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ABSTRACT

This paper addresses the problem of model compression via knowledge distilla-
tion. We advocate for a method that optimizes the output feature of the penulti-
mate layer of the student network and hence is directly related to representation
learning. To this end, we firstly propose a direct feature matching approach which
focuses on optimizing the student’s penultimate layer only. Secondly and more
importantly, because feature matching does not take into account the classifica-
tion problem at hand, we propose a second approach that decouples represen-
tation learning and classification and utilizes the teacher’s pre-trained classifier
to train the student’s penultimate layer feature. In particular, for the same input
image, we wish the teacher’s and student’s feature to produce the same output
when passed through the teacher’s classifier, which is achieved with a simple L2

loss. Our method is extremely simple to implement and straightforward to train
and is shown to consistently outperform previous state-of-the-art methods over a
large set of experimental settings including different (a) network architectures, (b)
teacher-student capacities, (c) datasets, and (d) domains. The code is available at
https://github.com/jingyang2017/KD_SRRL.

1 INTRODUCTION

Recently, there has been a great amount of research effort to make Convolutional Neural Networks
(CNNs) lightweight so that they can be deployed in devices with limited resources. To this end,
several approaches for model compression have been proposed, including network pruning (Han
et al., 2016; Lebedev & Lempitsky, 2016), network quantization (Rastegari et al., 2016; Wu et al.,
2016), knowledge transfer/distillation (Hinton et al., 2015; Zagoruyko & Komodakis, 2017), and
neural architecture search (Zoph & Le, 2017; Liu et al., 2018). Knowledge distillation (Buciluǎ et al.,
2006; Hinton et al., 2015) aims to transfer knowledge from one network (the so-called “teacher”)
to another (the so-called “student”). Typically, the teacher is a high-capacity model capable of
achieving high accuracy, while the student is a compact model with much fewer parameters, thus
also requiring much less computation. The goal of knowledge distillation is to use the teacher to
improve the training of the student and push its accuracy closer to that of the teacher.

The rationale behind knowledge distillation can be explained from an optimization perspective:
there is evidence that high capacity models (i.e. the teacher) can find good local minima due to
over-parameterization (Du & Lee, 2018; Soltanolkotabi et al., 2018). In knowledge distillation,
such models are used to facilitate the optimization of lower capacity models (i.e. the student) during
training. For example, in the seminal work of (Hinton et al., 2015), the softmax outputs of the
teacher provide extra supervisory signals of inter-class similarities which facilitate the training of
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Figure 1: Our method performs knowledge distillation by minimizing the discrepancy between the
penultimate feature representations hT and hS of the teacher and the student, respectively. To this
end, we propose to use two losses: (a) the Feature Matching loss LFM , and (b) the so-called Soft-
max Regression loss LSR. In contrary to LFM , our main contribution, LSR, is designed to take
into account the classification task at hand. To this end, LSR imposes that for the same input im-
age, the teacher’s and student’s feature produce the same output when passed through the teacher’s
pre-trained and frozen classifier. Note that, for simplicity, the function for making the feature di-
mensionality of hT and hS the same is not shown.

the student. In other influential works, intermediate representations extracted from the teacher such
as feature tensors (Romero et al., 2015) or attention maps (Zagoruyko & Komodakis, 2017) have
been used to define auxiliary loss functions used in the optimization of the student.

Training a network whose output feature representation is rich and powerful has been shown crucial
for achieving high accuracy for the subsequent classification task in recent works in both unsuper-
vised and supervised learning, see for example (Chen et al., 2020; He et al., 2020) and (Kang et al.,
2020). Hence, in this paper, we are advocating for representation learning-based knowledge distilla-
tion by optimizing the student’s penultimate layer output feature. If we are able to do this effectively,
we expect (and show experimentally) to end up with a student network which can generalize better
than one trained with logit matching as in the KD paper of (Hinton et al., 2015).

