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Abstract
Multi-view learning methods primarily focus on
enhancing decision accuracy but often neglect the
uncertainty arising from the intrinsic drawbacks
of data, such as noise, conflicts, etc. To address
this issue, several trusted multi-view learning ap-
proaches based on the Evidential Theory have
been proposed to capture uncertainty in multi-
view data. However, their performance is highly
sensitive to conflicting views, and their uncer-
tainty estimates, which depend on the total ev-
idence and the number of categories, often un-
derestimate uncertainty for conflicting multi-view
instances due to the neglect of inherent conflicts
between belief masses. To accurately classify
conflicting multi-view instances and precisely es-
timate their intrinsic uncertainty, we present a
novel Deep Fuzzy Multi-View Learning (FUML)
method. Specifically, FUML leverages Fuzzy Set
Theory to model the outputs of a classification
neural network as fuzzy memberships, incorpo-
rating both possibility and necessity measures to
quantify category credibility. A tailored loss func-
tion is then proposed to optimize the category
credibility. To further enhance uncertainty esti-
mation, we propose an entropy-based uncertainty
estimation method leveraging category credibility.
Additionally, we develop a Dual Reliable Multi-
view Fusion (DRF) strategy that accounts for both
view-specific uncertainty and inter-view conflict
to mitigate the influence of conflicting views in
multi-view fusion. Extensive experiments demon-
strate that our FUML achieves state-of-the-art per-
formance in terms of both accuracy and reliability.
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Figure 1. (a) Visualization of the conflicting multi-view instance:
the depth view is related to the “Bedroom” category, while the
other views show conflicting information, such as “Bathroom.”
(b) EDL-based TMVC methods are sensitive to such conflicting
multi-view instances. On one hand, because they neglect the global
conflict between views in multi-view fusion, classification errors
are often made. On the other hand, their uncertainty estimation
is only related to the total evidence and the number of categories.
For conflicting multi-view instances, as long as the total evidence
is large, the uncertainty is seriously underestimated. (c) In our
method, both global conflict and uncertainty are considered during
fusion, allowing the conflicting multi-view instances to be clas-
sified correctly. Additionally, this method can estimate decision
uncertainty more accurately.

1. Introduction
Multi-view/modal data encapsulates comprehensive infor-
mation from various modalities, sources, and other perspec-
tives (Yan et al., 2021; Qin et al., 2024; He et al., 2024).
Multi-view classification (MVC) aims to utilize the consis-
tency and complementary nature of these data to achieve
more accurate classification. With the explosive growth of
multi-view data in fields such as video surveillance (Wang
et al., 2024a), medical detection (Yang et al., 2024; Nasarian
et al., 2024), and autonomous driving (Hong et al., 2024),
MVC has garnered great attention from both academia and
industry in recent years. Despite the promising performance
of existing MVC methods (Yang et al., 2019; Han et al.,
2022a; Lin et al., 2022; Mittal et al., 2022; Zhang et al.,
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2023), these approaches predominantly prioritize classifica-
tion accuracy while often neglecting decision uncertainty.
This could lead to unreliable decisions, limiting their appli-
cability in reliability-critical scenarios.

To address this limitation, a series of trusted multi-view
classification (TMVC) methods (Geng et al., 2021; Han
et al., 2020; Liu et al., 2022; Xie et al., 2023; Liu et al.,
2023; Xu et al., 2024b) based on Evidential Deep Learning
(EDL) (Sensoy et al., 2018; Bao et al., 2021) have been pro-
posed to estimate the uncertainty. These methods provide
classification predictions alongside the corresponding uncer-
tainty (inverted to reliability). However, they typically as-
sume strict alignment across different views, which is often
unrealistic due to noise, misalignment, or conflicting infor-
mation in real-world scenarios. More intuitively, a case of
multi-view user-generated content is illustrated in Figure 1
(a), where the RGB, text, and depth views exhibit conflict-
ing categorical information. Such conflicts pose significant
challenges to EDL-based TMVC methods as shown in Fig-
ure 1 (b), remarkably degrading their performance. Specif-
ically, these methods face two key issues: i) They heavily
rely on Dempster-Shafer theory (DST) (Shafer, 1992) for
multi-view fusion, which fails to account for global conflicts
among views overly emphasizes dominant evidence (Xiao,
2019b; Shang et al., 2021), often leading to misclassifica-
tion. ii) Their uncertainty estimation relies solely on total
evidence and the number of categories, neglecting inherent
conflicts between belief masses, leading to inaccurate uncer-
tainty quantification for conflicting multi-view instances.

To address the aforementioned problems, this paper presents
a novel framework, Deep Fuzzy Multi-View Learning
(FUML), grounded in Fuzzy Set Theory (Zadeh, 1965),
which provides more precise decisions along with the corre-
sponding accurate uncertainty estimates. Fuzzy Set Theory
manages inherent uncertainty and fuzziness in data by in-
troducing gradual membership between 0 and 1, allowing
a sample to belong to multiple categories to varying de-
grees, thereby enabling effective uncertainty quantization
and modeling. Based on this principle, as shown in Figure 2,
we model the outputs of the classification network as fuzzy
memberships corresponding to each category, representing
the extent to which a sample belongs to each category. How-
ever, memberships alone provide only a possibility measure,
i.e., the likelihood of belonging to a category, without indi-
cating the between-class relationship (called necessity) that
the sample does not belong to other categories. To integrate
both aspects, we introduce category credibility, optimized
via the proposed category credibility learning loss. Further-
more, we propose an entropy-based uncertainty estimation
method that leverages category credibility to enhance un-
certainty quantification. To mitigate the impact of conflict-
ing views in multi-view fusion, we develop a Dual-reliable
Multi-view Fusion (DRF) strategy, which considers both

view-specific decision uncertainty and inter-view conflicts.
Unlike existing uncertainty-aware fusion techniques in EDL-
based TMVC that operate sequentially, our DRF employs a
global one-time fusion strategy that reduces the influence
of high-uncertainty and high-conflict views, ensuring more
robust multi-view classification. The main contributions of
this work are summarized as follows:

• We reveal and address the conflict sensitivity issue
in existing EDL-based TMVC methods, proposing
FUML, a novel framework based on Fuzzy Set Theory
for enhancing classification and uncertainty estimation.

• We develop a Dual-reliable Multi-view Fusion (DRF)
strategy that effectively reduces the impact of conflict-
ing views, embracing more robust multi-view classifi-
cation.

• We propose an entropy-based uncertainty qualification
technique, enabling more accurate uncertainty estima-
tion for conflicting multi-view instances.

• We conduct extensive experiments comparing our
FUML against 13 state-of-the-art MVC baselines on
eight widely-used benchmarks, demonstrating superior
accuracy, reliability, and robustness.

2. Related Work
Multi-view Learning. Studies have demonstrated that
multi-view learning (MVL) significantly enhances perfor-
mance across various tasks. Among them, the CCA-based
multi-view methods are representative (Chaudhuri et al.,
2009; Rupnik & Shawe-Taylor, 2010). With the advance-
ments in deep learning (Yan et al., 2020), some deep MVL
methods (Han et al., 2022a; Lin et al., 2022; Zhang et al.,
2023; Cao et al., 2024; Qu et al., 2024; Wang et al., 2024b;
Chen et al., 2024; Bi & Dornaika, 2024; Xu et al., 2025)
emerged. However, most of them focus on improving
accuracy, ignoring reliability, limiting their applicability
in reliability-critical domains. To achieve reliable deci-
sions, a range of trusted muli-view classification (TMVC)
methods (Geng et al., 2021; Han et al., 2020; Liu et al.,
2022; 2023; Xie et al., 2023; Liu et al., 2023; Xu et al.,
2024a;b; Wang et al., 2024c; Yue et al., 2025; Wang et al.,
2025) based on Evidential Deep Learning (EDL) (Sensoy
et al., 2018; Gao et al., 2024) and Dempster-Shafer theory
(DST) (Shafer, 1992) are proposed. Among them, Trusted
Multi-view Classification (TMC) (Han et al., 2020) and
Enhanced TMC (ETMC) (Han et al., 2022b) assume that
multi-view data is complete; they dynamically integrate dif-
ferent views at the evidence level. However, the arbitrary
view missing is widely present in practice. To solve this,
Uncertainty-induced Incomplete Multi-View Data Classi-
fication (UIMC) (Xie et al., 2023) is proposed. Neverthe-
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less, UIMC assumes views are strictly aligned, while multi-
view data often contains low-quality conflicting instances.
To address this, Evidential Conflictive Multiview Learn-
ing (ECML) (Xu et al., 2024a) designs a conflict opinion
aggregation strategy and achieves reliable results for con-
flicting instances. However, ECML overly relies on the
latter combined views, making its final decision vulnerable
to conflicting views. Given this, we suggest jumping out of
the Evidence Theory, and re-examining TMVC based on
the Fuzzy Set Theory (Zadeh, 1965; Liu & Liu, 2010) to
achieve a more accurate and robust TMVC.

Uncertainty-aware Deep Learning. Although deep learn-
ing has achieved great success in many tasks, it is difficult
to provide reliable uncertainty estimates, which is crucial
for reliable models (Wen et al., 2023; Chen et al., 2023).
To solve this, early works endowed Deep Neural Networks
(DNNs) with uncertainty by using distributions instead of
deterministic weight parameters (Gal & Ghahramani, 2015;
Molchanov et al., 2017; Lakshminarayanan et al., 2017),
but they often suffer from high computational costs. The
recently proposed test-time augmentation (Lyzhov et al.,
2020) estimates uncertainty at test time, but it still needs
multiple inferences. In contrast, Evidential Deep Learning
(EDL) (Sensoy et al., 2018; Qin et al., 2022; Li et al., 2025)
directly infers uncertainty from network outputs. Recently,
researchers have extended EDL to the field of multi-view
learning and pioneered a series of methods (Geng et al.,
2021; Han et al., 2020; Liu et al., 2022; Xie et al., 2023; Liu
et al., 2023; Xu et al., 2024a;b). Although these methods
achieve promising uncertainty estimates, their uncertainty
depends only on the number of categories and the total evi-
dence, and the uncertainty of conflicting multi-view instance
is often underestimated. In this paper, we draw on the Fuzzy
Set Theory (Zadeh, 1965; Liu & Liu, 2010), which provides
a more nuanced perspective that combines possibility and
necessity measures to capture uncertainty more accurately.

3. The Proposed Method
3.1. Problem Definition

For a clear presentation, we first introduce the following
notations. Given N training inputs {Xn}Nn=1 with V views,
i.e., X = {xv}Vv=1, and the corresponding labels {yn}Nn=1.
The goal of trusted multi-view classification is to learn a
model f : {xv}Vv=1 → y that accurately predicts the label
for an unseen sample by effectively integrating information
from all available views and provide the corresponding de-
cision uncertainty. The main challenge lies in utilizing the
consistent and complementary information from each view
while managing conflicting views, ultimately improving
overall classification performance and providing accurate
uncertainty estimation.

3.2. Deep Fuzzy Multi-view Learning

3.2.1. CATEGORY CREDIBILITY MODELING

The core idea of Fuzzy Set Theory is to allow samples to be-
long to a set to a certain degree, rather than either absolutely
belonging or not belonging (Zadeh, 1965). Based on this,
fuzzy systems can effectively handle the uncertainties and
ambiguities inherent in real-world data (Das et al., 2020; Wu
et al., 2025). According to Fuzzy Set Theory, membership
quantifies the degree to which a sample belongs to a fuzzy
set. Similarly, the output probabilities of a classification
network, ranging from 0 to 1, represent the possibility of a
sample belonging to each category, with higher values indi-
cating a greater possibility of classification into that category.
This parallel enables us to model the classifier’s prediction
for a category as a membership for that category. There-
fore, for a given sample xv

i , the memberships across all
categories can be expressed as mv

i1,m
v
i2, . . . ,m

v
iK , where

K represents the total number of categories.

Nevertheless, the memberships only provide the possibility
measure which represents the likelihood of belonging to
a category, not the necessity measure—the certainty that
the sample does not belong to other categories (Liu & Liu,
2010; Duan et al., 2025). To complement membership by
quantifying these certainties, we introduce the concept of
necessity:

evik = 1−max{mv
il | l ̸= k}, k = 1, ...,K, (1)

where max{mv
il | l ̸= k} is the highest membership for

the other categories {l}l ̸=k. By integrating both possibility
measure and necessity measure, we can obtain more com-
prehensive information. Therefore, we define the category
credibility as the arithmetic mean of the possibility measure
and the necessity measure:
Definition 3.1. Let mv

i = [mv
i1,m

v
i2, ...,m

v
iK ] be the vector

of memberships of the i-th sample in v-th view, and ∀mv
ik ∈

[0, 1], k = 1, 2, ...,K. Then, the category credibility of the
i-th sample to the k-th category is defined by

cvik =
1

2
(mv

ik + 1−max{mv
il | l ̸= k}), k = 1, 2, ...,K,

(2)
which can be arranged as cvi = [cvi1, c

v
i2, ..., c

v
iK ] ∈ RK .

3.2.2. CATEGORY CREDIBILITY LEARNING

To map the logits of a neural network as memberships, first,
Lp-normalization is applied to the logits to limit the value
in the range of [-1,1]. Subsequently, an activation function
(i.e., ReLU) is used to yield output values in the range of
[0,1]. These values can be modeled as memberships for
the corresponding category. To be specific, the calculation
formula is as follows:

mv
i = ReLU(

avi
||avi ||p

), (3)
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Figure 2. Illustration of FUML. Firstly, view-specific DNNs ({fv(·)}Vv=1) collect memberships ({mv}Vv=1) from multi-view instances
({X v}Vv=1), which could be termed as a possibility for each category. Secondly, the uncertainty of each view ({uv}Vv=1) and the conflicts
({ov}Vv=1) between views are calculated based on these memberships. Thirdly, the weights {wv}Vv=1 of each view could be calculated
and are used to aggregate memberships from all views, thereby realizing Dual-reliable Multi-view Fusion (DRF). Finally, the aggregated
memberships are used to construct trusted classification results, where the decision uncertainty will increase if aggregated memberships
are conflicting.

where avi denotes the logits of a neural network. The cor-
responding category credibility cvi can also be derived by
Equation (2).

To achieve discriminative learning, each sample should ex-
hibit the highest possible category credibility for its matched
category while maintaining the lowest possible category
credibility for all other categories. Intuitively, this could
be achieved by directly aligning the category credibility
cvi with the corresponding one-hot labels yv

i , i.e., mini-
mizing mean squared error (||cvi − yv

i ||2) or cross-entropy
loss (−yv

i · log(cvi ) − (1 − yv
i ) · log(1 − cvi )). However,

both approaches risk over-optimizing the necessity (evi )
for unmatched categories, resulting in the neural network
converging to a local optimum. The reason is as follows:
When yvik = 0, mv

ik would tend to 0, and the necessity
evik = 1−max{mv

il | l ̸= k} would also approach 0, driv-
ing mv

il towards 1. This is problematic because mv
il should

approach 0 when yvil = 0, rather than 1. To tackle this issue,
we propose category credibility learning loss to optimize
the category credibility, thereby guiding the model toward
the correct optimization:

Lccl =
1

Nb

Nb∑
i=1

−yv
i · log(rvi )− (1−yv

i ) · log(1−rvi ), (4)

where Nb is the batch size, rvi = ϕtr(mv
i ,y

v
i ) =

[rvi1, r
v
i2, ..., r

v
iK ] ∈ RK represents category credibility dur-

ing training, and

rvik =


mv

ik + 1−max{mv
il | l ̸= k}

2
, if yv

ik = 1,

mv
ik + 1−mv

il

2
, if yv

ik = 0, l = argmax
k

yv
ik,

(5)
where k = 1, 2, ..., K. From Equation (4), it can be seen

that this loss function ensure mv
ik approaches 1 for matched

categories where yvik = 1 and approaches 0 for unmatched
category where yvik = 0, by leveraging label information.
To be specific, when yvik = 0 and yvil = 1 (where l =
argmax

k
yvik), we expect the membership of the matched

category to be greater than that of any unmatched categories
after training. For matched categories, the necessity during
training should be calculated as 1 − max{mv

il | l ̸= k},
driving max{mv

il | l ̸= k} toward 0. For unmatched cate-
gories, the necessity during training should be calculated as
1−mv

il, forcing mv
il to approach 1. Therefore, this approach

effectively guides the necessity and category credibility op-
timization, avoiding over-optimization and ensuring correct
model convergence.

3.2.3. CONFLICTIVE MULTI-VIEW FUSION

Environmental factors, such as sensor failure, adverse
weather conditions, and data communication issues, often
introduce noisy and unaligned views in multi-view data, i.e.,
create conflicting views (Xiao, 2019a; Zhang et al., 2024).
Addressing these issues is essential for enhancing the pre-
cision and robustness of multi-view classification. Noisy
views generally exhibit high uncertainty, complicating accu-
rate decision-making and potentially leading to erroneous
decisions. Therefore, the influence of noisy views should
be minimized in multi-view fusion to prioritize the contri-
butions of cleaner views. In contrast, unaligned views tend
to generate highly conflicting but low-uncertainty decisions.
Reducing their misleading impact on the final decision and
limiting their influence in the fusion process is also crucial.
Therefore, below, we first define the uncertainty and then the
conflict, and finally use them to build a multi-view fusion
strategy that can resist conflicting views.
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Uncertainty Inference. Although the category credibility
reflects the uncertainty of a single predicted category, it
fails to capture the uncertainty of the entire prediction out-
come. To overcome this limitation, we take into account the
category credibility of all categories to calculate decision
uncertainty. To be specific, inspired by Shannon’s entropy,
which measures uncertainty arising from information defi-
ciency, we define uncertainty as follows:
Definition 3.2. Let cvi = [cvi1, c

v
i2, ..., c

v
iK ] be the vector

of category credibility of the i-th sample in v-th view, and
∀cvik ∈ [0, 1], k = 1, 2, ...,K. Then, uncertainty is defined
by

uv
i =

∑K
k=1 H(cvik)

K · ln 2

=

∑K
k=1 −cvik · ln(cvik)− (1− cvik) · ln(1− cvik)

K · ln 2
,

(6)
where K is the number of categories and H(cvik) is the
entropy of category credibility cvik. This uncertainty lies
within the range [0, 1], where higher values denote greater
uncertainty.

Conflict Inference. The above-defined uncertainty does not
allow for the assessment of inconsistencies between views.
To address this, below, we define conflict:
Definition 3.3. Let {mv

i }Vv=1 represent the set of multi-
view membership vectors for the i-th sample. The conflict
of the v-th view relative to other views is defined as:

ovi =
1

V − 1

V∑
j ̸=v

(
1− mv

i ·m
j
i

||mv
i || · ||m

j
i ||

)
. (7)

Since the range of all elements in mv
i is in the range [0,1],

the conflict ovi is in the range [0,1], where higher values
denote greater conflict.

Views with relatively high conflict are considered unaligned
with other views, whereas views with relatively low conflict
are precisely the ones that should participate in the fusion.
Next, we utilize view-specific uncertainty and the above
conflict between views to propose a Dual-reliable Multi-
view Fusion, which means both noisy views and unaligned
views can be reliably fused.

Dual-reliable Multi-view Fusion (DRF). In multi-view
decision-level fusion, we hope to fuse views with low un-
certainty and low conflict with other views. Following Defi-
nition 3.2 and Definition 3.3, we could fuse the final mem-
berships ma

i from different views as follows:

wv
i =

g ((1− uv
i )(1− ovi ))∑V

v=1 g ((1− uv
i )(1− ovi ))

,

ma
i =

V∑
v=1

wv
i ·mv

i ,

(8)

where g(·) is a monotonically increasing function. In this
work, we use the exponential function exp(·) as g(·). Note
that, during training, the uncertainty is calculated based on
the category credibility during training, i.e., Equation (5).
According to DRF, we could get the final memberships
of each category and thus infer the overall uncertainty by
Equation (6).

3.2.4. LOSS FUNCTION

To ensure that all views can simultaneously form reasonable
decisions and thus improve the overall performance, we
use a multi-task strategy with the following overall loss
function:

Ltotal = Lccl(r
a,y) +

V∑
v=1

Lccl(r
v,y). (9)

The pseudo-code of our FUML can be found in the Ap-
pendix B.3.

3.3. Discussion and Analyses

In this section, we analyze the advantages of FUML, espe-
cially the conflicting view fusion. The following proposi-
tions provide the theoretical analysis to support the conclu-
sions. The proofs are shown in the Appendix A.

Proposition 3.4. For the i-th multi-view instance, when a
clean view 1 with uncertainty u1

i is fused with a conflict-
ing view 2 caused by noise with uncertainty u2

i , the fused
uncertainty ua

i > u1
i .

