 —— Group Size=16 —_ (_:rroup S:fze:lf)
oL | —— Group s‘7c—3z' 025 —— Group Size=32 0.4 ! | —— Group sue:ﬂ'
0 200 400 0 500 400 0 200 400
Steps Steps Steps
(b) GRPO group size.
1.00 1.00
3
A 0.75
2 0.75
S 3 \2
< < 0.50 = 030
—— RLonly — RLon —— RLonl
K . i SFT*R]: 0.25] ' e :;:r<];1; 0.25 ' | —_ SH'+}|;1:
0 200 400 0 200 400 0 200 400
Steps Steps Steps

(c) Fine-tuning strategy.

Figure 14: Reward trajectories for functional-visual quality s tunc,visy» code formatting s codc), and
reasoning format s .., under different weighting coefficients, GRPO group sizes, and fine-tuning
strategies, showing that multi-objective stability benefits from hybrid SFT+RL and careful reward
component design.

style-system integration, accessibility, and state handling, are central to modern front-end engineer-
ing, and the reasoning path of WebGen-R1 demonstrates stronger alignment with production-grade
development practices than the baseline.

F THEORETICAL ANALYSIS OF GRPO WITH INCREASING GROUP SIZE

We provide a theoretical justification of why, in Group Relative Policy Optimization (GRPO)
et all, 2024} |Guo et all, [2025)), increasing the group size G yields policy gradient estimates that
asymptotically converge to the analytic optimal-baseline gradient, and why this convergence leads
to improved reinforcement learning optimization performance.

We start by restating the GRPO setting more formally. For a given question-answer pair (g, a) from
dataset D, the behavior policy 7, samples a group of G responses {0;}$,, with each response
0; = (0i1,0i2,--., oi,|oi|). For each token position ¢ within o;, the group-relative normalized
advantage is defined as:

A Ri— mean({Rj}jG:l)
it — ’
std({R;}52,)

®)

where R; is the (scalar) reward obtained by the i-th response. This normalization eliminates the
need for a separately learned value function and ensures that within the group, credit assignment is
relative to other members.

22

Under review as a conference paper at ICLR 2026

—~ 3 1 ~ 15 T
2 2
k] B
2 £
5 <
v Group Size=2 “’\7 Group Size=2
o) —— Group Size=4 o) 1 0 - —— Group Size=4
X 14 Group Size=8 © Group SizeZS
—— Group Size=16 — Group Size=16
A —— Group Size=32 —— Group Size=32
0 T T T T T
0 200 400 0 200 400
Steps Steps
100 T et —— Group Size=2
—— Group Size=4
04 7 Group Size=8
“A “A —— Group Size=16
2 0.75 A psi
< = Group Size=32
S S
S
\2 —— Group Size=2 hv O 2 _
2 0.504 —— Group Size=4 <
= Group Size=8
—— Group Size=16
0.251 —— Group Size=32
T T T T T T
0 200 400 0 200 400
Steps Steps

Figure 15: Effect of increasing G on reinforcement learning performance. Higher values of G
yield reward curves with elevated mean rewards and reduced variance across training episodes,
demonstrating enhanced learning stability and accelerated convergence of the RL training.

Following the PPO-style clipping strategy with an explicit KL penalty, the GRPO objective can be
expressed as:

Jarpo(9) = E(ga)d, (0,38 ~ro,,, (1)

o]

GZMZ(mm ri(0) Ay, clip(rio(6). 1= &,1+2) Ai) = B Dicw(mo | moer)) |
©

where the importance ratio is given by:

’rit(e) é 71'0(01’,15 | q70i,<t) . (10)
7T901d(i Oi,<t)

Analytical Gradient with Optimal Baseline. In the ideal case (without clipping and KL penalty),
policy gradient theory states that the gradient of the expected reward objective with an optimal
variance-minimizing baseline is:

N R(o) — b*
g = Eowﬂecld(‘lq),t Vg logmg (ot | q,0<:) %) (1D

where b* = E[R(0)] is the optimal constant baseline and o is the standard deviation of R(0) under
Tg,14- The normalization by o is included to match Eq. [8] This g* represents the oracle gradient
direction with minimal variance.

GRPO gradient estimator. From Eq. [0}-Eq. [10](without clipping and KL terms for the theoretical
analysis), the per-batch gradient estimate under GRPO can be expressed as:

|O7/‘ —(G)

R,—R
GZMZZM ~o (12)

23

Under review as a conference paper at ICLR 2026

—(G .
where z; ¢ £ Vglog 79 (01 | ¢, 0i,<t)s R() 2 é Zle R; is the sample mean reward over the

group, and S(&) £ \/é Z?Zl(Rj _RY

)2 is the sample standard deviation.

Consistency of the Group-relative Baseline. Note that E(G) and S(©) are unbiased and consis-
tent estimators of the true mean b* and standard deviation o r, respectively, provided E[| R(0)|?] <
o0. Specifically, by the strong law of large numbers:

G loil

- a.s a.s. 1 a.s.
R 2 9@ 2 o ol D>z 0. (13)
0| «
=1 t=1
The last identity follows from the score function property E[Vglogmg(o; | - -+)] = 0.

Convergence of §(©) to g*. We can decompose the error between the GRPO gradient estimate
and the analytical gradient:

1 R, —b” R—b*
@) _ox_ | L) i _E
g g Giztzz,t on |:Zt on]
R
—(G)
1 1\ 1 . R 1
(50 o) g D00 - g gm0
E(ZG) 5:(3G)

By Eq. [13|and the assumption of bounded second moments, each E;G) converges to 0 almost surely

as G — oo. Therefore: s
gl 2 g, (15)

showing that with large group size, GRPO recovers the oracle optimal-baseline policy gradient.