Main contributions: To accomplish the aforementioned goal we propose two loss functions: The
first loss function, akin to (Romero et al., 2015; Zagoruyko & Komodakis, 2017), is based on direct
feature matching but focuses on optimizing the student’s penultimate layer feature only. Because
direct feature matching might be difficult due to the lower representation capacity of the student and,
more importantly, is detached from the classification task at hand, we also propose a second loss
function: we propose to decouple representation learning and classification and utilize the teacher’s
pre-trained classifier to train the student’s penultimate layer feature. In particular, for the same input
image, we wish the teacher’s and student’s feature to produce the same output when passed through
the teacher’s classifier, which is achieved with a simple L2 loss (see Fig. 1). This softmax regression
projection is used to retain from the student’s feature the information that is relevant to classification,
but since the projection matrix is pre-trained (learned during the teacher’s training phase) this does
not compromise the representational power of the student’s feature.

Main results: Our method has two advantages: (1) It is simple and straightforward to implement.
(2) It consistently outperforms state-of-the-art methods over a large set of experimental settings
including different (a) network architectures (WideResNets, ResNets, MobileNets), (b) teacher-
student capacities, (c) datasets (CIFAR-10/100, ImageNet), and (d) domains (real-to-binary).

2 RELATED WORK

Knowledge transfer: In the work of (Hinton et al., 2015), knowledge is defined as the teacher’s
outputs after the final softmax layer. The softmax outputs carry richer information than one-hot
labels because they provide extra supervision signals in terms of the inter-class similarities learned
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by the teacher. In a similar fashion to (Hinton et al., 2015), intermediate representations extracted
from the teacher such as feature tensors (Romero et al., 2015) or attention maps (Zagoruyko &
Komodakis, 2017) have been used to define loss functions used to facilitate the optimization of the
student. Trying to match the whole feature tensor, as in FitNets (Romero et al., 2015), is hard and, in
certain circumstances, such an approach may adversely affect the performance and convergence of
the student. To relax the assumption of FitNet, Attention Transfer (AT) was proposed in (Zagoruyko
& Komodakis, 2017) where knowledge takes the form of attention maps which are summaries of
the energies of the feature tensors over the channel dimension. An extension of (Zagoruyko &
Komodakis, 2017) using Maximum Mean Discrepancy of the network activations as a loss term
for distillation was proposed in (Huang & Wang, 2017). Cho & Hariharan (2019) showed that
very accurate networks are “too good” to be good teachers and proposed to mitigate this with early
stopping of the teacher’s training. Recently, the work of (Heo et al., 2019a) studied the location
within the network at which feature distillation should be applied and proposed margin ReLU and
a specifically designed distance function that transfers only the useful (positive) information from
the teacher to the student. More recently, Li et al. (Li et al., 2020a) proposed to supervise the block-
wise architecture search by the architecture knowledge distilled from a teacher model. Another NAS
based method was proposed in (Guan et al., 2020), in which a student-to-teacher loss is used to find
the aggregation weights that match the learning ability of the student. Passalis et al. (2020) claimed
that traditional KD ignores information plasticity during the training process, and proposed to model
the information flow through the various layers of the teacher.

Feature relationship transfer: Another line of knowledge distillation methods focus on exploring
transferring the relationship between features, rather than the actual features themselves. In (Yim
et al., 2017), feature correlations are captured by computing the Gram matrix of features across
layers for both teacher and student and then applying an L2 loss on pairs of teacher-student Gram
matrices. The limitation of this work is the high computational cost, which is addressed to some
extent in (Lee et al., 2018) by compressing the feature maps by singular value decomposition. Park
et al. (2019) proposed a relational knowledge distillation method which computes distance-wise
and angle-wise relations of each embedded feature vector. This idea is further explored in (Peng
et al., 2019) and (Liu et al., 2019). In (Peng et al., 2019), Taylor series expansion is proposed to
better capture the correlation between multiple instances. In (Liu et al., 2019), the instance feature
and relationships are considered as vertexes and edges respectively in a graph and instance rela-
tionship graph is proposed to model the feature space transformation across layers. Inspired by the
observation that semantically similar inputs should have similar activation patterns, (Tung & Mori,
2019) proposed a similarity-preserving knowledge distillation method which guides the student to
mimic the teacher with respect to generating similar or dissimilar activations. More recently, (Jain
et al., 2020) proposed to matching the student output with the teacher’s by distilling the knowledge
through a quantized visual words space. Li et al. (2020b) proposed the local correlation exploration
framework to represent the relationships of local regions in the feature space which contains more
details and discriminative patterns.

