
Contrastive Learning Can Find An Optimal Basis
For Approximately Invariant Functions

Daniel D. Johnson 1 2 Ayoub El Hanchi 2 Chris J. Maddison 2

Abstract
Contrastive learning is a powerful framework for
learning self-supervised representations that gen-
eralize well to downstream supervised tasks. We
show that multiple existing contrastive learning
methods can be reinterpeted as learning a positive-
definite kernel that approximates a particular con-
trastive kernel defined by the positive pairs. The
principal components of the data under this ker-
nel exactly correspond to the eigenfunctions of a
positive-pair Markov chain, and these eigenfunc-
tions can be used to build a representation that
provably minimizes the worst-case approxima-
tion error of linear predictors under the assump-
tion that positive pairs have similar labels. We
give generalization bounds for downstream lin-
ear prediction using this optimal representation,
and show how to approximate this representation
using kernel PCA. We also explore kernel-based
representations on a noisy MNIST task for which
the positive pair distribution has a closed form,
and compare the properties of the true eigenfunc-
tions with their learned approximations.

1. Introduction
Contrastive learning models, such as SimCLR (Chen et al.,
2020), have shown great success at learning self-supervised
representations for downstream supervised learning tasks,
by learning to map “positive pairs” (generally augmenta-
tions of the same image) close together in an embedding
space. Inspired by their success, a variety of theoretical
analyses have been proposed, including uniformity and
alignment of hyperspherical embeddings (Wang and Isola,
2020), conditional independence structure with landmark
embeddings (Tosh et al., 2021), and spectral analysis of an

1Google Research, Toronto ON, Canada 2Department of Com-
puter Science, University of Toronto, Toronto ON, Canada. Corre-
spondence to: Daniel D. Johnson <ddjohnson@cs.toronto.edu>.

First Workshop of Pre-training: Perspectives, Pitfalls, and Paths
Forward at ICML 2022, Baltimore, Maryland, USA, PMLR 162,
2022. Copyright 2022 by the author(s).

augmentation graph (HaoChen et al., 2021). These analyses
are generally quite specific to particular loss functions, and
primarily focus on classification tasks. In this work, we
generalize and extend these analyses using techniques from
kernel methods, showing that multiple contrastive learning
methods can be interpreted as approximating a particular
“contrastive kernel”, and that this kernel can be used to build
good representations for downstream classification or re-
gression.

We assume dataset examples are drawn from a distribu-
tion x ∼ p(X) over a (discrete) set X , and that from each
example we sample multiple augmented views a1, a2 ∼
p(A|X = x) over another (discrete) set A. At pretraining
time, we sample positive pairs a1, a2 from the distribution
p+(a1, a2) =

∑
x p(x)p(a1|x)p(a2|x), and negative pairs

independently from the distribution p(a) =
∑

x p(x)p(a|x),
which we use to train a contrastive learning model; for
convenience we assume population access to p(X). After-
ward, we seek to approximate a particular target function
g : A → R using a linear predictor, given a small number
of labeled (augmented) views (ai, yi) ∼ p(A)p(Y |A) with
E[yi|ai] = g(ai). Our main assumption is that the target
function g has similar values for positive pairs:

Assumption 1.1 (Approximate invariance / small positive–
pair discrepancy). The target function g satisfies

Ep+

[(
g(a1)− g(a2)

)2] ≤ ε.

where the expectation is over paired views p+(a1, a2|x) of
examples x drawn from the true data distribution p(x).

We prove that a particular representation based on Kernel
PCA (Schölkopf et al., 1997) is optimal under this assump-
tion, in the sense that it minimizes least-squares approx-
imation error of the worst-case target function, and give
generalization bounds for its performance. We then show
that existing contrastive learning methods can be used to
approximately recover this representation.

2. Contrastive Learning Models Are Kernels
We start by identifying a common structure between com-
mon contrastive learning models and objectives (see Table

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

NT-XEnt
(Chen et al.,

2020; Van den
Oord et al., 2018)

Loss E

− log
K̂θ(a

+
1 ,a

+
2)

K̂θ(a
+
1 ,a

+
2)+

∑
a
−
i

K̂θ(a
+
1 ,a

−
i

)

Kernel K̂θ(a1,a2) = exp(hθ(a1)T hθ(a2)/τ)

Minimum K̂θ(a1,a2) =
p+(a1,a2)

p(a1)p(a2)
· Z[a1]

NT-Logistic
(Chen et al.,

2020; Tosh et al.,
2021)

Loss
E
[
− log σ(log K̂θ(a

+
1 ,a

+
2))

]
+E

[
− log σ(− log K̂θ(a

−
1 ,a

−
2))

]
Kernel K̂θ(a1,a2) = exp(hθ(a1)T hθ(a2)/τ)

Minimum K̂θ(a1,a2) =
p+(a1,a2)

p(a1)p(a2)

Spectral
(HaoChen et al.,

2021)

Loss E
[
−2K̂θ(a

+
1 ,a

+
2)

]
+E

[
(K̂θ(a

−
1 ,a

−
2))2

]
Kernel K̂θ(a1,a2) = hθ(a1)T hθ(a2)

Minimum K̂θ(a1,a2) =
p+(a1,a2)

p(a1)p(a2)

Table 1. Existing contrastive learning objectives, and their inter-
pretations as kernel learning methods. C[a1] is a equivalence-class-
dependent proportionality constant, with Z[a1] = Z[a2] whenever
p+(a1, a2) > 0. See Appendix A for details.

1 and Appendix A): many of them are a combination of
a parameterized positive-definite kernel and an objective
whose minimum (in the infinite data and capacity limit) is
exactly the probability ratio p+(a1, a2)/p(a1)p(a2) (where
all probabilities are with respect to the data distribution).
Furthermore, this probability ratio is also a positive-definite
kernel (i.e. it is an inner product in a transformed space):
Definition 2.1. The contrastive kernel associated with dis-
tributions p(x) and p(a|x) is the probability ratio

KCtr(a1, a2) =
p+(a1, a2)

p(a1)p(a2)
= ⟨ϕCtr(a), ϕCtr(b)⟩ , (1)

where ϕCtr(a) ∈ R|X | is the vector[
p(a|x1)

√
p(x1)

p(a)

p(a|x2)
√

p(x2)

p(a)
· · · p(a|x|X|)

√
p(x|X|)

p(a)

]T
.

Data points a1 and a2 that are more likely to be a positive
pair than a negative pair are mapped to vectors ϕCtr(a1) and
ϕCtr(a2) with a high inner product. Conversely, if a1 and
a2 have zero probability of being a positive pair, ϕCtr(a1)
and ϕCtr(a2) are orthogonal. Since multiple contrastive
learning approaches have this kernel as their optimum, we
can try to understand the behavior of contrastive learning
by investigating properties of this kernel. See Figure 1 for a
comparison of the true and approximate kernels.

3. Kernel Principal Components Are
Positive-Pair Eigenfunctions

To obtain a lower-dimensional representation from the ker-
nel KCtr or an approximation K̂θ, we can use Kernel Princi-
pal Components Analysis (Schölkopf et al., 1997), which
implicitly computes the directions of maximum variance of
a dataset within the kernel’s implicit inner product space.1

1For instance, kernel PCA for a dataset {a1, . . . , ak} under
KCtr is equivalent to ordinary PCA on {ϕCtr(a1), . . . , ϕCtr(ak)},

Figure 1. The distribution of positive pairs implicity defines a “con-
trastive kernel” KCtr, which assigns high similarity to examples
that are likely to be positive pairs. Contrastive learning methods
approximate this with a parameterized kernel K̂θ , which assigns
high similarity to nearby points in a learned embedding space.

The output of kernel PCA is a set of principal component
projection functions f1, f2, . . . and corresponding eigenval-
ues λ1, λ2, . . . , such that fi(a) measures the projection of
ϕCtr(a) onto the ith eigenvector of an implicit covariance
matrix, and λi measures the variance in that direction. (We
will assume the fi are scaled so that E[fi(a)2] = 1.)

Given a dataset of augmentations and a learned kernel K̂θ,
we can run Kernel PCA and extract the first d projection
functions [f̂1(a), f̂2(a), . . . , f̂d(a)] to construct a “kernel
PCA representation” of any new augmented data point a.
As our dataset grows, and as our learned kernel K̂θ ap-
proaches the true contrastive kernel KCtr, we would expect
this representation to approximate the first d projection func-
tions [f1(a), f2(a), . . . , fd(a)] of the population covariance
of the augmentation distribution under KCtr (i.e. the covari-
ance of ϕCtr(A)). It turn out that this representation is a
particularly good choice for downstream supervised linear
prediction under Assumption 1.1, because these population-
level PCA projection functions are closely connected to a
particular positive-pair Markov chain described below.

Starting with an example a1, we could sample another
example a2 proportional to how likely it (a1, a2) would
be a positive pair, e.g. according to p+(a2|a1) =∑

x p(a2|x)p(x|a1). We can then repeat the process, sam-
pling a3 according to p+(a3|a2). This defines a Markov
chain over the space A of (augmented) examples, which we
visualize in Figure 2. To the extent that some function g is
invariant to the chosen augmentations, we would also expect
the value of g to change slowly (or not at all) along this ran-
dom walk: we would expect g(a1) ≈ g(a2) ≈ g(a3) ≈ · · · .

Let P : R|A|×|A| be the Markov chain transition matrix,
such that Pij = p(a2 = i|a1 = j). We can then compute
the left eigenvectors fi and eigenvalues λ′i of this matrix,
such that fiP = λifi. Each element [fi]a of an eigenvector
fi is a value associated with augmentation a ∈ A, and the
eigenvector equation implies that

Ep+(a2|a1)

[
[fi]a2

]
= λ′i[fi]a1 . (2)

but does not require computing the vectors ϕCtr(ai) directly.

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

Figure 2. Samples from the positive pair Markov chain for pixel-
sampling augmentations. At each step we condition on an augmen-
tation at (middle row) to sample an uncorrupted example xt (top
row), then sample at+1 from xt so that (at, at+1) is a positive pair.
Below, we plot the five slowets-varying eigenfunctions f1, . . . , f5
at each step of the chain.

In other words, for a fixed a1 ∈ A, taking the expected
value of entries of fi over positive-pair neighbors a2 of a1
is equivalent to scaling the entry for a1 by λi. Note that we
are free to choose each fi so that E

[
[fi]

2
a

]
= 1.

Our key insight is that the values of the principal component
projection functions fi are the same as the entries of the
Markov chain eigenvectors fi, and that expressing other
functions in terms of them allows you to measure invariance:

Theorem 3.1. fi(a) = [fi]a and λi = λ′i for all i and all
a ∈ A. Furthermore, given any function g : A → R, if we
let ci = E[g(a)fi(a)], then the following are true:

g(a) =
∑
i

cifi(a), E[g(a)2] =
∑
i

c2i , (3)

Ep+

[(
g(a1)− g(a2)

)2]
= 2

∑
i

(1− λi)c
2
i . (4)

This theorem has a few important consequences. First, if
we let g = fi for some i, we find that

Ep+

[(
fi(a1)− fi(a2)

)2]
= 2− 2λi. (5)

Thus, there is a linear relationship between the variance λi

captured by the PCA projection functions and the positive-
pair discrepancy of those functions.

Second, by substituting into Equation 2, we find that
Ep+(a2|a1)[fi(a2)] = λifi(a1); the population-level PCA
projections fi are thus also eigenfunctions of the Markov
chain, and the eigenvalues of the kernel’s implicit covari-
ance matrix E[ϕCtr(a)ϕCtr(a)

T] are also eigenvalues of the
Markov transition matrix P .

Third, Equation 4 implies that any target function g satis-
fying Assumption 1.1 must satsify 2

∑
i(1 − λi)c

2
i ≤ ε,

and thus must have coefficients ci concentrated on eigen-
functions with λi close to 1. Indeed, if ε = 0 (i.e. if g is
perfectly invariant to augmentations) then the only eigen-
functions with nonzero weights must be those with λi = 1.
Such eigenfunctions identify the subsets of augmentations
for which positive pairs always remain within one subset;
these are the communicating classes of the Markov chain, or

equivalently, the connected components of the augmentation
graph described by HaoChen et al. (2021).2

4. Eigenfunction Representations are Optimal
We now give a more precise analysis of the quality of these
eigenfunctions for downstream supervised fine-tuning. We
focus on the class of linear predictors on top of a particular
k-dimensional representation r : A → Rd, e.g. we will ap-
proximate g with a parameterized function ĝβ(a) = β⊤r(a).
It turns out that the representation consisting of the d eigen-
functions with largest eigenvalues λ1 ≥ λ2 ≥ . . . is the
best choice under two simultaneous criteria.

Proposition 4.1. Let Fr = {a 7→ β⊤r(a) : β ∈ Rd}
be the family of linear predictors from representation r,
and Sϵ be the set of functions satisfying Assumption 1.1.
Let rd∗(a) = [f1(a), f2(a), . . . , fd(a)] be the representation
consisting of the d largest eigenfunctions of the positive pair
Markov chain. Then Frd∗

maximizes the invariance of the
least-invariant unit-norm predictor in Frd∗

:

Frd∗
= argmin
F rank d

max
ĝ∈F,

E[ĝ(a)2]=1

Ep+

[(
ĝ(a1)− ĝ(a2)

)2]
. (6)

Simultaneously, Frd∗
minimizes the least-squares approxi-

mation error for the worst-case target function in Sϵ:

Frd∗
= argmin
F rank d

max
g∈Sϵ

min
ĝ∈F

Ep(a)

[(
g(a)− ĝ(a)

)2]
. (7)

Equation 6 states that the function class Fr has an implicit
regularization effect: it contains the functions that change
as little as possible over positive pairs, relative to their norm.
Equation 7 reveals that this function class is also the opti-
mal choice for least-squares approximation of a function
satisfying Assumption 1.1. Together, these findings sug-
gest that this representation should give good generalization
performance with only a few labeled examples, as long as
Assumption 1.1 holds.

Consider the loss function ℓ(ŷ, y) := |ŷ−y|, and the associ-
ated risk R(g) = E [ℓ(g(A), Y)] of a predictor g : A → R.
Let g∗ ∈ argminR(g) be the optimal predictor with risk
R∗ = R(g∗), and assume it satisfies Assumption 1.1. Ex-
pand g∗ as a linear combination of the basis of eigenfunc-
tions (fi)

K
i=1 as g∗ =

∑K
i=1 β

∗
i fi, and define the vector

β∗ := (β∗1 , . . . , β
∗
d). Then the following generalization

bound holds for downstream supervised learning:

Proposition 4.2. Let (Ai, Yi)
n
i=1 be i.i.d. samples, choose

R ≥ 0, and consider the constrained empirical risk min-
imizer β̂R ∈ argmin∥β∥2≤R n−1

∑n
i=1|⟨β, r∗d(Ai)⟩ − Yi|.

2See Levin and Peres (2017, Chapter 12) for further discussion
on the eigenfunctions of a Markov chain.

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

Figure 3. Visualization of eigenfunctions for the MNIST digits 0, 1, and 2 under our pixel-sampling augmentations. Top: A target
function (here, an indicator for digit zero) can be expressed as a weighted sum of eigenfunctions of the true positive-pair Markov chain;
approximately-invariant target functions must assign more weight to smoother eigenfunctions. Bottom: We can approximate the target
function with a linear predictor on the kernel PCA representation of a learned model. As the model approaches the minimum of its
objective, these principal components align with the true eigenfunctions. Note the similarity between f2 and f̂3, and between f3 and f̂4.

Then the expected excess risk of β̂R is bounded by:

E
[
E(β̂R)

]
≤ 2dR√

n
+
√
d(∥β∗∥2 −R)+ +

√
ε

2(1− λd+1)

where E(β) := R(β)−R∗ is the excess risk and (x)+ :=
max{x, 0}.

Note that ∥β∗∥22 = E[g∗(a)2] by Equation 3, so if
E[g∗(a)2] ≤ R then the second term vanishes. The third
term bounds the error incurred by using only the first d
eigenfunctions, since β∗2i ≤ ε

2(1−λi)
by Equation 4.

5. Related work
Our work is closely connected to the spectral graph theory
analysis by HaoChen et al. (2021). Their analysis focuses
on the eigenvectors of the normalized adjacency matrix of
the augmentation graph, and they introduce the spectral
contrastive loss and show that its optimum recovers the top
eigenvectors up to an invertible transformation. Our work
extends theirs by unifying their loss with other losses under
a kernel framework, and showing that the kernel princi-
pal components are optimal under Assumption 1.1. (Their
eigenvectors turn out to be adjusted versions of our eigen-
functions; see Appendices A.3 and B.1.) We note that our
assumption is closely related to the Laplacian matrix of the
augmentation graph; similar assumptions have been used
before for label propagation (Bengio et al., 2006) and Lapla-
cian filtering (Zhou and Srebro, 2011). This assumption is
also used as a “consistency regularizer” for semi-supervised
learning (Sajjadi et al., 2016; Laine and Aila, 2016).

Tian (2022) gave a different unification of contrastive losses
using a game-theoretic perspective, and showed that linear
networks on contrastive losses are related to PCA in the in-
put space (whereas our analysis applies to the unconstrained
minimizer of those losses, with PCA in the contrastive ker-
nel’s implicit inner product space).

There has been a variety of work on learning kernels with
neural networks (Wilson et al., 2016; Sun et al., 2018) and
extracting kernels from neural net architectures (Jacot et al.,
2018; Shankar et al., 2020; Amid et al., 2022), which may
be relevant to contrastive learning in light of our analysis.

6. Experiments
Our theoretical analysis suggests that, to the extent that
the learned kernel K̂θ approximates the data-dependent con-
trastive kernel KCtr, kernel PCA on a learned kernel K̂θ may
yield a good approximation of the optimal eigenfunction
basis for downstream prediction. To explore the accuracy of
this approximation in practice, and evaluate the quality of
the extracted representations, we constructed a toy problem
for which the exact contrastive kernel is tractable. We se-
lected a subset of MNIST digits (LeCun et al., 1998) as our
set of base images X , then carefully chose the augmentation
distribution p(a|x) so that we could compute the exact con-
trastive kernel KCtr. Specifically, we defined p(a|x) for each
x ∈ X by first selecting one of 64 fixed perturbations of x,
then sampling a subset of k filled pixels from this perturbed
copy. We can then tractably compute p(a|x) for any a and
x, enabling us to evaluate KCtr and also to sample from the
positive pair Markov chain. As shown in Figure 2, there is
often uncertainty about which original image generated a
given augmentation due to the sparsity of pixels.

We next trained three neural network models with vary-
ing kernel heads and loss functions: a linear ker-
nel head with the spectral loss (based on HaoChen
et al. (2021)); a temperature-normalized exponential
head exp(hθ(a1)

Thθ(a2)/τ) with a weighted combina-
tion of the NT-XEnt and NT-Logistic losses (constrain-
ing hθ(a) to be unit-norm, based on Chen et al. (2020));
and a scaled temperature-normalized exponential head
exp(hθ(a1)

Thθ(a2)/τ) · sθ(a1)sθ(a2), which includes a
learned adjustment sθ : A → R+, again trained with a

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

Figure 4. Alignments and discrepancy relationships for the MNIST
task with k = 20. Top row: Alignment (squared dot products) of
the first 32 principal component projection functions between runs
of Kernel PCA, with perfect alignment corresponding to a diagonal
matrix. Left column shows alignment between two independent
runs of KPCA on KCtr; other columns show alignment between
KCPA on KCtr and KPCA on a learned kernel K̂θ . Bottom row:
Relationship between eigenvalue λ and positive-pair discrepancy
for the first 256 principal components (omitting any with λ = 0),
with the prediction from Equation 5 shown as a gray dashed line.

weighted combination of the NT-XEnt and NT-Logistic
losses. All models used a simplified ResNet architecture
followed by a fully-connected “projection head”, and were
trained on 512 MNIST digits from each of the 10 classes.
For visualization purposes, we also trained a model with
a two-dimensional embedding space and a scaled rational
quadratic kernel head on MNIST digits 0, 1, and 2 only; this
model is shown in Figures 1 and 3.

Properties of extracted principal components. We used
Kernel PCA over a random set of augmentations to to esti-
mate the first 256 principal component projection functions
for KCtr and for each of our learned kernels. We then in-
vestigated (a) whether the learned principal components
were aligned with the principal components of KCtr, and (b)
whether their eigenvalues are related to their positive-pair
discrepancies (estimated from a random sample of positive
pairs) as predicted by Equation 5.

The results of these comparisons are shown in Figure 4,
for p(a|x) using k = 20 sampled pixels per digit. Since
Kernel PCA is performed on a random subset, there is
some measurement noise; thus even two runs of KPCA
on KCtr produce slightly different results. The linear ker-
nel with spectral loss is able to recover the top principal
components quite accurately, and also shows the expected
relationship between eigenvalues and positive-pair discrep-
ancies. The temperature-normalized exponential kernel is
less well-behaved, but this appears to be due to the con-
strained form of the kernel head; adding the scale adjustment
sθ(a1)sθ(a2) leads to better alignment and to the expected
linear eigenvalue-discrepancy relationship. We also found
that increasing augmentation strength (smaller k) leads to

Classification Regression

of sampled pixels k = 10 20 50 10 20 50

True Kernel (KCtr) PCA 0.564 0.384 0.178 0.722 0.602 0.369
Learned (Linear):

Kernel PCA 0.589 0.398 0.254 0.724 0.603 0.362
ResNet Emb. 0.553 0.375 0.229 0.730 0.567 0.459

Learned (NT-Exp):
Kernel PCA 0.610 0.380 0.392 0.730 0.568 0.608
ResNet Emb. 0.553 0.370 0.203 0.732 0.570 0.476

Learned (NT-Exp w/ Scale):
Kernel PCA 0.583 0.392 0.276 0.718 0.552 0.524
ResNet Emb. 0.575 0.380 0.206 0.742 0.599 0.522

Table 2. Classification error (fraction misclassified) and regression
error (squared error) on MNIST task with multinomial augmenta-
tions, across augmentation strengths k = 10, k = 20, k = 50.

a better alignment for all kernels, whereas decreasing it
(larger k) makes alignment worse; see Appendix D.6.

Downstream prediction ability. We next compare the
quality of various representations for two downstream pre-
diction tasks: classification with a linear layer, and linear
least-squares regression on the one-hot indicator vectors for
each digit class. We consider three types of representation:
the PCA projection functions for KCtr, the PCA projection
functions for each learned kernel K̂θ, and the intermediate
layer embedding vector between the ResNet layers and the
projection head for each model as proposed by Chen et al.
(2020). For each, we fit a regularized linear predictor on
160 labeled training examples (16 augmented samples from
each class), using 160 additional validation examples to tune
the regularization strength. For PCA representations, we
additionally tune the representation dimension d.

The results are shown in 2. Performance is fairly similar
across representations, suggesting that the contrastive kernel
KCtr captures much of the variability between augmentation
strengths, although some learned representations achieve
better accuracy. Interestingly, adding the scale parameter to
the NT-Exp model improves the kernel PCA representation
but degrades performance for the ResNet embedding.

7. Discussion
We have shown that multiple existing contrastive objectives
approximate a particular kernel, and that its principal com-
ponent projection functions give an optimal representation
for supervised linear prediction under the assumption that
positive pairs have similar labels. This analysis is based
on the “worst” target function that satisfies our assumption;
if we have additional knowledge about the target function,
incorporating it may improve the representation. Empiri-
cally, we find that Kernel PCA with learned models can
produce good approximations of the largest-eigenvalue prin-
cipal components, but that the quality of the approximation
depends on the constraints of the kernel head as well as the

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

strength of the augmentations. Overall, we hope that our
kernel and Markov chain perspective is a useful lens for
further study of contrastive learning representations.

References
Ehsan Amid, Rohan Anil, Wojciech Kotłowski, and Man-

fred K Warmuth. Learning from randomly initialized neu-
ral network features. arXiv preprint arXiv:2202.06438,
2022.

Francis Bach. Learning theory from first principles, 2021.

Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux.
Label propagation and quadratic criterion. In Semi-
Supervised Learning, 2006.

Rajendra Bhatia. Matrix analysis, volume 169. Springer
Science & Business Media, 2013.

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018.
URL http://github.com/google/jax.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International con-
ference on machine learning, pages 1597–1607. PMLR,
2020.

Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu
Ma. Provable guarantees for self-supervised deep learn-
ing with spectral contrastive loss. Advances in Neural
Information Processing Systems, 34, 2021.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Rit-
ter, Bertrand Rondepierre, Andreas Steiner, and Marc van
Zee. Flax: A neural network library and ecosystem for
JAX, 2020. URL http://github.com/google/
flax.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural
tangent kernel: Convergence and generalization in neural
networks. Advances in neural information processing
systems, 31, 2018.

Sham M. Kakade, Karthik Sridharan, and Ambuj Tewari.
On the complexity of linear prediction: Risk bounds,
margin bounds, and regularization. In NIPS, 2008.

Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. arXiv preprint arXiv:1610.02242,
2016.

Yann LeCun, Corinna Cortes, and Christopher J.C. Burges.
The MNIST database of handwritten digits, 1998. URL
http://yann.lecun.com/exdb/mnist/.

David A Levin and Yuval Peres. Markov chains and mixing
times, volume 107. American Mathematical Soc., 2017.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi,
and George Tucker. On variational bounds of mutual
information. In International Conference on Machine
Learning, pages 5171–5180. PMLR, 2019.

Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen.
Regularization with stochastic transformations and per-
turbations for deep semi-supervised learning. Advances
in neural information processing systems, 29, 2016.

Meyer Scetbon and Zaid Harchaoui. A spectral analysis
of dot-product kernels. In International Conference on
Artificial Intelligence and Statistics, pages 3394–3402.
PMLR, 2021.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert
Müller. Kernel principal component analysis. In Inter-
national conference on artificial neural networks, pages
583–588. Springer, 1997.

Vaishaal Shankar, Alex Fang, Wenshuo Guo, Sara Fridovich-
Keil, Jonathan Ragan-Kelley, Ludwig Schmidt, and Ben-
jamin Recht. Neural kernels without tangents. In Inter-
national Conference on Machine Learning, pages 8614–
8623. PMLR, 2020.

Kihyuk Sohn. Improved deep metric learning with multi-
class n-pair loss objective. Advances in neural informa-
tion processing systems, 29, 2016.

Shengyang Sun, Guodong Zhang, Chaoqi Wang, Wenyuan
Zeng, Jiaman Li, and Roger Grosse. Differentiable com-
positional kernel learning for Gaussian processes. In
International Conference on Machine Learning, pages
4828–4837. PMLR, 2018.

Yuandong Tian. Deep contrastive learning is provably
(almost) principal component analysis. arXiv preprint
arXiv:2201.12680, 2022.

Christopher Tosh, Akshay Krishnamurthy, and Daniel Hsu.
Contrastive learning, multi-view redundancy, and linear
models. In Algorithmic Learning Theory, pages 1179–
1206. PMLR, 2021.

Aaron Van den Oord, Yazhe Li, and Oriol Vinyals. Rep-
resentation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

http://github.com/google/jax
http://github.com/google/flax
http://github.com/google/flax
http://yann. lecun. com/exdb/mnist/

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

Tongzhou Wang and Phillip Isola. Understanding con-
trastive representation learning through alignment and
uniformity on the hypersphere. In International Confer-
ence on Machine Learning, pages 9929–9939. PMLR,
2020.

Christopher Williams and Matthias Seeger. Using the nys-
tröm method to speed up kernel machines. Advances in
neural information processing systems, 13, 2000.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov,
and Eric P Xing. Deep kernel learning. In Artificial
intelligence and statistics, pages 370–378. PMLR, 2016.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua
Lin. Unsupervised feature learning via non-parametric
instance discrimination. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
3733–3742, 2018.

Xueyuan Zhou and Nathan Srebro. Error analysis of Lapla-
cian eigenmaps for semi-supervised learning. In Proceed-
ings of the Fourteenth International Conference on Arti-
ficial Intelligence and Statistics, pages 901–908. JMLR
Workshop and Conference Proceedings, 2011.

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

A. Existing objectives are minimized by the contrastive kernel
In this section, we show that the contrastive kernel is the optimum of the objectives shown in Table 1 (although this
optimum is not unique for cross-entropy loss). Throughout this section, we use p(X) to denote the true data distribution
over unperturbed examples, p(A|X) to denote the distribution of augmented views conditioned on a particular unperturbed
example, and p(A) to denote the marginal distribution of augmented views, e.g.

p(A = a) =
∑
x∈X

p(X = x)p(A = a|X = x).

We use p+(A1, A2) to denote the positive pair distribution induced by p(X) and p(A|X), defined by

p+(A1 = a1, A2 = a2) =
∑
x∈X

p(X = x)p(A = a1|X = x)p(A = a2|X = x).

For notational convenience, we will use shorthand p(x) for p(X = x), p(a) for p(A = a), p+(a1, a2) for p+(A1 =
a1, A2 = a2), and so on.

A.1. NT-XEnt and the InfoNCE objective

The NT-XEnt objective described by Chen et al. (2020) (and previously used by Sohn (2016); Van den Oord et al. (2018);
Wu et al. (2018)) has the form

LNT-Xent(θ) = E(a+
1 ,a+

2)∼p+(A1,A2),a
−
i ∼p(A)

[
− log

exp(hθ(a
+
1)

Thθ(a
+
2)/τ)

exp(hθ(a
+
1)

Thθ(a
+
2)/τ) +

∑
a−
i
exp(hθ(a

+
1)

Thθ(a
−
i)/τ)

]
.

For simplicity, we assume that all of the negative samples a−i are drawn independently from the marginal distribution when
computing the loss for a+1 and a+2 . (In practice, implementations often generate negative samples by taking elements of
other positive pairs, e.g. (a−1 , a

−
2) ∼ p+(a

−
1 , a

−
2), (a

−
3 , a

−
4) ∼ p+(a

−
3 , a

−
4), and so on.)

We can decompose this objective into two parts: an InfoNCE-like loss (Van den Oord et al., 2018)

LInfoNCE(K̂θ) = E(a+
1 ,a+

2)∼p+(A1,A2),a
−
i ∼p(A)

[
− log

K̂θ(a
+
1 , a

+
2)

K̂θ(a
+
1 , a

+
2) +

∑
a−
i
K̂θ(a

+
1 , a

−
i)

]

combined with a particular parameterized function

K̂θ(a1, a2) = exp

(
hθ(a1)

Thθ(a2)

τ

)
.

where hθ : A → Rn+1 maps inputs to points on the n-dimensional hypersphere.

We first observe that K̂θ(a1, a2) defines a positive definite kernel, within the family of “dot product kernels”. Indeed, when
hθ is restricted to the unit hypersphere, this parameterization is equivalent to the squared-exponential kernel (also called
radial-basis-function kernel)

K̂θ(a1, a2) = exp

(
1− 1

2∥hθ(a1)− hθ(a2)∥2

τ

)
= exp(1/τ) exp

(
−∥hθ(a1)− hθ(a2)∥2

2τ

)
using the identity ∥hθ(a1) − hθ(a2)∥2 = 2 − 2hθ(a1)

Thθ(a2). Although this kernel is positive definite, it has “infinite
rank” and cannot be expressed as an inner product of finite-dimensional embedding vectors; nevertheless, we can still
run algorithms such as Kernel PCA on a finite dataset. (See Bach (2021, Chapter 7) for some additional background
on positive-definite kernels, and Scetbon and Harchaoui (2021) for discussion of other dot product kernels on the unit
hypersphere.)

We next discuss the minimum of the NT-XEnt objective, under the unconstrained setting where we allow K̂θ(a1, a2) to be
an arbitrary symmetric function. The InfoNCE loss, in its more general form, is not necessarily symmetric: it is based on a

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

distribution of contexts p(C), positive samples p(A|C), and negative samples drawn from the marginal distribution P (A),
and is given by

LInfoNCE(fθ) = Ec∼p(c),a+∼p(A|C=c),a−
i ∼p(A)

[
− log

fθ(c, a
+)

f(c, a+) +
∑

a−
i
fθ(c, a

−
i)

]
Van den Oord et al. (2018) show that every minimizer of this objective is of the form

f∗(c, a) =
p(a|c)
p(a)

· z(c) = p(a, c)

p(a)p(c)
· z(c)

for some function z(c) that does not depend on a. In other words, holding c fixed, f∗(c, a) ∝ p(a,c)
p(a)p(c) . Intuitively, this is

because the exact probability of (c, a+) being the positive pair given c and the set {a+, a−1 , . . . , a
−
K} is also proportional to

this density ratio, and the InfoNCE objective is a cross-entropy objective for identifying the positive pair. (See also Poole
et al. (2019) for a different proof.)

In the case of the NT-XEnt contrastive objective, we choose the context C to be one of the augmentations A+
1 , and the

positive sample to be the other augmentation A+
2 drawn according to p+(A

+
2 |A

+
1). We furthermore restrict our attention to

symmetric functions K̂θ, e.g. functions for which K̂θ(a1, a2) = K̂θ(a2, a1). In this case, the minimizer is

K̂∗(a1, a2) =
p+(a1, a2)

p(a1)p(a2)
· z(a1) =

p+(a1, a2)

p(a1)p(a2)
· z(a2).

so we must have z(a1) = z(a2) for any pair (a1, a2) with positive probability under p+.

If we assume that the positive pair Markov chain is irreducible, e.g. that there is a single communicating class and it is
possible to reach any augmentation in A from any other augmentation over a long enough trajectory, then the function z(a)
must be constant everywhere, and thus

K̂∗(a1, a2) = f∗(a1, a2) =
p+(a1, a2)

p(a1)p(a2)
· Z

for some Z ∈ R+. In this case, K̂∗ is equivalent to KCtr up to a scaling constant.

If the Markov chain has multiple communicating classes (e.g. positive pairs are only sampled within a single communicating
class), the function z(a) may assign a different value to different equivalence classes. Nevertheless, any such minimizer is
still a kernel, since we can write it as

K̂∗(a1, a2) =

〈√
z(a1)

p(a1|x1)
√

p(x1)

p(a1)

p(a1|x2)
√

p(x2)

p(a1)

...
p(a1|x|X|)

√
p(x|X|)

p(a1)

 ,
√

z(a2)

p(a2|x1)
√

p(x1)

p(a2)

p(a2|x2)
√

p(x2)

p(a2)

...
p(a2|x|X|)

√
p(x|X|)

p(a2)

〉

=
〈√

z(a1) · ϕCtr(a1),
√
z(a2) · ϕCtr(a2)

〉
Indeed, such a minimizer is equivalent to KCtr except that it scales the inner product by the value of z(a) for each
communicating class. It is still possible to extract the set of Markov chain eigenfunctions from the set of principal
components of this kernel, although one must correct for the scaling factor when computing the eigenvalues; see Appendix
B.2 for details. Alternatively, one can ensure a unique minimum by combining the NT-Xent/InfoNCE loss with either the
spectral or logistic losses (discussed below).

A.2. Logistic losses and NT-Logistic

Logistic losses have also been proposed for contrastive learning, including the NT-Logistic objective as described in Chen
et al. (2020) and other versions described by Mikolov et al. (2013) and Tosh et al. (2021). Such losses take the form

LLogistic(fθ) = E(a+
1 ,a+

2)∼p+(A1,A2)

[
− log σ(fθ(a

+
1 , a

+
2))
]
+ Ea−

1 ∼p(A),a−
2 ∼p(A)

[
− log σ(−fθ(a

−
1 , a

−
2))
]

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

where negative samples are drawn independently from the marginal distribution p(A). Tosh et al. (2021) motivates this
loss based on a binary classification: choose a label Y to be 0 or 1 with probability 1/2 each, sample a positive pair
(a1, a2) ∼ p+(A1, A2) if Y = 1 and a negative pair a1 ∼ p(A), a2 ∼ p(A) if Y = 0, then use a learned model to predict
Y given the pair. The minimizer of this loss is then the conditional log-odds-ratio

f∗(a1, a2) = log
p(Y = 1|a1, a2)
p(Y = 0|a1, a2)

= log
p(a1, a2|Y = 1)p(Y = 1)

p(a1, a2|Y = 0)p(Y = 0)
= log

p+(a1, a2) · 1
2

p(a1)p(a2) · 1
2

= log
p+(a1, a2)

p(a1)p(a2)
.

For the particular case of the NT-Logistic objective, we parameterize fθ as

fθ(a1, a2) = log K̂θ(a1, a2) =
hθ(a1)

Thθ(a2)

τ

where we again define

K̂θ(a1, a2) = exp

(
hθ(a1)

Thθ(a2)

τ

)
.

The optimum (if we ignore the constraints of this particular form of K̂ and minimize over all functions of two variables) is
then

K̂∗(a1, a2) =
p+(a1, a2)

p(a1)p(a2)
.

Note that in this case there is no proportionality constant.

A.3. The Spectral Contrastive Loss

HaoChen et al. (2021) propose the Spectral Contrastive Loss as an alternative to other contrastive losses with provable
performance guarantees. The loss is defined as

LSpectral(K̂θ) = −2 · E(a+
1 ,a+

2)∼p+(A1,A2)

[
K̂θ(a

+
1 , a

+
2)
]
+ Ea−

1 ∼p(A),a−
2 ∼p(A)

[
K̂θ(a

−
1 , a

−
2)

2
]

where they choose
K̂θ(a1, a2) = hθ(a1)

Thθ(a2).

for a learned embedding function hθ : A → Rd. We note that this directly satisfies the definition of a kernel, in that it is
an inner product in a transformed space. One interesting property of this kernel approximation is that it can be negative,
whereas the exponential-based kernel approximations in the previous sections are always nonnegative.

HaoChen et al. show that this loss can be rewritten as

LSpectral(K̂θ) =
∑
a1,a2

(
−2p+(a1, a2)K̂θ(a1, a2) + p(a1)p(a2)K̂θ(a1, a2)

2
)

=
∑
a1,a2

(
p+(a1, a2)

2

p(a1)p(a2)
− 2p+(a1, a2)K̂θ(a1, a2) + p(a1)p(a2)K̂θ(a1, a2)

2

)
−
∑
a1,a2

p+(a1, a2)
2

p(a1)p(a2)

=
∑
a1,a2

(
p+(a1, a2)√
p(a1)p(a2)

−
√
p(a1)p(a2)K̂θ(a1, a2)

)2

− C,

where C =
∑

a1,a2

p+(a1,a2)
2

p(a1)p(a2)
is a constant independent of the model.

If we again ignore the constraints on K̂θ, the minimum of the spectral loss must occur when

p+(a1, a2)√
p(a1)p(a2)

=
√
p(a1)p(a2)K̂θ(a1, a2),

for all a1 and a2, or in other words, when

K̂θ(a1, a2) =
p+(a1, a2)

p(a1)p(a2)
= KCtr(a1, a2).

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

HaoChen et al. continue by expanding their definition of K̂θ for a fixed representation d, and showing that it relates
to the spectral decomposition of a particular augmentation graph. It turns out that this decomposition is equivalent to
our decomposition in terms of eigenfunctions except for a scaling factor of p(a)1/2; we discuss this connection more in
Appendix B.1.

B. Relationship between contrastive kernel and Markov chain eigenfunctions
In this section, we describe the relationship between the contrastive kernel principal components and the Markov chain
eigenfunctions in more detail. We start by introducing some notation that will be useful.

Throughout, we will identify functions f : A → R as vectors f : RA, which will allow us to use matrix notation for many of
the relevant quantities. We will also use ei to represent the vector that has a one at the ith position and zeros in all other
positions.

We will let

DX = diag(p(x1), p(x2), . . . , p(x{|X |})),
DA = diag(p(a1), p(a2), . . . , p(a{|A|})),

be diagonal matrices containing the marginal probabilities of each element in X and A, respectively, under the true data
distribution. We will assume that the distribution has full support, and thus both DX and DA are invertible. We also define
the matrices

[PX,A]x,a = p(x, a) [PX→A]x,a = p(a|x) [PX←A]x,a = p(x|a)
[PA,X]a,x = p(x, a) [PA←X]a,x = p(a|x) [PA→X]a,x = p(x|a)

Equivalently

PX→A = D−1X PX,A, PX←A = PX,A D−1A ,

PA←X = (PX→A)
⊤, PA→X = (PX←A)

⊤.

From these, we can construct the positive pair probability matrix

PA,A = PA←X DX PX→A

[PA,A]i,j = p(A1 = i, A2 = j) =
∑
x

p(A = i|x)p(x)p(A = j|x).

The Contrastive Kernel. Writing the contrastive kernel KCtr in matrix form, such that [KCtr]i,j = KCtr(i, j), our definition
KCtr(a1, a2) =

p+(a1,a2)
p(a1)p(a2)

becomes the matrix equation

KCtr = D−1A PA,AD
−1
A .

One way to expand KCtr is as a product

KCtr = D−1A PA←XDXPX→AD
−1
A =

(
D

1/2
X PX→AD

−1
A

)⊤ (
D

1/2
X PX→AD

−1
A

)
= Φ⊤CtrΦCtr

where ΦCtr ∈ RX×A is a matrix whose columns are given by ϕCtr:

ΦCtr = D
1/2
X PX→AD

−1
A =

[
ϕCtr(a1) ϕCtr(a2) . . . ϕCtr(a|A|)

]

=

p(a1|x1)
√

p(x1)

p(a1)

p(a2|x1)
√

p(x1)

p(a2)
· · · p(a|A||x1)

√
p(x1)

p(a|A|)

p(a1|x2)
√

p(x2)

p(a1)

p(a2|x2)
√

p(x2)

p(a2)
· · · p(a|A||x2)

√
p(x2)

p(a|A|)

...
...

. . .
...

p(a1|x|X|)
√

p(x|X|)

p(a1)

p(a2|x|X|)
√

p(x|X|)

p(a2)
· · · p(a|A||x|X|)

√
p(x|X|)

p(a|A|)

.

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

Equivalently, we have ϕCtr(a) = ΦCtrea.

Since KCtr(a1, a2) = ϕCtr(a1)
⊤ϕCtr(a2), ϕCtr is called a feature map for KCtr. Note that there are multiple possible feature

maps for KCtr: given any orthonormal matrix Q, the function ϕQ(a) = QϕCtr(a) is also a feature map for the kernel, since

ϕQ(a1)
⊤ϕQ(a1) = ϕCtr(a)

⊤Q⊤QϕCtr(a) = ϕCtr(a)
⊤ϕCtr(a) = KCtr(a1, a2).

Performing kernel PCA under KCtr is equivalent to performing ordinary PCA over one of its feature maps (since the principal
component projection functions are independent of the particular feature map chosen). We thus focus on analyzing the
principal component projection functions for the feature map ϕCtr.

The population level principal components are the eigenvectors of the (uncentered) covariance matrix

Σ = Ep(a)[ϕCtr(a)ϕCtr(a)
⊤] = Ep(a)[ΦCtreae

⊤
a Φ
⊤
Ctr] = ΦCtrEp(a)[eae

⊤
a]Φ

⊤
Ctr = ΦCtrDAΦ

⊤
Ctr.

Note that we are working with the uncentered principal components, as is commmon for kernel PCA: we do not subtract the
mean before computing the covariance. Since Σ is positive semidefinite, it can be diagonalized as

Σ = UΛU⊤ =
∑
i

λiuiu
⊤
i

where U = [u1,u2, . . . ,uk] is orthonormal and Λ = diag(λ1, λ2, . . . , λk) is a diagonal matrix of eigenvalues (here
k = |X | is the dimension of the feature map). Each of the vectors ui is one of the population principal components of
the transformed distribution ϕCtr(A), giving the directions of maximum variance, and the λi measure the variance in that
direction.

Given a new augmentation a ∈ A, we can then compute the projection of ϕCtr(a) into each of these principal component
directions as f̃i(a) = u⊤i ϕCtr(a). Since the λi measure the variance in each direction, we can optionally rescale these
projection functions as

fi(a) = λ
−1/2
i u⊤i ϕCtr(a),

so that E[fi(a)2] = 1. (These are only well defined for λi > 0, but we are free to extend our set with additional functions to
span the space of all functions A → R.)

The Markov Chain. We now redirect our attention to the positive pair Markov chain. The Markov chain transition matrix
is defined by [PA←A]a1,a2

= p+(a1|a2), or in matrix form

PA←A = PA,AD
−1
A .

We are interested in the left eigenvectors f⊤i PA←A = λ′if
⊤
i of this matrix PA←A, or equivalently the right eigenvectors of

its transpose P⊤A←A = PA→A, given by PA→Afi = λ′ifi. Observe that then

D−1A PA,Afi = λ′ifi

so equivalently
D
−1/2
A

(
D
−1/2
A PA,AD

−1/2
A

)
D

1/2
A fi = λ′iD

−1/2
A

(
D

1/2
A fi

)
.

It follows that D1/2
A fi is an eigenvector of the symmetric matrix

M = D
−1/2
A PA,AD

−1/2
A

with the same eigenvalue λ′i, and so we can diagonalize M as M = V Λ′V ⊤, where

V =
[
D

1/2
A f1 D

1/2
A f2 . . . D

1/2
A fk

]
= D

1/2
A

[
f1 f2 . . . fk

]
= D

1/2
A F

where
F =

[
f1 f2 . . . fk

]
.

(We note that the matrix M is exactly the symmetrized adjacency matrix described by HaoChen et al. (2021).)

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

Putting them together. We can now prove our main result from Section 3.

Theorem 3.1. fi(a) = [fi]a and λi = λ′i for all i and all a ∈ A. Furthermore, given any function g : A → R, if we let
ci = E[g(a)fi(a)], then the following are true:

g(a) =
∑
i

cifi(a), E[g(a)2] =
∑
i

c2i , (3)

Ep+

[(
g(a1)− g(a2)

)2]
= 2

∑
i

(1− λi)c
2
i . (4)

Proof. For the first claim, consider the matrix B = ΦCtrD
1/2
A , where ΦCtr = D

1/2
X PX→AD

−1
A described above. Take the

singular value decomposition B = UΛ1/2V ⊤, where U and V are orthonormal and Λ1/2 is diagonal. Now observe that

BB⊤ = ΦCtrDAΦ
⊤
Ctr = Σ = UΛU⊤,

and

B⊤B = D
1/2
A Φ⊤CtrΦCtrD

1/2
A = D

1/2
A KCtrD

1/2
A

= D
1/2
A

(
D−1A PA,AD

−1
A

)
D

1/2
A

= D
−1/2
A PA,AD

−1/2
A = M = V ΛV ⊤.

Thus, Σ and M must have the same eigenvalues.3 For any i for which λi > 0, we then have

fi(a) = λ
−1/2
i u⊤i ϕCtr(a)

= e⊤i Λ
−1/2U⊤ΦCtrea

= e⊤i Λ
−1/2U⊤

(
BD

−1/2
A

)
ea

= e⊤i Λ
−1/2U⊤

(
UΛ1/2V ⊤D

−1/2
A

)
ea

= e⊤i V
⊤D
−1/2
A ea

= e⊤i

(
D
−1/2
A V

)⊤
ea

= e⊤i F
⊤ea

= e⊤i
[
f1 f2 . . . fk

]⊤
ea = fTi ea = [fi]a.

(When λi = 0, the normalized principal component projection functions are not uniquely defined, so we are free to simply
set them equal to [fi]a.)

Next, consider an arbitrary function g : A → R, and let g ∈ RA be its vector form, so that g(a) = ga = g⊤ea. Also define
ci = E[g(a)fi(a)] and c =

[
c1 c2 . . . ck

]⊤
. Then

c = E
[
g(a)F⊤ea

]
= E

[
F⊤eae

T
a g
]
= F⊤DAg = V ⊤D

1/2
A g

so we must have

g = D
−1/2
A

(
V ⊤
)−1

c = D
−1/2
A V c = Fc

and thus g(a) =
∑

i cifi(a). Additionally, we see that

E
[
g(a)2

]
= E

[
gTeae

⊤
a g
]
= g⊤DAg = c⊤F⊤DAFc

= c⊤(D
1/2
A F)⊤(D

1/2
A F)c = c⊤V ⊤V c = c⊤c =

∑
i

c2i .

3If the eigenvector decompositions of Σ and M are not unique, we are free to select U and V such that they form a valid singular
value decomposition for B.

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

Note that this also implies that the functions fi are orthonormal under the base measure p(a), e.g. E[fi(a)2] = 1 and
E[fi(a)fj(a)] = 0 for i ̸= j.

Finally, consider the quantity Ep+

[(
g(a1)− g(a2)

)2]
. Observe that

Ep+

[(
g(a1)− g(a2)

)2]
= Ep+

[
g(a1)

2 − 2g(a1)g(a2) + g(a2)
2
]

= 2E
[
g(a)2

]
− 2Ep+

[g(a1)g(a2)]

= 2
∑
i

c2i − 2Ep+
[g(a1)g(a2)]

Expanding the second term, we have

Ep+
[g(a1)g(a2)] = Ep+

[
g⊤ea1

e⊤a2
g
]
= g⊤Ep+

[
ea1

e⊤a2

]
g

= g⊤PA,Ag

= g⊤D
1/2
A MD

1/2
A g

= g⊤D
1/2
A V ΛV TD

1/2
A g

= c⊤F⊤D
1/2
A V ΛV TD

1/2
A Fc

= c⊤(D
1/2
A F)⊤V ΛV T (D

1/2
A F)c

= c⊤V ⊤V ΛV TV c

= c⊤Λc =
∑
i

λic
2
i .

We conclude that Ep+

[(
g(a1)− g(a2)

)2]
= 2

∑
i(1− λi)c

2
i .

B.1. Relationship to the eigenvectors of the symmetrized adjacency matrix

Interestingly, the matrix M described above is exactly the symmetrized adjacency matrix discussed by HaoChen et al.
(2021). HaoChen et al. motivate their loss as estimating the eigenvectors of M up to a scaling term by p(a)1/2, due to prior
work showing that eigenvalues give information about clustering structure in graphs.

The connection between the symmetrized adjacency matrix M and the positive-pair Markov chainis well known; indeed,
HaoChen et al. briefly discuss the positive-pair Markov chain in their Section 2, and Levin and Peres (2017, Chapter 12)
introduce the matrix M when discussing the spectral decomposition of a general symmetric Markov chain.

Another way of thinking about this reweighting is as a change of measure. The eigenvectors of M are orthonormal with
respect to the counting measure over A, e.g. if you sum squared values over all of A, you obtain 1, and the dot product of
different eigenvectors is zero. On the other hand, the eigenvectors fi (or, equivalently, the eigenfunctions fi) of the Markov
chain are orthonormal with respect to the measure p(A), e.g. if you take the expectation of squared values over random
augmentations, you obtain 1, and the uncentered covariance of different eigenfunctions is zero. We believe that including the
reweighting terms is a more natural perspective which gives additional insight into what contrastive losses are fundamentally
doing.

We also note that our Assumption 1.1 is related to the probability-weighted Laplacian matrix of the augmentation graph,
given by L = DA − PA,A. Indeed, we have

Ep+

[(
g(a1)− g(a2)

)2]
= 2g⊤Lg.

B.2. Recovering proportionality constants

As described in Appendix A.1, minimizing the NT-XEnt / InfoNCE loss may not exactly produce the contrastive kernel
KCtr, but may instead learn a scaled version

K̂∗(a1, a2) =
〈√

z(a1) · ϕCtr(a1),
√

z(a2) · ϕCtr(a2)
〉
=
√
z(a1)

√
z(a2)KCtr(a1, a2),

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

where z : A → R+ is some function which is constant on each communicating class on the Markov chain. (Since
KCtr(a1, a2) = 0 whenever a1 and a2 are in separate communicating classes, we could equivalently say K̂∗(a1, a2) =
z(a1)KCtr(a1, a2) = z(a2)KCtr(a1, a2).)

When the Markov chain has one communicating class, K̂∗ is simply a scaled version of KCtr. In this case, all of the principal
component projection functions for K̂∗ are still the eigenfunctions of the Markov chain, but the eigenvalues may be scaled
by that constant. The true eigenvalues of the eigenfunctions can then be estimated using equation Equation 5, which states
that E[(fi(a1)− fi(a2))

2] = 2(1− λi).

When the Markov chain has multiple communicating classes, we can partition the eigenfunctions so that each eigenfunction
is nonzero on a single communicating class. Since the scaling function z acts as a scaling factor for each communicating
class, the principal component functions will then be scaled copies of these partitioned eigenfunctions. We can then similarly
estimate the true eigenvalues for each of these eigenfunctions using Equation 5.

C. Generalization properties of the eigenfunction representation
C.1. Min-max optimality of eigenfunctions

We now prove the min-max optimality of the eigenfunctions with respect to their L2 norm.

Proposition 4.1. Let Fr = {a 7→ β⊤r(a) : β ∈ Rd} be the family of linear predictors from representation r, and Sϵ be
the set of functions satisfying Assumption 1.1. Let rd∗(a) = [f1(a), f2(a), . . . , fd(a)] be the representation consisting of
the d largest eigenfunctions of the positive pair Markov chain. Then Frd∗

maximizes the invariance of the least-invariant
unit-norm predictor in Frd∗

:
Frd∗

= argmin
F rank d

max
ĝ∈F,

E[ĝ(a)2]=1

Ep+

[(
ĝ(a1)− ĝ(a2)

)2]
. (6)

Simultaneously, Frd∗
minimizes the least-squares approximation error for the worst-case target function in Sϵ:

Frd∗
= argmin
F rank d

max
g∈Sϵ

min
ĝ∈F

Ep(a)

[(
g(a)− ĝ(a)

)2]
. (7)

Proof. We will start by deriving Equation 7, and derive Equation 6 afterward. We can think of Equation 7 as equivalent to
the following adversarial game:

1. Player chooses a dimension-d subspace F ⊂ A → R of functions.

2. Adversary chooses a function g ∈ A → R with a fixed level of invariance E[(g(a1)−g(a2))
2] = 2gT (DA−PA,A)g =

ϵ. Without loss of generality, we let ϵ = 2 so that gT (DA − PA,A)g = 1; other values of ϵ will just lead to scaling the
function g.

3. Player chooses the best ĝ ∈ F to minimize E[(ĝ(a)− g(a))2]

We can analyze this game by working backward from the innermost step, step 3. Given the function class F and adversarially
chosen target function g, choosing ĝ to minimize the expected squared error is equivalent to finding the orthogonal projection
of g into F with respect to the measure p(A), e.g. with respect to the weighted L2 norm L(2; p(A)). More precisely, we
want

ĝ = argmin
ĝ∈F

E[(ĝ(a)− g(a))2] = argmin
ĝ∈F

(ĝ − g)TDA(ĝ − g)

= argmin
ĝ∈F

(D
1/2
A ĝ −D

1/2
A g)T (D

1/2
A ĝ −D

1/2
A g)

But this is just finding the ĝ ∈ F which minimizes ∥D1/2
A ĝ −D

1/2
A g∥2. This is given by the orthogonal projection of the

vector D1/2
A g into D

1/2
A F , under the ordinary L2 norm.

We can now define R as the orthogonal projection operator on D
1/2
A F , such that Rh ∈ D

1/2
A F (e.g. D

−1/2
A Rh ∈ F),

and for D
1/2
A f ∈ D

1/2
A F (e.g. f ∈ F), we have D

1/2
A f = RD

1/2
A f (e.g. f = D

−1/2
A RD

1/2
A f). Observe that R is

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

real and symmetric, and has eigenvalue 1 with multiplicity d and all other eigenvalues are 0. Since R characterizes
the subset, we will find it convenient to redefine our objective for the initial player as choosing R, and then letting
F = {D−1/2A RD

1/2
A g : g ∈ A → R}.

We then have

ĝ = argmin
ĝ∈F

E[(ĝ(v)− g(v))2] = D
−1/2
A RD

1/2
A g.

and the cost is

E[(ĝ(v)− g(v))2] = (D
1/2
A f −D

1/2
A g)T (D

1/2
A f −D

1/2
A g)

= (RD
1/2
A g −D

1/2
A g)T (RD

1/2
A g −D

1/2
A g)

= (D
1/2
A g)T (R− I)T (R− I)(D

1/2
A g)

= gTD
1/2
A (RTR− 2R+ I)D

1/2
A g

= gTD
1/2
A (I −R)D

1/2
A g.

We next consider step 2. Given R, what g should the adversary pick? Letting L = DA − PA,A, the adversary is constrained
to pick g such that gTLg = (L1/2g)T (L1/2g) = 1. We note that L is not full rank: in particular, any eigenvector of M
with eigenvalue 1 is an eigenvector of L of eigenvector zero. Any function g chosen by the adversary must then be the sum
of two parts:

• a component in in the range of L, of the form
(
L†
)1/2

u where ∥u∥2 = 1 and † represents the Moore-Penrose
pseudoinverse,

• and a component in the null space of L.

Overall, we can thus write g =
(
L†
)1/2

u+ h where ∥u∥2 = 1 and h⊤Lh = 0. Similarly, the response ĝ must also have
two components, one in the range of L and one in the null space of L. There are then two cases. If F does not span the
entire null space of L, the adversary can force an arbitrarily high approximation error by choosing h to be in the null space
of L but not F . On the other hand, if F spans the entire null space of L, the player can always perfectly approximate h, and
so the adversary is forced to maximize cost by using u. In particular, they will pick

u = argmax
∥u∥2=1

(
(
L†
)1/2

u)TD
1/2
A (I −R)D

1/2
A (

(
L†
)1/2

u)

= argmax
∥u∥2=1

uT
(
L†
)1/2

D
1/2
A (I −R)D

1/2
A

(
L†
)1/2

u

= argmax
∥u∥2=1

uTAu

where A is the matrix
(
L†
)1/2

D
1/2
A (I −R)D

1/2
A

(
L†
)1/2

. The optimal choice for u is an eigenvector of A with maximal
eigenvalue, and the cost is then that maximal eigenvalue. But observe that M is similar to the following:

A ∼ (
(
L†
)1/2

D
1/2
A)−1M(

(
L†
)1/2

D
1/2
A)

= (I −R)D
1/2
A L†D

1/2
A

= (I −R)
(
D
−1/2
A LD

−1/2
A

)†
:= A′

Similar matrices have the same eigenvalues, so the maximum cost attainable by the adversary is the maximal eigenvalue of
A′.

Finally, we consider step 1. Which R should our player choose to minimize this maximum cost? They should first ensure
the cost is finite, by choosing R to span the null space of D−1/2A LD

−1/2
A . (Note that if d is less than the dimension of

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

this null space, there is no choice that ensures a finite cost; in this case every representation has unbounded worst-case
approximation error.) Afterward, they should ensure that A′ has the smallest maximum eigenvalue. The sorted vector of

eigenvalues of A′ is bounded below by the vector obtained by matching the largest eigenvalues of
(
D
−1/2
A LD

−1/2
A

)†
with

the smallest of (I −R) (e.g. the largest of R) (Bhatia, 2013, exercise III.6.14)4. Let d∗ be the dimension of the null space
of D−1/2A LD

−1/2
A . Then I − R has d zero eigenvalues, of which d∗ are used to span this null space, and the remaining

d − d∗ (if any) are used to reduce the eigenvalues of A′. Thus, the largest eigenvalue of A′ is always at least as big as

the (d− d∗ + 1)-th largest eigenvalue of
(
D
−1/2
A LD

−1/2
A

)†
. We can attain this bound by setting R to exactly capture the

(d− d∗)-dimensional subspace of
(
D
−1/2
A LD

−1/2
A

)†
spanned by its top eigenspaces, along with the d∗-dimensional null

space of D−1/2A LD
−1/2
A .

But the combination of the null space of D−1/2A LD
−1/2
A and the top eigenspace of

(
D
−1/2
A LD

−1/2
A

)†
is just the space

spanned by the d eigenvectors of D−1/2A LD
−1/2
A with the smallest eigenvalues. Furthermore,

D
−1/2
A LD

−1/2
A = D

−1/2
A (DA − PA,A)D

−1/2
A

= I −D
−1/2
A PA,AD

−1/2
A = I −M,

so we are looking for the eigenvectors of M with the largest eigenvalues, where M is the matrix described in Appendix B.

Thus, the player should choose F such that D1/2
A F spans the top d-dimensional eigenspace of M , e.g. they should choose

functions of the form D
−1/2
A vi where the vi are the eigenvectors of M with largest eigenvalue. But these are exactly the left

eigenvectors fi of the positive pair Markov chain, which is how rd∗ is defined. We conclude that Frd∗
is the optimal choice

for the player, and thus Equation 7 holds.

Indeed, we can conclude something further: if λd+1 is the (d + 1)th eigenvalue of the positive pair Markov chain (the
variance along the (d+ 1)th principal component of the contrastive kernel), then as long as d ≥ d∗, (1− λd+1)

−1 is the

(d− d∗ + 1)th eigenvalue of
(
D
−1/2
A LD

−1/2
A

)†
, which is exactly the worst-case approximation error for Frd∗

against any

function with E[(g(v1) − g(v2))
2] = 2gTLg = 2. Scaling by ε, if E[(g(v1) − g(v2))

2] = ε then the worst case error is
1
2ε/(1− λd+1). In other words,

max
g∈Sϵ

min
ĝ∈F

rd∗

Ep(a)

[(
g(a)− ĝ(a)

)2]
=

ε

2(1− λd+1)
.

We now return our attention to Equation 6. This equation can also be formulated as an adversarial game:

1. Player chooses a rank-d subspace F ⊂ A → R of functions.

2. Adversary chooses a function ĝ ∈ F with unit norm E[ĝ(v)2] = ĝTDAĝ = 1 to maximize E[(ĝ(v1) − ĝ(v2))
2] =

2ĝTLĝ.

We can again identify the choice of F with the choice of the orthogonal projection matrix R on D
1/2
A F . We know ĝ ∈ F , so

we can write ĝ = D
−1/2
A RD

1/2
A ĝ. Also note that for any h (not even necessarily in F), D−1/2A RD

1/2
A h ∈ F . Now suppose

we choose an h so that E[h(a)2] = hTDAh = 1, and define ĝ = D
−1/2
A RD

1/2
A h. Then

ĝTDAĝ = hTD
1/2
A RD

−1/2
A DA(D

−1/2
A RD

1/2
A h)

= hTD
1/2
A R2D

1/2
A h

= hTD
1/2
A RD

1/2
A h

≤ hTD
1/2
A ID

1/2
A h = 1

because R has eigenvalues at most 1. So, the following are equivalent:

4
See also https://math.stackexchange.com/questions/573583/eigenvalues-of-the-product-of-two-symmetric-matrices

https://math.stackexchange.com/questions/573583/eigenvalues-of-the-product-of-two-symmetric-matrices

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

• choosing ĝ ∈ F with E[ĝ(v)2] ≤ 1

• choosing h ∈ RA with E[h(v)2] ≤ 1 and letting ĝ = D
−1/2
A RD

1/2
A h

We also note that there is no advantage to the adversary from picking a function such that E[ĝ(v)2] < 1. So we can reframe
step 2 as choosing h so that E[h(v)2] = 1, to maximize

2
(
D
−1/2
A RD

1/2
A h

)T
L
(
D
−1/2
A RD

1/2
A h

)
We can further reparameterize by letting h = D

−1/2
A u, so that E[h(v)2] = 1 is equivalent to ∥u∥22 = 1. We then have cost

C = 2ĝTLĝ = 2(hTD
1/2
A RD

−1/2
A)L(D

−1/2
A RD

1/2
A h)

= 2(uTD
−1/2
A)D

1/2
A RD

−1/2
A LD

−1/2
A RD

1/2
A (D

−1/2
A u)

= 2uTRD
−1/2
A LD

−1/2
A Ru

The choice that maximizes the cost is then an eigenvector of

B = 2RD
−1/2
A LD

−1/2
A R =

(
L1/2D

−1/2
A R

)⊤ (
L1/2D

−1/2
A R

)
with maximal eigenvalue, and the cost is 2 times the maximum eigenvalue of B. But note that B has the same eigenvalues as

B′ =
(
L1/2D

−1/2
A R

)(
L1/2D

−1/2
A R

)⊤
= L1/2D

−1/2
A RD

−1/2
A L1/2

since R2 = R. And B′ is similar to

B′′ = D
−1/2
A LD

−1/2
A R

so B and B′′ have the same eigenvalues.

We now consider step 1. What should the player choose for R? By a similar eigenvalue-of-product argument as used for
Equation 7, regardless of the choice of R the largest eigenvalue of B′′ must always be at least as big as the dth smallest
eigenvalue of D−1/2A LD

−1/2
A , because R has eigenvalue 1 with multiplicity d. We can attain this minimum cost by choosing

R to project into the eigenspace spanned by the d eigenvectors of D−1/2A LD
−1/2
A with the smallest eigenvalues.

But observe that the smallest eigenvalues and corresponding eigenvectors of D−1/2A LD
−1/2
A = I−M are exactly the largest

eigenvalues and corresponding eigenvectors of M = D
−1/2
A PA,AD

−1/2
A = I − L, which as we argued above, is exactly the

set of eigenfunctions fi used to construct rd∗ .

In this case, the optimal cost itself is determined by the largest eigenvalue of D−1/2A LD
−1/2
A (times two), so we obtain

max
ĝ∈F

rd∗
,

E[ĝ(a)2]=1

Ep+

[(
ĝ(a1)− ĝ(a2)

)2]
= 2(1− λd).

C.2. Generalization bound for linear prediction with the eigenfunction representation

Proposition 4.2. Let (Ai, Yi)
n
i=1 be i.i.d. samples, choose R ≥ 0, and consider the constrained empirical risk minimizer

β̂R ∈ argmin∥β∥2≤R n−1
∑n

i=1|⟨β, r∗d(Ai)⟩ − Yi|. Then the expected excess risk of β̂R is bounded by:

E
[
E(β̂R)

]
≤ 2dR√

n
+

√
d(∥β∗∥2 −R)+ +

√
ε

2(1− λd+1)

where E(β) := R(β)−R∗ is the excess risk and (x)+ := max{x, 0}.

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

Proof. We start by decomposing the excess risk as:

R(β̂R)−R∗ =
(
R(β̂R)− inf

∥β∥2≤R
R(β)

)
+

(
inf

∥β∥2≤R
R(β)−R(β∗)

)
+ (R(β∗)−R∗)

The first term is the estimation error, which we can readily bound by first noting that:

E
[
∥rd∗(A)∥22

]
= E

[
d∑

i=1

fi(A)2

]
=

d∑
i=1

E
[
fi(A)2

]
= d

then noticing that our loss is 1-Lipschitz, and finishing with the standard Rademacher complexity argument for constrained
linear classes (Kakade et al., 2008) to get: (

R(β̂D)− inf
∥β∥2≤D

R(β)

)
≤ 2dR√

n
(8)

The second term is an approximation error term due to the use of a constrained linear class instead of the full linear class.
Define β̃∗ := β∗

max{∥β∗∥2/R,1} . Then we can bound this second term by:

inf
∥β∥2≤R

R(β)−R(β∗) ≤ R(β̃∗)−R(β∗) ≤ E
[∣∣∣〈rd∗(A), β̃∗ − β∗

〉∣∣∣] ≤ E
[
∥rd∗(A)∥2

]
∥β̃∗ − β∗∥2 ≤

√
d(∥β∗∥2 −R)+

(9)
where the second inequality follows from the 1-Lipschitznes of the loss, the third by Cauchy-Schwartz inequality, and the
last by Jensen’s inequality.

The third and last term is an approximation error term due to the use of a function class which is contained in the span of the
first d eigenfunctions (fi)di=1. We can bound it as follows:

R(β∗)−R∗ ≤ E
[∣∣〈rd∗(A), β∗

〉
− g∗(A)

∣∣] ≤√E[(⟨rd∗(A), β∗⟩ − g∗(A))2] ≤
√

ε

2(1− λd+1)
(10)

where the first inequality follows from the 1-Lipschitznes of the loss, the second from Jensen’s inequality, and the last by first
noticing that the function h(a) :=

〈
rd∗(a), β

∗〉 satisfies h = argming∈F
rd∗

E
[
(g(A)− g∗(A))2

]
(since it is the projection

of g∗ onto Frd∗
under the norm ∥x∥2 := E

[
x2(A)

]
), then appealing to the proof of Proposition 4.1. Combining the bounds

of equations (8), (9), and (10), we obtain the stated generalization bound.

D. Experimental details
D.1. Task: MNIST with Multinomial Augmentations

Our goal in designing our task was to construct distributions p(X) and p(A|X) such that the exact contrastive kernel could
be computed, and so that the Markov chain would mix between different unperturbed dataset examples x ∈ X without
changing the label too frequently.

To this end, we constructed our task as follows:

• Define X to be a particular subset of the MNIST dataset, and choose p(X) to be the uniform distribution over X . We
consider two choices for X : randomly selecting 512 images from each of the ten digit classes (used for comparisions
between models), and randomly selecting 1024 images from the digits 0, 1, and 2 (used for visualizations of the
eigenfunctions).

• For each image, generate 64 pertubed copies, by randomly blurring, translating, and rotating digits by a small amount.
Add a small constant to each pixel so that no pixel has value zero, then normalize each such copy so that its pixel values
sum to 1.

• To generate an augmentation of an image x ∈ X according to p(A|X = x), first choose one of the 64 copies of x, then
sample a set of k pixel locations with replacement from the distribution represented by that copy, where k determines
the augmentation strength. This means we are more likely to sample pixel locations which were within the original
digit, although due to the perturbations described above the pixels may be scattered around the digit.

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

Our set A is thus the set of all 28 × 28 images for which all pixels have a nonnegative integer value, and the total of all
pixels is k. (Due to the low pixel density, to improve visibility in our figures we render each pixel as a box 5x its original
size, with shading indicating overlap of these boxes. However, when giving input to the model, we directly input this sparse
pixel reprsentation, without the 5x multiplier.)

Given a particular augmented example a, we can compute p(a|x) for any x ∈ X by summing over each of the 64 copies
of x and using the closed-form PDF of a multinomial distribution. We can then compute p(x|a) by normalizing over all
possible x, and use this to exactly compute the contrastive kernel feature map ϕCtr. We selected the perturbation parameters
such that there was nontrivial uncertainty in x given each a; in other words, we made sure the positive pair Markov chain
mixed well between examples.

D.2. Ten-class MNIST models

For our main experimental results on all ten MNIST digit classes, we used three-block variants of a ResNet-18 model
followed by a two 128-dimensional fully-connected layers and a final output layer.

• Linear kernel: We used kernel parameterization K̂θ(a1, a2) = hθ(a1)
Thθ(a2) and the spectral loss, with hθ as the

output of the final layer. We set the dimension of the final layer to 512.

• Temperature-normalized exponential kernel: We used kernel parameterization exp(hθ(a1)
Thθ(a2)/τ), where hθ is

computed by normalizing the output of the final layer to lie on the unit hypersphere. We set the dimension of the final
layer to 32. For the loss function, we used a weighted combination of 0.9 times the NT-XEnt loss and 0.1 times the
NT-Logistic loss. (Including the NT-Logistic loss ensures that there is a unique function that minimizes the total loss,
without requiring us to estimate proportionality constants.) We optimized the temperature τ jointly with the model
parameters.

• Temperature-normalized exponential kernel with scale: We used kernel parameterization exp(hθ(a1)
Thθ(a2)/τ) ·

sθ(a1)sθ(a2). We set the dimension of the final layer to 33, and defined hθ by taking the first 32 entries and normalizing
them to lie on the unit hypersphere. We then defined sθ to be exp(5 × tanh(x)) where x is the 33rd entry of the
final layer. We again optimized the temperature τ jointly with the model parameters, using a weighted combination
of 0.9 times the NT-XEnt loss and 0.1 times the NT-Logistic loss. The scale parameter allows the model to adjust
the magnitude of the kernel, which can be used to scale the eigenvalues of the principal components or to correct for
differences in likelihood between points.

We trained our models using the Adam optimizer over 50,000 training iterations and a batch size of 4096 positive pairs
per iteration, implemented using the JAX and FLAX libraries (Bradbury et al., 2018; Heek et al., 2020). We used batch
normalization for the first 35,000 iterations, then interpolated between the current batch statistics and the average from
previous batches for 2,000 more iterations, and finally trained for 13,000 iterations using frozen batch norm statistics alone
(e.g. in “inference” mode); we found that this increased the quality of the extracted principal components.

D.3. Three-class MNIST rational quadratic model

Figures 1 and 3, we trained a ResNet-18 model on only the MNIST digits 0, 1, and 2, using a scaled two-dimensional
rational quadratic kernel:

K̂θ(a1, a2) = sθ(a1)sθ(a2)

(
1− ∥fθ(a1)− fθ(a2)∥2

2α

)−α
. (11)

Here fθ : A → R2 embeds inputs into the plane, sθ : A → R+ is a learned scale function, and α is a learned shape
parameter. We set the output dimension of the ResNet-18 model to 3, and took the first two elements as fθ; sθ was defined
as exp(5× tanh(x)) where x is the third element. We also parameterize α = exp(γ) and learn the scalar parameter γ. The
model has a base hidden dimension of 128. The model was trained for 50,000 training iterations. We used the cross entropy
InfoNCE loss (as described in Appendix A.1) and the Adam optimizer, with a batch size of 4096 positive pairs per iteration.

D.4. Extraction and analysis of principal components

To estimate the eigenfunctions of the true kernel, we performed PCA using the explicit form ϕCtr of the contrastive kernel
feature map, where the population covariance was approximated by averaging over 256 augmentations for each of the

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

images in X . We then constructed the principal component projection functions using that covariance.

For our approximate kernels K̂θ, we first constructed an approximation of the feature map for K̂θ using the Nyström method
(Williams and Seeger, 2000): we sampled a subset S of augmentations by randomly selecting 25% of X and sampling one
augmentation for each image, computed the Gram matrix K̂θ(S, S) for that subset, then set

ϕ̂(a) = K̂θ(S, S)
−1/2K̂θ(S, a)

where K̂θ(S, a) is the vector of similarities of a to each reference augmentation in S. The result is a feature map such that
ϕ̂(a1)

⊤ϕ̂(a2) ≈ K̂θ(a1, a2). We then again performed PCA using this feature map, using 256 samples per example in X to
compute the covariance.

We normalized all principal component projection functions to have unit uncentered variance, e.g. E[fi(a)2] = 1 and
E[f̂i(a)2] = 1. We then computed alignments by taking the squared covariance E[fi(a)f̂j(a)]2. Note that by Theorem 3.1
this is equivalent to the square of the coefficient ci for the function f̂j expanded in terms of the basis of eigenfunctions fi;
consequently we have

∑
i E[fi(a)f̂j(a)]2 = E[f̂j(a)2] = 1. (Note that the sign of a principal component is not uniquely

determined, so squaring the covariance ensures that f and −f are considered to be aligned with each other.)

We estimated the positive-pair discrepancy for each principal component function by taking the sample average of
(
fi(a1)−

fi(a2)
)2

over 16 randomly sampled augmentation pairs for each image in X .

D.5. Downstream supervised learning

To generate our supervised training and validation sets, we sampled one augmentation of 16 random images from each
digit class, labeled with the original label, a total of 160 labeled augmentations in each set. For the test set, we took 170
distinct images from each digit class and generated one augmentation from each image, without overlap with the training or
validation sets, for a total of 1700 labeled augmentations.

For the classification task, we fit a logistic regression classifier on the training set using SciKit Learn. For PCA representations,
we swept over 40 logarithmically-spaced L2 regularization strengths from 10−4 to 101, and also swept over representation
dimension d, taking the first d principal components for d between 1 and 256. For ResNet embedding representations, we
swept over 150 logarithmically-spaced L2 regularization strengths from 10−4 to 1010; we found that higher regularization
strengths were necessary to attain a good solution. We selected the hyperparameters based on which setting gave the highest
top-1 accuracy on the validation set.

For the regression task, we used a centered version of the one-hot indicator vector, e.g. the target vector for an example from
digit 2 was

[−0.1,−0.1, 0.9,−0.1,−0.1,−0.1,−0.1,−0.1,−0.1,−0.1].

The purpose of this centering was to ensure that the expected value of the label vector was the zero vector. We then fit
a predictor using ridge regression (L2-regularized least-squares regression) in Numpy. As for the classification task, for
PCA representations we swept over 40 logarithmically-spaced L2 regularization strengths from 10−4 to 101 and over
each representation dimension d between 1 and 256, and for ResNet embedding representations we swept over 150 L2
regularization strengths from 10−4 to 1010. We selected the hyperparameters based on which setting gave the lowest squared
error on the validation set.

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

D.6. Alignment and discrepancy relationships across regularization strengths

Figure 4 in the main paper shows the alignment and discrepancy relationships for the ten-digit MNIST task for k = 20
sampled pixels per digit. In this section we show the corresponding plots for k = 10 (stronger augmentations) and k = 50
(weaker augmentations.)

Figure 5. Alignments and discrepancy relationships for the MNIST task with k = 10. Stronger augmentations lead to larger gaps between
eigenvalues, and the corresponding principal component functions can be estimated quite accurately from learned kernels.

Figure 6. Alignments and discrepancy relationships for the MNIST task with k = 50. Weaker augmentations lead to more eigenvalues
close to 1, and make it harder to estimate the principal components, even between two runs of Kernel PCA for the true contrastive kernel.
The linear kernel model converges to a low-rank solution, leading to a lower eigenvalue density that still obeys the predicted discrepancy
relationship, whereas the NT-Exp model deviates from that relationship without showing a clear pattern.

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

E. Additional visualizations of three-digit MNIST task
In this section, we provide a few additional visualizations of the three-digit variant of the MNIST task, the contrastive kernel
for that task, and our learned rational quadratic model.

Figure 7. Visualization of the training set for the supervised learning evaluation. The examples (augmented versions of original digits) are
shown in their original form, without the upscaling performed in other figures.

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

Figure 8. An extended version of the Markov chain trajectory shown in Figure 2. Below each digit, we show a bar plot giving the
conditional probability of each original digit label (scale on left y-axis), along with a scatter plot giving the conditional probability of each
individual dataset example in X (scale on right y-axis), sorted by digit type.

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

Figure 9. A visualization of the largest principal component directions for the contrastive kernel feature map ϕCtr. For each row, we plot
the dataset examples corresponding to the largest and smallest elements of those principal component directions, and also the overall
distribution of values over the elements not visualized, shown with a gradient in the center. Note that this figure directly visualizes the
directions in the space RX ; to compute the principal component projections for an augmentation ainA, we first compute ϕCtr(a), which
puts higher weight on xs that could have generated a, then compare the resulting scores to each of these rows.

Contrastive Learning Can Find An Optimal Basis For Approximately Invariant Functions

Figure 10. Left: Comparison of the Gram matrices for the true contrastive kernel KCtr and our approximation K̂θ for the set of
augmentations shown in the Markov chain in Figure 8. Right: Visualization of the learned embedding space of our ResNet-18 model;
magnitude of the scale multiplier gθ(a) is shown as marker size. Note that the model learns to prevent overcrowding by reducing the scale
near cluster centers. Dashed line shows how the embeddings change as we move along the Markov chain trajectory in Figure 8; most
steps move only a small distance.

