
Published as a conference paper at ICLR 2024

KALMAN FILTER FOR ONLINE CLASSIFICATION
OF NON-STATIONARY DATA

Michalis K. Titsias∗
Google DeepMind
mtitsias@google.com

Alexandre Galashov∗
Google DeepMind
agalashov@google.com

Amal Rannen-Triki
Google DeepMind
arannen@google.com

Razvan Pascanu
Google DeepMind
razp@google.com

Yee Whye Teh
Google DeepMind
ywteh@google.com

Jörg Bornschein
Google DeepMind
bornschein@google.com

ABSTRACT

In Online Continual Learning (OCL) a learning system receives a stream of data
and sequentially performs prediction and training steps. Key challenges in OCL
include automatic adaptation to the specific non-stationary structure of the data
and maintaining appropriate predictive uncertainty. To address these challenges
we introduce a probabilistic Bayesian online learning approach that utilizes a
(possibly pretrained) neural representation and a state space model over the linear
predictor weights. Non-stationarity in the linear predictor weights is modelled
using a “parameter drift” transition density, parametrized by a coefficient that
quantifies forgetting. Inference in the model is implemented with efficient Kalman
filter recursions which track the posterior distribution over the linear weights, while
online SGD updates over the transition dynamics coefficient allow for adaptation
to the non-stationarity observed in the data. While the framework is developed
assuming a linear Gaussian model, we extend it to deal with classification problems
and for fine-tuning the deep learning representation. In a set of experiments in multi-
class classification using data sets such as CIFAR-100 and CLOC we demonstrate
the model’s predictive ability and its flexibility in capturing non-stationarity.

1 INTRODUCTION

Continual Learning (e.g. Hadsell et al., 2020; Parisi et al., 2019) is an open problem that has been
receiving increasing attention in recent years. It aims to provide answers on how to train and use
models in non-stationary scenarios. A multitude of different and sometimes conflicting desiderata
have been considered for continual learning, including forward transfer, backward transfer, avoiding
forgetting and maintaining plasticity. Training and evaluation protocols highlight different constraints
such as limited memory to store examples, limited model size or computational constraints.

In this work we focus on the Online Learning (OL) (Shalev-Shwartz, 2012; Hazan, 2017) scenario,
where a learner receives a sequence of inputs xn and targets yn. At each time-step, the model observes
xn, makes a prediction and then receives the associated loss and ground truth target for learning.
Within the deep learning community this scenario has been referred to as Online Continual Learning
(OCL) (Cai et al., 2021; Ghunaim et al., 2023), with the focus shifted more towards obtaining the
best empirical performance on some given data instead of bounding the worst-case regret. Note
that in OL/OCL each observation (xn, yn) is first used for evaluation before it is used for training.
No separate evaluation-sets are required and this objective naturally supports task-agnostic and
non-stationary scenarios. Depending on the nature of the data stream, plasticity, not-forgetting and
sample-efficiency all play a crucial role during learning. When considering the cumulative next-step
log-loss under this protocol, it directly corresponds to the prequential description length and is thus
a theoretically well motivated evaluation metric for non-stationary scenarios under the Minimum
Description Length principle (Grunwald, 2004; Blier and Ollivier, 2018; Bornschein et al., 2022b).

∗Joint first authorship

1

Published as a conference paper at ICLR 2024

In this paper, we propose a new method based on Kalman filters which explicitly takes into account
non-stationaries in the data stream. It assumes a prior Markov model over the linear predictor weights
that uses a “parameter drift” transition density parametrized by a coefficient that quantifies forgetting.
The prior model is then combined with observations using online Bayesian updates, implemented by
computationally fast Kalman filter recursions, that track the posterior distribution over the weights
of the linear predictor as the data distribution changes over time. These Bayesian updates are also
combined with online SGD updates over the forgetting coefficient, thus allowing for more flexible
adaptation to non-stationarity. While the method is developed assuming the tractable linear Gaussian
case, we also extend it to classification and for updating deep learning representations.

We follow the trend introduced by large scale pretrained or foundation models (Bommasani et al.,
2021) of separating the representation learning from the readout classifier. Foundation models provide
generic representations applicable across a multitude of tasks and have been argued to offer stable
representations in continual learning, shifting the focus to handling non-stationarity with the convex
readout layer. This separation of concerns facilitates a more natural integration of non-neural solutions
to address continual or online learning challenges. Following this perspective, we investigate the
performance of Kalman filter on top of a frozen pretrained representation. We demonstrate that
simultaneously online learning of the representation while performing Kalman filter updates leads to
stable learning and provide strong results on online continual learning benchmarks.

Our contributions can be summarised as follows: (i) We propose a Kalman filter based approach which
models the parameters drift in the last layer of the Neural Network (NN) and derive efficient Bayesian
inference updates. (ii) We introduce an online learning algorithm to learn the drift parameters
online therefore adjusting the last layer linear dynamics to the non-stationarity of the data. (iii) We
demonstrate that this approach can work with pre-trained features as well as when it is trained from
scratch, allowing for training NN representations online. (iv) We demonstrate that the approach
achieves superior performance on large-scale benchmarks against existing baselines.

2 ONLINE LEARNING WITH KALMAN FILTER

We first describe the method in univariate regression and discuss in Section 2.1 how we adapt it
to classification. We assume a stream of data arriving sequentially so that at step n we receive
(xn, yn) where xn ∈ Rd is the input vector and yn ∈ R is the target. Our objective is to introduce
an online learning model that captures non-stationarities and learns a good predictor for future data.
Our model consists of two parts. The fist part is a neural network that outputs a representation
ϕ(x; θ) ∈ Rm so that ϕn := ϕ(xn; θ) is the feature vector of the n-th data point. θ is a set of
parameters that could be fixed, if the feature extractor is a pretrained network, or learnable, when
it is either fine-tuned or learnt from scratch. Given ϕn the output yn is modelled by a Gaussian
likelihood p(yn|wn) = N (yn|w⊤

n ϕn, σ
2), where the m-dimensional vector of regression coefficients

wn depends on time index n, i.e. wn can change with time in order to model distributional changes.

The second part of the model is a Gaussian Markov prior process on how wn can change over time,
which models parameter drift based on the following dynamics,

p(w0) = N (w0|0, σ2
wI), Initial parameter (1)

p(wn|wn−1) = N (wn|γnwn−1, (1− γ2
n)σ

2
wI), n ≥ 1. Parameter drift (2)

The time-dependent parameter γn takes values in [0, 1] and quantifies the memory or forgetting
of the process. For example, when γn = 1 then wn = wn−1, which means that at time step n
the model re-uses (or copies forward) the parameter wn−1 from the previous step. Such extreme
case is suitable when there is no distributional change at time n. In the other extreme case, when
γn = 0 the parameter wn is fully refreshed, i.e. reset to the prior N (0, σ2

wI), which implies a sharp
change in the distribution. Similarly, intermediate values of γn ∈ (0, 1) can model more smooth
or gradual changes. Flexible learning of γn through time will be a key element of our method that
we describe in Section 2.1.1 for the classification problem. Furthermore, it is worth noting that the
transition model in equation 2 is invariant to the prior, so that when wn−1 ∼ N (0, σ2

wI) the next
state wn = γnwn−1 +

√
1− γ2

nϵ (ϵ ∼ N (0, I)) also has marginal distribution N (0, σ2
wI). Having

specified the observation model and the transition model over the parameters wn we can write the
full joint density up to the n-th observation as

p(w0)

n∏
i=1

p(yi|wi)p(wi|wi−1) = N (w0|0, σ2
wI)

n∏
i=1

N (yi|w⊤
i ϕi, σ

2)N (wi|γiwi−1, (1− γ2
i)σ

2
wI).

2

Published as a conference paper at ICLR 2024

This is a linear Gaussian state space model where exact online Bayesian inference over wn can
be solved with standard Kalman filter prediction and update steps to compute online the Bayesian
posterior over wn (Särkkä, 2013). The prediction step requires computing the posterior over wn

given all past data up to time n− 1 (and excluding the current n-th observation), which is a Gaussian
density p(wn|y1:n−1) = N (wn|m−

n , A
−
n) with parameters

m−
n = γnmn−1, A−

n = γ2
nAn−1 + (1− γ2

n)σ
2
wI. (3)

The update step finds the updated Gaussian posterior p(wn|y1:n) = N (wn|mn, An) by modifying
the mean vector mn and the covariance matrix An to incorporate the information coming from the
most recent observation (xn, yn) according to

mn = m−
n +

A−
n ϕn

σ2 + ϕ⊤
nA

−
n ϕn

(yn − ϕ⊤
nm

−
n), An = A−

n −
A−

n ϕnϕ
⊤
nA

−
n

σ2 + ϕ⊤
nA

−
n ϕn

. (4)

The initial conditions for the recursions are m0 = 0 and A0 = σ2
wI . The complexity is dominated by

the operations sn = A−
n ϕn and sns

⊤
n which are O(m2) making the Kalman recursions very efficient.