Finally, a similar connection between distillation and representation learning was very recently made
in (Tian et al., 2020) which uses contrastive learning for knowledge distillation. We note that our
loss is not related to the one used in (Tian et al., 2020), is simpler, and as shown in Section 5,
outperforms it for all of our experiments, often by a significant margin.

3 METHOD

We denote by T and S the teacher and student networks respectively. We split these networks into
two parts: (i) A convolutional feature extractor fNet, Net = {T, S}, the output of which at the i-th
layer is a feature tensor F iNet ∈ RCi

Net×H
i×W i

, where CiNet is the output feature dimensionality,

and Hi,W i the output spatial dimensions. We also denote by hNet =
∑HL

h=1

∑WL

w=1 F
L
Net ∈ RCL

Net

the last layer feature representation learned by fNet. (ii) A projection matrix WNet ∈ RCL
Net×K

which projects the feature representation hNet into K class logits ziNet, i = 1, . . . ,K, followed by

the softmax function s(ziNet) =
exp(ziNet/τ)∑
j exp(zjNet/τ)

with temperature τ (τ = 1 for Cross Entropy

loss) which put together form a softmax regression classifier into K classes.
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Knowledge Distillation (KD) (Hinton et al., 2015) trains the student with the following loss:

LKD = −
K∑
k=1

s(zkT ) log s(z
k
S), (1)

so that the discrepancy between the teacher’s and student’s classifiers is directly minimized.

FitNets (Romero et al., 2015) match intermediate feature representations. For the i-th layer, the
following loss is defined:

LFit =
∥∥F iT − r(F iS)∥∥2 , (2)

where r(.) is a function for matching the feature tensor dimensions.

In our work, we propose to minimize the discrepancy between the representations hT and hS . To
accomplish this goal, we propose to use two losses. The first one is an L2 feature matching loss:

LFM = ‖hT − hS‖2 , (3)

where for notational simplicity we dropped the dependency on r(.). Hence, LFM loss is a simplified
FitNet loss which focuses only on the final representation learned. The intuition for this is that this
feature is directly connected to the classifier and hence imposing the student’s feature to be similar
to that of the teacher could have more impact on classification accuracy. Moreover, it might be
questionable why one should optimize for other intermediate representations as in (Romero et al.,
2015) especially when the student is a network of lower representational capacity. In Section 4:
Where should the losses be applied?, we confirm that LFM alone has a positive impact but feature
matching in other layers is not helpful.

We found LFM to be effective but only to limited extent. One disadvantage of LFM and, in general,
of all feature matching losses e.g. (Romero et al., 2015; Zagoruyko & Komodakis, 2017), is that
it treats each channel dimension in the feature space independently, and ignores the inter-channel
dependencies of the feature representations hS and hT for the final classification. This is in contrast
to the original logit matching loss proposed by Hinton et al. in (Hinton et al., 2015) which directly
targets classification accuracy. To alleviate the aforementioned problem, in this work, we propose a
second loss for optimizing hS which is directly linked with classification accuracy. To this end, we
will use the teacher’s pre-trained Softmax Regression (SR) classifier.

Let us denote by p the output of the teacher network when fed with some input image x. Let us also
feed the same image through the student network to obtain feature hS(x). Finally let us pass hS(x)
through the teacher’s SR classifier to obtain output q. See also Fig. 1. Our loss is defined as:

LSR = −p log q. (4)

At this point, we make the following two observations: (1) If p = q (and since the teacher’s classifier
is frozen), then this implies that hS(x) = hT (x) which shows that indeed Eq. (4) optimizes the
student’s feature representation hS (hT is also frozen). (2) The loss of Eq.(4) can be written as:

LSR = −s(W ′ThT ) log s(W ′ThS). (5)

Now let us now write KD loss in a similar way:

LKD = −s(W ′ThT ) log s(W ′shS). (6)

By comparing Eq. (5) with Eq. (6), we see that the only difference in our method is that the frozen,
pre-trained teacher’s classifier is used for both teacher and the student. On the contrary, in KD, WS

is also optimized. This gives more degrees of freedom to the optimization algorithm, in particular, to
adjust the weights of both the student’s feature extractor fS and the student’s classifier WS in order
to minimize the loss. This has an impact on the learning of the student’s feature representation hS
which, in turn, hinders the generalization capability of the student on the test set. We confirm this
hypothesis with the experiment of Section 4: Transferability of representations.

Finally, we note that we found that, in practice, an L2 loss between the logits:

LKD = ‖W ′ThT −W ′ThS‖
2
= ‖hT − hS‖2WT

, (7)

works slightly better than the cross-entropy loss. The comparison between different types of losses
for LSR is given in the appendix.
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Table 1: Effect of proposed losses (LFM and LSR) and position of distillation on the test set of
CIFAR-100.

Method Layer Top-1 (%) Top-5 (%)
Student (WRN-16-4) 76.97 93.89
Teacher (WRN-40-4) 79.50 94.57
LFM conv4 78.05 94.45
LSR conv4 79.10 94.99

LFM+LSR conv4 79.58 95.21
LFM+LSR conv2 77.03 93.94
LFM+LSR conv3 77.34 94.22
LFM+LSR conv2+3+4 79.43 94.80

Overall, in our method, we train the student network using three losses:

L = LCE + αLFM + βLSR, (8)

where α and β are the weights used to scale the losses. The teacher network is pretrained and fixed
during training the student. LCE is the standard loss based on ground truth labels for the task in hand
(e.g. cross-entropy loss for image classification). Note that this results in a very simple algorithm
for training the student, summarized in Algorithm 1.

Algorithm 1 Knowledge distillation via Softmax Regression Representation Learning
Input: Teacher network T , Student network S, input image x, ground truth label y, weights α, β.

1. Input x to S to obtain feature hS and class prediction ŷ. Calculate cross entropy loss
LCE = H(ŷ, y);

2. Input x to T to obtain feature hT . Calculate distillation losses from Eqs. (3) and (7);
3. Update S by optimizing Eq. (8)

Output: the updated S.

4 ABLATION STUDIES

We conducted a set of ablation studies on CIFAR-100 (see Section 5.1) using a Wide ResNet (WRN)
for both teacher (WRN-40-4) and student (WRN-16-4) (for network definitions, see Section 5).

Are both LFM and LSR useful? To answer this question, we ran 3 experiments: using LFM
alone, LSR alone, and combining them together LFM + LSR. The results of Table 1 (first 3 rows)
clearly show that all proposed variants offer significant gains: when using LFM and LSR alone,
∼ 1% and ∼ 2% improvements in Top-1 accuracy were obtained. Moreover, when combining them
together, an additional ∼ 0.4% improvement was gained. Importantly, the results show that LSR is
significantly more effective than LFM . We further note at this point that we found that LFM offers
diminishing gains on ImageNet experiments.

Where should the losses be applied? The proposed losses can be applied at other layers of the
networks too. This is straightforward for LFM . We can also extend LSR to more layers, by transfer-
ring the mean feature of the student at each layer to the corresponding layer of the teacher using an
AdaIN layer (Huang & Belongie, 2017). On one hand, applying the losses early in the network could
ensure that the subsequent layers receive “better” features. On the other hand, features produced by
early layers are not specialised to a particular class. Thus, applying the distillation losses towards
the end of the network, where the activations encode discriminative, task-related features should
lead to potentially stronger models. The results from Table 1 (last 3 rows) confirm our hypothesis:
Applying the loss at multiple points in the network actually rather hurts accuracy.