Proposition 3.5. For the i-th multi-view instance, when a
clean view 1 with uncertainty u1

i is fused with a conflicting
view 2 caused by misalignment with uncertainty u2

i , the
fused uncertainty ua

i > u1
i and ua

i > u2
i .

Based on Proposition 3.4 and Proposition 3.5, during the
multi-view fusion stage, our FUML achieves more accurate
uncertainty estimation when fusing with a conflicting view.

Intuitive explanation of the effectiveness of FUML. With-
out loss of generality, we assume that view XA is clean,
view XB is noisy due to unknown environmental factors
or sensor failure, and view XC is misaligned with other
views for similar reasons. At this time, XA aligns with the
distribution of clean training data, whereas view XB devi-
ates significantly from it. Accordingly, we have uA ⩽ uB

and oA ⩽ oB , leading to wA ⩾ wB . Therefore, in our
FUML framework, the multi-view decision will tend to rely
more on the high-quality view XA than on the noisy view
XB . In addition, although the uncertainty of view XC is
not as high as that of view XB , its relative view XC has
a higher conflict with other views. Accordingly, we have
uA ≈ uC and oA ⩽ oC thus wA ⩾ wC . Therefore, for
our method, the multi-view decision will tend to rely more
on the low-conflict view XA than the view XC . As for the
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weight between views XB and view XC , it is related to the
comprehensive consideration of its uncertainty and conflict.
By dynamically determining the fusion weights of each
view, FUML effectively mitigates the influence of noisy and
misaligned views, i.e., conflicting views, embracing robust
classification for conflicting multi-view instances.

4. Experiments
4.1. Experimental Setup

We briefly present the experimental setup here, including
the experimental datasets and comparison methods. Please
refer to Appendix B for more detailed setup. The code of
our FUML is available here1.

Datasets. To validate the effectiveness of the proposed
FUML, we conduct experiments on eight public datasets:
Handwritten (HW)2, MSRC-V1 (MSRC) (Winn & Jojic,
2005), NUS-WIDE-OBJ (NUSOBJ)3, Fashion-MV (Fash-
ion) (Wang et al., 2023), Scene15 (Scene)4, LandUse (Yang
& Newsam, 2010), Leaves100 (Leaves)5, and PIE6. The
training set and the test set are split in a ratio of 8:2. The
detailed information is shown in Table 1.

To create a test set with conflicting instances, following the
methodology outlined in (Xu et al., 2024a), we apply two
transformations: (1) We add Gaussian noise with different
standard deviations to some test instances. (2) We alter
the information in a random view for a subset of instances,
making the view’s label inconsistent with the true label.

Table 1. A summary of datasets used for evaluation.
DATASET SIZE CATEGORIES DIMENSIONALITY

HW 2000 10 240; 76; 216; 47; 64; 6
MSRC 210 7 1302; 48; 512; 100; 256; 210
NUSOBJ 30000 31 65; 226; 145; 74; 129
FASHION 10000 10 784; 784; 784
SCENE 4485 15 20; 59; 40
LANDUSE 2100 21 20; 59; 40
LEAVES 1600 100 64; 64; 64
PIE 680 68 484; 256; 279

Evaluation metrics. Owing to the inherent randomness,
we report the mean accuracy and standard deviation across
10 different random seeds. Additionally, the improvements
over the best-performing baseline are also reported.

Compared methods. For a comprehensive comparison,
we adopted the following baselines: (1) The untrusted

1https://github.com/siyuancncd/FUML
2https://archive.ics.uci.edu/ml/datasets/Multiple+Features
3https://lms.comp.nus.edu.sg/wp-content/uploads/2019/
4https://doi.org/10.6084/m9.figshare.7007177.v1
5https://archive.ics.uci.edu/dataset/241/one+hundred+plant+

species+leaves+data+set
6http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/MultiPie/

Home.html

baselines, i.e., can’t provide decision uncertainty, include:
DFTMC (Han et al., 2022a), DCP(CV&CG) (Lin et al.,
2022), QMF (Zhang et al., 2023), and PDF (Cao et al.,
2024). (2) The trusted baselines include: DUA-Nets (Geng
et al., 2021), TMC (Han et al., 2020), ETMC (Han et al.,
2022b), TMDL-OA (Liu et al., 2022), UIMC (Xie et al.,
2023), ECML (Xu et al., 2024a), TMNR (Xu et al., 2024b),
and CCML (Liu et al., 2024).

4.2. Comparison with State-of-the-Art Methods

To evaluate the performance of our FUML, we apply multi-
view classification on eight datasets over 10 different ran-
dom seeds. The experimental results of the normal and
conflicting test sets are shown in Table 2 and Table 3, re-
spectively. Note that DFTMC does not converge on the
NUSOBJ and Fashion datasets, so we can’t report its re-
sults and mark with ‘-’. The following key observations
can be made from these results: (1) On the normal test
sets, FUML outperforms all baselines on all datasets. For
instance, on the Scene, Leaves, and PIE datasets, FUML
achieves an accuracy improvement of 1.62%, 1.59%, and
1.47% compared to the second-best baselines. (2) When
the performance is compared on the conflicting test sets,
all methods exhibit a noticeable drop in accuracy. How-
ever, FUML consistently achieves superior performance,
with particularly larger improvements on the Scene, Lan-
dUse, and Leaves datasets (4.83%, 7.31%, and 14.60%,
respectively). This could be attributed to the proposed dual-
reliable multi-view fusion, which improves the robustness
to conflicting multi-view instances by reducing the weights
of noisy and unaligned views during fusion, as verified by
the ablation studies in Section 4.5. More comprehensive
conflicting multi-view classification results and analysis can
be found in Appendix C.1.

4.3. Uncertainty Effectiveness Analysis

To validate the effectiveness of our FUML in estimating un-
certainty for conflicting multi-view instances, we compare
it with two typical EDL-based TMVC methods, i.e., ETMC
and ECML, using the uncertainty density map. The results,
shown in Figure 3, reveal the following observations: (1)
Compared to the normal test set, the uncertainty of ETMC
and ECML barely changed with the addition of conflicting
views, and even decreased on the LandUse dataset. How-
ever, as can be seen from Table 2 and Table 3, for ETMC
and ECML, the addition of conflicting views greatly reduces
the classification accuracy. Therefore, their uncertainty es-
timates for conflicting multi-view instances are inaccurate.
(2) In contrast, the uncertainty estimated by FUML is no-
tably higher for conflicting test sets than for normal ones,
demonstrating the accuracy of FUML in estimating uncer-
tainty since it can facilitate discrimination between normal
and conflicting instances. The corresponding quantitative
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Table 2. Accuracy (%) performance on normal test sets. The best and the second-best results are highlighted in boldface and underlined
respectively. The means and standard deviations over ten runs are reported. The methods marked with ’⋆‘ are trusted.

METHODS. HW MSRC NUSOBJ FASHION SCENE LANDUSE LEAVES PIE

DFTMC 98.75±0.39 96.90±2.14 - - 63.10±3.60 34.95±1.69 69.92±2.54 91.40±3.50
DCP-CV 98.75±0.59 92.86±2.61 32.19±9.48 97.96±0.16 76.70± 2.15 71.71±2.09 95.62±1.38 86.32±4.87
DCP-CG 99.00±0.47 95.24±3.69 43.65±1.10 98.11± 0.23 77.79±1.73 75.74±0.98 98.19±0.46 90.59±1.99
QMF 98.72±0.48 97.86±1.28 45.41±0.43 98.93±0.32 68.58±1.49 47.86±2.55 95.69±1.25 92.06±1.64
PDF 98.40±0.37 97.14±1.78 46.78±0.33 98.95±0.19 70.25±1.21 45.17±2.66 98.03±0.71 92.57±1.66

DUA-NETS⋆ 98.10±0.32 84.67±3.03 27.75±0.00 91.08±0.17 65.01±1.55 45.24±1.85 90.31±1.25 90.56±0.47
TMC⋆ 98.51±0.15 91.70±2.70 38.77±0.81 95.40±0.40 67.71±0.30 31.69±3.93 86.81±2.20 91.85±0.23
ETMC⋆ 98.75±0.00 92.86±3.01 44.23±0.76 96.21±0.36 71.61±0.28 43.52±3.19 91.44±2.39 93.75±1.08
TMDL-OA⋆ 98.55±0.45 95.00±1.67 27.88±0.67 86.52±0.04 75.57±0.02 25.02±2.10 75.28±3.57 92.33±0.36
UIMC⋆ 98.25±0.00 98.81±1.19 43.42±0.12 98.13±0.13 77.70±0.00 57.95±0.61 95.31±0.71 91.69±2.16
ECML⋆ 98.72±0.39 94.05±1.60 42.62±0.42 97.93±0.35 76.19±0.12 60.10±2.01 92.53±1.94 94.71±0.02
TMNR⋆ 97.20±0.63 94.05±3.24 34.52±0.85 94.10±0.50 68.10±1.15 27.38±1.88 90.13±1.53 89.53±1.89
CCML⋆ 97.60±0.62 96.90±2.39 41.43±0.71 95.16±0.41 73.87±1.83 60.86±1.93 97.72±0.92 93.97±1.67

FUML⋆ 99.20±0.36 99.76±0.75 48.23±0.42 98.96±0.25 79.41±1.34 76.71±0.46 99.78± 0.27 96.18±1.24
IMPROVE ∆ 0.20 ∆ 0.95 ∆ 1.45 ∆ 0.01 ∆ 1.62 ∆ 0.97 ∆ 1.59 ∆ 1.47

Table 3. Accuracy (%) performance on conflicting test sets. The best and the second-best results are highlighted in boldface and underlined
respectively. The means and standard deviations over ten runs are reported. The methods marked with ’⋆‘ are trusted.

METHODS HW MSRC NUSOBJ FASHION SCENE LANDUSE LEAVES PIE

DFTMC 53.65±20.07 60.24±23.45 - - 36.01± 2.78 7.88±0.94 1.10±0.12 3.97±0.82
DCP-CV 98.20±0.56 84.76±7.00 28.10±7.80 92.72±2.41 66.22±2.12 59.98±1.93 76.94±1.36 67.06±2.15
DCP-CG 98.70±0.64 90.00±1.78 38.61±1.29 90.38±2.17 66.44±0.32 61.83±2.48 79.06±1.22 69.56±3.77
QMF 97.52±0.86 95.95±1.52 42.72±0.67 92.69±0.78 59.53±1.63 40.17±2.67 77.47±1.46 82.50±2.81
PDF 94.35±1.21 94.52±3.02 43.57±0.36 90.73±0.53 58.75±1.03 39.40±1.94 76.34±1.26 74.93±2.76

DUA-NETS⋆ 87.16±0.34 78.57±4.45 25.64±0.25 83.03±0.18 26.18±1.31 37.22±0.56 65.62±2.19 56.45±1.75
TMC⋆ 92.76±0.15 86.20±4.90 36.00±0.78 84.76±0.78 42.27±1.61 19.67±1.88 70.25±2.55 61.65±1.03
ETMC⋆ 93.85±1.26 87.14±4.54 40.45±0.81 86.48±1.05 56.90±1.70 36.05±2.50 74.19±1.74 73.82±4.77
TMDL-OA⋆ 92.45±0.05 84.52±2.20 27.02±0.75 74.55±0.07 48.42±1.02 21.71±1.83 62.28±3.70 68.16±0.34
UIMC⋆ 97.72±0.18 96.43±1.19 41.72±0.31 89.71±0.25 67.88±0.48 50.43±0.46 79.84±0.92 70.66±2.04
ECML⋆ 94.52±0.79 90.00±2.78 39.89±0.59 84.02±0.51 56.97±0.52 50.31±1.81 74.88±1.89 84.00±0.14
TMNR⋆ 92.78±1.01 90.71±4.19 30.88±0.58 85.76±0.81 60.00±1.43 23.95±1.92 74.09±1.99 80.59±3.26
CCML⋆ 93.22±1.09 94.29±2.18 37.38±0.65 83.84±1.01 62.08±1.34 52.48±2.74 78.87±2.31 83.24±2.79

FUML⋆ 98.78±0.36 98.81±1.60 47.08±0.32 96.68±0.32 72.71±1.75 69.14±2.43 94.44±1.18 88.01±2.53
IMPROVE ∆ 0.08 ∆ 2.38 ∆ 3.51 ∆ 3.96 ∆ 4.83 ∆ 7.31 ∆ 14.60 ∆ 4.01
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Figure 3. Density of uncertainty on the normal and conflicting test sets of the Fashion and LandUse datasets.
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Figure 4. Accuracy with uncertainty thresholding.
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Figure 5. Prediction error with different epochs.

results can be found in Appendix C.2.

Additionally, to observe the trend of classification accuracy
of FUML as the uncertainty threshold varies, we plot Fig-
ure 4. It illustrates that FUML achieves significantly more
accurate predictions as the prediction uncertainty decreases
for both normal and conflicting test sets on all eight datasets.
This demonstrates that our model’s output, i.e., classification
results and the corresponding uncertainty, supports making
trusted decisions.

4.4. Multi-view Fusion Effectiveness Evaluation

To evaluate the effectiveness of our FUML for multi-view
fusion, we compare the prediction error of multi-view learn-
ing results (depicted as a red line, labeled “Multi-view”)
with the prediction error of each single-view learning re-
sult on the Fashion and LandUse datasets. As shown in
Figure 5, the prediction error of the multi-view is consis-
tently lower than that of any single-view in the proposed
method, demonstrating that it effectively reduces prediction
error by integrating multiple views to achieve more accurate
results. Results for the other six datasets are provided in
Appendix C.3.

4.5. Ablation Study

To demonstrate the effectiveness of each component of our
FUML, we perform an ablation study on the conflicting
test set of the Fashion and LandUse datasets with mean
accuracy (Acc.), mean precision (Prec.), and mean F-score

Table 4. Ablation study on the conflicting test sets of the Fashion
and LandUse datasets with all metrics in percentages (%).

METHOD FASHION LANDUSE

La
ccl Lv

ccl RULE ACC. ↑ PREC. ↑ F-SCORE ↑ ACC. ↑ PREC. ↑ F-SCORE ↑
√

× DRF 96.33 96.31 96.30 68.00 68.72 67.53
×

√
DRF 96.32 96.32 96.30 67.76 68.41 67.33

√
× CONCAT 88.45 88.28 88.75 59.69 60.54 58.54√ √

AVG 96.15 96.13 96.13 67.71 68.22 67.42
√ √

DRF 96.68 96.68 96.68 69.14 70.21 69.19
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Figure 6. Visualization of aggregated memberships on the training
set of LandUse dataset by t-SNE (Van der Maaten & Hinton, 2008).
Samples belonging to the same category are rendered with the
same color. (a) Display the results of fused memberships. (b)-(c)
demonstrate the results of fused memberships after the samples
with uncertainty greater than 0.8 and 0.6 are removed, respectively.

over 10 seeds. To be specific, we calculate metrics for
each label and find their unweighted mean for precision and
F-score. In addition, for simplicity, in this section, we rep-
resent Lfcl(r

a,y) as La
ccl and represent

∑V
v=1 Lfcl(r

v,y)
as Lv

ccl. The results, presented in Table 4, reveal: (1) Af-
ter removing La

ccl or Lv
ccl, all indicators decline to varying

degrees, which shows that all components in the total loss
function are indispensable. (2) When performing feature-
level fusion, i.e., concatenating (Concat) all features and
only using one DNN for prediction, performance declines
significantly. (3) Compared to the arithmetic mean (Avg),
our DRF fusion demonstrates superior performance. In
summary, all components of FUML are indispensable. Ad-
ditional ablation experimental results on the normal test set
can be found in Appendix C.4.

4.6. t-SNE Visualization and Analysis.

We employ the t-SNE approach to embed the fused mem-
berships of the training set from the LandUse dataset into a
two-dimensional visualization plane, as shown in Figure 6.
The results demonstrate: (1) Distinct categories occupy dif-
ferent Spaces, and are well distinguished, indicating that
FUML learns discriminative information. (2) After filtering
out samples with uncertainty greater than 0.8 and 0.6, the
category boundaries gradually become more distinct. These
improvements are attributed to the effective uncertainty esti-
mation capability of FUML.
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5. Conclusion
This paper presents the Deep Fuzzy Multi-view Learning
method (FUML), a novel multi-view classification frame-
work designed to accurately classify conflicting multi-view
instances and precisely estimate their intrinsic uncertainty.
Based on the Fuzzy Set Theory, our FUML models the out-
puts of classification neural networks as a set of fuzzy mem-
berships and quantifies category credibility by incorporating
both possibility and necessity measures. To optimize cate-
gory credibility, we propose a category credibility learning
loss. In addition, we propose a Dual-reliable Fusion (DRF)
strategy, which assigns weights based on view-specific un-
certainty and inter-view conflict that effectively mitigates
the influence of conflicting views. Extensive experiments on
eight public datasets demonstrate FUML’s superiority over
13 state-of-the-art methods in terms of accuracy, robustness,
and reliability, particularly in challenging scenarios with
conflicting views.
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APPENDIX
This document provides mathematical proofs, additional experimental details, additional experimental results, and limitations
to support the paper:

• In Appendix A, we provide mathematical proofs for all propositions presented in Section 3.3.

• In Appendix B, we present comprehensive experimental documentation:

– Datasets Details in Appendix B.1
– Baselines Details in Appendix B.2
– Implementation Details in Appendix B.3

• In Appendix C, we conduct extensive supplementary analyses through nine investigations:

– Additional Conflicting Multi-view Classification Results and Analysis in Appendix C.1
– Additional Uncertainty Effectiveness Analysis in Appendix C.2
– Additional Multi-view Fusion Effectiveness Analysis in Appendix C.3
– Additional Ablation Study in Appendix C.4
– Identification of Out-of-distribution in Appendix C.5
– Parameter Analysis in Appendix C.6
– Challenges of DST in ECML in Appendix C.7
– Conflict Visualization in Appendix C.8
– Adversarial Noise Effect Analysis in Appendix C.9

• In Appendix D, we discuss the limitations of our FUML.

A. Proofs
A.1. Proof of Proposition 3.4

Proof. Without loss of generality, for the i-th multi-view instance, let m1
i =

[
m1

i1,m
1
i2, ...,m

1
iK

]
denote the sorted

memberships of a clean view X 1
i , i.e., m1

i1 ⩾ m1
i2 ⩾, ...,m1

iK , and m2
i =

[
m2

i1,m
2
i2, ...,m

2
iK

]
denote sorted memberships

of another noisy view X 2
i . We assume that m1

i1 −m1
ik ⩾ m2

i1 −m2
ik, k = 2, 3, ...,K. Therefore, we have

c1i1 =
m1

i1 + 1−m1
i2

2
,

c1ik =
m1

ik + 1−m1
i1

2
, k = 2, 3, ...,K,

u1
i =

H(
m1

i1+1−m1
i2

2 ) +
∑K

k=2 H(
m1

ik+1−m1
i1

2 )

K · ln 2
,

(10)

where H(t) = −t · ln(t)− (1− t) · ln(1− t). Because t = 0.5 is the symmetry axis of H(t), we have

u1
i =

H(
m1

i1−m1
i2+1

2 ) +
∑K

k=2 H(
m1

i1−m1
ik+1

2 )

K · ln 2
(11)

After fusing view X 1
i and X 2

i , we have

ma
ik = w1

i ·m1
ik + w2

i ·m2
ik, k = 2, 3, ...,K, (12)

where ma
i denotes the fused memberships, and w1

i > 0 and w2
i > 0 represent the weights of view X 1

i and X 2
i , respectively.

Therefore, we have

ma
i1 −ma

i2 = w1
i · (m1

i1 −m1
i2) + w2

i · (m2
i1 −m2

i2) < m1
i1 −m1

i2,

ma
i1 −ma

ik = w1
i · (m1

i1 −m1
ik) + w2

i · (m2
i1 −m2

ik) < m1
i1 −m1

ik, k = 2, 3, ...,K,
(13)

12



Deep Fuzzy Multi-view Learning for Reliable Classification

and

H(
ma

i1 −ma
i2 + 1

2
) > H(

m1
i1 −m1

i2 + 1

2
),

H(
ma

i1 −ma
ik + 1

2
) > H(

m1
i1 −m1

ik + 1

2
), k = 2, 3, ...,K.

(14)

Therefore, we have

ua
i =

H(
ma

i1−ma
i2+1

2 ) +
∑K

k=2 H(
ma

i1−ma
ik+1

2 )

K · ln 2
>

H(
m1

i1−m1
i2+1

2 ) +
∑K

k=2 H(
m1

i1−m1
ik+1

2 )

K · ln 2
= u1

i . (15)

A.2. Proof of Proposition 3.5

Proof. Without loss of generality, for the i-th multi-view instance, let m1
i =

[
m1

i1,m
1
i2, ...,m

1
iK

]
denote the memberships

of a clean view X 1
i , and m2

i =
[
m2

i1,m
2
i2, ...,m

2
iK

]
denote the memberships of another clean but misaligned view X 2

i . We
assume that the view X 1

i is of the p-th category and the view X 2
i is of the q-th category. Therefore, we can assume that

m1
ip ≫ m1

ih, ∀h ̸= p,

m2
iq ≫ m2

id, ∀d ̸= q,

m1
ip ≈ m2

iq.

(16)

After that, for view X 1
i we have

c1ip =
m1

ip + 1−max{m1
ih|h ̸= p}

2
,

c1ih =
m1

ih + 1−m1
ip

2
.

(17)

Then,

u1
i =

H(c1ip) +
∑

h̸=p H(c1ih)

K · ln 2
=

H(
m1

ip+1−max{m1
ih|h̸=p}

2 ) +
∑

k ̸=p H(
m1

ih+1−m1
ip

2 )

K · ln 2
, (18)

where H(t) = −t · ln(t)− (1− t) · ln(1− t). Because t = 0.5 is the symmetry axis of H(t), we have

u1
i =

H(
m1

ip+1−max{m1
ih|h̸=p}

2 ) +
∑

h̸=p H(
m1

ip+1−m1
ih

2 )

K · ln 2
, (19)

Meanwhile, for view X 2
i , we have

u2
i =

H(
m2

iq+1−max{m2
ih|d̸=q}

2 ) +
∑

d ̸=q H(
m2

iq+1−m2
id

2 )

K · ln 2
. (20)

After fusing view X 1
i and X 2

i , because m1
ip ≈ m2

iq ≫ m1
iq,m

2
ip,m

1
ik,m

2
ik, k ̸= p and k ̸= q, we have

ua
i =

H(
ma

ip+1−ma
iq

2 ) +H(
ma

iq+1−ma
ip

2 ) +
∑

k ̸=p,k ̸=q H(
ma

ik+1−ma
ip

2 )

K · ln 2
,

≈
2 · ln 2 +

∑
k ̸=p,k ̸=q H(

ma
ip+1−ma

ik

2 )

K · ln 2

(21)

Next, we prove that ua
i > u1

i . Specifically, we have

ma
ip −ma

ik = w1
i · (m1

ip −m1
ik) + w2

i · (m2
ip −m2

ik), (22)
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where w1
i ∈ (0, 1) and w2

i ∈ (0, 1) represent the weights of view X 1
i and X 2

i , respectively. In addition, we have w1
i +w2

i = 1.
Because m1

ip > m2
iq ≫ m1

iq,m
2
ip,m

1
ik,m

2
ik, k ̸= p and k ̸= q, we can deduce that

m2
ip −m2

ik < ma
ip −ma

ik < m1
ip −m1

ik,∀k ̸= p. (23)

Therefore,

H(
m1

ip + 1−m1
ik

2
) < H(

ma
ip + 1−ma

ik

2
). (24)

Then, we can deduce that

H(
m1

ip + 1−max{m1
ik|k ̸= p}

2
) ≪ H(

1

2
) = ln 2. (25)

Combine Equations (19), (21), (24) and (25), we can deduce that

u1
i =

H(
m1

ip+1−max{m1
ih|h̸=p}

2 ) +
∑

h̸=p H(
m1

ip+1−m1
ih

2 )

K · ln 2
<

2 · ln 2 +
∑

k ̸=p,k ̸=q H(
ma

ip+1−ma
ik

2 )

K · ln 2
= ua

i . (26)

Similarly, ua > u2 can also be easily proved.

B. Experimental Details
B.1. Datasets Details

The multi-view data used in this paper include:

• HandWritten (HW) 7 comprises 2000 instances of handwritten numerals ranging from ’0’ to ’9’, with 200 patterns
per class, represented using six feature sets.

• MSRC-V1 (MSRC) (Winn & Jojic, 2005) contains 210 images. Each image includes 7 classes. Following (Nie et al.,
2017), we extract five features, including CM, HOG, GIST, CENTRIST feature, and LBP.

• NUS-WIDE-OBJECT8 (NUSOBJ) consists of 30,000 images of 31 classes. Each instance is described as 5 views,
including Color Histogram, block-wise Color Moments, Color Correlogram, Edge Direction Histogram, and Wavelet
Texture.

• Fashion-MV (Fashion) (Wang et al., 2023) is an image dataset that contains 10 categories with a total of 30,000 fashion
products. It has three views, each consisting of 10,000 grayscale images sampled from the same category.

• Scene15 (Scene)9 includes 4485 images from 15 indoor and outdoor scene categories, with features extracted using
GIST, PHOG, and LBP.

• LandUse (Yang & Newsam, 2010) contains 2100 satellite images with 3 views and 21 categories.

• Leaves100 (Leaves)10 consists of 1600 leaf samples from 100 plant species. We extracted shape descriptors, fine-scale
edges, and texture histograms as 3 views.

• PIE11 contains 680 instances belonging to 68 classes, with intensity, LBP, and Gabor as 3 views.

7https://archive.ics.uci.edu/ml/datasets/Multiple+Features
8https://lms.comp.nus.edu.sg/wp-content/uploads/2019/
9https://doi.org/10.6084/m9.figshare.7007177.v1

10https://archive.ics.uci.edu/dataset/241/one+hundred+plant+species+leaves+data+set
11http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/MultiPie/Home.html
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B.2. Baselines Details

We compare the proposed FUML with the following baselines:

(1) The untrusted baselines include:

• DFTMC (Dynamical Fusion for Trustworthy Multimodal Classification) (Han et al., 2022a) captures both feature and
modality informativeness, proposing a dynamical fusion network for trustworthy multimodal classification.

• DCP (Dual Contrastive Prediction) (Lin et al., 2022) Provides an information-theoretic framework integrating consis-
tency learning and data recovery, imputing missing views by minimizing conditional entropy through dual prediction.

• QMF (Quality-aware Multimodal Fusion) (Zhang et al., 2023) improves classification accuracy and model robustness
by a provably robust multimodal fusion method.

• PDF (Predictive Dynamic Fusion) (Cao et al., 2024) reveals the multimodal fusion from a generalization perspective,
improving reliability and stability.

(2) The trusted baselines include:

• DUA-Nets (Dynamic Uncertainty-Aware Networks) (Geng et al., 2021) utilizes reversal networks to integrate intrinsic
information from different views into a unified representation.

• TMC (Trusted Multi-view Classification) (Han et al., 2020) pioneers addressing the uncertainty estimation problem in
multi-view classification and producing trusted classification results.

• ETMC (Enhanced Trusted Multi-view Classification) (Han et al., 2022b) extends TMC by incorporating a pseudo
view, enabling comprehensive interaction among different views.

• TMDL-OA (Trusted Multi-View Deep Learning with Opinion Aggregation) (Liu et al., 2022) proposes a consistency
measure loss to achieve trustworthy learning results.

• UIMC (Uncertainty-induced Incomplete Multi-View Data Classification) (Xie et al., 2023) uses uncertainty-based
imputation and evidence-based fusion for reliable classification of incomplete multi-view data.

• ECML (Evidential Conflictive Multiview Learning) (Xu et al., 2024a) is the SOTA method for conflict multi-view
classification, which proposes a new opinion aggregation strategy.

• TMNR (Trusted Multi-view Learning with Label Noise) (Xu et al., 2024b) is a reliable multi-view learning model
under the guidance of noisy labels.

• CCML (Consistent and Complementary-aware trusted Multi-view Learning) (Liu et al., 2024) solves the problem of
data semantic fuzziness in multi-view learning by dynamically decoupling consistency and complementary evidence,
thus improving the accuracy and reliability of classification.

B.3. Implementation Details

All experiments are implemented in PyTorch and are carried out on NVIDIA Tesla V100S. During the training phase, our
FUML uses Adam (Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.999, a weight decay of 0.0001, and a maximum of 500
epochs. The p in Equation (3) is set to 3. For the NUSOBJ and Fashion datasets, the learning rate is set to 0.0002 and
the batch size to 400, while for the remaining six datasets, the learning rate is set to 0.001 and the batch size to 100. The
pseudo-code of FUML is shown in Algorithm 1. In addition, for a fair comparison, we replace the backbone networks of
QMF (Zhang et al., 2023) and PDF (Cao et al., 2024) with the same fully connected layer as FUML while preserving their
core models and loss functions. For other baselines, we follow the settings in their source code.
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Algorithm 1 FUML algorithm

/*Training*/
Input: the multi-view training data {{xv

n}Vv=1,yn}Nn=1, batch size Nb, maximal epoch number Ne, learning rate η, and
the multi-view model {fv(·, θv)}Vv=1.
Output: optimized network parameters {θv}Vv=1.
for 1, 2, · · ·, Ne do

Randomly select Nb samples from every view to construct a multi-view mini-batch.
Calculate the output {{avj}

Nb
j=1}Vv=1 for all samples of the mini-batch by using their corresponding model

{fv(·, θv)}Vv=1.
Calculate view-specific memberships {mv}Vv=1 by Equation (3).
Calculate credibility degrees during training {rv}Vv=1 by Equation (5).
Calculate category credibility during training by Equation (5) and aggregate memberships by Equation (8).
Compute Ltotal according to Equation (9) on minibatch.
Update FUML parameters {θi}Vi=1 using gradient descent algorithm with learning rate η.

end for
/*Testing*/
Calculate the view-specific memberships by the trained model.
Calculate category credibility by Equation (2) and fuse memberships by Equation (8).

C. Additional Experiments
C.1. Additional Conflicting Multi-view Classification Results and Analysis

To further assess the performance of our FUML in conflicting multi-view classification, we compare it against the three best-
performing untrusted multi-view classification methods, i.e., DCP-CG, QMF, and PDF, as well as the three best-performing
trusted multi-view classification methods, i.e., UIMC, ECML, and CCML. Each method is evaluated over 10 runs, and the
mean values along with standard deviations are reported.

Table 9 presents the experimental results where Gaussian noise with a mean of 0 and variances of 1, 5, and 10 is randomly
added to half of the views in half of the test sets. Similarly, Table 10 illustrates the results of adding Gaussian noise with
a mean of 0 and a variance of 1 to half of the views in randomly selected 10%, 20%, 30%, 40%, and 50% of the test set.
Finally, Table 11 displays the experimental results of introducing unaligned views to half of the views in randomly selected
10%, 20%, 30%, 40%, and 50% of the test sets. These results indicate that our FUML surpasses nearly all comparison
methods across various conflict settings, highlighting its effectiveness in conflicting multi-view classification.

C.2. Additional Uncertainty Effectiveness Analysis

In Section 4.4 and Figure 3, we provide qualitative results on uncertainty estimation, and to complement them, we report
here the quantitative results. Results are shown in Table 5, which demonstrate that our FUML is more effective than ETMC
and ECML in uncertainty estimation.

Table 5. Quantitative results of uncertainty estimation. The normal test sets serve as in-distribution, while the conflicting test sets serve as
out-of-distribution. The evaluation metric is FPR95, where lower values indicate better performance. The best results are highlighted in
boldface.

DATASET
METHOD

ETMC ECML FUML (OURS)

FASHION 0.930 0.967 0.510
LANDUSE 0.964 0.945 0.886
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C.3. Additional Multi-view Fusion Effectiveness Analysis

In this section, we present additional experimental results for analyzing the effectiveness of multi-view fusion. As shown in
Figure 7, the prediction error of the multi-view approach is consistently lower than that of any single view in the proposed
method. These results confirm that our method effectively reduces prediction error by integrating multiple views to achieve
more accurate results, aligning with the observations reported in Section 4.4.
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Figure 7. Prediction error with different epochs.

C.4. Additional Ablation Study

In this section, we report the additional ablation experimental results: (1) Results in Table 6 show that all components
contribute positively to performance. Compared to Concat (i.e., concatenate all view features) and Avg (i.e., ma

i =

(
∑V

v=1 m
v
i )/V ), DRF is more effective on conflicting test sets than on normal test sets. (2) To evaluate the role of necessity,

we removed the necessity in FUML and only used conflicts in the fusion process. Results in Table 7 prove that necessity
can’t be removed. (3) To further evaluate the role of uncertainty and conflict in DRF, we conduct more detailed ablation
experiments. Results in Table 8 show that removing uncertainty (u) or conflict (c) in DRF leads to performance degradation,
indicating the effectiveness of considering both uncertainty and conflict.

Table 6. Classification accuracy (ACC), Precision (Prec.), and F-score of FUML with different combination rules on the normal and
conflicting test sets. All metrics are expressed as percentages (%). The best results are highlighted in boldface.

METHOD
DATASET FASHION (NORMAL) LANDUSE (NORMAL) FASHION (CONFLICTING) LANDUSE (CONFLICTING)

La
ccl Lv

ccl RULE ACC↑ PREC.↑ F-SCORE↑ ACC↑ PREC.↑ F-SCORE↑ ACC↑ PREC.↑ F-SCORE↑ ACC↑ PREC.↑ F-SCORE↑
√

× DRF 98.66 98.66 98.48 76.29 76.89 76.09 96.33 96.31 96.30 68.00 68.72 67.53
×

√
DRF 98.73 98.73 98.73 75.71 76.14 75.24 96.32 96.32 96.30 67.76 68.41 67.33

√
× CONCAT 95.71 95.71 95.70 72.26 72.44 71.55 88.45 88.28 88.75 59.69 60.54 58.54√ √

AVG 98.50 98.51 98.51 76.19 77.14 76.07 96.15 96.13 96.13 67.71 68.22 67.42
√ √

DRF 98.96 98.97 98.96 76.71 77.57 76.48 96.68 96.68 96.68 69.14 70.21 69.19
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Table 7. Classification accuracy (%) on the normal and conflicting test set of the Fashion and LandUse datasets. The means and standard
deviations over ten runs are reported. The best results are highlighted in boldface.

METHOD
DATASET FASHION (NORMAL) LANDUSE (NORMAL) FASHION (CONFLICTING) LANDUSE (CONFLICTING)

W/O NECESSITY 97.70±0.41 44.64±3.65 94.91±0.47 39.00±3.29
OURS 98.96±0.25 76.71±0.46 96.68±0.32 69.14±2.43

Table 8. Classification accuracy (%) on the conflicting test set of the Fashion and LandUse datasets. The means and standard deviations
over ten runs are reported. The best results are highlighted in boldface.

METHOD
DATASET

FASHION LANDUSE

AVG 96.15±0.22 67.71±2.30
1− uv

i 96.27±0.22 68.14±2.47
1− cvi 96.43±0.32 68.50±2.02
OURS 96.68±0.32 69.14±2.28

C.5. Identification of Out-of-distribution

This section presents out-of-distribution (OOD) detection results for FUML across all datasets. To validate the effectiveness
of our FUML as a trusted method in data noise identification, we add Gaussian noise with fixed standard deviation
(δ = 0.1, 0.5, 1.0) to all of the test samples in the test sets, creating OOD samples. In contrast, the remaining data were
treated as in-distribution (ID) samples. The results are shown in Figure 8, indicating that ID samples exhibit consistently
lower uncertainty relative to OOD samples across all eight datasets. Moreover, OOD samples with greater Gaussian noise
deviation generally demonstrate higher uncertainty. Additionally, datasets with higher prediction accuracy (e.g., HW,
MSRC, Fashion, Leaves, and PIE) exhibit lower overall uncertainty, whereas datasets with lower prediction accuracy, such
as NUSOJB, Scene, and LandUse, tend to display higher uncertainty. These results demonstrate that FUML effectively
measures uncertainty, thereby ensuring the reliability of the model’s decisions.
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Figure 8. Density of uncertainty.
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C.6. Parameter Analysis

To investigate the parameter sensitivity of our method, we plot the accuracy, precision, and F-score of multi-view classification
versus different p on the test sets of all the datasets as shown in Figure 9. The results show that in all datasets, the accuracy,
precision, and F-score all increase first and then decrease with the increase of p. In general, performance is best when p is
within 2-5. In this paper, we set p to 3 on all datasets. If we adjust the p value in our model, we believe our FUML will
improve over what is reported in the Table 2 and Table 3.
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Figure 9. The influence of p.

C.7. Challenges of DST in ECML

In evidential deep learning, the outputs of the classification neural network are modeled as evidence. Here, we define the
evidence vector for v-th view as ev = [ev1, ..., e

v
K ]. The parameter αv

k = [αv
1, ..., α

v
K ] of the Dirichlet distribution is induced

from evidence, i.e., αv
k = evk + 1. Then, the belief mass bvk and the uncertainty uv are computed as

bvk =
evk
Sv

=
αv
k − 1

Sv
, and uv =

K

Sv
, (27)

where Sv =
∑K

i=1(e
v
i+) =

∑K
i=1 α

v
i is the Dirichlet strength. Next, we analyze why the decision-level fusion in ECML (Xu

et al., 2024a) is order-dependent. In the ECML framework, it is established that fusing two opinions (w = (b,u,a)) could
be mathematically represented as averaging two pieces of evidence, using the following formula:

w = w1♢ w2♢ ...♢ wV . (28)

This formula is implemented in the code snippet:

evidence a = evidences[0]
for v in range(num views):

evidence a = (evidences[i] + evidence a) / 2

ECML essentially applies the D-S combination rule by sequentially merging evidence from different views. However, it has
a significant limitation: its decision-level fusion is order-dependent, where the later decision (here referring to evidence)
strongly influences the final decision. As a result, ECML is sensitive to the order of conflicting views, making the final
decision less reliable when contradictions arise between views. The proposed FUML uses uncertainty and conflict to
calculate weights and simultaneously fuses the decision of multiple views at the decision-level fusion, thus avoiding this
problem. The results are shown in the Table 12, confirming this.
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Table 9. We add Gaussian noise on random 50% modalities of 50% random samples in the test set and δ presents the standard deviation.
The means and standard deviations of classification accuracies (%) over ten runs are reported. The best results are highlighted in boldface.

DATASET METHOD δ = 0 δ = 1 δ = 5 δ = 10

HW

DCP-CG 99.00±0.47 98.02±0.52 96.40±1.28 93.40±1.12
QMF 98.72±0.48 94.85±0.99 77.32±1.46 71.23±1.56
PDF 98.40±0.37 95.40±0.98 78.92±1.65 73.55±1.68

UIMC 98.25±0.00 97.22±0.13 94.70±0.24 93.42±0.23
ECML 98.72±0.39 89.55±1.75 73.03±1.51 70.18±1.21
CCML 97.60±0.63 94.05±1.32 72.17±1.51 66.85±1.80

OURS 99.20±0.36 96.78±0.82 92.38±1.53 91.72±1.72

MSRC

DCP-CG 95.24±3.69 79.05±2.78 75.24±3.23 74.14±3.43
QMF 97.86±1.28 93.57±2.62 73.33±0.60 68.57±5.19
PDF 97.14±1.78 96.43±2.44 80.71±3.27 73.81±4.64

UIMC 98.81±1.19 97.21±1.29 94.71±1.78 93.29±1.90
ECML 94.05±1.60 83.33±3.53 68.33±3.38 65.95±3.85
CCML 96.90±2.39 91.90±1.90 73.33±7.59 66.43±6.16

OURS 99.76±0.75 98.10±2.33 95.00±2.49 94.29±3.05

NUSOBJ

DCP-CG 43.65±1.10 29.11±1.28 28.73±1.13 28.67±1.12
QMF 45.41±0.43 32.94±0.31 30.62±0.39 30.25±0.43
PDF 46.78±0.33 34.15±0.32 31.94±0.33 31.69±0.35

UIMC 43.42±0.12 40.97±0.12 36.67±0.13 35.85±0.19
ECML 42.62±0.42 31.59±0.65 30.33±0.53 29.91±0.48
CCML 41.43±0.71 29.96±0.87 28.01±0.67 27.75±0.65

OURS 48.23±0.42 41.49±0.49 41.20±0.54 41.16±0.55

FASHION

DCP-CG 98.11±0.23 86.77±2.10 82.45±2.67 82.24±2.66
QMF 98.93±0.32 93.05±0.48 71.88±0.72 69.94±0.69
PDF 98.95±0.19 93.16±0.59 79.83±0.81 73.28±0.70

UIMC 98.13±0.13 95.57±0.12 93.04±0.21 92.49±0.18
ECML 97.93±0.35 91.00±0.70 76.76±0.74 73.16±0.67
CCML 95.16±0.41 91.39±0.43 78.22±0.84 72.49±0.87

OURS 98.96±0.25 95.22±0.32 90.66±0.85 89.82±0.91

SCENE

DCP-CG 77.79±1.73 62.52±1.22 55.50±0.60 54.89±0.52
QMF 68.58±1.49 52.68±1.63 48.46±1.57 47.90±1.89
PDF 70.25±1.21 55.25±1.39 50.49±1.54 49.78±1.61

UIMC 77.70±0.00 72.32±0.56 66.35±0.65 65.63±0.72
ECML 76.19±0.12 58.08±1.34 57.66±1.86 57.09±1.91
CCML 73.87±1.83 51.43±2.10 47.87±1.60 47.50±1.66

OURS 79.41±1.34 70.14±2.27 69.11±2.24 68.97±2.25

LANDUSE

DCP-CG 75.74±0.98 55.05±1.66 53.76±1.08 53.57±0.93
QMF 47.86±2.55 35.36±2.65 33.38±2.56 33.43±2.75
PDF 45.17±2.66 36.21±2.17 34.64±1.74 34.31±1.71

UIMC 57.95±0.61 53.26±0.56 47.93±0.59 47.10±0.55
ECML 60.10±2.01 39.81±1.27 37.61±2.11 37.14±2.13
CCML 60.86±1.93 45.76±1.75 42.95±1.63 42.71±1.72

OURS 76.71±0.46 63.86±1.55 63.50±1.41 63.48±1.47

LEAVES

DCP-CG 98.19±0.46 65.38±1.22 65.31±1.20 65.21±1.31
QMF 95.69±1.25 74.16±2.08 64.75±2.06 64.06±2.20
PDF 98.03±0.71 77.62±2.42 68.34±1.85 66.94±2.07

UIMC 95.31±0.71 91.66±0.97 82.94±0.97 82.50±0.93
ECML 92.53±1.94 72.94±1.89 65.78±1.99 64.84±2.18
CCML 97.72±0.92 60.03±1.99 56.91±2.34 56.69±2.50

OURS 99.78±0.27 93.69±1.17 92.94±1.36 92.84±1.40

PIE

DCP-CG 90.59±1.99 61.18±3.40 61.18±3.40 61.18±3.40
QMF 92.06±1.64 75.51±2.61 63.64±3.05 62.79±3.11
PDF 92.57±1.66 77.35±3.29 65.81±3.67 63.90±2.95

UIMC 91.69±2.16 89.25±2.22 84.81±2.03 83.85±2.01
ECML 94.71±0.02 74.63±3.21 64.85±3.48 63.31±3.52
CCML 93.97±1.67 75.44±3.53 63.97±2.90 62.57±3.06

OURS 96.18±1.24 89.41±1.68 88.38±2.07 88.38±2.02
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Table 10. We add Gaussian noise with standard deviation 1 on 50% modalities in different proportions of the test sets. The means and
standard deviations of classification accuracies (%) over ten runs are reported. The best results are highlighted in boldface.

DATASET METHOD 0% 10% 20% 30% 40% 50%

HW

DCP-CG 99.00±0.47 98.45±0.37 98.45±0.37 98.25±0.34 98.15±0.45 98.02±0.52
QMF 98.72±0.48 97.58±0.79 96.75±0.72 96.20±0.84 95.67±0.90 94.85±0.99
PDF 98.40±0.37 97.82±0.55 97.22±0.64 96.60±0.90 96.02±0.97 95.40±0.98

UIMC 98.25±0.00 98.15±0.12 97.95±0.12 97.95±0.12 97.92±0.12 97.22±0.13
ECML 98.72±0.39 96.18±0.58 93.92±0.81 92.30±0.76 91.05±1.09 89.55±1.75
CCML 97.60±0.63 96.85±0.71 96.05±0.99 95.35±1.02 94.82±1.28 94.05±1.32

OURS 99.20±0.36 98.62±0.45 98.15±0.53 97.82±0.63 97.38±0.60 96.78±0.82

MSRC

DCP-CG 95.24±3.69 91.43±2.43 88.10±2.61 84.29±2.86 82.86±3.16 79.05±2.78
QMF 97.86±1.28 96.90±1.86 95.95±2.14 95.24±2.13 94.76±2.08 93.57±2.62
PDF 97.14±1.78 96.90±1.86 96.90±2.39 96.90±2.14 96.9±2.14 96.43±2.44

UIMC 98.81±1.19 98.05±1.17 98.05±1.17 97.81±1.19 97.81±1.19 97.21±1.29
ECML 94.05±1.60 91.90±2.43 89.52±2.86 88.10±3.53 86.43±3.38 83.33±3.53
CCML 96.90±2.39 94.05±3.06 93.57±3.2 93.57±3.2 92.62±2.49 91.90±1.90

OURS 99.76±0.75 99.76±0.71 99.29±1.09 98.81±1.19 98.81±1.19 98.10±2.33

NUSOBJ

DCP-CG 43.65±1.10 41.09±0.75 38.22±0.56 35.43±0.52 32.62±0.56 29.11±1.28
QMF 45.41±0.43 42.71±0.42 40.12±0.43 37.27±0.31 34.32±0.38 32.94±0.31
PDF 46.78±0.33 45.94±0.49 43.08±0.48 40.09±0.23 37.10±0.26 34.15±0.32

UIMC 43.42±0.12 42.95±0.13 42.33±0.15 41.81±0.14 41.27±0.17 40.97±0.12
ECML 42.62±0.42 40.62±0.89 38.50±0.84 37.09±0.66 35.06±0.82 31.59±0.65
CCML 41.43±0.71 38.76±0.64 36.57±0.79 34.33±0.67 32.07±0.77 29.96±0.87

OURS 48.23±0.42 46.66±0.75 45.39±0.68 44.10±0.58 42.78±0.56 41.49±0.49

FASHION

DCP-CG 98.11±0.23 95.42±0.55 93.33±0.89 91.09±1.29 88.87±1.75 86.77±2.10
QMF 98.93±0.32 96.84±0.51 95.67±0.56 94.71±0.45 93.78±0.51 93.05±0.48
PDF 98.95±0.19 97.57±0.36 96.64±0.43 95.82±0.46 95.14±0.49 93.16±0.59

UIMC 98.13±0.13 97.57±0.12 97.42±0.12 97.20±0.10 96.97±0.12 95.57±0.12
ECML 97.93±0.35 96.44±0.42 94.91±0.48 93.48±0.51 92.14±0.59 91.00±0.70
CCML 95.16±0.41 94.47±0.55 93.58±0.48 92.78±0.52 92.07±0.48 91.39±0.43

OURS 98.96±0.25 98.22±0.27 97.43±0.28 96.75±0.33 95.94±0.28 95.22±0.32

SCENE

DCP-CG 77.79±1.73 74.85±0.83 71.37±0.28 68.38±0.52 65.66±0.96 62.52±1.22
QMF 68.58±1.49 65.32±1.60 62.15±1.44 59.31±1.25 55.89±1.45 52.68±1.63
PDF 70.25±1.21 67.28±1.26 64.37±1.20 61.46±0.94 58.25±0.95 55.25±1.39

UIMC 77.70±0.00 76.10±0.54 74.95±0.56 73.43±0.54 72.93±0.54 72.32±0.56
ECML 76.19±0.12 69.94±1.51 66.73±1.46 63.92±1.44 60.81±1.50 58.08±1.34
CCML 73.87±1.83 64.56±1.64 61.19±1.49 58.06±1.67 54.65±1.78 51.43±2.10

OURS 79.41±1.34 77.53±1.83 75.47±1.95 73.77±2.13 72.04±2.09 70.14±2.27

LANDUSE

DCP-CG 75.74±0.98 72.29±1.95 68.10±1.24 64.29±1.33 60.00±0.96 55.05±1.66
QMF 47.86±2.55 45.31±2.75 42.83±2.60 40.69±2.63 38.12±2.67 35.36±2.65
PDF 45.17±2.66 44.76±2.64 42.79±2.54 40.69±2.14 38.62±2.13 36.21±2.17

UIMC 57.95±0.61 57.05±0.47 55.81±0.47 55.52±0.44 54.71±0.44 53.26±0.56
ECML 60.10±2.01 49.62±2.36 46.90±2.23 45.10±1.96 42.62±1.73 39.81±1.27
CCML 60.86±1.93 57.67±1.89 54.86±2.45 52.05±2.49 48.67±2.36 45.76±1.75

OURS 76.71±0.46 73.21±1.83 71.07±1.83 68.88±1.71 66.38±1.83 63.86±1.55

LEAVES

DCP-CG 98.19±0.46 91.06±0.70 84.25±1.06 77.81±1.06 71.56±1.27 65.38±1.22
QMF 95.69±1.25 91.31±1.20 87.03±1.72 82.37±1.97 78.34±2.43 74.16±2.08
PDF 98.03±0.71 94.09±1.13 89.91±1.58 85.62±2.22 81.41±2.75 77.62±2.42

UIMC 95.31±0.71 94.41±0.83 93.81±0.80 93.03±0.77 92.03±0.82 91.66±0.97
ECML 92.53±1.94 88.69±1.18 84.03±1.65 79.62±1.30 75.34±1.89 72.94±1.89
CCML 97.72±0.92 79.66±1.84 74.66±1.57 69.72±1.37 65.13±1.82 60.03±1.99

OURS 99.78±0.27 98.59±0.64 97.56±0.80 96.12±1.02 94.88±1.24 93.69±1.17

PIE

DCP-CG 90.59±1.99 83.24±3.73 77.50±3.34 71.32±2.98 66.18±2.94 61.18±3.40
QMF 92.06±1.64 88.75±1.95 85.22±2.04 81.62±2.42 78.46±3.19 75.51±2.61
PDF 92.57±1.66 89.71±1.83 86.32±2.19 83.38±2.55 80.07±3.13 77.35±3.29

UIMC 91.69±2.16 90.99±2.16 90.49±1.93 90.40±2.08 90.18±2.25 89.25±2.22
ECML 94.71±0.02 87.06±2.77 84.49±2.64 82.12±2.33 79.49±2.43 76.63±3.21
CCML 93.97±1.67 88.53±2.08 84.56±1.89 81.62±2.85 78.31±3.48 75.44±3.53

OURS 96.18±1.24 93.97±1.27 92.72±1.59 91.32±1.57 90.07±1.84 89.41±1.68
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Table 11. We add unaligned views on 50% modalities of the test sets in different proportions. The means and standard deviations of
classification accuracies (%) over ten runs are reported. The best results are highlighted in boldface.

DATASET METHOD 0% 10% 20% 30% 40% 50%

HW

DCP-CG 99.00±0.47 98.45±0.37 98.35±0.34 98.30±0.29 98.05±0.33 97.95±0.43
QMF 98.72±0.48 98.42±0.46 98.38±0.44 98.30±0.42 98.12±0.46 97.78±0.59
PDF 98.40±0.37 97.50±0.43 96.72±0.55 95.55±0.58 94.50±0.80 93.60±0.71

UIMC 98.25±0.00 98.20±0.19 97.88±0.13 97.72±0.11 97.72±0.11 97.72±0.11
ECML 98.72±0.39 97.48±0.71 96.92±0.81 96.02±0.72 95.45±0.95 94.60±0.77
CCML 97.60±0.63 96.23±0.75 95.40±1.02 94.40±1.17 93.40±1.41 92.25±1.53

OURS 99.20±0.36 99.13±0.28 99.10±0.28 99.05±0.33 99.05±0.31 99.10±0.32

MSRC

DCP-CG 95.24±3.69 94.71±3.50 94.71±2.78 93.29±3.56 93.29±3.56 92.33±4.10
QMF 97.86±1.28 97.14±1.78 96.67±2.18 95.95±2.14 95.48±1.98 95.00±2.70
PDF 97.14±1.78 95.71±1.78 94.76±2.08 92.86±2.61 92.38±3.16 91.43±3.23

UIMC 98.81±1.19 98.05±1.17 98.05±1.17 96.57±1.17 96.57±1.17 91.90±1.17
ECML 94.05±1.60 93.57±3.02 93.33±2.78 92.62±2.70 90.95±2.97 89.29±2.44
CCML 96.90±2.39 94.29±2.86 94.05±3.24 92.38±3.66 91.90±3.40 91.67±3.41

OURS 99.76±0.75 99.76±0.71 99.76±0.71 99.76±0.71 99.76±0.71 99.76±0.71

NUSOBJ

DCP-CG 43.65±1.10 43.22±0.95 42.56±1.05 41.96±1.01 41.42±1.04 40.86±1.08
QMF 45.41±0.43 45.22±0.40 45.15±0.43 44.94±0.55 44.76±0.58 44.72±0.59
PDF 46.78±0.33 46.50±0.29 46.24±0.44 45.92±0.46 45.58±0.49 45.35±0.46

UIMC 43.42±0.12 43.14±0.15 42.76±0.19 42.62±0.12 42.21±0.17 41.78±0.14
ECML 42.62±0.42 41.92±0.59 41.29±0.57 41.03±0.58 40.71±0.58 40.53±0.52
CCML 41.43±0.71 40.40±0.42 39.98±0.55 39.54±0.57 38.92±0.64 38.43±0.70

OURS 48.23±0.42 47.78±0.58 47.62±0.50 47.40±0.54 47.07±0.54 46.86±0.49

FASHION

DCP-CG 98.11±0.23 96.00±1.15 94.71±1.56 93.01±2.06 91.33±2.58 89.93±3.00
QMF 98.93±0.32 97.77±0.32 96.63±0.24 95.48±0.33 94.34±0.42 93.16±0.39
PDF 98.95±0.19 97.17±0.23 95.50±0.36 93.77±0.54 91.84±0.92 89.68±1.03

UIMC 98.13±0.13 96.12±0.19 93.75±0.23 91.85±0.21 89.90±0.27 88.12±0.33
ECML 97.93±0.35 94.43±0.32 91.20±0.39 87.91±0.51 84.58±0.60 81.49±0.68
CCML 95.16±0.41 92.55±0.32 89.76±0.24 86.81±0.62 84.08±0.85 81.45±1.07

OURS 98.96±0.25 98.57±0.21 98.18±0.24 97.78±0.19 97.32±0.21 96.88±0.23

SCENE

DCP-CG 77.79±1.73 74.27±0.64 72.33±0.69 69.90±1.29 67.56±1.56 65.04±1.51
QMF 68.58±1.49 66.83±1.30 65.22±1.11 63.57±1.01 61.67±0.97 60.07±0.99
PDF 70.25±1.21 67.87±1.17 65.54±1.12 63.14±0.98 60.66±1.00 58.13±1.36

UIMC 77.70±0.00 74.86±0.46 72.85±0.45 70.79±0.45 68.74±0.43 66.12±0.45
ECML 76.19±0.12 71.43±1.31 69.86±1.16 68.26±1.17 66.73±1.16 65.37±1.22
CCML 73.87±1.83 65.60±1.60 63.31±1.55 61.43±1.51 59.16±1.57 57.05±1.53

OURS 79.41±1.34 78.19±1.43 76.98±1.52 75.80±1.39 74.68±1.30 73.99±1.15

LANDUSE

DCP-CG 75.74±0.98 73.33±2.03 69.57±1.12 66.71±1.56 63.00±1.76 59.95±1.69
QMF 47.86±2.55 46.60±2.61 45.10±2.62 44.02±2.56 42.67±2.18 41.38±2.12
PDF 45.17±2.66 44.50±2.49 42.62±2.33 40.64±2.31 38.88±1.95 37.07±2.12

UIMC 57.95±0.61 56.40±0.58 53.45±0.56 51.83±0.41 49.36±0.41 47.30±0.63
ECML 60.10±2.01 52.17±1.18 50.79±1.58 49.62±1.69 48.00±1.38 46.76±1.89
CCML 60.86±1.93 59.29±1.87 57.80±2.29 55.48±2.96 54.17±2.70 53.21±3.07

OURS 76.71±0.46 74.52±1.91 73.38±1.81 72.10±1.74 70.98±1.61 69.93±1.47

LEAVES

DCP-CG 98.19±0.46 95.06±1.69 91.19±1.30 88.00±1.84 84.69±2.19 81.56±2.01
QMF 95.69±1.25 91.50±1.32 87.66±1.71 83.25±1.81 79.06±2.11 75.38±2.24
PDF 98.03±0.71 92.78±1.21 87.75±1.36 82.34±1.02 77.56±0.94 72.56±0.84

UIMC 95.31±0.71 89.72±0.65 86.47±0.74 83.06±0.87 80.41±0.94 77.09±0.97
ECML 92.53±1.94 89.84±1.95 86.41±1.84 83.09±1.82 79.62±2.09 76.19±2.25
CCML 97.72±0.92 81.09±2.22 78.06±2.01 74.59±2.01 71.34±1.69 68.12±1.71

OURS 99.78±0.27 98.94±0.72 97.84±1.14 96.72±1.55 95.81±1.51 94.69±1.26

PIE

DCP-CG 90.59±1.99 85.15±3.06 81.03±2.05 76.76±1.58 72.65±2.43 68.68±1.36
QMF 92.06±1.64 90.51±1.81 88.82±2.37 86.40±2.68 84.34±2.61 81.99±2.98
PDF 92.57±1.66 89.19±1.44 85.96±2.07 82.06±1.89 79.12±2.44 75.00±2.81

UIMC 91.69±2.16 85.96±2.40 82.72±2.33 77.06±2.79 73.09±2.72 68.24±2.82
ECML 94.71±0.02 88.75±2.51 86.69±2.47 84.56±2.28 82.50±1.97 80.15±2.55
CCML 93.97±1.67 90.22±1.86 88.24±1.64 86.03±1.77 84.26±1.62 82.65±1.95

OURS 96.18±1.24 94.93±1.37 93.38±1.95 91.47±1.92 89.85±2.13 87.94±2.38
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Table 12. Classification accuracy (%) of ECML and our FUML with varying noise views on the PIE dataset. ECML fuses views from the
first view, making it sensitive to the order of the noisy views.

METHODS NOISE VIEW 1+2+3 1+3+2 2+1+3 2+3+1 3+1+2 3+2+1 ∆%

ECML
1 87.13 81.69 87.13 76.91 81.76 77.21 10.22
2 91.18 82.13 90.96 91.25 82.06 91.25 9.19
3 86.76 88.97 86.54 90.81 88.90 91.10 4.56

OURS
1 93.24 0
2 96.18 0
3 92.65 0

C.8. Conflict Visualization

Figure 10 presents the conflict on the HandWritten dataset with six views. To introduce conflicts, we modify the content
in the third view to other categories, resulting in misalignment with the other views. The Figure 10 (a) and (b) depict the
conflict of normal and conflicting instances, respectively. The results show that FUML effectively captures and quantifies
conflict between views, further validating its reliability.
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Figure 10. Conflict visualization.

C.9. Adversarial Noise Effect Analysis

In this section, we present additional experimental results under adversarial noise attacks. First, to evaluate the performance
of our FUML under adversarial noise, we add projected gradient descent (PGD) adversarial noise attacks (Madry et al.,
2018) with different maximum perturbation magnitudes (eps) to the test set of the Fashion dataset. The results in Table 13
show FUML’s superior resistance to adversarial noise attacks. Second, to further evaluate the effectiveness of the uncertainty
estimation mechanism of FUML under adversarial noise, we perform an OOD task on the Fashion dataset, using normal
test sets as ID and PGD-attacked sets (eps=0.10) as OOD. Evaluated by FPR95 (lower is better), FUML achieved 0.68,
outperforming ETMC and ECML (both 1.00). To sum up, under adversarial noise, the proposed FUML is superior in both
classification accuracy and uncertainty estimation.

D. Limitations
Even though the proposed FUML outperforms existing multi-view classification methods in terms of both performance
and reliability, there are still some potential limitations. For instance, FUML’s multi-view fusion weights incorporate both
uncertainty and conflict through multiplication. Although extensive experiments have demonstrated the effectiveness of this
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Table 13. Classification accuracy (%) of PDF, ECML, and our FUML under PGD adversarial noise attacks with different eps on the
Fashion dataset. The best results are highlighted in boldface.

METHOD
EPS

0 0.05 0.10

PDF 98.95± 0.19 22.07± 0.90 13.54± 0.89
ECML 97.93± 0.35 52.58± 0.51 42.74± 1.35
OURS 98.96±0.25 94.45±0.18 93.40±0.19

technique, it lacks corresponding theoretical guarantees. Therefore, it is crucial to explore new multi-view fusion techniques
based on uncertainty and conflict from a theoretical standpoint. We hope that our study can serve as a valuable baseline for
future research in multi-view learning and uncertainty estimation.
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