Variance Reduction and Improved Optimization. Applying the multivariate central limit theo-
rem to Eq. [14] we have:

VG (89 —g") BN (0,%),
where ¥ is the finite covariance matrix of the per-sample gradient contributions. This implies:
1
var [8@] =0 =). 16
ar |g G (16)

A smaller group-level gradient variance directly improves the stability of gradient ascent, allowing
for larger step sizes without instability, thereby accelerating convergence to high-reward policies.
This establishes a direct theoretical link between G and reinforcement learning optimization quality
in GRPO: larger G not only yields unbiased and consistent recovery of g*, but also ensures that
training dynamics benefit from reduced stochasticity, leading to more monotonic and efficient policy
improvement.

Extension to PPO Clipping and KL Penalty. The above convergence proof relies on an idealized
setting where both the clipping term min (riyt(O)/li’t, clip(r; ¢(0),1 —e,1 + E)Aiyt) and the KL
penalty term in Eq. [9]are omitted. We now extend the analysis to the practical GRPO objective Eq.
[9] where these terms impact both bias and variance of the gradient estimate.

Let feiip(r, A) denote the clipped surrogate term:
Jetip (7, /1) £ min (r A, clip(r,1—¢,1+¢) fl)
With the KL term included, the per-token contribution to the gradient becomes:

[o;]

G
- 1 1 .
g(G) = a Z m Z [Vefclip (Ti,t(e)yAi,t) — BVeDkL (We(' | Q70i,<t) H Tret (+ | Q70i,<t)>:| .
i=1 " =1
(17

24

Under review as a conference paper at ICLR 2026

Bias from Clipping. Observe that in expectation, replacing r; :(6)A4; ; with feip (ri’t(ﬂ), Ai,t)
yields a lower bound on the unclipped surrogate objective (Schulman et al.,[2017), i.e.,

E [faip (ra(0), Ai)| S E [rsa(6) Aue] (18)

with the gap vanishing as ¢ — oco. This implies that (%) is in general a biased estimator of g* even
for G — oo, with bias magnitude proportional to the probability mass of {(%,t) : |r; +(0) — 1| > €}.

Nevertheless, this clipping-induced bias depends only on the distribution of (r; ¢, fli,t) and is or-
thogonal to the group size . Hence the variance reduction effect from increasing G established in
Eq. [I6] continues to hold in the clipped case, yielding:

var [g9)] = 0<é> , (19)

while the bias term remains O(1) in G unless ¢ is increased or the policy nears the trust region
|ri+ — 1| < e almost surely. Therefore, larger G still improves stability and optimization efficiency,
but the achievable optimum is shifted by the clipping bias.

Effect of the KL Penalty. The KL term in Eq. [T7]can be viewed as adding a deterministic gradient
component

—BE(qo-) [VoDxL (o (- | ¢,0<¢) || et (- | ¢,0<¢))]
which biases the ascent direction toward staying close to 7,¢ and can be interpreted as the gradient

of a regularized objective:
IH(?X E[R] - ﬁE[DKL(’ITg H ﬂref)].

Because the KL term is a smooth deterministic functional of 7y, its gradient variance is negligible
compared to that of the stochastic surrogate term. As G increases, the stochastic variance from the
advantage-weighted likelihood term falls as O(1/G) per Eq. hence the relative influence of the
KL penalty becomes more pronounced in the total gradient, effectively stabilizing policy updates in
large-G regimes.

Combined Convergence Behavior. Putting this together, the gradient estimate under practical
GRPO with clipping and KL penalty can be written as:

89 =g + daip + dxr, + €9, (20)
where d.1ip and dki, are G-independent bias terms due to clipping and regularization, and £ (@) isa
zero-mean noise term with Var[¢(%)] = O(1/G). Therefore:

lim g(G) = g* + 6C1ip + 0k1, a.s.,

G—o0

and increasing GG monotonically improves optimization stability and convergence speed by reducing
Var[g(©)], even though the asymptotic limit may differ from the exact analytic gradient due to
practical bias terms. Importantly, in high-G regimes, the training dynamics approximate those of
a deterministic gradient ascent on the regularized clipped objective, which is highly favorable for
stable policy improvement in large-scale LLM fine-tuning.

G PROMPT DESIGN

G.1 SYSTEM PROMPT FOR WEBSITE GENERATION

You are an expert frontend engineer with extensive experience in React<—
, TypeScript, Tailwind CSS, and Vite. Your primary responsibility <
is to automatically generate complete, production-ready, browser—-<—
executable web applications for execution in a browser-based <
WebContainer environment. All generated projects must strictly <
adhere to best practices in modern frontend development, UI/UX <—
design, and maintainability.

25

Under review as a conference paper at ICLR 2026

Environment & Execution Constraints:

- WebContainer: Assume browser-based Node.Jjs execution. No native <—
binaries, pip, g++, or system-wide dependencies.

- Files & Shell: Interact with filesystem via explicit shell commands <—
as described in the output manifest.

— Git: Unavailable-generate every required file from scratch.

- No Partial Output: Always write full content for every generated <—
file.

— Scripting: Prefer Node.js scripts when scripting is necessary.

- Database: Support only SQLite/libsgl-if persistence required, use <
these exclusively.

- No Unlisted Paths/Patterns: Never create or reference files or <—
folders outside the prescribed structure.

Project Bootstrap & Tech Stack:

- Template Foundation: Every project must start from the ‘vite-react-<—
typescript-starter' template, strictly following its directory, <—
entry point, and configuration conventions. If following guidelines<—

conflict with the template defaults, you must modify/add files to <
fully satisfy the requirements below.

— Core Technologies:

— React (function components & hooks where possible)

- TypeScript (strive for strict, precise typing everywhere)

- Vite (as the build and development tool)

- Tailwind CSS (for styling)

- UI Libraries:

- ‘antd' (Ant Design) (preferred for all reusable or complex UIs)

- Do NOT use ‘shadcn/ui‘, ‘shadcn-ui‘, or ‘shadcnui‘

— Routing: React Router DOM v6

— Charts: Use Recharts only if charts/graphs are explicitly requested.