Teacher-student similarity: The overall aim of knowledge distillation is to make the student mimic
the teacher’s output, so that the student is able to obtain similar performance to that of the teacher.
Therefore, to see how well the student mimics the teacher, we measured the similarity between
the teacher’s and student’s outputs using (a) the KL divergence between the teacher’s and student’s
outputs, and (b) the cross-entropy loss between the student’s predictions and the ground truth labels.
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Table 2: KL divergence between teacher and student, and cross-entropy between student and ground
truth on the test set of CIFAR-100. Teacher’s top-1 accuracy is 79.50%.

Method KL div. with teacher Cross-entropy with label Top-1 (%)
Student 0.5964 0.9383 76.97

KD 0.5818 0.9492 78.35
AT 0.5406 0.9049 78.06
LFM 0.5701 0.8980 78.05
LSR 0.4828 0.8418 79.10

LFM+LSR 0.4597 0.8247 79.58

Table 3: L2 Distance ‖hT − hS‖2 , and NMI calculated on the test set of CIFAR-100.
Method Student LFM LSR LFM+LSR

L2 Distance 1.48 1.33 1.07 1.01
NMI (%). 77.20 78.31 79.35 79.85
Top-1(%). 76.97 78.05 79.10 79.58

From Table 2, it can be observed that KD (Hinton et al., 2015) reduces the KL divergence with the
teacher’s output offering∼ 1.5% accuracy gain. AT (Zagoruyko & Komodakis, 2017) also decreases
the KL divergence with the teacher’s output offering a smaller accuracy gain of ∼ 1.0%. Moreover,
both proposed losses LFM and LSR and their combination LFM+LSR show considerably high
similarity compared to the KD and AT. This similarity is one of the main reasons for the improved
student’s accuracy offered by our method.

(a) Student (b) LFM (c) LSR (d) LFM+LSR (e) Teacher

Figure 2: Visualization of hS and hT on the test set of CIFAR-100. Better viewed in color.

Representations distance: Table 3 shows the L2 distance between the teacher and student represen-
tations hT and hS . The results, presented in Table 3, clearly show that both LFM and LSR narrow
the distance, with their combination being the closest to the teacher.

Normalized Mutual Information (NMI): Moreover, we calculated the NMI (Manning et al., 2008)
which is a balanced metric that can be used to determine the quality of feature clustering. The results,
presented in Table 3, show that LFM + LSR has the highest NMI score, meaning that the features
are better clustered. Qualitative results are shown in Figure 2, which visualizes the features hS and
hT . It can be observed that LFM+LSR is able to learn more discriminative features, which also
correlates with quantitative accuracy gains.

Transferability of representations: Following (Tian et al., 2020), this section aims to compare
the representational power of the learned student’s representation hS . To this end, we trained the
student on CIFAR100, and then used it as a frozen feature extractor on top of which we train a linear
classifier for 2 datasets: STL10 Coates et al. (2011) and CIFAR100. We compare the transfer ability
of KD, CRD, LFM , LSR, and LFM+LSR. The superiority of the proposed losses over KD on
STL is evident. Importantly, LSR largely outperforms KD which confirms our analysis of Eqs. (5)
and (6). The best results on STL are obtained by CRD. However, on CIFAR100, which is the target
distillation dataset our method outperforms CRD.

5 COMPARISON WITH STATE-OF-THE-ART

We thoroughly evaluated the effectiveness of our method across multiple (a) network architectures
(ResNet (He et al., 2016), Wide ResNet (Zagoruyko & Komodakis, 2016), MobileNetV2 (Sandler
et al., 2018), MobileNet (Howard et al., 2017)) with different teacher-student capacities, (b) datasets
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Table 4: Transferability of representations from CIFAR100 to STL-10 and CIFAR100 by freezing
fS and training a linear classifier on top. Top 1 (%) accuracy is provided.

Student Dataset KD CRD LFM LSR LFM+LSR
WRN16-4 STL10 68.75 72.45 69.3 71.44 72.17
WRN16-4 CIFAR100 78.28 78.46 77.95 79.03 79.34

MobileNetV2 STL10 62.17 69.74 66.12 68.23 68.95
MobileNetV2 CIFAR100 69.17 70.68 70.66 71.00 71.63

Table 5: Top-1 accuracy (%) of various knowledge distillation methods on CIFAR-10.

Student(Params) Teacher(Params) Student KD AT OFD RKD Ours Teacher
WRN-16-1 (0.18M) WRN-16-2 (0.69M) 91.04 92.57 92.15 92.28 92.51 92.95 93.98
WRN-16-2 (0.69M) WRN-40-2 (2.2M) 93.98 94.46 94.39 94.30 94.41 94.66 95.07
ResNet-8 (0.08M) ResNet-26 (0.37M) 87.78 88.75 88.15 87.49 88.50 89.02 93.58
ResNet-14 (0.17M) ResNet-26 (0.37M) 91.59 92.57 92.11 92.51 92.36 92.70 93.58
ResNet-18 (0.7M) ResNet-34 (1.4M) 93.35 93.74 93.52 93.80 92.95 93.92 94.11
WRN-16-1 (0.18M) ResNet-26 (0.37M) 91.04 92.42 91.32 92.47 92.08 92.94 93.58

(CIFAR10/100, ImageNet), and (c) domains (real-valued and binary networks). The training details
for all experiments are provided in the appendix. We denote with ResNet-N a Residual Network
with N convolutional layers (He et al., 2016). We denote with WRN-D-k a WRN architecture with
D layers and an expansion rate of k (Zagoruyko & Komodakis, 2017).

For the above mentioned settings, we compare our method with KD (Hinton et al., 2015) and
AT (Zagoruyko & Komodakis, 2017), and the more recent methods of OFD (Heo et al., 2019a),
RKD (Park et al., 2019), CRD (Tian et al., 2020).

Overview of results: From our experiments, we conclude that our approach offers consistent gains
across all of the above scenarios, outperforming all methods considered for all settings. Notably, our
method is particularly effective for the most difficult datasets (i.e. CIFAR-100 and ImageNet).

5.1 CIFAR-10/100

For CIFAR-10, Top-1 performance of our method is shown in Table 5. We tested three cases repre-
senting different network architectures for student and teacher networks: the first two experiments
are with WRNs. The following three experiments are with ResNets. In the last experiment, teacher
and student have different network architectures. Overall, our method achieves the best results for
all cases, with KD (Hinton et al., 2015) closely following.

For CIFAR-100 (Krizhevsky & Hinton, 2009), we experimented with several student-teacher net-
work pairs using different structures. Experiments are grouped in three sets. The first shows per-
formance for different teacher and student capacities using WRNs: poor student - good teacher
(WRN-16-2; WRN-40-4), descent student - good teacher (WRN-10-10; WRN-16-10); good student
- good teacher (WRN-16-4; WRN-40-4). In the second set, we show that these results hold when
using a different architecture, ResNet in this case. The final set is designed to show performance
when teacher and student have different architectures (MobileNetV2, ResNet and WRN).

Top-1 performance of our method is shown in Table 11. We observe that for almost all configura-
tions, our method achieves consistent and significant accuracy gains over prior work. Furthermore,
it is hard to tell which is the second best method as the remaining methods have their own ad-
vantages for different configurations. For WRN experiments, OFD ranks second. For ResNet and
mixed structure experiments, CRD ranks second. More comparisons with other methods and results
obtained by combining our method with KD and AT are provided in the supplementary material.
Further improvements could be obtained by combining our method with others but this requires a
comprehensive investigation which goes beyond the scope of this paper.
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Table 6: Top-1 accuracy (%) of various knowledge distillation methods on CIFAR-100.