Further, if we remove the stochasticity from the transition dynamics by setting γn = 1 for any n, the
above Kalman recursions reduce to online Bayesian linear regression as detailed in Appendix A.

Prediction. As the online model sequentially receives observations and updates its Bayesian
posterior distribution over wn, it can also perform next step predictions. Suppose that after n − 1
steps the model has observed the data (xi, yi)

n−1
i=1 and computed the posterior p(wn|y1:n−1). Then

for the next input data xn the model can predict its output yn based on the Bayesian predictive density

p(yn|y1:n−1) =

∫
p(yn|wn)p(wn|y1:n−1)dwn = N (yn|ϕ⊤

nm
−
n , ϕ

⊤
nA

−
n ϕn + σ2), (5)

which is analytic for this Gaussian regression case, while for the classification case will require
approximate inference and Monte Carlo sampling as detailed in Section 2.1.1.

2.1 APPLICATION TO CLASSIFICATION

We now apply the above online learning model to multi-class classification problems. Suppose a
classification problem with K classes, where the label yn is encoded as K-dimensional one-hot
vector, i.e. yn ∈ {0, 1}K ,

∑K
k=1 yn,k = 1. A suitable observation model for classification is the

standard softmax likelihood p(yn,k = 1|Wn) =
e
w⊤

n,kϕn∑K
j=1 e

w⊤
n,j

ϕn
, where Wn = (wn,1, . . . , wn,K) is a

m×K matrix storing the parameters Wn which play a similar role to previous regression coefficients.
These parameters follow K independent Markov processes so that each k-th column wn,k of Wn

is independent from the other columns and obeys the transition dynamics from equation 1 and
equation 2. However, unlike the regression case, exact online inference over Wn using Kalman
recursions is intractable due to the non-Gaussian form of the softmax likelihood. Thus, we need to
rely on approximate inference. Next we derive a fast and very easy to implement inference technique
that still uses the exact Kalman recursions. This consists of two main components described next.

(i) Fast and analytic Kalman recursion. To achieve this we introduce a Gaussian likelihood that
(as a means to approximate inference) replaces the softmax likelihood. It has the form q(yn|Wn) =∏K

j=1N (yn,j |w⊤
n,jϕn, σ

2), which explains the elements of the one-hot vector by a Gaussian density,
a trick that has been used successfully in the literature e.g. for Gaussian process classification
(Rasmussen and Williams, 2006) and meta learning (Patacchiola et al., 2020). With this approximate
likelihood the Kalman recursions remain tractable and propagate forward an approximate predictive
posterior q(Wn|y1:n−1) =

∏K
k=1N (wn,k|m−

n,k, A
−
n) with mean parameters given by the m ×K

matrix M−
n = (m−

n,1, . . . ,m
−
n,K) and covariance parameters given by the m×m matrix A−

n :

M−
n = γnMn−1, A−

n = γ2
nAn−1 + (1− γ2

n)σ
2
wI. (6)

The corresponding updated posterior q(Wn|y1:n) =
∏K

k=1N (wn,k|mn,k, An) has parameters

Mn = M−
n +

A−
n ϕn

σ2 + ϕ⊤
nA

−
n ϕn

× (y⊤n − ϕ⊤
nM

−
n), An = A−

n −
A−

n ϕnϕ
⊤
nA

−
n

σ2 + ϕ⊤
nA

−
n ϕn

. (7)

3

Published as a conference paper at ICLR 2024

The recursion is initialized at M0 = 0, A0 = σ2
wI , where 0 denotes the m×K matrix of zeros. A

full iteration costs O(Km+m2) where the O(m2) operations are the same with the regression case,
while the additional O(Km) operations are needed in the update of Mn, such as for ϕ⊤

nM
−
n . If the

feature vector size m is larger than the number of classes K, the term O(m2) dominates and the
complexity is the same as in univariate regression. The crucial factor to obtain such an efficiency is
that the covariances matrices (A−

n , An) are shared among all K classes.1 The additional memory
overhead of the method is O(Km) for storing Mn and O(m2) for storing the covariance An.

(ii) Posteriors combine with softmax for prediction or parameter updating. We view the above
Kalman recursion as an online approximate inference procedure that provides an approximation to the
exact posterior distribution. If p(Wn|y1:n−1) is the exact intractable predictive posterior (obtained by
Bayes’ rule with the exact softmax likelihood) then q(Wn|y1:n−1) computed from Kalman recursion
is an approximation to p(Wn|y1:n−1). Subsequently, by following standard approximate Bayesian
inference practices, when we wish to predict class probabilities or compute a cross entropy-like
loss to optimize parameters, the approximate posterior is combined with the exact softmax through
Bayesian averaging and Monte Carlo estimation. In Section 2.1.1, we make use of this to learn online
the forgetting coefficient γn. Further in Appendix C, we use the same principle to compute accurate
predictive probabilities and fine-tune the representation parameters θ. For this second case we also
find it useful to introduce a Bayesian calibration procedure, which optimizes online a calibration
parameter and improves the predictive probability estimates; see Appendix C for full details.

(iii) Online backbone finetuning. We also allow for finetuning the backbone ϕ(xn, θ) online; see
Appendix G. In this case, the Kalman recursion will not be exact in the sense that it combines features
ϕ(xn, θ) of different θ values. Nevertheless, we found that such an approach works well in practice.

2.1.1 ONLINE UPDATING THE FORGETTING COEFFICIENT γn

An important aspect of our method is the online updating of the forgetting coefficient γn, which
is indexed by n to indicate that it can change over time to reflect the data distributional changes.
Intuitively, if the predictive probability of the next data point becomes low, this suggests that the
Bayesian posterior does not explain this point well and needs refreshment from the prior. Adjusting
γn will move the posterior either closer or further away from the prior as can be seen from equation 6.
Instead of using a full Bayesian approach (that will require an extra hierarchical prior) over γn we
will follow a simple empirical Bayes method where we update γn by online point estimation. For
that, we first initialize γ0 and then for any subsequent time step n ≥ 1, where we observe (xn, yn),
we first copy the previous γn−1 value to the new step, i.e. γn = γn−1, and then we apply an SGD
update to change γn by maximizing the log predictive probability. The SGD update is written as

γn ← γn + ρn∇γn log p(yn,k = 1|y1:n−1), (8)

where we further parametrize γn = e−0.5δn , with δn ≥ 0, so that the update is applied to δn.2
However, since the log predictive probability is not tractable we consider the approximation

log p(yn,k = 1|y1:n−1) ≈ log

∫
p(yn,k = 1|Wn)q(Wn|y1:n−1)dWn, (9)

where p(yn|Wn) is the softmax and q(Wn|y1:n−1) =
∏K

k=1N (wn,k|m−
n,k, A

−
n) is the Kalman

analytic approximate posterior distribution. To estimate this we can use the standard procedure
to reparametrize the integral in terms of the K-dimensional vector of logits fn = W⊤

n ϕn which
follows the factorized Gaussian distribution q(fn|µn, s

2
nI) with mean µn = (M−

n)⊤ϕn and isotropic
variance s2n = ϕ⊤

nA
−
n ϕn. After this reparametrization, equation 9 leads to the estimate

log p(yn,k = 1|y1:n−1)=log

∫
efn,k∑K
j=1 e

fn,j

q(fn|µn, s
2
nI)dfn≈ log

1

S

S∑
s=1

eµn,k+snϵ
(s)
k∑K

j=1 e
µn,j+snϵ

(s)
j

, (10)

where ϵ(s) ∼ N (0, I), and to obtain the final expression we first reparametrize the integral to be an
expectation under the standard normal and then apply Monte Carlo. To update γn using SGD, we

1This is because the hyperparameter σ2 in the approximate Gaussian likelihood is shared among all K
dimensions. If we choose a σ2

k per class the time and storage cost grows to O(Km2) which is too expensive.
2The hard constraint δn ≥ 0 is imposed through clipping.

4

Published as a conference paper at ICLR 2024

Algorithm 1 Kalman filter online learning

Input: Data stream (xn, yn)n≥1; representation ϕ(x, θ); parameters θ; hyperparameters (σ2, σ2
w)

Initialise M0 = 0, A0 = σ2
wI and δ0 (e.g. to value 0.0 so that γ0 = 1)

for data point n = 1, 2, 3, . . . , do
Observe xn, compute ϕn = ϕ(xn, θ) make a prediction for the label y∗n via equation 13
Observe true class label yn
(Optional) Fine-tune θ together with the calibration parameter α, as described in Appendix C
Update δn as described in Section 2.1.1 and set γn = e−0.5δn

M−
n = γnMn−1, A

−
n = γ2

nAn−1 + (1− γ2
n)σ

2
wI

Update Kalman statistics: Mn = M−
n +

A−
n ϕn

σ2+ϕ⊤
n A−

n ϕn
×(y⊤n −ϕ⊤

nM
−
n), An = A−

n−
A−

n ϕnϕ
⊤
n A−

n

σ2+ϕ⊤
n A−

n ϕn

end for

differentiate this final Monte Carlo estimate of the loss − log p(yn,k = 1|y1:n−1) wrt the parameter
δn in γn = e−0.5δn , where γn appears in (µn, s

2
n) through the computation M−

n = γnMn−1, A
−
n =

γ2
nAn−1 + σ2

w(1− γ2
n)I , while the parameters (Mn−1, An−1) of the posterior up to time n− 1 are

taken as constants. Monte Carlo (MC) approximation can run efficiently by pre-computing µn,k

and sn which overall takes O(Km+m2) time. Since these are scalar values, MC approximation
complexity takes only O(KS) time. Moreover, we found that significantly increasing S did not make
much difference in practice in terms of the variance of this approximation and we found that the
moderate value S = 50 worked well in practice for the settings we considered.

3 RELATED WORK

Online learning with Bayesian forgetting. An alternative framework for non-stationary online
learning can be based on the concept of Bayesian forgetting (BF) (Kulhavý and Zarrop, 1993; Honkela
and Valpola, 2003; Graepel et al., 2010), as employed recently by Moens (2018) and Kurle et al.
(2020); see also Li et al. (2021) for a related tempering based approach. The main idea is to allow some
forgetting of the current posterior p(w|y1:n) by creating a weighted geometric average with the prior,
i.e. as pBF(w|y1:n) ∝ p(w|y1:n)γnp0(w)

1−γn (and re-normalize to get a new posterior for the next
time step) where γn ∈ [0, 1] is the forgetting factor. Most methods use non-learnable exponentially
decaying values for the sequence γn, while Moens (2018) considers online variational inference. The
BF approach differs significantly from the proposed Kalman filter (KF) algorithm where forgetting is
achieved through convolving with the transition dynamics p(w−|y1:n) =

∫
p(w−|w)p(w|y1:n)dw.

In Appendix D, we derive a new algorithm following the BF principle that learns γn online with SGD
and we include this BF method in our experiments as an additional baseline compared to KF. An
important computational difference between BF and KF is that, as shown in Appendix D, BF has
cubic cost O(m3) per iteration as opposed to low quadratic O(m2) cost of the Kalman filter method.

Related continual learning methods. Classical approaches for continual learning have focused
on reducing forgetting (De Lange et al., 2021; Parisi et al., 2019; Mai et al., 2022). More recently,
the trend moved the focus towards forward transfer and efficient adaptation (Hadsell et al., 2020;
Bornschein et al., 2022a; Ghunaim et al., 2023; Hayes and Kanan, 2022). While a significant progress
has been achieved through this line of research, one major drawback, highlighted by different recent
works (Ghunaim et al., 2023; Cai et al., 2021; Caccia et al., 2022), is the focus on small-scale artificial
benchmarks with abrupt and unnatural distribution shift, and on metrics that fail to capture the
capability of the models to efficiently adapt to the non-stationarity in the input data. In this work, we
focus on fast adaptation and the next-step prediction problem from OL/OCL.

Different recent works considered the problem of fast adaptation and the set of constraints and
objectives that are realistic in an online scenario. Different recent benchmarks, e.g. CLOC (Cai et al.,
2021) and CLEAR (Lin et al., 2021), propose a sequence of temporally sorted images with naturally
shifting visual concepts. CLOC leverages a subset of 39M images from YFCC100M (Thomee et al.,
2016) along with their timestamps and geolocalisation tags, spanning a period of 9 years. The paper
also highlights the limits of the classical continual learning approaches, and proposes simple baselines
to overcome them, based mostly on adapting the online learning rate and the replay buffer size. They
focus on an online evaluation protocol where each mini-batch is used for testing before adding it to
the training dataset. In this work, we largely follow the CLOC setting. We evaluate our approach on
the CLOC data and on modified CIFAR100 versions that are inspired by it.

5

Published as a conference paper at ICLR 2024

Bornschein et al. (2022b) highlight the theoretical and practical benefits of using the online next-step
performance for model evaluation. They emphasize the connection to compression based inference
and to the prequential Minimum Description Length principle (Dawid and Vovk, 1999; Poland and
Hutter, 2005). Empirically, they evaluate SGD based techniques on the pareto-front of prediction loss
vs. computational requirements; and propose forward-calibration and specific rehearsal approaches to
improve results. We compare against their methods in our experiments on CLOC.

The authors of Ghunaim et al. (2023) base their work on the observation that CL approaches have
been developed under unrealistic constraints, allowing for offline learning on data with multiple
passes without any limitation of computational cost. In realistic settings where we aim at updating
a model on continuously incoming data, approaches that are slower than the stream would be
impractical, or reach suboptimal performance in the limited time and computational budget. The
authors propose an evaluation protocol that puts the computational cost at the center. They propose
adding a delay between model update and evaluation. This delay is related to the computational cost
of the updating method. Under the same budget, a twice more expensive approach would update the
model half as often. With this realistic evaluation, the authors show that a simple baseline based on
experience replay outperforms state-of-the-art CL methods, due to their complexity. In this work,
we follow the protocol described in Ghunaim et al. (2023). Our approach has a relative complexity
that requires no delay between training and evaluation. We therefore compare against the baselines
reported in Ghunaim et al. (2023) that have the same properties, namely, ER (Chaudhry et al., 2019),
ER++ (Ghunaim et al., 2023) and ACE (Caccia et al., 2022).

Finally, our method of learning γ online could be seen as a way to perform change-point detection.
However, unlike usual change-point detection methods (Page, 1957; Hawkins et al., 2003; Adams
and MacKay, 2007; Fearnhead, 2006), learning γ does not perform the hard change of the posterior
parameter statistics, but rather operates in a soft way, gradually making the parameters to reset.

Related Kalman filter methods. The idea of relying on Kalman filters to estimate the posterior
distribution over the weights of a neural networks dates back to the 90s, with work such as (e.g
Singhal and Wu, 1988; Feldkamp et al., 1998; Puskorius and Feldkamp, 1994). The focus in these
works is to accelerate learning by incorporating second order information in the step size, and the
setting typically considered is that of stationary learning. Kalman filter for dealing with online
learning has been explored in the linear case for example in Tsiamis and Pappas (2020); Kozdoba
et al. (2019). In contrast, in our work we focus on the ability of Kalman filter to help with the online
continual learning problem by relying on pretrained representations. In the concurrent work Chang
et al. (2023), the authors proposed to use extended Kalman filter (EKF) directly on top of the neural
network parameters assuming a similar drift in parameters as we did. One main difference with this
work is that we only apply Kalman filter on the last layer and we assume that the covariance matrix is
shared across all classes for the classification problems. This makes our method more scalable since it
scales linearly with the number of classes and is only quadratic with respect to the dimensionality of
the last layer. The method in Chang et al. (2023) scales as O(P (L+K)2) to update statistics, where
P is the number of parameters in the neural network, L is at the order of 10 and K is the number
of classes, and requires O(PL2 + L3) memory, which makes it a less scalable variant. Moreover,
unlike Chang et al. (2023), in our work we also learn the forgetting parameter online.

4 EXPERIMENTS

4.1 ILLUSTRATIVE TIME SERIES EXAMPLE

We first apply our method to artificial time series data. The task is to track a non-stationary data
stream of scalar noisy observations yn without any conditioning input xn. We further assume a very
simple model where the feature is just an univariate constant value equal to unity, i.e. ϕn = 1 so
that the observation likelihood simplifies as p(yn|wn) = N (yn|wn, σ

2) and the parameter wn, to be
inferred through time, models the unknown expected value of yn.

Figure 1 shows the results of the Kalman model that was initialized with γ0 = 1 and learns it online,
as described in Appendix B. The non-stationary nature of the this series is such that the signal is
piece-wise (noisy) constant with seven change-points. As shown by the second row in the left panel
in Figure 1 the learned value of γn is able to adjust to this non-stationarity by dropping the value of
γn quite below the value one (in order to refresh the Bayesian statistics over wn) any time there is a
change-point. Occasionally, γn drops outside the task boundaries which could be explained by the
outliers in the data. The drops of γn at the task boundaries, however, are more durable giving the

6

Published as a conference paper at ICLR 2024

0

1

Ou
tp

ut

0 500 1000 1500 2000 2500 3000
Time

0.6

0.8

1.0

2

0 1000 2000 3000
Time

4

3

2

1

0

1

2

Lo
g

pr
ed

ict
iv

e
de

ns
ity

Learning
Fixed

Figure 1: Artificial time series example of 3058 observations. Top row in left panel shows the data (black
dots) and the predicted mean and uncertainty (orange lines) over yn (as data arrive sequentially from left to right
and we perform online next step prediction), while the bottom row shows the optimized values of γ2

n = e−δn .
Right panel shows the accumulated average log predictive density, i.e. 1

n

∑n
i=1 log p(yi|y1:i−1), computed

across time for the model that learns γn and the model that ignores non-stationarity by setting γn = 1 for all n.

posterior time to re-adjust to the distribution changes. In contrast, if we remove the ability to capture
non-stationarity, i.e. by setting γn = 1 for all n, the performance gets much worse as shown by the
accumulated log predictive density scores in Figure 1 and by Figure 4 in the Appendix E.

4.2 ONLINE CLASSIFICATION

In this section, we apply our method to online classification and we consider the OCL scenario where
data arrive in small batches (chunks), see Cai et al. (2021); Bornschein et al. (2022b); Ghunaim
et al. (2023): The learning algorithm is exposed to a data stream S such that every time step n, a
chunk of data Sn={(xn,b+i, yn,b+i)}bi=1 of size b is revealed. The algorithm first predicts the labels
ys, s= (nb + 1), . . . , (n + 1)b, and then updates its parameters (see Algorithm 1) based on this
chunk of data. As metric, we use Average Online Accuracy, acco(n)= 1

nb

∑nb
s=1 acc(ys, ŷs), where

ys is the ground truth label and ŷs is the prediction of the model. This metric contains accuracies
computed on the fly over training and quantifies how well the algorithm ingests new knowledge.

Table 1: CIFAR-100 results. The numbers in bold correspond to the best performing method in the group.

Average Online Accuracy

Method Stationary CIFAR-100 Non-stationary CIFAR-100

No backbone finetuning (Purely linear model)
Stationary Kalman Filter (γ = 1.0) 11.63%± 0.2% 13.73± 0.9%
Non-stationary Kalman Filter (fixed γ = 0.999) 9.1%± 0.1% 31.9%± 0.8%
Non-stationary Kalman Filter (learned γ) 11.24% ± 0.1% 33.3 ± 0.3%

Backbone finetuning
Stationary Kalman Filter (γ = 1.0) 17.24 ± 0.2% 47.37% ± 0.9%
Non-stationary Kalman Filter (fixed γ = 0.999) 16.17% ± 0.2% 53% ± 0.9%
Non-stationary Kalman Filter (learned γ) 17.28% ± 0.2% 53.47% ± 1%

Backbone finetuning with Replay
Stationary Kalman Filter (γ = 1.0) 19.45% ± 0.4% 52.6% ± 1%
Non-stationary Kalman Filter (fixed γ = 0.999) 18.75% ± 0.1% 56.53% ± 1%
Non-stationary Kalman Filter (learned γ) 19.82% ± 0.3% 57.13% ± 0.7%

Baselines
Online SGD 16.25% ± 0.1% 49.5% ± 0.7%
Online SGD + Replay 16.88% ± 0.1% 54.5% ± 1%
ER++ (Ghunaim et al., 2023) 18.45% –

4.2.1 ONLINE CLASSIFICATION ON CIFAR-100
We evaluate the performance of the Kalman Filter on two variants of online classification on CIFAR-
100 (Krizhevsky and Hinton, 2009): stationary online classifcation on CIFAR-100 and non-stationary
online classifaction on CIFAR-100. In the stationary case, we follow the protocol described in
Ghunaim et al. (2023) where the stream S is constructed by randomly shuffling CIFAR-100 dataset
and split into chunks, so that the learning algorithm does one pass through CIFAR-100. This is

7

Published as a conference paper at ICLR 2024

similar to One-Pass ImageNet (Hu et al., 2021) benchmark. Since it is randomly shuffled, there is no
non-stationarity. In the non-stationary case, we consider a task-agnostic class-incremental version of
Split-CIFAR100 as in Lee et al. (2020), where CIFAR-100 is split into 10 tasks (task identity is not
communicated to the learning algorithm) each containing 10 different classes, concatenated into a
stream and split into chunks. At any time, the learning algorithm solves a multi-classification problem
with 100 classes. In this setting, there is very distinct non-stationarity related to the task changes.
This benchmark is also studied by many class incremental continual learning approaches which focus
on alleviating catastrophic forgetting (French, 1999; McCloskey and Cohen, 1989) and using average
incremental accuracy as metric. Dealing with catastrophic forgetting goes beyond the scope of this
work and we only focus on average online accuracy. In both cases, we follow training/evaluation
protocol described in Ghunaim et al. (2023) dealing with chunks of size 10, using ResNet-18 (He
et al., 2015) as feature extractor which is randomly initialized. For more details, see Appendix F.

The Kalman filter variants we consider are the following: Stationary Kalman Filter (γ=1), which
could be seen as a form of Bayesian Logistic Regression, Non-stationary Kalman Filter with fixed
γ=0.999 and Non-stationary Kalman Filter with learned γ. On top of that, we study performance
of Kalman filter in three regimes: no backbone finetuning, a regime with fixed randomly initialized
features ϕ which is a linear model, backbone finetuning, a regime where features ϕ are learned online
and backbone finetuning with replay, a regime where on top of learning features ϕ, we also replay
previously data. As first baseline we consider online SGD with and without replay, which consists in
sequential SGD algorithm. Also, for the stationary CIFAR-100, we consider the external baseline
ER++ from Ghunaim et al. (2023), which is a version of Online SGD + Replay which does more
update steps on the replay memory. This was the method with the highest performance as reported by
Ghunaim et al. (2023). The hyperparameters for methods are selected by choosing the variant with
highest cumulative log probabilities following MDL principle from Bornschein et al. (2022b). Replay
setting is similar to the one considered in Ghunaim et al. (2023). See Appendix F for more details.

The results are given in Table 1. In the stationary CIFAR-100 case, we observe that stationary
Kalman filter provides a reasonable performance and is generally better than non-stationary Kalman
filter with fixed γ. This is consistent with our intuition that there is not much non-stationarity to
model and therefore we would not expect Kalman filter to help. We see that Kalman Filter with
learning γ leads to slightly better results than stationary case. Intuitively, it makes sense since in the
worst case, this variant could revert back to γ = 1. Moreover, replay-free Kalman filter leads to very
competitive results against external baselines. Adding replay to Kalman improves results even further,
beating ER++ baseline which uses much more replay than ER; see Ghunaim et al. (2023). Kalman
filter performs consistently better than Online SGD in this setting. In the non-stationary CIFAR-100

0 10000 20000 30000 40000 50000
Data seen

0.97

0.98

0.99

1.00

1.01
Evolution of

Online SGD
Non-stationary Kalman Filter, learned

Non-stationary Kalman Filter, fixed
Stationary Kalman Filter, = 1

0 10000 20000 30000 40000 50000
Data seen

0.0

0.2

0.4

0.6
Average Online Accuracy

0 10000 20000 30000 40000 50000
Data seen

0.0

0.2

0.4

0.6

0.8

Task Accuracy

Figure 2: Non-stationary CIFAR-100. Left - evolution of γ, center - average online accuracy, right - smoothed
task accuracy (5% of data). Dashed lines indicate task boundaries.

case, stationary Kalman filter performs consistently worse than its non-stationary variants. This is
consistent with our intuition since in this case, there is non-stationarity which Kalman filter can
capture. Moreover, again learning γ generally leads to better performance. Figure 2, left, visualizes
the dynamics of learning γ for the Backbone Finetuning setting, with red dashed lines indicating task
boundaries. In many cases, γ drops at task boundaries, pushing down probabilities of classes from
previous classes and focusing more on future data. This is the desired behaviour of the method since
it essentially captures non-stationarity. Furthermore, in some cases γ could drop slightly outside of
task boundaries which could be explained by the presence of outliers. This, however, does not make
the performance of the method worse. On top of that, Online SGD also achieves strong performance
despite being a simple method. Kalman filter, however, achieves superior performance to Online

8

Published as a conference paper at ICLR 2024

0 1 2 3
Data seen 1e7

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e

On
lin

e
Ac

cu
ra

cy

From Scratch

0 1 2 3
Data seen 1e7

Av
er

ag
e

On
lin

e
Ac

cu
ra

cy

From Pretrained

Online SGD
Online SGD: With Replay
Kalman filter: Fixed backbone
Kalman filter: Finetuned backbone
ER
ACE

Figure 3: CLOC results. Left - learning from scratch, right - learning from pretrained model. External baselines
are taken from Ghunaim et al. (2023): ER and ACE (Caccia et al., 2022). On the left, Online SGD with replay
and Kalman filter (KF) with finetuned backbone are overlapping, while KF performs much better on the right.

SGD. We see that replay improves performance for both methods and Kalman filter performance can
be further improved if replay is allowed. In Figure 2, right, we compare performance of the Kalman
filter (learned γ and finetuned backbone) against Online SGD. We see that overall Kalman filter
achieves high accuracy on each task faster than Online SGD making this method more data efficient.

4.2.2 ONLINE LARGE-SCALE CLASSIFICATION ON CLOC

In CLOC (Cai et al., 2021), each image in a chronological data-sequence is associated with the
geographical location where it was taken, discretized to 713 (balanced) classes. It is a highly non-
stationary task on multiple overlapping time-scales because, e.g., major sports events lead to busts
of photos from certain locations; seasonal changes effect the appearance of landmarks; locations
become more or less popular over time; etc. We use the version of CLOC described in Bornschein
et al. (2022b): around 5% of the images could not be downloaded or decoded which leaves us with
a sequence of 37,093,769 images. This version of the dataset is similar to the one considered in
Ghunaim et al. (2023), but we are mindful of potential small differences due to the downloading
errors. We follow the same protocol as in Ghunaim et al. (2023) and in Bornschein et al. (2022b).

We use a ResNet-50 backbone and receive the data in chunks of 128 examples. For the Kalman filter,
we consider the variant with learned γ, which performed always better than any fixed one, including
γ = 1. We either keep the backbone fixed, or finetune it. The case of fixed backbone corresponds
to a linear model only. For more details and hyperparameters selection, see Appendix F. We run
experiments where we either start learning on CLOC from scratch, or start with a ImageNet-pretrained
backbone via supervised loss. As baselines, we consider Online SGD with and without replay from
Bornschein et al. (2022b), and compare to the results from Ghunaim et al. (2023): ER Chaudhry et al.
(2019) and ACE (Caccia et al., 2022), which were the best performing baselines on this setting as
reported by Ghunaim et al. (2023). To produce the plots, we asked the authors in (Ghunaim et al.,
2023) to provide us the data from their experiments. The results are shown in Figure 3, where Kalman
filter provides very strong performance compared to the baselines. When learning from scratch,
replay-free Kalman filter matches the performance of Online SGD with replay. This is a strong result
since Kalman filter does not need to store additional data in memory. Even having Kalman filter
with fixed backbone performs much better than Online SGD. When starting from pretrained model,
Kalman filter manages to learn more efficiently than any of the baselines. Moreover, finetuning the
backbone provides a large boost in performance compared to using a fixed backbone. We see that
in case of learning from scratch, using online SGD with Replay performs similarly to finetuning a
backbone together with a Kalman filter. We believe this is due to the fact that the random backbone
parameters are too noisy and when combined with Kalman filter updates, the whole process still
remains too noisy. The method, however, still performs significantly better than online gradient
descent without replay. For more details about backbone finetuning, see Appendix G.

5 CONCLUSION

We presented a probabilistic online learning method that combines efficient Kalman filter inference
with online learning of deep learning representations. We have demonstrated that this method is able to
adapt to non-stationarity of the data and it can give competitive next time-step data predictions. Some
directions for future research are: Firstly, it would be useful to investigate other approximate inference
methods for the classification case where we may construct a more accurate, but still computationally
efficient, online Gaussian approximation to the softmax. Secondly, it would be interesting to extend
the transition dynamics to include higher order Markov terms, which could increase the flexibility of
the algorithm to model more complex forms of non-stationarity and distribution drift.

9

Published as a conference paper at ICLR 2024

REFERENCES

Adams, R. P. and MacKay, D. J. (2007). Bayesian online changepoint detection. stat, 1050:19.

Blier, L. and Ollivier, Y. (2018). The description length of deep learning models.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S.,
Bohg, J., Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Castellon, R., Chatterji,
N. S., Chen, A. S., Creel, K. A., Davis, J., Demszky, D., Donahue, C., Doumbouya, M., Durmus,
E., Ermon, S., Etchemendy, J., Ethayarajh, K., Fei-Fei, L., Finn, C., Gale, T., Gillespie, L. E.,
Goel, K., Goodman, N. D., Grossman, S., Guha, N., Hashimoto, T., Henderson, P., Hewitt, J., Ho,
D. E., Hong, J., Hsu, K., Huang, J., Icard, T. F., Jain, S., Jurafsky, D., Kalluri, P., Karamcheti, S.,
Keeling, G., Khani, F., Khattab, O., Koh, P. W., Krass, M. S., Krishna, R., Kuditipudi, R., Kumar,
A., Ladhak, F., Lee, M., Lee, T., Leskovec, J., Levent, I., Li, X. L., Li, X., Ma, T., Malik, A.,
Manning, C. D., Mirchandani, S., Mitchell, E., Munyikwa, Z., Nair, S., Narayan, A., Narayanan,
D., Newman, B., Nie, A., Niebles, J. C., Nilforoshan, H., Nyarko, J. F., Ogut, G., Orr, L. J.,
Papadimitriou, I., Park, J. S., Piech, C., Portelance, E., Potts, C., Raghunathan, A., Reich, R., Ren,
H., Rong, F., Roohani, Y. H., Ruiz, C., Ryan, J., R’e, C., Sadigh, D., Sagawa, S., Santhanam, K.,
Shih, A., Srinivasan, K. P., Tamkin, A., Taori, R., Thomas, A. W., Tramèr, F., Wang, R. E., Wang,
W., Wu, B., Wu, J., Wu, Y., Xie, S. M., Yasunaga, M., You, J., Zaharia, M. A., Zhang, M., Zhang,
T., Zhang, X., Zhang, Y., Zheng, L., Zhou, K., and Liang, P. (2021). On the opportunities and risks
of foundation models. ArXiv, abs/2108.07258.

Bornschein, J., Galashov, A., Hemsley, R., Rannen-Triki, A., Chen, Y., Chaudhry, A., He, X. O.,
Douillard, A., Caccia, M., Feng, Q., et al. (2022a). Nevis’22: A stream of 100 tasks sampled from
30 years of computer vision research. arXiv preprint arXiv:2211.11747.

Bornschein, J., Li, Y., and Hutter, M. (2022b). Sequential learning of neural networks for prequential
mdl. In The Eleventh International Conference on Learning Representations.

Caccia, L., Aljundi, R., Asadi, N., Tuytelaars, T., Pineau, J., and Belilovsky, E. (2022). New insights
on reducing abrupt representation change in online continual learning.

Cai, Z., Sener, O., and Koltun, V. (2021). Online continual learning with natural distribution shifts:
An empirical study with visual data.

Chang, P. G., Durán-Martín, G., Shestopaloff, A. Y., Jones, M., and Murphy, K. (2023). Low-rank
extended kalman filtering for online learning of neural networks from streaming data.

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P. K., Torr, P. H., and Ranzato,
M. (2019). Continual learning with tiny episodic memories.

Dawid, A. P. and Vovk, V. G. (1999). Prequential probability: principles and properties. Bernoulli,
pages 125–162.

De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh, G., and
Tuytelaars, T. (2021). A continual learning survey: Defying forgetting in classification tasks. IEEE
transactions on pattern analysis and machine intelligence, 44(7):3366–3385.

Fearnhead, P. (2006). Exact and efficient Bayesian inference for multiple changepoint problems.
Statistics and Computing, 16(2):203–213.

Feldkamp, L. A., Prokhorov, D. V., Eagen, C. F., and Yuan, F. (1998). Enhanced Multi-Stream
Kalman Filter Training for Recurrent Networks, pages 29–53. Springer US, Boston, MA.

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences,
3(4):128–135.

Ghunaim, Y., Bibi, A., Alhamoud, K., Alfarra, M., Hammoud, H. A. A. K., Prabhu, A., Torr, P. H.,
and Ghanem, B. (2023). Real-time evaluation in online continual learning: A new paradigm. arXiv
preprint arXiv:2302.01047.

Graepel, T., Candela, J. Q., Borchert, T., and Herbrich, R. (2010). Web-scale bayesian click-through
rate prediction for sponsored search advertising in microsoft’s bing search engine. In International
Conference on Machine Learning.

10

Published as a conference paper at ICLR 2024

Grunwald, P. (2004). A tutorial introduction to the minimum description length principle.

Hadsell, R., Rao, D., Rusu, A. A., and Pascanu, R. (2020). Embracing change: Continual learning in
deep neural networks. Trends in cognitive sciences, 24(12):1028–1040.

Hawkins, D. M., Qiu, P., and Kang, C. W. (2003). The changepoint model for statistical process
control. Journal of Quality Technology, 35(4):355–366.

Hayes, T. L. and Kanan, C. (2022). Online continual learning for embedded devices. arXiv preprint
arXiv:2203.10681.

Hazan, E. (2017). Introduction to Online Convex Optimization. Foundations and Trends in Optimiza-
tion. Now, Boston.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition.

Honkela, A. and Valpola, H. (2003). On-line variational bayesian learning.

Hu, H., Li, A., Calandriello, D., and Gorur, D. (2021). One pass imagenet.

Kozdoba, M., Marecek, J., Tchrakian, T., and Mannor, S. (2019). On-line learning of linear dynami-
cal systems: Exponential forgetting in kalman filters. In Proceedings of the Thirty-Third AAAI
Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelli-
gence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence,
AAAI’19/IAAI’19/EAAI’19. AAAI Press.

Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny images.
Technical Report 0, University of Toronto, Toronto, Ontario.

Kulhavý, R. and Zarrop, M. B. (1993). On a general concept of forgetting. International Journal of
Control, 58:905–924.

Kurle, R., Cseke, B., Klushyn, A., van der Smagt, P., and Günnemann, S. (2020). Continual learning
with bayesian neural networks for non-stationary data. In International Conference on Learning
Representations.

Lee, S., Ha, J., Zhang, D., and Kim, G. (2020). A neural dirichlet process mixture model for task-free
continual learning.

Li, A., Boyd, A. J., Smyth, P., and Mandt, S. (2021). Detecting and adapting to irregular distribution
shifts in bayesian online learning. In Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.,
editors, Advances in Neural Information Processing Systems.

Lin, Z., Shi, J., Pathak, D., and Ramanan, D. (2021). The clear benchmark: Continual learning on
real-world imagery. In Thirty-fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 2).

Mai, Z., Li, R., Jeong, J., Quispe, D., Kim, H., and Sanner, S. (2022). Online continual learning in
image classification: An empirical survey. Neurocomputing, 469:28–51.

McCloskey, M. and Cohen, N. J. (1989). Catastrophic interference in connectionist networks: The
sequential learning problem. volume 24 of Psychology of Learning and Motivation, pages 109–165.
Academic Press.

Moens, V. (2018). The hierarchical adaptive forgetting variational filter. In Dy, J. and Krause, A.,
editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 3606–3615. PMLR.

Page, E. S. (1957). On problems in which a change in a parameter occurs at an unknown point.
Biometrika, 44(1-2):248–252.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. (2019). Continual lifelong learning
with neural networks: A review. Neural networks, 113:54–71.

11

Published as a conference paper at ICLR 2024

Patacchiola, M., Turner, J., Crowley, E. J., Boyle, M., and Storkey, A. J. (2020). Bayesian meta-
learning for the few-shot setting via deep kernels. In Advances in Neural Information Processing
Systems.

Poland, J. and Hutter, M. (2005). Asymptotics of discrete mdl for online prediction. IEEE Transac-
tions on Information Theory, 51(11):3780–3795.

Puskorius, G. and Feldkamp, L. (1994). Neurocontrol of nonlinear dynamical systems with kalman
filter trained recurrent networks. IEEE Transactions on Neural Networks, 5(2):279–297.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian Processes for Machine Learning. MIT Press.

Shalev-Shwartz, S. (2012). Online learning and online convex optimization. Found. Trends Mach.
Learn., 4(2):107–194.

Singhal, S. and Wu, L. (1988). Training multilayer perceptrons with the extended kalman algorithm.
In Touretzky, D., editor, Advances in Neural Information Processing Systems, volume 1. Morgan-
Kaufmann.

Särkkä, S. (2013). Bayesian Filtering and Smoothing. Institute of Mathematical Statistics Textbooks.
Cambridge University Press.

Thomee, B., Shamma, D. A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Borth, D., and Li,
L.-J. (2016). Yfcc100m: The new data in multimedia research. Communications of the ACM,
59(2):64–73.

Tsiamis, A. and Pappas, G. (2020). Online learning of the kalman filter with logarithmic regret.

12

Published as a conference paper at ICLR 2024

A CONNECTION WITH ONLINE BAYESIAN LINEAR REGRESSION

When the forgetting coefficient is γn = 1 for all n, the stochasticity in the transitions is removed since
the parameter transition density becomes a point mass, i.e. p(wn|wn−1) = δ(wn −wn−1). Then, the
Kalman filter reduces to updating the Gaussian posterior density p(w|y1:n) = N (w|mn, An) where

mn = mn−1 +
An−1ϕn

σ2 + ϕ⊤
nAn−1ϕn

(yn − ϕ⊤
nmn−1), An = An−1 −

An−1ϕnϕ
⊤
nAn−1

σ2 + ϕ⊤
nAn−1ϕn

, (11)

with the initial conditions m0 = 0 and A0 = σ2
wI . We see that these recursions compute exactly

in an efficient O(m2) time the standard Bayesian linear regression posterior given by p(w|y1:n) =
N (w|Anσ

−2
∑n

i=1 ϕiyi, An), with An =
(
σ−2

∑n
i=1 ϕiϕ

⊤
i + σ−2

w I
)−1

, and where the connection
with the online updates can be seen by applying the Woodbury matrix identity. Obtaining the online
Bayesian linear regression recursion as a special of a Kalman filter is well known in the literature; see
for example Section 3.2 in the book of Särkkä (2013).

B ONLINE UPDATING THE FORGETTING COEFFICIENT γn FOR REGRESSION

Learning online γn for the regression case is simpler than in classification since now the predictive
density is a tractable Gaussian given by equation 5. Thus, given that we parametrize γn = e−0.5δn ,
with δn ≥ 0, the update for δn is written as

δn ← δn + ρn∇δn logN (yn|ϕ⊤
nm

−
n , ϕ

⊤
nA

−
n ϕn + σ2). (12)

The dependence of the log density on δn is through the parameters (m−
n , A

−
n) given by equation 3

while the parameters (mn−1, An−1) of the posterior up to time n− 1 are taken as constants.

C CALIBRATION OF CLASS PROBABILITIES AND FINE-TUNING THE
REPRESENTATION

Given that in classification the predictive posterior q(Wn|y1:n−1) is an (possibly crude) approximation
to the true posterior, the log predictive probability estimate in (12) can be inaccurate. We improve this
estimate by fine-tuning over a calibration parameter that is optimized with gradient steps. In the same
step we can also fine-tune the neural network parameters θ that determine the representation vector
ϕ(x, θ). Specifically, for the calibration procedure we introduce a parameter α > 0 that rescales the
logits inside the softmax function, so that the softmax in equation 10 is replaced by eαfn,k∑K

j=1 eαfn,j
and

the final Monte Carlo estimate becomes

log p(yn,k = 1|y1:n−1, α, θ) ≈ log
1

S

S∑
s=1

eαµn,k+αsnϵ
(s)
k∑K

j=1 e
αµn,j+αsnϵ

(s)
j

. (13)

Then the negative log predictive probability, − log p(yn,k = 1|y1:n−1, α, θ), is treated as a loss
that is optimized jointly over (α, θ) with online SGD steps, i.e. as individual data points (xn, yn)
arrive sequentially. This resembles the forward-calibration described in (Bornschein et al., 2022b).
Algorithm 1 summarizes the whole online learning procedure that includes the Kalman filter recursion,
update of coefficient γn and fine-tuning of the representation parameters θ and calibration parameter
α. An ablation study in Appendix G shows that the calibration procedure can significantly improve
the log predictive probability estimates.

The fully online process for fine-tuning the deep network parameters θ in Algorithm 1 can be expen-
sive since modern hardware is computationally more effective when forward and backpropagation
passes in deep neural nets are applied jointly to minibatches rather to individual data points. In
practice, we therefore also consider a faster version of Algorithm 1 where we predict ahead a batch
of b data points by treating them as i.i.d. and then take a gradient step over (α, θ), i.e. we use as loss
− 1

b

∑b
i=1 log p(yn+i|y1:n−1, α, θ), i = 1, . . . , b. This creates two options for the Markov dynamics:

(i) either apply the transition "batch-wise" where the transition is taken every b data forming the

13

Published as a conference paper at ICLR 2024

minibatch (so that time index n corresponds to the number of minibatches), or (ii) the minibatch
updating only affects the prediction over future data (we predict ahead b points instead of only the
next one) and the fine-tuning of (α, θ), while the subsequent Kalman recursion steps and SGD update
over γn are applied online, i.e. by processing the b data in the minibatch one by one. Both schemes
can be useful in practice, as further discussed in the Appendix. For simplicity, Algorithm 1 presents
the purely online version, while pseudocode for the above minibatch-based variants is similar.

D ONLINE LEARNING WITH BAYESIAN FORGETTING

We develop an alternative non-stationary online method based on the concept of Bayesian forgetting
(BF) (Kulhavý and Zarrop, 1993; Honkela and Valpola, 2003; Graepel et al., 2010; Moens, 2018;
Kurle et al., 2020). We first derive this method and we contrast it with our Kalman filter approach
described in the main text. To simplify notation we remove the index n when referring to quantifies
w, γ,A,m. In some part description next we shall use a more general prior of the form p0(w) =
N (w|µw,Σw). While both BF and Kalman filter recursively estimate some Gaussian posterior
distribution p(w|y1:n) = N (w|m,A) as the data arrive by incorporating forgetting with a factor
γ ∈ [0, 1], they do this differently. Recall that in the Kalman filter method forgetting is applied through
convolving with the transition/diffusion dynamics p(w−|w) = N (w−|γw+(1−γ)µw, (1−γ2)Σw)
so that

p(w−|y1:n) =
∫

p(w−|w)p(w|y1:n)dw = N (w′|γm+ (1− γ)µw, γ
2A+ (1− γ2)Σw),

where in the Kalman filter terminology this is referred to as the prediction step. In contrast, a
corresponding step in BF involves mixing the current posterior with the prior using a weighted
geometric average and then re-normalizating, as follows

pBF(w
−|y1:n) =

p(w|y1:n)γp0(w)1−γ∫
p(w′|y1:n)γp0(w′)1−γdw′ = N (w|µ′, A′),

where
A′ =

(
γA−1 + (1− γ)Σ−1

w

)−1
,

µ′ =
(
γA−1 + (1− γ)Σ−1

w

)−1 (
γA−1m+ (1− γ)Σ−1

w µw

)
.

The remaining steps for the BF method remain the same as in the Kalman filter method. For
instance, the posterior update to incorporate the next data point yn+1 involves the Bayes’ rule
p(w|y1:n+1) ∝ p(yn+1|w)pBF(w|y1:n) where pBF(w|y1:n) := pBF(w

−|y1:n) while the online update
for γ is done by taking an SGD step to maximize the corresponding log predictive likelihood computed
as in equation 10.

Despite that BF and Kalman filter differ only on how forgetting is incorporated, this still results in
rather different properties. Firstly, the Kalman algorithm corresponds to a precise probabilistic state
space model, where forgetting is achieved through the Markov transition dynamics. In contrast, in
BF the forgetting is incorporated heuristically by creating a weighted geometric average between the
posterior and the prior. Secondly, and more importantly in practice, the Kalman filter method scales
as O(m2) per iteration but BF scales cubically as O(m3). To clarify this, firstly observe that an
efficient way to update online pBF is to propagate a forward (including also the step for incorporating
the next observation yn+1) a recursion over the natural parameters in quadratic O(m2) time. These
natural parameters are the inverse covariance, i.e. γA−1 + (1− γ)Σ−1

w , and the inverse covariance
times the mean vector, i.e. γA−1m+ (1− γ)Σ−1

w µw. To give the exact form of this recursion for the
classification case let us simplify the prior as N (w|µw,Σw) = N (w|0, σ2

wI), i.e. consider the one
used in the main text and all our experiments. Then the steps are the following:

1. Initialize the natural parameters as Λ = 1
σ2
w
I (m×m matrix) and λ = 0 (m× k matrix).

2. Take the weighted geometric average between posterior and prior and re-normalize. This
gives a new Gaussian with natural parameters

Λ′ = γΛ + (1− γ)
1

σ2
w

I, λ′ = γλ.

14

Published as a conference paper at ICLR 2024

3. Incorporate the next data point to obtain a posterior Gaussian with natural parameters

Λ = Λ′ +
1

σ2
ϕ× ϕ⊤, λ = λ′ +

1

σ2
ϕ× y⊤,

where recall that y is a k × 1 one hot vector and ϕ a m× 1 vector and for simplicity we do
not denote the data index.

However, the above efficient updates over the natural parameters cannot prevent cubic cost because
we also need to predict the next data output and learn online the forgetting coefficient γ. For that,
we need to compute the predictive distribution (as in equation 10 in the main text) which requires
the actual (and not the inverse) covariance matrix A− = (Λ′)−1 as well as the mean vector. Based
on the above expressions this has O(m3) cost per iteration due to the inverse A′ = (Λ′)−1 =(
γΛ + (1− γ)σ−2

w I
)−1

. More precisely, we can see that the actual predictive posterior density
over the k logits is a factorised Gaussian with mean vector µ = (λ′)⊤(Λ′)−1ϕ and isotropic/shared
variance s2 = ϕ⊤(Λ′)−1ϕ. For these last two computations we need to perform an O(m3) Cholesky
decomposition of the matrix Λ′.

The O(m3) cost of BF could be too high in some of the experiments where the size m of the feature
vector is typically of order of thousands, e.g. m = 2048 for the CLOC dataset.

We compare our method with BF on CLOC dataset. In Figure 5, we compare Bayesian Forgetting
method against Kalman Filter, where we use a fixed pretrained backbone (similar to the main
experiment on CLOC), but we see only 1 example at a time. On top of that, we run a large scale
experiment on CLOC similar to the one presented in Figure 3 from the main paper. In this case,
similarly, we see a chunk of 128 points at a time and we allow for using a fixed backbone or for
learning one. The results are given in Figure 6. In both cases, we see that KF consistently outperforms
Bayesian Forgetting whilst being also a much more efficient method.

E FURTHER DETAILS ABOUT THE TIME SERIES EXAMPLE

We generated the time series dataset consisted of 3058 observations sequentially by using 8 segments
with mean values {1.3, 1.0, 1.3, 0.95, 0.6, 0.25, 0.8, 0.5} and where the change-points between these
segments occurred (randomly) at the following 7 time steps {451, 709, 958, 1547, 2147, 2769, 2957}.
To obtain each observed yn we added Gaussian noise with variance 0.01.

For these time series data we applied a modification of the Kalman updates so that all updates remain
the same, except for the update of the parameter m−

n which now does not shrink to zero and it has the
form

m−
n = mn−1, (while before was m−

n = γnmn−1).

This is appropriate in this case because shrinking the predictive posterior mean to zero by multiplying
it by γn ≤ 1 is a very strong prior assumption that wn has zero mean which does not hold, since
the time series data can have arbitrary values away from zero. A more formal justification of the
above is that the Markov dynamics have now the form p(w0) = N (w0|0, σ2

wI) and p(wn|wn−1) =
N (wn|(1 − γn)µn−1 + γnwn−1, σ

2
w(1 − γ2

n)I) and each mean parameter µn−1 when we transit
from time step n− 1 to n is found by empirical Bayes so that µn−1 = mn−1 and where mn−1 is the
mean of p(wn−1|y1:n−1).

The hypermarameters in the experiment were set to the following values: σ2
w = 0.01, σ2 = 0.05

while δ0 was intitialized to 0.0 (so that γ0 = 1.0) and then updated at each step by performing SGD
steps with learning rate equal to 1.0.

Figure 1 in the main paper shows the results when γn is updated online. For comparison, in Figure 4
we show the online predictions for the case of having fixed γn = 1 for any n, so that the ability to
model non-stationarity is removed. Clearly, when not learning γn the model is not able to adjust to
non-stationarity.

15

Published as a conference paper at ICLR 2024

0 500 1000 1500 2000 2500 3000
Time

0

1

Ou
tp

ut

Figure 4: Online prediction on the artificial time series example by applying the Kalman filter model with fixed
γn = 1.

F EXPERIMENTAL DETAILS AND HYPERPARAMETERS SELECTION

F.1 HYPERPARAMETERS SELECTION

For hyperparameters we do the grid search over ranges. The hyperparameters for methods are selected
by choosing the variant with highest cumulative log probabilities following MDL principle from
(Bornschein et al., 2022b). When finetuning backbone together with learning calibration parameter α,
we considered a different relative scaling β of the gradients of the backbone compared to α - meaning
that if we use learning rate η for α, the learning rate for backbone is β ∗ η. In case where we learned
γ, we initialized γ at γinit which is also a hyper-parameter. For each of the method, we optimized
the hyper-parameters separately. The hyper-parameters and the considered values are given in the
Table 2.

Table 2: Hyper-parameters and considered values.

Hyperparameter Considered values

Learning rate for backbone and α, η [0.1, 0.01, 0.001, 0.0005, 0.0001]

Learning rate for γ, ηγ [0.5, 0.1, 0.01, 0.001]

Relative backbone-α gradient scaling, β [0.01, 0.1, 1., 10., 100.0]

Initial γinit [0.9, 0.99, 0.999, 1.0]

F.2 FINETUNING PROTOCOL

The algorithm 1 describes Kalman filter online learning where the learning happens for each data
point. We adapt this algorithm for chunk-based learning in the following way. When we receive the
chunk of data of certain size, we use the available Kalman statistics in order to calculate predictive
log-probabilities (see Appendix C) for each data point in the chunk independently. After that, we do
the gradient update on the backbone and α, leading us new backbone parameters and new α. After
that, we re-compute the features on the same chunk of data and we do Kalman recursion on this
chunk going through it sequentially. This latter process only involves updating statistics and γn and
doesn’t involve backbone or α finetuning. When we do this Kalman recursion, we consider two
options on how to apply Markov transition. In the first option, Always Markov, we apply Markov
transition for every data point during Kalman recursion. In the second option, Last Step Markov,
we only do Markov transition on the last point in the chunk. The difference basically lies in what we
consider a non-stationary data point. In case of Always Markov, it is each data point in the chunk.
In case of Last Step Markov, it is the whole chunk. We found that for different scenarios, different
strategies led to different results.

F.3 ADDITIONAL PER-BENCHMARK PARAMETERS

On top of the hyper-parameters which we selected for each of the baseline separately, we also found
that there was a group of hyper-parameters which generally provided consistently good results for all
the baselines for each benchmark. These parameters are the following:

• Transition type: Always Markov or Last Step Markov

16

Published as a conference paper at ICLR 2024

0 2500 5000 7500 10000 12500 15000 17500 20000
Examples seen

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

On
lin

e
Ac

cu
ra

cy

CLOC: Fixed backbone, 1 example at time, fixed

0 2500 5000 7500 10000 12500 15000 17500 20000
Examples seen

Av
er

ag
e

On
lin

e
Ac

cu
ra

cy

CLOC: Fixed backbone, 1 example at time, learned

Kalman filter
Bayesian Forgetting

Figure 5: CLOC results in comparing BF with KF methods. In this experiment the chunk size is 1, and we use a
fixed pre-trained backbone for both methods.

0 1 2 3 4
Data seen 1e6

0.1

0.2

0.3

0.4

Av
er

ag
e

On
lin

e
Ac

cu
ra

cy

From Scratch

0 1 2 3 4
Data seen 1e6

Av
er

ag
e

On
lin

e
Ac

cu
ra

cy

From Pretrained

Kalman filter: Fixed backbone
Kalman filter: Finetuned backbone
BF: Finetuned backbone
BF: Fixed backbone

Figure 6: CLOC results in comparing BF with KF methods. In this experiment the chunk size is 1, and we use a
fixed pre-trained backbone for both methods.

• Bias in features: Whether we add bias to the features or not

• Features normalization: Whether we normalize features vector, i.e., whether we divide it by
the square root of its dimensionality.

• Optimization algorithm: plain SGD or Adam with weight decay (λ)

These parameters were found empirically and similarly chosen via MDL principle. The table 3 gives
the summary.

Table 3: Per benchmark parameters.

Benchmark Transition type Use Bias Use normalization Optimization alg.

Stationary CIFAR-100 Last Step Markov No Yes SGD
Non-Stationary CIFAR-100 Always Markov Yes Yes SGD
CLOC with pretrained backbone Always Markov No No SGD
CLOC from scratch Last Step Markov No No AdamW (λ = 10−4)

F.4 CIFAR-100 EXPERIMENTS

In both cases of CIFAR-100 experiments, we follow protocol described in Ghunaim et al. (2023). We
use ResNet-18 as backbone model and SGD as learning algorithm. We split data into chunks of size
10. In some cases, we allow a replay strategy suggested in Ghunaim et al. (2023), where we keep a
memory of size 100 containing most recently seen examples. Then, for each learning iteration, we
sample a chunk of size 10 from memory and append it to the right of the current chunk, creating a
chunk of size 20.

F.5 CLOC EXPERIMENTS

Similar to Ghunaim et al. (2023) and Bornschein et al. (2022b), we considered ResNet-50 as backbone
and chunk size equal to 128. Empirically, we found that SGD optimization worked much better

17

Published as a conference paper at ICLR 2024

0 1 2 3
Data seen 1e7

6

5

4

From Scratch

0 1 2 3
Data seen 1e7

From Pretrained

Predictive log prob. Predictive log prob. Calibrated

Figure 7: CLOC log probabilitites for Kalman filter with finetuned backbone and finetuned delta. We show the
data (black dots) and the predicted mean and uncertainty (orange lines) over yn (as data arrive sequentially from
left to right and we perform online next time step prediction).

0 10000 20000 30000 40000 50000
Data seen

4.6

4.4

4.2

4.0

3.8
Log probabilities

Predictive log prob.
Predictive log prob. Calibrated

Figure 8: Non-stationary CIFAR-100 log probabilitites for Kalman filter with finetuned backbone and finetuned
δ.

for pre-trained model whereas Adam with weight decay (λ = 10−4) was working much better for
learning from scratch. Moreover, we also found that when learning from scratch, it worked much
better if we used Last Step Markov transition (see Appendix F.2). For pre-trained model, it worked
better use Always Markov transition (see Appendix F.2).

For baselines, we considered Online SGD baseline from Bornschein et al. (2022b), with EMA
parameter equal to 1 for fair comparison. The case of online SGD with replay corresponds to using 8
replay streams on top of the learning stream which make sure that the data distribution in the replay
buffer is well behaved (see Bornschein et al. (2022b) for more details).

G THE EFFECT OF CALIBRATION ON ONLINE CLASSIFICATION

In Appendix C, we describe a procedure to finetune the model backbone ϕ as well as to finetune
the parameter α which affects the predictive log probability. This parameter α essentially allows us
to calibrate the predictive log probabilities. The effect of this calibration is shown in Figure 7 for
CLOC dataset and in Figure 8 for non-stationary CIFAR-100. In both cases, we use the version of
Kalman filter which finetunes the backbone and learns γ. We see a very drastic positive effect of
calibration – calibrated log probabilities become much higher. Related to the discussion of prequential
MDL (Bornschein et al., 2022b), it essentially allows to have a model with lower description length.
Moreover, since we use predictive log probability as a learning signal for backbone, the calibration
allows to tune the scaling of this term.

H CHUNK SIZE ABLATION

In this section we provide the ablation of the impact of the chunk size on the average online accuracy.
We provide it for CIFAR-100 as well as for CLOC. We use the Kalman filter variant with learned γ
with either fixed or finetuned backbone. The results are given in Figure 9.

18

Published as a conference paper at ICLR 2024

0 20 40 60 80 100
Chunk size

0.075

0.100

0.125

0.150

0.175

0.200

Av
er

ag
e

On
lin

e
Ac

cu
ra

cy

Stationary CIFAR-100

0 20 40 60 80 100
Chunk size

0.2

0.3

0.4

0.5

Av
er

ag
e

On
lin

e
Ac

cu
ra

cy

Non-stationary CIFAR-100

Fixed Backbone Finetuned Backbone

Figure 9: Chunk size ablation for CIFAR-100.

19

	Introduction
	Online learning with Kalman filter
	Application to classification
	Online updating the forgetting coefficient n

	Related Work
	Experiments
	Illustrative time series example
	Online classification
	Online classification on CIFAR-100
	Online large-scale classification on CLOC

	Conclusion
	Connection with online Bayesian linear regression
	Online updating the forgetting coefficient n for regression
	Calibration of class probabilities and fine-tuning the representation
	Online learning with Bayesian forgetting
	Further details about the time series example
	Experimental details and hyperparameters selection
	Hyperparameters selection
	Finetuning protocol
	Additional per-benchmark parameters
	CIFAR-100 experiments
	CLOC experiments

	The effect of calibration on online classification
	Chunk size ablation