Base Template ‘vite-react-typescript-starter‘:

AN \Xml
<webArtifact id="unique-id" title="Project Title">
<!-- Core Configuration Files from Starter Template ——>

<webAction type="file" filePath="eslint.config.js">
import js from ’'@eslint/js’

import globals from ’'globals’

import reactHooks from ’eslint-plugin-react-hooks’
import reactRefresh from ’"eslint-plugin-react-refresh’
import tseslint from ’typescript-eslint’

export default tseslint.config(

{ ignores: [’dist’] },

{
extends: [Js.configs.recommended, ...tseslint.configs.recommended],
files: [/xx/%.{ts,tsx}’'],

languageOptions: {
ecmaVersion: 2020,
globals: globals.browser,
by
plugins: {
"react-hooks’: reactHooks,
"react-refresh’: reactRefresh,
by
rules: {
..reactHooks.configs.recommended.rules,
"react-refresh/only-export—-components’ : [
'warn’,
{ allowConstantExport: true },
1,
by
by
)
</webAction>

26

Under review as a conference paper at ICLR 2026

<webAction type="file" filePath="index.html">
<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<link rel="icon" type="image/svg+xml" href="/vite.svg" />

<meta name="viewport" content="width=device-width, initial-scale<—

=1.0" />
<title>Vite + React + TS</title>
</head>
<body>

<div id="root"></div>

<script type="module" src="/src/main.tsx"></script>
</body>
</html>
</webAction>

<webAction type="file" filePath="package.json">
{
"name": "vite-react-typescript-starter",
"private": true,
"version": "0.0.0",
"type": "module",
"scripts": {
"devll: "Vite",
"build": "vite build",
"lint": "eslint .",
"preview": "vite preview"
by
"dependencies": {
"lucide-react": "~0.344.0",
"react": ""18.3.1",
"react-dom": ""18.3.1",
"react-router-dom": ""6.3.0"
by
"devDependencies": {
"@eslint/js": ""9.9.1",
"Qtypes/react": ""18.3.5",
"Q@types/react-dom": ""18.3.0",
"Qvitejs/plugin-react": ""4.3.1",
"autoprefixer": "710.4.18",
"eslint": "79.9.1",
"eslint-plugin-react-hooks": "°5.1.0-rc.0",
"eslint-plugin-react-refresh": ""0.4.11",
"globals": ""15.9.0",
"postcss": "°8.4.35",
"tailwindcss": ""3.4.1",
"typescript": "°5.5.3",
"typescript-eslint": ""8.3.0",
"vite": ""5.4.2"
}
}

</webAction>

<webAction type="file" filePath="postcss.config.js">
export default {
plugins: {
tailwindcss: {},
autoprefixer: {},
by
}
</webAction>

<webAction type="file" filePath="src/App.tsx">

27

Under review as a conference paper at ICLR 2026

import React from ’react’

function App () {
return (
<div className="min-h-screen bg-gray-100 flex items—center justify-<—
center">
<p>Start prompting (or editing) to see magic happen</p>
</div>

export default App
</webAction>

<webAction type="file" filePath="src/index.css">
@tailwind base;

@tailwind components;

@tailwind utilities;

</webAction>

<webAction type="file" filePath="src/main.tsx">
import { StrictMode } from ’react’

import { createRoot } from ’react-dom/client’
import App from ’./App.tsx’

import ’./index.css’

createRoot (document .getElementById ('’ root’) !) .render (
<StrictMode>
<App />
</StrictMode>,
)

</webAction>

<webAction type="file" filePath="src/vite-env.d.ts">
/// <reference types="vite/client" />
</webAction>

<webAction type="file" filePath="tailwind.config.js">
/** @type {import (’'tailwindcss’).Config} =/
export default {
content: [
"./index.html",
"./src/xx/*.{Jjs,ts, jsx,tsx}",
1,
theme: {
extend: {},
b
plugins: [],
}

</webAction>

<webAction type="file" filePath="tsconfig.app.json">
{

"compilerOptions": ({
"target": "ES2020",
"useDefineForClassFields": true,
"lib": ["ES2020", "DOM", "DOM.Iterable"],
"module": "ESNext",
"skipLibCheck": true,
"moduleResolution”": "bundler",
"allowImportingTsExtensions": true,
"isolatedModules": true,
"moduleDetection": "force",
"noEmit": true,
"jsx": "react-jsx",

28

Under review as a conference paper at ICLR 2026

"strict": true,
"noUnusedLocals": true,
"noUnusedParameters": true,

"noFallthroughCasesInSwitch": true
by
"include": ["src"]
}
</webAction>

<webAction type="file" filePath="tsconfig.json">
{

"files": [],
"references": [
{ "path": "./tsconfig.app.json" },
{ "path": "./tsconfig.node.json" }
1
}
</webAction>

<webAction type="file" filePath="tsconfig.node.json">

{

"compilerOptions": {
"target": "ES2022",
"lib": ["ES2023"],
"module": "ESNext",
"skipLibCheck": true,
"moduleResolution": "bundler",
"allowImportingTsExtensions": true,
"isolatedModules": true,
"moduleDetection": "force",
"noEmit": true,
"strict": true,
"noUnusedLocals": true,
"noUnusedParameters": true,

"noFallthroughCasesInSwitch": true

b
"include": ["vite.config.ts"]

}

</webAction>
<webAction type="file" filePath="vite.config.ts">
import { defineConfig } from ’'vite’

import react from ’'@vitejs/plugin-react’

export default defineConfig ({

plugins: [react ()],
optimizeDeps: {
exclude: [’lucide-react’],

b
server: {
allowedHosts: [
" .csb.app’

}
})

</webAction>

<!-— Installation Command —-->
<webAction type="shell">npm install</webAction>

<!-- Start Command —-->
<webAction type="start">npm run dev</webAction>
</webArtifact>

AN

29

Under review as a conference paper at ICLR 2026

Implementation Standards:

Visual & Interaction Design:

- Use Tailwind utility classes for styling. Leverage responsive design<—
and accessible color schemes out of the box.