Student (Params) Teacher (Params) Student KD AT OFD RKD CRD Ours Teacher
WRN-16-2 (0.70M) WRN-40-4 (8.97M) 72.70 74.52 74.33 75.57 74.23 75.27 75.96 79.50
WRN-16-4 (2.77M) WRN-40-4 (8.97M) 76.97 78.35 78.06 79.29 78.38 78.83 79.58 79.50
WRN-10-10 (7.49M) WRN-16-10 (17.2M) 76.27 78.20 76.44 78.72 77.84 78.35 79.17 79.77
ResNet-10 (0.34M) ResNet-34 (1.39M) 68.42 69.18 68.49 68.94 68.70 70.24 69.91 72.05
ResNet-18 (0.75M) ResNet-50 (1.99M) 71.07 73.41 71.90 72.79 70.93 73.23 73.47 73.31
ResNet-10 (4.95M) ResNet-34 (21.33M) 75.01 77.35 76.87 77.35 77.46 77.37 77.90 78.44
WRN-16-2 (0.70M) ResNet-34 (21.33M) 72.70 73.95 72.32 74.78 73.91 74.88 75.38 78.44
MobileNetV2 (2.37M) ResNet-34 (21.33M) 68.42 69.36 68.60 69.45 68.75 71.36 71.58 78.44
MobileNetV2 (2.37M) WRN-40-4 (8.97M) 68.42 69.15 68.95 70.08 68.19 71.46 71.82 79.50

Table 7: Comparison with state-of-the-art on ImageNet.
Student (Params) Teacher (Params) Student KD AT OFD RKD CRD Ours Teacher

ResNet18 (11.69M) ResNet34 (21.80M) Top-1
Top-5

70.04
89.48

70.68
90.16

70.59
89.73

71.08
90.07

71.34
90.37

71.17
90.13

71.73
90.60

73.31
91.42

MobileNet (4.23M) ) ResNet50 (25.56M) Top-1
Top-5

70.13
89.49

70.68
90.30

70.72
90.03

71.25
90.34

71.32
90.62

71.40
90.42

72.49
90.92

76.16
92.86

5.2 IMAGENET-1K

Our experiments include two pairs of networks which are popular settings for ImageNet (Rus-
sakovsky et al., 2015). The first is distillation from ResNet-34 to ResNet-18 and the second one
is distillation from ResNet-50 to MobileNet (Howard et al., 2017). Note that, following (Tian et al.,
2020) on ImageNet, for KD, we set the weight for the KL loss to 0.9, the weight for cross-entropy
loss to 0.5 which helps to obtain better accuracy.

Our results are presented in Table 7. Again, we observe that our method achieves significant im-
provements over all competing methods. Moreover, there is no method which is consistently second:
for ResNet-34 to ResNet-18 experiment, RKD is the second best while for ResNet-50 to MobileNet,
CRD is the second best. Notably, for the latter experiment, CRD reduces the gap between the teacher
and the student by 1.27%, while our method narrows it by 2.36%. Overall, our results on ImageNet
validate the scalability of our method, and show that, when applied to a large-scale dataset, we
achieve an even more favourable performance compared against competing methods.

Table 8: Real-to-binary distillation results on CIFAR-100: a real-valued teacher ResNet-34 is used to
distill a binary student. Real-to-binary distillation results on ImageNet-1K: a real-valued ResNet-18
is used to distill a binary student. OFD result might be suboptimal.

Dataset Method Binary KD AT OFD RKD CRD Ours Real
CIFAR-100 ResNet34 65.34 68.65 68.54 66.84 68.61 68.78 70.50 75.08

ImageNet-1K ResNet18 56.70 57.39 58.45 55.74 58.84 58.25 59.57 70.20

5.3 BINARY NETWORKS DISTILLATION

Training highly accurate binary neural networks (i.e. the most extreme case of quantization) is
a very challenging task (Rastegari et al., 2016; Bulat & Tzimiropoulos, 2019), and to this end,
knowledge distillation appears to be a promising direction. In this section, we present results by
applying distillation for the task of training binary student networks guided by real-valued teacher
networks. The network architecture is kept the same for both the student and the teacher in this case:
specifically we used a ResNet using the modifications described in (Bulat & Tzimiropoulos, 2019).

Table 8 presents our results. Again, we observe that our method outperforms all methods consider-
ably, showing that it can effectively transfer knowledge between different domains. