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Abstract

Fair-range clustering extends classical clustering formulations by associating each
data point with one or more demographic labels. It imposes lower and upper
bound constraints on the number of facilities opened for each label, ensuring
fair representation of all demographic groups by the selected facilities. In this
paper we focus on the fair-range k-median and k-means problems in Euclidean
spaces. We give (1 + ε)-approximation algorithms with fixed-parameter tractable
running times for both problems, parameterized by the numbers of opened facilities
and demographic labels. For Euclidean metrics, these are the first parameterized
approximation schemes for the problems, improving upon the previously known
O(1)-approximation ratios given by Thejaswi et al. (KDD 2022).

1 Introduction

Clustering seeks to partition a given set of clients into disjoint, cohesive clusters. Among the many
formalizations of clustering, the k-median and k-means problems are perhaps the most prevalent ones,
owing to the concise nature of their descriptions. Given a set of clients and facilities in a metric space
along with a positive integer k, the k-median and k-means problems aim to open at most k facilities
and connect each client to the nearest opened facility, such that the sum of the client-connection
costs is minimized. In the k-median problem, the connection cost of each client is its distance to
the corresponding facility, while in the k-means problem, it is the squared distance. Despite their
seemingly simple definitions, the k-median and k-means problems are computationally challenging,
and the development of their approximation algorithms continues to be a vibrant area of research. The
current best approximation guarantees are the ratios of 2.613 [Gowda et al., 2023] for the k-median
problem and 9 [Ahmadian et al., 2020] for the k-means problem.

The k-median and k-means problems are designed to maximize the similarity between clients and
their corresponding facilities, allowing the opened facilities to be considered representative points for
the client set. This understanding underscores the important roles that the k-median and k-means
problems play in data summarization [Moens et al., 1999, Girdhar and Dudek, 2012]. However,
algorithms developed for these problems can often yield unfair summarization of socioeconomic data,
as they prioritize minimizing the clustering costs over considering the distribution of demographic
labels (e.g., gender, age, race) associated with the opened facilities [Kay et al., 2015]. Driven by this
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rationale, there has been considerable interest in fair-range clustering. Given a set of data points
associated with demographic labels, fair-range clustering extends classical clustering formulations by
imposing lower and upper bound constraints on the number of opened facilities associated with each
label, thereby ensuring fairness across different demographic groups.

An instance (`, k, C,F , ~α, ~β, ρ, τ) of the fair-range clustering problem is specified by positive integers
` and k, sets C of clients and F of facilities in a metric space, vectors ~α = (α1, · · · , α`) and
~β = (β1, · · · , β`) of ` positive integers satisfying αt ≤ βt for each t ∈ {1, · · · , `}, and integer
ρ ≥ 1, where each f ∈ F is associated with a set τ(f) ⊆ {1, · · · , `} of demographic labels.
A feasible solution to the instance is specified by a subset H ⊆ F of no more than k facilities
satisfying |{f ∈ H : t ∈ τ(f)}| ∈ [αt, βt] for each t ∈ {1, · · · , `}, and the cost of the solution
is
∑
c∈C minf∈H δ

ρ(c, f), where δ is the distance function. The goal of the fair-range clustering
problem is to identify a feasible solution with minimum cost.

The fair-range clustering problem is equivalent to the fair-range k-median (FkMed) problem when
ρ = 1, and to the fair-range k-means (FkMeans) problem when ρ = 2. Despite their significance
in applications requiring fair representations, the FkMed and FkMeans problems pose significantly
greater computational challenges than classical clustering problems. As demonstrated by Thejaswi
et al. [2021], designing polynomial-time algorithms with provable approximation guarantees for the
FkMed and FkMeans problems is unlikely, as determining the existence of feasible solutions to their
instances is NP-hard. For a simplified scenario where each facility is associated with a single demo-
graphic label, Thejaswi et al. [2021] showed that the FkMed and FkMeans problems can be reduced to
the well known matroid clustering problem, which admits constant-factor approximation algorithms
[Krishnaswamy et al., 2011, Li, 2011, Swamy, 2014, Friggstad and Zhang, 2016, Krishnaswamy
et al., 2018], albeit with an O(k)`−1 multiplicative overhead in algorithmic running time. Hotegni
et al. [2023] latter gave an improved reduction to the matroid clustering problem that eliminates the
O(k)`−1 overhead. They further demonstrated that solving the FkMed and FkMeans problems in this
simplified scenario can be achieved even more efficiently than solving matroid clustering problems,
based on smaller-size linear programs.

In practical scenarios concerning clustering problems, the number of opened facilities (i.e., k) is often
considerably smaller than the input size. As such, assuming k to be small and treating it as a fixed
parameter is a commonly used way for simplifying these problems, as exemplified in [Cohen-Addad
et al., 2019, Goyal and Jaiswal, 2023, Chen et al., 2024, Jaiswal et al., 2024]. Unfortunately, the FkMed
and FkMeans problems have been demonstrated to remain challenging even with this simplification:
When both k and the number of demographic labels (i.e., `) are fixed parameters, Thejaswi et al.
[2022] established the W[2]-hardness of the FkMed and FkMeans problems, suggesting that exactly
solving them in fixed-parameter tractable time (denoted as FPT(k, `) time, meaning nO(1)h(k, `)
for an input size of n and a positive function h) is unlikely; Cohen-Addad et al. [2019] showed that
the best possible approximation ratios of FPT(k, `)-time algorithms, even for the case where ` = 1,
cannot be better than 1 + 2e−1 for the FkMed problem and 1 + 8e−1 for the FkMeans problem. This
matches the FPT(k, `)-time (1 + 2e−1 + ε)-approximation algorithm for the FkMed problem and
(1 + 8e−1 + ε)-approximation algorithm for the FkMeans problem given by Thejaswi et al. [2022]
for a simpler case considering only the lower bound constraint. Notably, the method for enumerating
feasible constraint patterns given by Thejaswi et al. [2022] demonstrates that their algorithms can be
effortlessly extended to accommodate the case involving both lower and upper bounds.

The negative result presented by Cohen-Addad et al. [2019] suggests that we cannot hope to ap-
proximate the FkMeans problem with a ratio better than 1 + 8e−1 and the FkMed problem with a
ratio better than 1 + 2e−1 in FPT(k, `) time when considering general metric spaces. However, this
result does not preclude the possibility of achieving better approximations for these problems in
more structured settings, such as Euclidean spaces, since the analysis in Cohen-Addad et al. [2019]
is limited to general metrics. In this paper, we take the first step toward exploring the properties
of Euclidean metrics for the FkMed and FkMeans problems. Our approach yields FPT(k, `)-time
approximation schemes, as stated in Theorem 1 in Section 3.4.

1.1 Other Related Work

Due to the prevalence of Euclidean data in real-world applications involving clustering, significant
attention has been devoted to developing algorithms that leverage the properties of Euclidean spaces.