- All interactive components must:

- Be functionally self-contained (state/logic encapsulated; hooks or <—
local state preferred)

- Provide meaningful feedback (loading indicators/spinners, disabled <
states, clear success/error messaging)

- Support keyboard navigation and accessibility (ARIA attributes where<—
needed)

- Supply non-breaking sensible defaults for all props; never require a<—
prop unless core to function.

- Ensure a visually polished UI by:

- Consistent spacing (‘gap‘, ‘padding‘, ‘margin?‘)

— Visual hierarchy using appropriate font weights/sizes

— Smooth transitions/animations where helpful, never distracting

— Mobile-first, responsive out of the box

File Structure & Naming:

- Use only the paths and filenames defined by ‘vite-react-typescript—<—
starter:

- Global CSS: ‘src/index.css' (Use ONLY this file for all CSS styles. o
DO NOT create any other CSS files including but not limited to: ‘<
global.css', ‘app.css', ‘app.module.css‘, any CSS files in ‘styles$—
/" folder, any component-specific CSS files, or any module CSS <
files. All styles must be placed in ‘src/index.css‘' exclusively)

- Third-party UI library CSS (such as ‘antd/dist/antd.css' or ‘antd/<—
dist/reset.css') may be imported directly in ‘src/main.tsx) <
strictly according to the UI library documentation and version.

- For Ant Design v4, import ‘antd/dist/antd.css' in ‘src/main.tsx’.

- For Ant Design v5 or above, DO NOT import ‘antd/dist/antd.css‘; <
use ‘antd/dist/reset.css' only if needed per documentation.

- Do NOT copy or merge any third-party UI library styles into ‘src/<—
index.css ‘.

- Entry: Always load global styles in ‘src/main.tsx’

- Static Assets: Serve with ‘public/‘ if necessary

— Directory conventions:

— All reusable UI components should be placed in ‘src/components/®

- Route-level components (pages) or feature-specific containers should<—

be placed in ‘src/pages/‘, where appropriate

- Every file or module imported anywhere in the code-such as <
components or pages in ‘App.tsx‘-MUST be present in the output <
manifest with its complete file content generated accordingly.

Configuration & Linting:

— All necessary config files must be present and valid, including:

- ‘package.json' (completely listing ALL dependencies and scripts, <—
reflecting project requirements)

- ‘vite.config.ts', ‘tailwind.config.js‘, ‘postcss.config.js®

- TypeScript configs: ‘tsconfig.json', ‘tsconfig.app.json‘, ‘tsconfig.<—
node. json®

- ‘eslint.config.js‘ (TypeScript+React linting, reflecting best <
practices)

- Ensure ‘tailwind.config.js‘’s ‘content' property matches: ‘["./index<—
.html", "./src//*.{Js,ts,jsx,tsx}"]"

— Imports must only reference files present in the output manifest.

Output & Validation:

- The output MUST include the following set of core files, generated <
in full:

- ‘package.json’

- ‘vite.config.ts®

- ‘tailwind.config.js®

- ‘postcss.config.js®

30

Under review as a conference paper at ICLR 2026

- ‘eslint.config.js®

- ‘“tsconfig.json', ‘tsconfig.app.json', ‘tsconfig.node.json®

- ‘public/index.html?

- ‘src/main.tsx®

- ‘src/App.tsx’®

- ‘src/index.css’

- ‘src/vite-env.d.ts®

- Additionally, generate any feature/component/page files required to <—

fulfill user feature-requests, all placed in appropriate <—
subdirectories based on the above conventions.

- Validations:

- Before generating any import statement, confirm the target file is <

included in the output manifest and follows template structure.

- Do not create or import from any alternative global style file (e.g.<—
‘global.css', ‘styles/global.css‘).

- Always verify there are no broken imports; if a referenced file is <

missing, either generate it or update/remove the import.

- For every import statement in any file (including but not limited to<—
all pages/components referenced in ‘App.tsx‘), you MUST ensure the{—
corresponding file is fully generated and included in the output <—

manifest. Missing files or references are strictly forbidden. Never<—
leave an import statement unresolved.

Additional Standards:

— All code must use ES Modules syntax.

— Use latest (non-beta, non-RC) stable versions for all dependencies, <
unless the template already picks specific versions.

- Code must not reference or require unavailable packages or APIs (<
given environment constraints).

- All state and side-effects to be managed with idiomatic React <
patterns.

- If persistence is requested, use SQLite/libsql only, with <
appropriate install and usage instructions.

- Add minimal in-line documentation in complex or non-obvious code <
paths.

- Accessibility (ally) must be considered for all interactive inputs <
and views.

- If the user requests authentication, data fetching, or external APIs<—
, stub/mock the backend, unless relevant APIs are supported in the <
browser context.

Output & Response Format:

Always format your response using this structure strictly:

- Encapsulate all reasoning inside ‘<think> ... </think>‘' tags, <
detailing:

- Project requirements analysis

- Entry point and import resolution

— Dependencies planning

— TypeScript validation

— ESLint and code health checks

— UX and interaction strategy

- Visual and responsive layout ideas

— Any other technical considerations

- Encapsulate your complete project manifest inside ‘<answer> ... </<—
answer>' tags, as a single well-formed XML structure matching the <
required output exactly (see ‘vite-react-typescript-starter' <
example and core files above).

- All shell actions and generated files must be represented explicitly<—

in the manifest.

- Your output must guarantee a one-to-one correspondence between all <

import statements and actual generated files.

Example Response Start

<think>
(Detailed reasoning here-covering every step)

31

Under review as a conference paper at ICLR 2026

</think>

<answer>

Y Yxml

<webArtifact id="unique-id" title="Project Title">

<!-— ... All generated files/filesystem/shell actions here ... —-—>
</webArtifact>

AN

</answer>

G.2 REWARD PROMPT FOR WEBSITE FUNCTIONALITY AND AESTHETICS

Instruction:
You are tasked with evaluating the functional design of a webpage that<—
had been constructed based on the following instruction:

{instruction}

Grade the webpage’s appearance on a scale of 0 to 5 (5 being highest), <
considering the following criteria:

- Successful Rendering: Does the webpage render correctly without <—
visual errors? Are colors, fonts, and components displayed as <—
specified?

- Content Relevance: Does the design align with the website’s <
purpose and user requirements? Are elements (e.g., search bars, <
report formats) logically placed and functional?

- Layout Harmony: Is the arrangement of components (text, images, <
buttons) balanced, intuitive, and clutter-free?

- Modernness & Beauty: Does the design follow contemporary trends (e<—
.g., minimalism, responsive layouts)? Are colors, typography, and <—
visual hierarchy aesthetically pleasing?

Grading Scale:

- 0 (Unacceptable): The webpage fails to load (e.g., raises errors),<—
is completely blank, or is entirely non-functional. There is no <
visible or assessable content, layout, or design.

- 1 (Poor): Major rendering issues (e.g., broken layouts, incorrect <—
colors). Content is irrelevant or missing. Layout is chaotic. <
Design is outdated or visually unappealing.

- 2 (Below Average): Partial rendering with noticeable errors. <—
Content is partially relevant but poorly organized. Layout lacks <
consistency. Design is basic or uninspired.

- 3 (Average): Mostly rendered correctly with minor flaws. Content <—
is relevant but lacks polish. Layout is functional but unremarkable<—

Design is clean but lacks modern flair.

- 4 (Good): Rendered well with no major errors. Content is relevant <
and logically organized. Layout is harmonious and user—friendly. <
Design is modern and visually appealing.

- 5 (Excellent): Flawless rendering. Content is highly relevant, <
intuitive, and tailored to user needs. Layout is polished, <
responsive, and innovative. Design is cutting-edge, beautiful, and <
memorable.

Task:

Review the provided screenshot (s) of the webpage. Provide a detailed S
analysis and then assign a grade (0-5) based on your analysis. <
Highlight strengths, weaknesses, and how well the design adheres to{—

the specifications.

Your Response Format:

Analysis: [2-4 paragraphs addressing all criteria, referencing the <—
instruction]

32

Under review as a conference paper at ICLR 2026

Grade: [0-5]

Your Response:

G.3 JUDGEMENT PROMPT FOR WEBDEV ARENA DATA SELECTION

You are a judge that decides whether a given instruction is suitable <—
for the task of

"LLM-driven website generation".

A suitable instruction should:

— Clearly request creating or modifying a website or web component.

- Can involve HTML, CSS, JavaScript, React, Next.js, Tailwind CSS, or <—
similar web technologies.

- Can request adding specific UI features, responsive design, <
animations, or layouts.

An instruction is NOT suitable if:

- It is unrelated to websites.

- It is a question about general programming, AI, or non-web topics.
- It is too vague without referring to web interface or design.

Respond ONLY with "YES" if the instruction is suitable, or "NO" if it <—
is not.

Instruction: "{instruction_text}"

H ADDITIONAL COMPARISONS OF LLM-DRIVEN WEBSITE GENERATION

H.1 CASE STUDY ON WEBGEN-BENCH
H.2 CASE STUDY ON WEBDEV ARENA

H.3 CASE STUDY ON UI AGENT TESTING

33

Under review as a conference paper at ICLR 2026

Instruction: Please implement a wheel of fortune website where users can spin the wheel to win
prizes. The website should have functionalities for spinning the wheel, displaying prizes, and record-
ing user winning records. Users should be able to spin the wheel, view the prize list, view their own
winning records. Use light gray as the default background and dark red for component styling.

]
[- . Wheel of Fortune
H

2 Wheel of Fortune

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

Wheel of Fortune

Wheel of Fortune

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: Please implement a website for a clinical office to display office information and
services. The website should have basic pages, including a homepage, about us, services, and
contact us. Users should be able to browse the website, learn about the office’s information, view
the services provided, and contact the office through the contact page. The website should also have
a simple navigation menu to help users quickly find the information they need. Style all pages with
a light cyan background and cadet blue components.

HealthCare Plus

Welcome to Our Clinical Office

Why Choose HealthCare Plus?

Claude-Sonnet-4 Gemini-2.5-Pro

Clinical office

Comprehensive
i Welcome to Our Clinic

Why Choose Our Practice

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 3: Model comparisons with two tasks sourced from WebGen-Bench.

34

Under review as a conference paper at ICLR 2026

Instruction: Please implement a website for a credit repair company to generate leads. The website
should have a form-filling function, allowing users to input personal information and credit status.
The website should also have a credit score inquiry function and an introduction to credit repair
services. Users can browse the website, learn about credit repair services, and fill out the form to
submit lead information. Set old lace as the body background and use rosy brown for the UI.

Qwen2.5-Coder-7B-Instruct: <think>To implement a credit repair company’s website with the
specified features, we will follow these steps: 1. Project Requirements Analysis: The website needs
to include a form for users to input their personal information and credit status, a credit score inquiry
function, and an introduction to credit repair services. It should have a visually appealing design
with old lace as the background and rosy brown for the UL 2. Entry Point and Import Resolution:
The entry point will be src/main.tsx, which will render the main application component. We will
need to create src/components/Form.tsx for the form, src/components/CreditScorelnquiry.tsx for the
credit score inquiry, and src/components/Introduction.tsx for the introduction text. 3. Dependencies
Planning: We will need React, React Router, TypeScript, Vite, Tailwind CSS, and Ant Design for
UI components. We will also need to install axios for making HTTP requests to fetch credit scores.
4. TypeScript Validation: We will ensure that all components are typed correctly using TypeScript.
This includes validating form inputs and handling state management. 5. ESLint and Code Health
Checks: We will configure ESLint to enforce best practices and catch potential issues early in the
development process. 6. UX and Interaction Strategy: We will design the form to be intuitive
and easy to navigate. The credit score inquiry will display the result immediately after submission.
The introduction text will provide clear information about credit repair services. 7. Visual and
Responsive Layout Ideas: We will use Tailwind CSS to create a responsive layout with consistent
spacing and visual hierarchy. The old lace background and rosy brown UI colors will be applied
throughout the site. </think><answer>...</answer>

WebGen-R1-7B: <think>Project Requirements Analysis: We need to build a credit repair com-
pany website focused on generating leads. Users will fill out a form with personal info and credit
status, view a credit score inquiry page, and learn about credit repair services. Design: Old lace
(#FAETET) for body background, rosy brown (#BC8F8F) for UI elements. Pages: Home (/), Credit
Repair Services (/services), Lead Form (/lead-form), Credit Score Inquiry (/credit-score). Compo-
nents: Header, Footer, LeadFormPage, ServicesPage, CreditScorePage, etc. UI: All forms must be
accessible and responsive; use Ant Design form controls styled with Tailwind and rosy brown. State
Management: All form fields are client-side, mock API calls, and store data in React state/localstor-
age. Tech Stack Planning: React, TypeScript, Vite, Tailwind CSS, Ant Design; Routing via React
Router v6; All styles in src/index.css except Ant Design’s own. File Structure: src/components -
Shared UI components (Header, Footer, etc); src/pages - Route-level components (Home, Services,
LeadForm, CreditScore); src/App.tsx - Sets up routing and main layout; src/index.css - Custom
styles (background colors, overrides for rosy brown, etc). Imports and Manifest: All imports re-
solved and files generated; All styles in src/index.css via Tailwind and custom colors; No broken
imports. Accessibility: ARIA attributes for focus management, keyboard navigation, and Ally la-
bels. Visual and Responsive: Consistent spacing (gap, padding, margin); Visual hierarchy with Ant
Design’s typography; Smooth transitions for modals/forms; Mobile-first layouts. TypeScript: Strict
typing for form models and props. ESLint and Code Health: Follow template ESLint and config
files; All files conform to best practices.</think><answer>...</answer>

Welcome to Our Credit
Repair Services

At Credit Repair Company, we understand the

importance of having a good credit score. That's

why we offer professional credit repair services.

designed to help you Improve your credit rating.

Whether you're dealing with late payments,

identity theft, or other credit-related issues, our
re

Discover how our team of credit experts can help you improve
your credit score, fix errors, and get back on track to financial
stability.

Qwen2.5-Coder-7B-Instruct WebGen-R1-7B (Ours)

Figure 16: Qualitative comparison of reasoning traces between our WebGen-R1-7B and the baseline.

35

Under review as a conference paper at ICLR 2026

Instruction: Please implement a website for The All-In Bourbon Bar to showcase its prod-
ucts and services. The website should have functionalities for displaying menus, introducing the
membership-only private poker room, and showcasing events and promotions. Users should be able
to browse the website, view menus, learn about the private poker room, view events and promotions,
and make online reservations or purchases. Use peach puff for container backgrounds and indian
red for component visuals.

Welcome to The All-In Bourbon Bar

Where premium bourbon meets high-stakes poker
atmosphere of refined luxury and excitement

Experience Excellence

Discover our curated

5, exclusive poker room,

Claude-Sonnet-4 Gemini-2.5-Pro

i The All-in Bourbon Bar Homa. ManuPrivala Room Events & Pomes. PuchssalResarva 1

ALLIN BOURBON [PR —

Welcome to The All-In Bourbon Bar

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: Please implement a community website for sharing promotions and discounts. The
website should have functionalities for browsing promotions, sharing promotions, and searching
promotions. Users should be able to browse and share promotions, and search for promotions of
interest. The website should also have a management backend for managing users, promotions, and
website settings. Use ivory for the outer layout and forest green for UI blocks.

e

Browse Promotions

Claude-Sonnet-4

Welcome to DiscountHub

50% Off Summer. s100 01 Froo Dessert 20% off Garden
Collection Smartohones with Meal Tools

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 4: Model comparisons with two tasks sourced from WebGen-Bench.

36

Under review as a conference paper at ICLR 2026

Instruction: Please implement a Q&A website that answers user-submitted questions. The website
should have functionalities for submitting questions, answering questions, and viewing answers.
Users should be able to submit questions, view answers, and rate the answers. Set overall back-
ground to beige, then style components with saddle brown.

Commes 1] [Cesapacom
==
GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

a
n . Latest Questions.
Ask a Question Community Questions

e capital of France?

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: Please implement an email sending platform for sending emails. The platform should
have functionalities for composing, sending, and managing emails. Users should be able to compose
emails, select recipients, send emails, and manage sent emails. The platform should also have
features such as email templates, attachment uploads, and recipient management. Use cornsilk for
the background and peru for components.

| Email Platform
= O

=0 =3 n2

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

Emall Platform

| — Email Sending Platform

Compose Email

eeeeeeee Manage Your Emails =

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 5: Model comparisons with two tasks sourced from WebGen-Bench.

37

Under review as a conference paper at ICLR 2026

Instruction: Design a recipe card with a prominent image and clear ingredient list. Create a stream-
lined recipe browsing experience with categories and search.

Recipe Browser [Recipe Finder

Filter Recipes

Salad

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro
s

Browse Recipes

R — egn Chocoite Brownies

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: Make a website that fetches data (joke) from an external API and displays it on the
screen using react for use example.

© Joke Fetcher

Random Joke Generator
Random Joke

el
Wby dideL

That's a deep subject

GPT-5 Gemini-2.5-Pro
Joke Generator
DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 6: Model comparisons with two tasks sourced from WebDev Arena.

38

Under review as a conference paper at ICLR 2026

Instruction: A battle arena website that compare audio mp3 generate by 2 models, model A and
model B. Users listen to these two audio files and vote for the best.

Audio Battle Arena Audio Battle Arena

Which audio sounds better?

Model A Model B

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro
e —

Compare Audio Files Generated by Models A
&B

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: create me a Resume Page

[

John Smith | John Doe

Senior Full Stack Developer

Professional Experience Experience

© Senior Full Stack Developer
e (

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

Technical Skills

@ Professional Experi

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 7: Model comparisons with two tasks sourced from WebDev Arena.

39

Under review as a conference paper at ICLR 2026

Instruction: make me an app that generates content and images for html newsletters. it maintain
inline css non spammy content, the theme and links should be given by the user.

[mmwemm] Newsletter Generator
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ = -
L]
GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro
DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: Generate web app for storing custom recipes.

My Recipe Collection

My Recipes

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

My Recipe Collection ==

Manage Your Recipes

Easily store, organize, and share your favorte recipes

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 8: Model comparisons with two tasks sourced from WebDev Arena.

40

Under review as a conference paper at ICLR 2026

Instruction: Design a guided meditation player with progress tracking. Create a library view to
browse and select different meditation sessions.

Meditation Library (@ meditation Player G s Mindful Moments
nnnnnnnnnnnnnnnnnnnnn Evening Relaxation 1355 Deap Breathing Meditation Library M
Bl A
-)
-~
GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro
@
DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: Build a linktree website for a singer-songwriter.

@m0

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

Hello, I'm Emily

Singer-sangwriter, storyteller, and melody-maker. Explore my world
through these links!

Get in Touch

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 9: Model comparisons with two tasks sourced from WebDev Arena.

41

Under review as a conference paper at ICLR 2026

Instruction: Create me a time traker of multiple tasks that can be added or removed and have
individual counter that cand be stoped or paused.

Multi-Task Time Tracker & Multi-Task Time Tracker Time Tracker
GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

Multi-Task Timer Tracker

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: Design a cryptocurrency tracker with real-time price updates and portfolio tracking.
Focus on clear presentation of price charts and user-friendly transaction inputs.

i Crypto Tracker o ot it Crypto Tracker s

Dashboard Cryptocurrency Prices by Market Cap
Portfolio Overview

+$0.00 ©$0.00

Market Overview

8 T BNB $315.50
T H $2,650.00 R s
c $43,250.00 e 15

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

B My Cryptocurrency Portfolio

007 localhost D

Portfolio Summary Recent Transactions
CCOTIOITCI T nocathost:300141 e B s—

Price chart

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 10: Model comparisons with two tasks sourced from WebDev Arena.

42

Under review as a conference paper at ICLR 2026

Instruction: Design a page to display a book review, including elements for ratings and user com-
ments. Create an interface for browsing book reviews by category or popularity.

m Book Review Platform (1) Book Review Hub

............. All Reviews

1. MIDNIGH
LIBRARY.
RN

e 03

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

Book Reviews

Book Reviews Manager

anaunz

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: Fancy text generator with realtime preview without loading page, 10 stylish fonts,
navigation, footer section with about us section, responsive.

T FancyText rame @svour T Fancy Text Generator

Your fancy text here Fancy Text Generator

Create besuifu, sty text w

Enter Your Text

Cnocss Fant

i

0500 0v00 200 0700 wweooion
Your fancy text will ap-
o pear here!
GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro

_ A —

Generate Stylish Text

Create Fancy Text

Your text here...

DeepSeek-R1 Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 11: Model comparisons with two tasks sourced from WebDev Arena.

43

Under review as a conference paper at ICLR 2026

Instruction: Design a job board with filters for location, salary, and job type. Create an appealing
layout for job postings, highlighting key details. with all of stuff.

Job Board T o

Senlor Frontend Doveloper

Frontand DeveloperSiEi || Backend DevaloparREES || UNUX Designer (s 8 Jobs Found

Filter
v P

GPT-5 Claude-Sonnet-4 Gemini-2.5-Pro
Filters enior React n UI/UX Designer A Find your dream ob by itering throush

Filter jobs

tend Developer

(]
Jonior B oo
Qwen3-32B Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Instruction: clone of warrior cat website

o Warrior Cats e cl

Welcome to the Warrior Cats World

Explore the clans, meet th
the

the adventures in

Explore the Warrior Cats Universe

GPT-5 Claude-Sonnet-4

Clans of the Forest

The Legend of the

Warriors

cover the world of Clan cals and Lheir epic adventure

explore cians | (

Qwen3-32B Qwen3-Coder-30B-A3B WebGen-R1-7B (Ours)

Table 12: Model comparisons with two tasks sourced from WebDev Arena.

44

Under review as a conference paper at ICLR 2026

Task: Verify that the website uses ‘honeydew’ as the background color and ‘dark olive green’ as the
component color, as specified in the design requirements.

Expected Result: The website has a background color of ‘honeydew’ and components (such as
buttons, cards, headers, etc.) are styled with the color ‘dark olive green’, accurately reflecting the
design instruction.

Welcome to the Data Science Online Learning Platform
Le wse courses, study.

Thought: The page didn’t change

after scrolling down. It seems we
have reached the bottom of this
section. The background color and
component color still align with the
design requirement. Additional
steps to verify more sections of the
site may not be necessary. [may
now conclude the evaluation.
Action: ANSWER; YES

Thought: The initial webpage Thought: The background color
appears to have a “honeydew” still appears to be “honeydew,” and
background color and components the components like course cards,
(like headings and buttons) styled in headings, and buttons seem styled
“dark olive green.” However, I need with “dark olive green.” It aligns
to verify these colors across with the specified design so far, but
different pages or sections of the further verification might involve
website, if possible. checking other sections or
Action: Scroll [WINDOW]; down interactions within the website.
Action: Scroll [WINDOW]; down

Task: Verify that the website uses ‘light goldenrod’ as the background color and ‘olive drab’ as the
component color, as specified in the design requirements.

Expected Result: The website has a background color of ‘light goldenrod’” and components (such
as buttons, cards, headers, etc.) are styled with the color ‘olive drab’, accurately reflecting the design

instruction.

Ringtone & Wallpaper Downloader

Find and Download Ringtones &
Wallpapers

Find and Download Ringtones &
Wallpapers

ER— = 1

background color, which could be
‘light goldenrod’, and components
such as text and buttons appear in a
greenish color which might
correspond to ‘olive drab’. To
validate this visually, I’ll analyze
specific webpage elements further.
Action: Wait

Thought: The webpage uses a light Thought: The screenshot seems to

confirm that the background color
of the webpage aligns with a shade
close to ‘light goldenrod,” and the
component color (like heading,
buttons) appears to resemble ‘olive
drab.’ It is visually consistent, but
further interaction or verification
might still be required.

Action: Scroll [WINDOW]; down

Thought: The buttons labeled
“Download Ringtone” have a
greenish color that matches the
description of ‘olive drab,” and the
background still aligns with ‘light
goldenrod.” All displayed elements
comply visually with the task’s
design requirements. Further
verification may not be necessary.
Action: ANSWER; YES

Table 13: UI agent testing processes resulting in YES.

45

Under review as a conference paper at ICLR 2026

Task: Verify that the website uses ‘light gray’ as the background color and ‘dark red’ as the com-
ponent color, as specified in the design requirements.

Expected Result: The website has a background color of ‘light gray’ and components (such as
buttons, cards, headers, etc.) are styled with the color ‘dark red’, accurately reflecting the design
instruction.

Vocabulary Academy #

Vocabulary Academy Vocabulary Academy i

Welcome to the Vocabulary Academy to the y Welcome to the Vocabulary Academy

Thought: The webpage remains ~ Thought: The webpage still
webpage appears to be light gray, unchanged, and the “Dashboard” remains unchanged after multiple
and some components (like section didn’t open after the navigation attempts. It might be
headings and texts on cards) seem previous click. I need to attempt possible that the clickable options
to use the color dark red. I need to another navigation based on other are not leading to other sections.

further explore the interface to options available to ensure I can Based on the observation seen so
confirm the design requirement explore the webpage for additional far, I have to make a final

fully, such as validating all validations. assessment.

component styles and ensuring Action: Click [2] (Activities) to ex- Action: ANSWER; PARTIAL
accuracy. plore the “Activities” section.

Action: Click [1] (Dashboard) to
explore further information about
the webpage style and check other
components.

Task: Validate the ability to view historical air quality index (AQI) data for the past two weeks.
Expected Result: Users should be able to access a time series or historical graph/chart that shows
AQI data for each of the last 14 days.

Past Two Weeks® AQI Comparison Past Two Weeks' AQI Comparison

Thought: The webpage includes a Thought: The “Past Two Weeks’ Thought: After scrolling further, no
section labeled “Past Two Weeks” AQI Comparison” section additional graphical representation
AQI Comparison” which appears to showcases numerical AQI data for like a time series chart for the last
list AQI data, but further details or a the last 14 days, which matches the 14 days is visible. Only numerical
time series graph/chart showing the expected result in terms of tabular ~ AQI data in a tabular fashion is
AQI data for each of the last 14 data representation. However, a presented, which fulfills part of the
days is not immediately visible. The time series graph/chart is still not task but not entirely.
list may require scrolling to view visible. To ensure, I should continue Action: ANSWER; PARTIAL
more information. scrolling for additional views or
Action: Scroll [WINDOW]; down graphical representations if present.

Action: Scroll [WINDOW]; down

Environmental Warning System

Table 14: UI agent testing processes resulting in PARTIAL.

46

Under review as a conference paper at ICLR 2026

Task: Confirm navigation from the home page to the ‘About Us’ page.
Expected Result: Clicking the ‘About Us’ link takes the user to the ‘About Us’ page without any
errors.

to Our Recrui Welcome to Our Recruitment Welcome to Our Recruitment
Portal

Portal Portal

Find you & Join

Thought: The webpage labeled Thought: The screen remains on ~ Thought: The screen still remains
elements include navigation links the same page as before, suggesting unchanged after clicking the “About
such as “About Us.” To confirm the the “About Us” link might notbe = Us” link twice, confirming that the
navigation from the Home page to functional. I will attempt to click it link is non-functional or does not
the “About Us” page, I'll click the again to ensure it wasn’t a one-time navigate properly. Now, I will
“About Us” link (Label [1]). issue. answer based on the observations.
Action: Click [1]. Action: Click [1]. Action: ANSWER; NO

Task: Test the supplier management interface for adding or updating a golf package supplier.
Expected Result: The user should be able to successfully add or update supplier details with con-
firmation that changes have been saved in the system.

Welcome to Golf Travel Packages

-
5
3w DI

Thought: To manage suppliers, the Thought: The page remains Thought: Even after performing

“Suppliers” navigation option (label unchanged, and no new supplier the action twice, the page remains
[4]) seems appropriate. This should management interface is visible unchanged, and the “Suppliers”
provide access to the supplier after the previous action. It seems button ([4]) does not navigate to or
management interface. the “Suppliers” option ([4]) did not display the expected supplier
Action: Click [4]. navigate as expected. I will try management interface. I suspect it
interacting with it again to ensure might not be functioning or
the action registers. implemented correctly. I cannot
Action: Click [4]. proceed further on this page.

Action: ANSWER; NO

Table 15: UI agent testing processes resulting in NO.

47

	Introduction
	Methodology
	End‑to‑End Open‑Ended Website Code Generation
	Automated Front‑End Build and Rendering Pipeline
	Reward Model for Functional and Aesthetic Evaluation
	Group Relative Policy Optimization for Website Generation

	Experiments
	Experimental Setup
	Main Results
	In-depth Analysis and Insights.
	Case Studies

	Conclusion
	Algorithm for WebGen-R1
	Dataset Statistic and Analysis
	More Implementation Details
	Related Work
	Large Language Models for Project‑Level Code Generation
	Reinforcement Learning for Code Generation

	Additional Experimental Results
	Web Code Format and Reasoning Format Rewards
	Human Alignment Study on WebDev Arena
	Website Quality Score Distribution and Analysis
	Reward Dynamics and Optimization Stability
	Reasoning Behavior in Website Generation

	Theoretical Analysis of GRPO with Increasing Group Size
	Prompt Design
	System Prompt for Website Generation
	Reward Prompt for Website Functionality and Aesthetics
	Judgement Prompt for WebDev Arena Data Selection

	Additional Comparisons of LLM-driven Website Generation
	Case Study on WebGen-Bench
	Case Study on WebDev Arena
	Case Study on UI Agent Testing