2



Exploring these properties often leads to improved approximation guarantees. One such example
can be found in [Cohen-Addad et al., 2022], where a (2.406 + ε)-approximation algorithm for the
k-median problem and a (5.912 + ε)-approximation algorithm for the k-means problem in Euclidean
spaces are proposed, improving upon the state-of-the-art approximation ratios for these problems
under general metrics [Gowda et al., 2023, Ahmadian et al., 2020]. Furthermore, it has been shown
that the Euclidean k-median and k-means problems admit approximation schemes2 if k is a fixed
parameter and the opened facilities can be located arbitrarily [Kumar et al., 2010, Jaiswal et al.,
2014, Bhattacharya et al., 2018, Ding and Xu, 2020]. These algorithms identify a subset of each
client-cluster defined by an optimal solution and approximate the corresponding opened facility by
the centroid of this subset. However, similar ideas are not applicable to the FkMed and FkMeans
problems, as they involve finite sets of facilities and hard constraints on the labels of the opened
facilities. In these cases, the centroids of the considered subsets are not guaranteed to be feasible as
opened facilities.

Constraints on the number of opened facilities associated with different labels were first introduced
by Hajiaghayi et al. [2010, 2012], inspired by budget considerations for the deployment of servers in
content distribution networks. From then on, related clustering problems have been widely explored.
When we are provided with an upper bound constraint and each facility is associated with a single
label, the problems represent special cases of the matroid clustering problems and directly motivate
research into the latter [Krishnaswamy et al., 2011]. For the lower-bounded case, there are FPT(k, `)-
time approximation algorithms for the k-median and k-means cost functions (given by Thejaswi
et al. [2022], as previously mentioned in Section 1), and a multi-swap local-search heuristic yields an
O(`)-approximation for the k-median cost function if each facility has a single label [Thejaswi et al.,
2021, Zhang et al., 2024].

In addition to imposing constraints on the distribution of labels associated with opened facilities, fair
clustering has been extensively studied under various other settings that introduce different types
of constraints. For example, group fairness requires each cluster to provide a fair representation of
different demographic groups [Chierichetti et al., 2017, Bera et al., 2019, Bandyapadhyay et al., 2021,
Dai et al., 2022, Wu et al., 2024], proportional fairness ensures that no subset of clients, of a given
size, can find a closed facility that provides a lower connection cost to each of its members [Chen
et al., 2019, Micha and Shah, 2020], individual fairness requires that the distance from each client to
the nearest opened facility does not exceed a client-specified threshold [Jung et al., 2020, Mahabadi
and Vakilian, 2020, Negahbani and Chakrabarty, 2021, Vakilian and Yalçiner, 2022, Ahmadi et al.,
2022, Bateni et al., 2024], and social fairness aims to minimize the maximum clustering cost among
groups of clients [Abbasi et al., 2021, Ghadiri et al., 2021, Makarychev and Vakilian, 2021, Goyal
and Jaiswal, 2023, Abbasi et al., 2024].

1.2 Preliminaries

From now on, we consider an instance I = (`, k, C,F , ~α, ~β, ρ, τ) of the fair-range clustering problem
satisfying ρ ∈ {1, 2}, |C ∪ F| = n, and C ∪ F ⊂ Rd, along with a constant ε ∈ (0, 0.5). Given an
integer i ≥ 1 and a set D, define [i] = {1, · · · , i}, and let [D]i be the Cartesian product D × · · · × D︸ ︷︷ ︸

i

.

Given a point x and a set P of points in an Euclidean space, let δ(x,P) = minp∈P ||x− p|| denote
the distance from x to its nearest point in P , and let δi(x,P) = minp∈P ||x− p||i for each i ≥ 1.

The following algebraic fact will be utilized in the analysis of the running times of our algorithms.

Lemma 1 Given two real numbers s and t greater than 1, we have logt s ≤ max{s, tO(t)}.

The following lemma extends triangle inequality3 to squared Euclidean metrics.

Lemma 2 Given three points x, y, and z in an Euclidean space and a real number γ ∈ (0, 1], we
have ||x− z||2 ≤ (1 + γ−1)||x− y||2 + (1 + γ)||y − z||2.

We will also consider the weighted version of the fair-range clustering problem, which can be defined
as follows.

2An approximation scheme is a (1 + ε)-approximation algorithm, where ε is an arbitrary small constant.
3Given three points x, y, and z in an Euclidean space, we have ||x− z|| ≤ ||x− y||+ ||y − z||.
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Figure 1: (a) The client nearest to the opened facility f∗ is taken as the leader, around which an
annular search space is constructed; (b) the center point f is opened in our solution.

Definition 1 (weighted fair-range clustering) An instance (`, k, C,F , ~α, ~β, ρ, τ) of the fair-range
clustering problem can be extended to its weighted version (`, k, C,F , ~α, ~β, ρ, τ, w) by associating
each client c ∈ C with a weight w(c) ≥ 1. This extension modifies the cost of a feasible solution
H ⊆ F from

∑
c∈C δ

ρ(c,H) to
∑
c∈C w(c)δ

ρ(c,H).

2 An Overview of Our Algorithms

The FPT(k, `)-time approximation algorithms for the FkMed and FkMeans problems given by The-
jaswi et al. [2022] follow the framework outlined in [Cohen-Addad et al., 2019]. This framework
identifies the nearest client to each facility opened in the considered optimal solution as a “leader”
and introduces a set of annuli centered at each leader. Each annulus is defined such that its outer
radius is 1 + ε times its inner radius. The framework then enumerates the annuli to identify those that
contain the facilities corresponding to the leaders and selects the opened facilities within these annuli,
as illustrated in Figure 1-(a). Intuitively, the definition of the annuli and triangle inequality imply
an upper bound on the distances from the selected facilities to the optimal ones. Building upon this
insight, Thejaswi et al. [2022] utilized a submodular maximization method to select facilities to be
opened within the annuli and demonstrated constant-factor approximation ratios.

We similarly base our algorithms on the framework proposed by Cohen-Addad et al. [2019]. Our
approach focuses on exploring the properties of Euclidean metrics to further refine the selection range
of opened facilities. Specifically, we partition each annulus into a set of smaller cells; for each facility
opened in the optimal solution, we select the center point of the cell containing it as the facility to
be opened, as shown in Figure 1-(b). This process involves carefully balancing the number of cells,
which affects the time required to identify the desired cells, against the sizes of the cells, which
influence the distance from each facility opened in the optimal solution to the center point of the cell
containing it, as well as our approximation ratio. We achieve this trade-off by constructing nets as
defined below.
Definition 2 (γ-net [Gupta et al., 2003]) Given a density parameter γ > 0, a set P ⊂ Rd, and a
subset R ⊆ P , we call R a γ-net of P if each p ∈ R satisfies δ(p,R\{p}) ≥ γ and each p ∈ P
satisfies δ(p,R) ≤ γ.

We partition the annular search space into cells using a set of nets for the facilities. The trade-off
between the number and sizes of the cells can be managed by adjusting the density parameters
(i.e., the parameter λ in Definition 2). For each annulus centered around a leader and containing its
corresponding facility (the one opened in the optimal solution), we estimate the demographic labels
associated with this facility and identify the subset of facilities within the annulus that share these
labels. A net is then constructed for this subset, using a density parameter carefully determined by
the radius of the annulus. Given the Voronoi diagram defined by the net, Definition 2 suggests that
the facility opened in the optimal solution is close to the center point of its corresponding Voronoi
cell. By considering each member of all constructed nets as a candidate for an opened facility, we
can ensure that the candidate set includes a subset closely approximating the optimal solution.

It remains to consider how to bound the running time within FPT(k, `) time. The algorithms given
by Cohen-Addad et al. [2019] and Thejaswi et al. [2022] start with constructing a coreset, that is, a
small weighted subset of the client set whose distribution closely approximates that of the full set.
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This facilitates the efficient identification of leaders by enumerating the coreset. In this paper, we
face additional challenges in bounding the running time. For instance, when partitioning the annuli
into cells, the number of cells can depend exponentially on the spatial dimension. To ensure that
we can deal with the FkMed and FkMeans problems in high-dimensional Euclidean spaces within
FPT(k, `) time, we map the considered instance to a space ofO(log k+log log n) dimensions using a
combination of the method for constructing coresets given by Chen [2009] and Johnson-Lindenstrauss
transform. Combining this data-reduction technique with our net-based approach for selecting opened
facilities, we give FPT(k, `)-time (1 + ε)-approximation algorithms for the FkMed and FkMeans
problems.

3 The Algorithms

We now present our algorithms for the FkMed and FkMeans problems. In Section 3.1, we introduce our
data-reduction method for decreasing the size of the considered instance. In Section 3.2, we construct
annular search spaces for the facilities to be opened, using the leaders from the client set. Section 3.3
details the construction of nets for the facilities, based on which we provide approximation schemes
in low-dimensional spaces. Finally, in Section 3.4, we show how to combine the data-reduction
method with the algorithms designed for low-dimensional spaces to deal with high-dimensional
instances of the FkMed and FkMeans problems.

3.1 Data Reduction

In this section we map instance I to a smaller weighted instance in a low-dimensional space. As
mentioned in Section 2, we achieve this using the coreset-construction method given by Chen [2009]
and Johnson–Lindenstrauss transform, which are detailed in the following two lemmata.
Lemma 3 (Chen [2009]) Given a constant ε ∈ (0, 0.5), a set P ⊂ Rd, an integer t > 0, and
an integer ρ ∈ {1, 2}, a subset P† ⊆ P with a weight function w : P† → [1,+∞) satisfying
|P†| ≤ d(tε−1 log |P|)O(1) and

∑
p∈P† w(p) = |P| can be constructed in O(|P|dt) time, such that

eachH ⊂ Rd with |H| ≤ t satisfies
∑
p∈P† w(p)δ

ρ(p,H) ∈ [1− ε, 1 + ε]
∑
p∈P δ

ρ(p,H).

Lemma 4 (Johnson and Lindenstrauss [1984], Ailon and Chazelle [2009]) Given a constant ε ∈
(0, 0.5) and a set P ⊂ Rd, we can construct a mapping ϕ : Rd → Rd̃ satisfying d̃ = O(ε−2 log |P|)
and ||ϕ(p1)− ϕ(p2)|| ∈ [1, 1 + ε]||p1 − p2|| for each p1, p2 ∈ P in O(d log d) + (ε−1 log |P|)O(1)

time.

The following lemma is a stronger version of Johnson–Lindenstrauss transform, which preserves
distances over a broader range through terminal embedding. Specifically, it modifies the condition
“for each p1, p2 ∈ P” in Lemma 4 to “for each p1 ∈ P and p2 ∈ Rd”.
Lemma 5 (Narayanan and Nelson [2019]) Given a constant ε ∈ (0, 0.5) and a set P ⊂ Rd, we
can construct a mapping ϕ : Rd → Rd̃ satisfying d̃ = O(ε−2 log |P|) and ||ϕ(p1) − ϕ(p2)|| ∈
[1, 1 + ε]||p1 − p2|| for each p1 ∈ P and p2 ∈ Rd in (|P|dε−1)O(1) time.

It can be assumed that each mapping ϕ : Rd → Rd̃ constructed by Lemma 4 and Lemma 5 is injective.
Such an assumption is made without loss of generality: We can create duplicates of the points in
Rd̃ that have multiple preimages under ϕ. This ensures that we can always differentiate ϕ(x) and
ϕ(y) for any two distinct points x and y in Rd, even if ϕ(x) and ϕ(y) have identical values across
all dimensions. Distinguishing the images of the points from Rd is essential in fair-range clustering
problems because points with the same dimensional values can have different demographic labels.

Our data-reduction method, which combines Lemma 3, Lemma 4, and Lemma 5, is presented in
Algorithm 1 and illustrated in Figure 2 (this figure outlines the processing flow for the clients). This
algorithm first leverages Lemma 3 within the O(log n)-dimensional space constructed by Lemma 4,
such that the client set can be replaced with a coreset of size logarithmically dependent on n and
independent of d. Next, to reduce dimensions while preserving the distances between each client
in the coreset and any facility, Algorithm 1 uses Lemma 5 with the coreset as input to construct an
O(log k + log log n)-dimensional space. The following lemma provides the performance guarantees
of Algorithm 1.
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Algorithm 1: The data-reduction method

Input: A constant ε ∈ (0, 0.5) and an instance (`, k, C,F , ~α, ~β, ρ, τ) of the fair-range clustering
problem satisfying C ∪ F ⊂ Rd

Output: A mapping ϕ : Rd → Rd̃ and an instance (`, k, C̃, F̃ , ~α, ~β, ρ, τ, w) of the weighted
fair-range clustering problem satisfying ρ ∈ {1, 2}, C̃ ∪ F̃ ⊂ Rd̃,
F̃ = {ϕ(f) : f ∈ F}, and τ(ϕ(f)) = τ(f) for each f ∈ F

1 Let ϕ1 : Rd → Rd† be the mapping constructed by Lemma 4 with (ε, C ∪ F) as the input;
2 Let C† be the weighted set constructed by Lemma 3 with (ε, {ϕ1(c) : c ∈ C}, k, ρ) as the input,

and let w† : C† → [1,+∞) be the corresponding weight function;
3 Let ϕ2 : Rd† → Rd̃ be the mapping constructed by Lemma 5 with (ε, C†) as the input;
4 ϕ⇐ ϕ2 ◦ ϕ1, C̃ ⇐ {ϕ2(c) : c ∈ C†}, F̃ ⇐ {ϕ(f) : f ∈ F};
5 return ϕ : Rd → Rd̃, (`, k, C̃, F̃ , ~α, ~β, ρ, τ ◦ ϕ−1, w† ◦ ϕ−12 ).

C {ϕ1(c) : c ∈ C}
C† {ϕ2(c) : c ∈ C†}

Figure 2: Given a set C ⊂ Rd of clients, Algorithm 1 first maps it to Rd† using mapping ϕ1 : Rd →
Rd† . It then constructs a coreset C† for {ϕ1(c) : c ∈ C}. Finally, the algorithm maps C† to Rd̃ using
mapping ϕ2 : Rd† → Rd̃.

Lemma 6 Given a constant ε ∈ (0, 0.5) and an instance (`, k, C,F , ~α, ~β, ρ, τ) of the fair-range
clustering problem with ρ ∈ {1, 2}, |C ∪F| = n, and C ∪F ⊂ Rd, Algorithm 1 constructs a mapping
ϕ : Rd → Rd̃ and an instance (`, k, C̃, F̃ , ~α, ~β, ρ, τ, w) of the weighted fair-range clustering problem
in O(d log d) + (nkε−1)O(1) time, which satisfy the following properties:

(i)
∑
c∈C̃ w(c) = |C|,

(ii) w(c) ≥ 1 for each c ∈ C̃,

(iii) |C̃| ≤ (kε−1 log n)O(1),

(iv) d̃ = ε−O(1)(log k + log log n), and

(v)
∑
c∈C̃ w(c)δ

ρ(c, {ϕ(f) : f ∈ H}) ∈ [1 − ε, (1 + ε)2ρ+1]
∑
c∈C δ

ρ(c,H) for each H ⊆ F
with |H| ≤ k.

3.2 The Annular Search Spaces

In this section we construct k annular search spaces, each corresponding to one of the k facilities
to be opened. We first introduce some notations. Let ϕ : Rd → Rd̃ be the mapping and Ĩ =

(`, k, C̃, F̃ , ~α, ~β, ρ, τ, w) be the weighted instance constructed by Algorithm 1 with (ε, I) as the
input, where C̃ ∪ F̃ ⊂ Rd̃, F̃ = {ϕ(f) : f ∈ F}, and each f ∈ F satisfies τ(ϕ(f)) = τ(f). Let
H̃∗ = {f∗1 , · · · , f∗k} be an optimal solution to Ĩ, and let opt =

∑
c∈C̃ w(c)δ

ρ(c, H̃∗) denote its
cost. For each i ∈ [k], let Li = {f ∈ F̃ : τ(f) = τ(f∗i )} denote the set of facilities that have
the same set of demographic labels as f∗i , and let C̃∗i = {c ∈ C̃ : argminf∈H̃∗ ||f − c|| = f∗i } be
the cluster of clients defined by f∗i . Given the lower bound constraint on the number of opened
facilities, it may be the case that some facilities in H̃∗ correspond to empty clusters. We thus define
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Algorithm 2: The algorithm for constructing annular search spaces

Input: A constant ε ∈ (0, 0.5), an instance Ĩ = (`, k, C̃, F̃ , ~α, ~β, ρ, τ, w) of the weighted
fair-range clustering problem, and a positive integer n

Output: A collection A
1 A⇐ ∅;
2 Let D be the power set of [`];
3 for each f ∈ F̃ do
4 Let η(f) be an integer randomly and uniformly selected from [k];

5 for each (D1, · · · ,Dk) ∈ [D\{∅}]k, k′ ∈ [k], (c′1, · · · , c′k′) ∈ [C̃]k′ , and
δ′ ∈ {||c− f ||ρ : c ∈ C̃, f ∈ F̃} do

6 if |{i ∈ [k] : t ∈ Di}| ∈ [αt, βt] for each t ∈ [`] then
7 for each i ∈ [k] do
8 L′i ⇐ {f ∈ F̃ : τ(f) = Di};
9 for each i ∈ [k′] and j ∈ [dε−2 log ne] do

10 A(i, j)⇐ {f ∈ L′i : ||f − c′i||ρ ∈ (ε(1 + ε)j−1δ′n−1, ε(1 + ε)jδ′n−1]};
11 A(i, 0)⇐ {f ∈ L′i : ||f − c′i||ρ ≤ εδ′n−1};
12 for each (j1, · · · , jk′) ∈ [[dε−2 log ne] ∪ {0}]k′ do
13 for each i ∈ [k′] do
14 Ai ⇐ {f ∈ A(i, ji) : η(f) = i};
15 for each i ∈ [k]\[k′] do
16 if {f ∈ L′i : η(f) = i} 6= ∅ then
17 Let Ai be a singleton subset of {f ∈ L′i : η(f) = i};
18 else
19 Ai ⇐ ∅;

20 A⇐ A ∪ {{A1, · · · ,Ak}};

21 return A.

H̃∗0 = {f ∈ H̃∗ : C̃∗i = ∅} and H̃∗1 = H̃∗\H̃∗0. Let k∗ = |H̃∗1|. Without loss of generality, we can
assume that H̃∗1 = {f∗1 , · · · , f∗k∗}.
Following the framework given by Cohen-Addad et al. [2019], we select opened facilities from a set
of annuli centered around a group of leaders from C̃. For each i ∈ [k∗], let ci denote the client from
C̃ nearest to f∗i , that is, the leader corresponding to f∗i . Let δρmax = maxi∈[k∗] δ

ρ(ci, f
∗
i ). For each

i ∈ [k∗] and j ∈ [dε−2 log ne], let A∗(i, j) = {f ∈ Li : ||f − ci||ρ ∈ (ε(1 + ε)j−1δρmaxn
−1, ε(1 +

ε)jδρmaxn
−1]} be the set of facilities from Li located in an annulus centered around ci, and let

A∗(i, 0) = {f ∈ Li : ||f − ci||ρ ≤ εδρmaxn
−1}. The definitions of A∗(i, j) and δρmax imply the

existence of an integer j ∈ {0, · · · , dε−2 log ne} satisfying f∗i ∈ A∗(i, j). Denote by A∗i such a set
A∗(i, j) containing f∗i .

Our method for constructing annular search spaces is presented in Algorithm 2. Since the collec-
tion {A∗(1, 0), · · · ,A∗(k∗, dε−2 log ne)} can be determined based on the values of {L1, · · · ,Lk},
k∗, δρmax, and {c1, · · · , ck∗}, Algorithm 2 enumerates all possible values of these parameters in
step 5 to ensure that the collection can be captured. Given an integer i ∈ [k∗] and the sets
A∗(i, 0), · · · ,A∗(i, dε−2 log ne), Algorithm 2 enumerates [dε−2 log ne] ∪ {0} in step 12 to find
the integer j with A∗i = A∗(i, j). To avoid the case where the search spaces for the k opened
facilities intersect and the set of selected facilities contains duplicate elements, Algorithm 2 employs
a color-coding technique to eliminate any potential intersections. Specifically, Algorithm 2 associates
each facility f ∈ F̃ with a random integer η(f) ∈ [k] in step 4, and only selects facilities with
η(f) = iwhen constructing the i-th search space for each i ∈ [k] in steps 14 and 17. The performance
guarantees of this algorithm are presented in the following lemma.

Lemma 7 The collection A constructed by Algorithm 2 satisfies the following two properties:
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Algorithm 3: The algorithm for low-dimensional weighted instances

Input: A constant ε ∈ (0, 0.5), an instance Ĩ = (`, k, C̃, F̃ , ~α, ~β, ρ, τ, w) of the weighted
fair-range clustering problem, and a positive integer n

Output: A solutionH† to Ĩ
1 A⇐ ∅, H⇐ ∅;
2 for each s ∈ [kk] do
3 Let A′ be the collection constructed by Algorithm 2 with (ε, Ĩ, n) as the input;
4 A⇐ A ∪ A′;
5 for each {A1, · · · ,Ak} ∈ A with Ai 6= ∅ ∀ i ∈ [k] do
6 for each i ∈ [k] do
7 if |Ai| = 1 then
8 Si ⇐ Ai;
9 else

10 Let Si be the maxx,y∈Ai ε||x− y||-net of Ai constructed by Lemma 8;

11 Let H′ be the collection constructed by transforming each tuple in S1 × S2 × · · · × Sk into a
set;

12 H⇐ H ∪H′;
13 returnH† ⇐ argminH∈H

∑
c∈C̃ w(c)δ

ρ(c,H).

(i) With probability no less than k−k, there exists a collection {A1, · · · ,Ak} ∈ A satisfying
f∗i ∈ Ai ⊆ A∗i for each i ∈ [k∗] and Ai 6= ∅ for each i ∈ [k]\[k∗];

(ii) Given a collection {A1, · · · ,Ak} ∈ A, with Ai 6= ∅ for each i ∈ [k], and a tuple
(f1, · · · , fk) ∈ A1 × A2 × · · · × Ak, we have |{i ∈ [k] : t ∈ τ(fi)}| ∈ [αt, βt] for each
t ∈ [`].

3.3 The Algorithm in Low-Dimensional Spaces

As outlined in Section 2, solutions are constructed by extracting nets from the set of facilities. The
following lemma presents a method for generating nets in low-dimensional Euclidean spaces.
Lemma 8 (Har-Peled and Mendel [2006]) Given a density parameter γ > 0 and a set P ⊂ Rd,
a γ-net of P of size at most min{|P|, γ−dmaxp1,p2∈P ||p1 − p2||d} can be constructed in
|P| log |P|2O(d) time.

Our approach for solving the low-dimensional weighted instance Ĩ is built upon Algorithm 2 and
Lemma 8, and is outlined in Algorithm 3. Since Algorithm 2 yields the desired search spaces with
probability k−k (as given by the first property stated in Lemma 7), Algorithm 3 iteratively invokes it
kk times, allowing the probability of successfully constructing the desired search spaces in at least
one of the iterations to be boosted to a constant. Given k setsA1, · · · ,Ak satisfying the first property
stated in Lemma 7, Algorithm 3 constructs a net for each set of size greater than 1, and adds the
members of the net to the candidate set of opened facilities. Finally, the algorithm constructs a set
of feasible solutions to Ĩ based on the candidates for opened facilities, and returns the one with the
minimum cost among them.

The following lemma says that Algorithm 3 yields a (1 +O(ε
1
ρ ))-approximation solution to Ĩ with

high probability.
Lemma 9 The following event occurs with probability no less than 1− e−1: Algorithm 3 yields a
feasibleH† to Ĩ satisfying

∑
c∈C̃ w(c)δ

ρ(c,H†) < (1+4ε)opt if ρ = 1 and
∑
c∈C̃ w(c)δ

ρ(c,H†) <
(1 + 9

√
ε)opt if ρ = 2.

By analyzing the time Algorithm 3 takes to construct the set of candidate solutions, as well as the
size of this set, we can establish the following upper bound on the running time of Algorithm 3.

Lemma 10 Algorithm 3 runs in no more than 2(kε
−1)O(1)+k`nO(1) time.
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Algorithm 4: The algorithm in high-dimensional spaces

Input: A constant ε ∈ (0, 0.5) and an instance I = (`, k, C,F , ~α, ~β, ρ, τ) of the fair-range
clustering problem satisfying C ∪ F ⊂ Rd

Output: A solutionH‡ to I
1 Let ϕ : Rd → Rd̃ be the mapping and Ĩ = (`, k, C̃, F̃ , ~α, ~β, ρ, τ, w) be the weighted instance

constructed by Algorithm 1 with (ε, I) as the input;
2 LetH† be the solution to Ĩ constructed by Algorithm 3 with (ε, Ĩ, |C ∪ F|) as the input;
3 returnH‡ ⇐ {ϕ−1(f) : f ∈ H†}.

3.4 Extensions to High-Dimensional Spaces

We combine the data-reduction method given in Section 3.1 with the low-dimensional algorithm
given in Section 3.3 to solve the FkMed and FkMeans problems in high-dimensional spaces, as
detailed in Algorithm 4. Given a constant ε ∈ (0, 0.5) and an instance I = (`, k, C,F , ~α, ~β, ρ, τ),
the algorithm starts with constructing a mapping ϕ : Rd → Rd̃ and a small weighted instance
Ĩ = (`, k, C̃, F̃ , ~α, ~β, ρ, τ, w), where C̃ ∪ F̃ ⊂ Rd̃, F̃ = {ϕ(f) : f ∈ F}, and τ(ϕ(f)) = τ(f) for
each f ∈ F . It then constructs a solution to Ĩ and returns the set of preimages of the facilities opened
in this solution under ϕ. The analysis of the performance guarantees of Algorithm 4 leads to the main
result of this paper, as stated in Theorem 1.

Theorem 1 Given an instance (`, k, C,F , ~α, ~β, ρ, τ) of fair-range clustering with C ∪ F ⊂ Rd and
ρ ∈ {1, 2} along with a real number ε ∈ (0, 1), there is a randomized (1 + ε)-approximation
algorithm running in O(d log d) + 2(kε

−1)O(1)+k`nO(1) time, where n = |C ∪ F|.

4 Conclusions

In this paper, we consider the FkMed and FkMeans problems for the case where the numbers of
opened facilities and demographic labels are fixed parameters. Based on a combination of a data-
reduction method and a space-partitioning approach for selecting opened facilities, we introduce
(1 + ε)-approximation algorithms in Euclidean spaces, representing the first parameterized approxi-
mation schemes for the problems. Given that coreset-construction methods were known for many
constrained clustering problems incorporating additional constraints on instances, such as those
related to capacities [Cohen-Addad and Li, 2019], group fairness [Bandyapadhyay et al., 2021], and
robustness [Huang et al., 2023], an interesting direction for future work is to extend our techniques
to deal with the FkMed and FkMeans problems in similar constrained settings. Another promising
avenue for exploration is to accelerate heuristic algorithms for the fair-range clustering problem, such
as those given in [Thejaswi et al., 2022], using the data-reduction method proposed in this work.

5 Broader Impact

Our work deals with the fair-range clustering problem, providing algorithmic insights that can
facilitate fair decision-making. While our algorithms have been shown to be “fair” according to
specific definitions, it is essential to recognize that this fairness does not automatically warrant
indiscriminate application. This underscores the need for careful consideration when implementing
the algorithms proposed in this paper in real-world scenarios that prioritize fairness.
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A Proof of Lemma 1

Lemma 1 Given two real numbers s and t greater than 1, we have logt s ≤ max{s, tO(t)}.
Proof If t ≥ log s

log log s , then we have log s ≤ O(t log t), and thus logt s ≤ tO(t). If t < log s
log log s , then

we have logt s < log
log s

log log s s = s. Thus, Lemma 1 is true. �

B Proof of Lemma 2

Lemma 2 Given three points x, y, and z in an Euclidean space and a real number γ ∈ (0, 1], we
have ||x− z||2 ≤ (1 + γ−1)||x− y||2 + (1 + γ)||y − z||2.
Proof Triangle inequality implies that ||x− z|| ≤ ||x− y||+ ||y − z||, and thus we have

||x− z||2 ≤ (||x− y||+ ||y − z||)2

= ||x− y||2 + ||y − z||2 + 2
1
√
γ
||x− y||√γ||y − z||

≤ ||x− y||2 + ||y − z||2 + 1

γ
||x− y||2 + γ||y − z||2.

This completes the proof of Lemma 2. �

C Proof of Lemma 6

Lemma 6 Given a constant ε ∈ (0, 0.5) and an instance (`, k, C,F , ~α, ~β, ρ, τ) of the fair-range
clustering problem with ρ ∈ {1, 2}, |C ∪F| = n, and C ∪F ⊂ Rd, Algorithm 1 constructs a mapping
ϕ : Rd → Rd̃ and an instance (`, k, C̃, F̃ , ~α, ~β, ρ, τ, w) of the weighted fair-range clustering problem
in O(d log d) + (nkε−1)O(1) time, which satisfy the following properties:

(i)
∑
c∈C̃ w(c) = |C|,

(ii) w(c) ≥ 1 for each c ∈ C̃,

(iii) |C̃| ≤ (kε−1 log n)O(1),

(iv) d̃ = ε−O(1)(log k + log log n), and
(v)

∑
c∈C̃ w(c)δ

ρ(c, {ϕ(f) : f ∈ H}) ∈ [1 − ε, (1 + ε)2ρ+1]
∑
c∈C δ

ρ(c,H) for each H ⊆ F
with |H| ≤ k.

Proof Algorithm 1 constructs a mapping ϕ1 : Rd → Rd† using Lemma 4 in step 1, a coreset C†
along with the corresponding weight function w† : C† → [1,+∞) using Lemma 3 in step 2, and a
mapping ϕ2 : Rd† → Rd̃ using Lemma 5 in step 3.

We begin by examining the first property of the output of Algorithm 1 stated in Lemma 6. We have∑
c∈C̃

w(c) =
∑
c∈C†

w†(c) = |{ϕ1(c) : c ∈ C}| = |C|, (1)

where the first step follows from the fact that C̃ = {ϕ2(c) : c ∈ C†} (due to step 4 of Algorithm 1) and
w is the composite mapping w† ◦ ϕ−12 (due to step 5 of Algorithm 1), the second step follows from
the fact that C† is the weighted set constructed by Lemma 3 with {ϕ1(c) : c ∈ C} as the input set,
and the last step is due to the assumption that the mappings constructed by Lemma 4 and Lemma 5
are injective. Equality (1) implies that the first property stated in Lemma 6 is true.

The second property stated in Lemma 6 follows directly from the fact that w(c) = w†(ϕ−12 (c))

for each c ∈ C̃ (as established in step 5 of Algorithm 1) and w† is a mapping to [1,+∞) (due to
Lemma 3).

We now consider the third property stated in Lemma 6. This can be verified by

|C̃| = |C†| ≤ d†(kε−1 log |C|)O(1) = (kε−1 log |C|)O(1) log |C ∪ F| = (kε−1 log n)O(1), (2)
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where the first step is due to the fact that C̃ = {ϕ2(c) : c ∈ C†} (as established in step 4 of the
algorithm) and the assumption that each mapping constructed by Lemma 5 is injective, the second
step follows from Lemma 3, and the third step is due to the fact that ϕ1 : Rd → Rd† is the mapping
constructed by Lemma 4 with (ε, C ∪ F) as the input.

Using inequality (2) and the fact that ϕ2 : Rd† → Rd̃ is the mapping constructed by Lemma 5 with
(ε, C†) as the input, we have

d̃ = ε−O(1) log |C†| ≤ ε−O(1) log(kε−1 log n) = ε−O(1)(log k + log log n),

which implies that the fourth property stated in Lemma 6 is true.

Given a subsetH ⊆ F with |H| ≤ k, we have∑
c∈C̃

w(c)δρ(c, {ϕ(f) : f ∈ H}) ∈ [1, (1 + ε)ρ]
∑
c∈C†

w(c)δρ(c, {ϕ1(f) : f ∈ H})

⊆ [1− ε, (1 + ε)ρ+1]
∑
c∈C

δρ(ϕ1(c), {ϕ1(f) : f ∈ H})

⊆ [1− ε, (1 + ε)2ρ+1]
∑
c∈C

δρ(c,H),

where the first step follows from Lemma 5 and the fact that C̃ = {ϕ2(c) : c ∈ C†} and ϕ(f) =
ϕ2(ϕ1(f)) for each f ∈ F (due to step 4 of Algorithm 1), the second step follows from the fact that
C† is a coreset of {ϕ1(c) : c ∈ C} constructed by Lemma 3, and the last step is due to Lemma 4. This
completes the proof of the last property stated in Lemma 6.

It remains to show the running time of Algorithm 1. Recall that the algorithm invokes Lemma 4
with (ε, C ∪F), invokes Lemma 3 with (ε, {ϕ1(c) : c ∈ C}, k, ρ), and invokes Lemma 5 with (ε, C†),
where C† ⊆ {ϕ1(c) : c ∈ C} ⊂ Rd† . Combining this with inequality (2), we can express the running
time of Algorithm 1 as

O(d log d+ |C|d†k) + (ε−1 log |C ∪ F|)O(1) + (|C†|d†ε−1)O(1) ≤ O(d log d) + (nkε−1)O(1),

as desired. �

D Proof of Lemma 7

Lemma 7 The collection A constructed by Algorithm 2 satisfies the following two properties:

(i) With probability no less than k−k, there exists a collection {A1, · · · ,Ak} ∈ A satisfying
f∗i ∈ Ai ⊆ A∗i for each i ∈ [k∗] and Ai 6= ∅ for each i ∈ [k]\[k∗];

(ii) Given a collection {A1, · · · ,Ak} ∈ A, with Ai 6= ∅ for each i ∈ [k], and a tuple
(f1, · · · , fk) ∈ A1 × A2 × · · · × Ak, we have |{i ∈ [k] : t ∈ τ(fi)}| ∈ [αt, βt] for each
t ∈ [`].

Proof Algorithm 2 enumerates all possible values of A∗i for each i ∈ [k∗] and all possible values of
Li for each i ∈ [k]\[k∗]. Consequently, the k setsA∗1, · · · ,A∗k∗ ,Lk∗+1, · · · ,Lk are guaranteed to be
captured by the algorithm. Observe that Algorithm 2 associates each facility f with a random integer
η(f) ∈ [k]. It can be shown that equality η(f∗i ) = i ∀ i ∈ [k] holds with probability k−k. When
this equality is satisfied, and the k sets A∗1, · · · ,A∗k∗ ,Lk∗+1, · · · ,Lk are provided, the algorithm
is able to construct a set Ai satisfying f∗i ∈ Ai ⊆ A∗i for each i ∈ [k∗] by extracting the facilities
f ∈ A∗i with η(f) = i in step 14, and find a facility f ∈ Li with η(f) = i to construct a singleton
set Ai ⊆ Li for each i ∈ [k]\[k∗] in step 17. Thus, the first property stated in Lemma 7 is true.

Now we consider the second property. Given a collection {A1, · · · ,Ak} ∈ A with Ai 6= ∅ for each
i ∈ [k] and a tuple (f1, · · · , fk) ∈ A1 ×A2 × · · · × Ak, the fact that facilities in different sets are
associated with distinct integers implies that {f1, · · · , fk} is a distinct set. Combining this with the
decision condition employed in step 6 of Algorithm 2, we have

|{i ∈ [k] : t ∈ τ(fi)}| = |{i ∈ [k] : t ∈ Di}| ∈ [αt, βt]

for each t ∈ [`] , where D1, · · · ,Dk are the k sets of demographic labels used for constructing
{A1, · · · ,Ak}. This completes the proof of Lemma 7. �
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E Proof of Lemma 9

Lemma 9 The following event occurs with probability no less than 1− e−1: Algorithm 3 yields a
feasibleH† to Ĩ satisfying

∑
c∈C̃ w(c)δ

ρ(c,H†) < (1+4ε)opt if ρ = 1 and
∑
c∈C̃ w(c)δ

ρ(c,H†) <
(1 + 9

√
ε)opt if ρ = 2.

Proof The second property stated in Lemma 7 immediately implies that all candidate solutions
constructed by Algorithm 3 are feasible solutions to Ĩ. It remains to consider the approximation
ratio of the algorithm. Given that Algorithm 3 iteratively invokes Algorithm 2 kk times to construct
a collection A, the probability that there exists an element {A1, · · · ,Ak} ∈ A satisfying the first
property stated in Lemma 7 is at least 1− (1− k−k)kk > 1− e−1. For the purpose of our analysis,
we assume that the collection A indeed contains such an element {A1, · · · ,Ak}, and let Si be the
subset of Ai constructed by Algorithm 3 in step 8 or step 10 for each i ∈ [k].

We consider an integer i ∈ [k∗]. Lemma 7 indicates that

Si = Ai = {f∗i } (3)

if |Ai| = 1. For the case where |Ai| > 1, Si is a maxx,y∈Ai ε||x− y||-net of Ai. In this scenario, it
can be concluded that

δρ(f∗i ,Si) ≤ ερ max
x,y∈Ai

||x− y||ρ

≤ 2ρερ max
f∈Ai

||f − ci||ρ

≤ 2ρερ ·max{(1 + ε)||f∗i − ci||ρ,
ε

n
δρmax}

≤ 2ρερ ·max{(1 + ε)||f∗i − ci||ρ,
ε

n
opt}, (4)

where the first step follows from the fact that f∗i ∈ Ai (due to Lemma 7) and the definition of nets,
the second step follows from triangle inequality (for ρ = 1) and Lemma 2 (for ρ = 2, with γ = 1),
the third step follows from the fact that an integer j ∈ {0, · · · , dε−2 log ne} satisfies Ai ⊆ A∗(i, j)
(due to Lemma 7), along with the fact that each j ∈ [dε−2 log ne] and {x, y} ⊆ A∗(i, j) satisfy
||x− ci||ρ ≤ (1 + ε)||y − ci||ρ and each f ∈ A∗(i, 0) satisfies ||f − ci||ρ ≤ εδρmaxn

−1 (due to the
definitions of A∗(i, j) and A∗(i, 0)), and the last step follows from the definition of δρmax and the
fact that w(c) ≥ 1 for each c ∈ C̃ (due to Lemma 6).

Let H′ be the set of candidate solution constructed using the Cartesian product S1×S2× · · · × Sk in
step 11 of Algorithm 3. Equality (3) and inequality (4) suggest the existence of a candidate solution
{f1, · · · , fk} ∈ H′ satisfying

||fi − f∗i ||ρ ≤ 2ρερ ·max{(1 + ε)||f∗i − ci||ρ,
ε

n
opt} (5)

for each i ∈ [k∗]. Thus, it can be shown that

k∑
i=1

∑
c∈C̃∗i

w(c)||fi − f∗i ||ρ =
k∗∑
i=1

∑
c∈C̃∗i

w(c)||fi − f∗i ||ρ

≤ 2ρερ
k∗∑
i=1

∑
c∈C̃∗i

w(c)max{(1 + ε)||f∗i − ci||ρ,
ε

n
opt}

≤ 2ρερ
k∗∑
i=1

∑
c∈C̃∗i

w(c)
(
(1 + ε)||f∗i − ci||ρ +

ε

n
opt
)

< 2ρερ(1 + ε)

k∑
i=1

∑
c∈C̃∗i

w(c)||f∗i − ci||ρ + 2ρερ+1opt

≤ 2ρερ(1 + ε)

k∑
i=1

∑
c∈C̃∗i

w(c)||f∗i − c||ρ + 2ρερ+1opt
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= 2ρερ(1 + ε)opt+ 2ρερ+1opt

< 4ρερopt, (6)

where the first step is due to the fact that C̃∗i = ∅ for each i ∈ [k]\[k∗], the second step is due to
inequality (5), the fourth step follows from the fact that

∑k
i=1

∑
c∈C̃∗i

w(c) =
∑
c∈C̃ w(c) = |C̃| < n

(due to Lemma 6), the fifth step is due to the definition of ci, the sixth step is due to the definition of
C̃∗i , and the last step follows from the fact that ε ∈ (0, 0.5). Consequently, for the case where ρ = 2,
we have∑
c∈C̃

w(c)δρ(c, {f1, · · · , fk}) =
k∑
i=1

∑
c∈C̃∗i

w(c)δρ(c, {f1, · · · , fk})

≤
k∑
i=1

∑
c∈C̃∗i

w(c)||c− fi||ρ

≤
k∑
i=1

∑
c∈C̃∗i

w(c)

(
(1 +

√
ε)||c− f∗i ||ρ + (1 +

1√
ε
)||f∗i − fi||ρ

)

= (1 +
√
ε)opt+ (1 +

1√
ε
)

k∑
i=1

∑
c∈C̃∗i

w(c)||f∗i − fi||ρ

<

(
1 +
√
ε+ 4(1 +

1√
ε
)ρερ

)
opt

< (1 + 9
√
ε)opt, (7)

where the third step is due to Lemma 2 (with γ =
√
ε), the fourth step follows from the definition of

C̃∗i , the fifth step follows from inequality (6), and the last step is due to the fact that ε ∈ (0, 0.5).

Replacing Lemma 2 used in the third step of inequality (7) with triangle inequality, we get∑
c∈C̃

w(c)δρ(c, {f1, · · · , fk}) ≤
k∑
i=1

∑
c∈C̃∗i

w(c) (||c− f∗i ||ρ + ||f∗i − fi||ρ)

= opt+

k∑
i=1

∑
c∈C̃∗i

w(c)||f∗i − fi||ρ

< (1 + 4ε)opt (8)

for the case where ρ = 1.

Using inequality (7) and inequality (8), along with the fact that Algorithm 3 returns the candidate
solution with the minimum cost, we complete the proof of Lemma 9. �

F Proof of Lemma 10

Lemma 10 Algorithm 3 runs in no more than 2(kε
−1)O(1)+k`nO(1) time.

Proof Let H be the set of candidate solutions constructed by Algorithm 3, and let A be the
collection formed by iteratively invoking Algorithm 2 kk times. Observe that Algorithm 2
enumerates all possible values of k∗, {c1, · · · , ck}, δρmax, and {L1, · · · ,Lk} to guess the
sets {A∗(1, 0), · · · ,A∗(k∗, dε−2 log ne)} and {Lk∗+1, · · · ,Lk}. Additionally, it enumerates
[[dε−2 log ne] ∪ {0}]k to determine the set {A∗1, · · · ,A∗k∗}. Analyzing the possible values of these
parameters yields

|A| ≤ 2k`kk+1|F̃ ||C̃|k+1(ε−2 log n+ 1)k

≤ 2k`(kε−1 log n)O(k)n

≤ 2k`(kε−1)O(k)nO(1), (9)
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where the second step follows from the fact that C̃ = (kε−1 log n)O(1) (due to Lemma 6) and |F̃ | < n,
and the third step follows from Lemma 1 (with s = n and t = k).

Let {A1, · · · ,Ak} ∈ A be the collection considered in one of the iterations of steps 6-12 of
Algorithm 3. Let S1, · · · ,Sk be the subsets constructed in step 8 or step 10 and H′ be the set of
candidate solutions constructed in step 11 during this iteration. For each i ∈ [k] with |Ai| > 1, Si is
a maxx,y∈Ai ε||x− y||-net of Ai, which is constructed based on the maximum distance between the
facilities from Ai in step 10. Lemma 8 implies that constructing these nets takes no more than

k∑
i=1

2O(d̃)|Ai|O(1) ≤ 2O(d̃)|F̃ |O(1)k ≤ 2O(d̃)nO(1)k (10)

time. Moreover, the upper bound on the size of a net exhibited in Lemma 8 suggests that

1 ≤ |Si| ≤ ε−d̃ (11)

for each i ∈ [k]. Inequality (11) leads to

|H′| =
k∏
i=1

|Si| ≤ ε−kd̃,

and thus we have

|H| ≤ ε−kd̃|A|. (12)

Given the set H of candidate solutions, Algorithm 3 takes |C̃|d̃k|H| time to identify the solution with
the minimum cost. Combining this with the time required for constructing nets in each iteration
exhibited in inequality (10), we know that the running time of Algorithm 3 is upper-bounded by

2O(d̃)nO(1)k|A|+ |C̃|d̃k|H| ≤ |A|k(2O(d̃)nO(1) + ε−kd̃|C̃|d̃)

≤ 2k`ε−O(kd̃)nO(1)(kε−1)O(k)

≤ 2k`nO(1)(kε−1)O(k)(k log n)(kε
−1)O(1)

= 2(kε
−1)O(1)+k`nO(1),

where the first step follows from inequality (12), the second step follows from the fact that |C̃| ≤
(kε−1 log n)O(1) (due to Lemma 3) and inequality (9), the third step follows from the fact that
d̃ = ε−O(1)(log k + log log n) (due to Lemma 3), and the last step is due to Lemma 1 (with s = n
and t = (kε−1)O(1)). This completes the proof of Lemma 10. �

G Proof of Theorem 1

Theorem 1 Given an instance (`, k, C,F , ~α, ~β, ρ, τ) of fair-range clustering with C ∪ F ⊂ Rd and
ρ ∈ {1, 2} along with a real number ε ∈ (0, 1), there is a randomized (1 + ε)-approximation
algorithm running in O(d log d) + 2(kε

−1)O(1)+k`nO(1) time, where n = |C ∪ F|.
Proof LetH‡ be the solution to I returned by Algorithm 4, and letH† be the solution to Ĩ constructed
in step 2 of Algorithm 4. Since each facility in H‡ shares the same set of demographic labels as
its corresponding image in Rd̃, it follows thatH‡ is a feasible solution to I. LetH∗ be an optimal
solution to I and H̃∗ be an optimal solution to Ĩ.

The optimality of H̃∗ for Ĩ and Lemma 6 imply that∑
c∈C̃

w(c)δρ(c, H̃∗) ≤
∑
c∈C̃

w(c)δρ(c, {ϕ(f) : f ∈ H∗})

≤ (1 + ε)2ρ+1
∑
c∈C

δρ(c,H∗). (13)
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For the case where ρ = 1, we can derive that inequality∑
c∈C

δρ(c,H‡) ≤ 1

1− ε
∑
c∈C̃

w(c)δρ(c,H†)

<
1 + 4ε

1− ε
∑
c∈C̃

w(c)δρ(c, H̃∗)

≤ 1 + 4ε

1− ε
(1 + ε)2ρ+1

∑
c∈C

δρ(c,H∗)

< (1 + 39ε)
∑
c∈C

δρ(c,H∗) (14)

holds with probability no less than 1− e−1, where the first step is due to the fact thatH† = {ϕ(f) :
f ∈ H‡} and Lemma 6, the second step follows from Lemma 9, the third step is due to inequality (13),
and the last step follows from the fact that ε ∈ (0, 0.5). Similarly, we can conclude that inequality∑

c∈C
δρ(c,H‡) ≤ 1

1− ε
∑
c∈C̃

w(c)δρ(c,H†)

<
1 + 9

√
ε

1− ε
∑
c∈C̃

w(c)δρ(c, H̃∗)

≤ 1 + 9
√
ε

1− ε
(1 + ε)2ρ+1

∑
c∈C

δρ(c,H∗)

< (1 + 83
√
ε)
∑
c∈C

δρ(c,H∗) (15)

holds with the same probability when ρ = 2, where the second step is due to Lemma 9.

Using inequality (14) and inequality (15), we know that Algorithm 4 is a randomized (1 + 39ε)-
approximation algorithm for the FkMed problem and a (1 + 83

√
ε)-approximation algorithm for

the FkMeans problem. Moreover, Lemma 6 and Lemma 10 imply that this algorithm runs in
O(d log d) + 2(kε

−1)O(1)+k`nO(1) time.

Given a constant ε ∈ (0, 1), let ε = ε
39 for the FkMed problem and ε = ( ε83 )

2 for the FkMeans
problem, then the argument above implies the existence of (1 + ε)-approximation algorithms with
running time O(d log d) + 2(kε

−1)O(1)+k`nO(1) for both problems, as desired. �
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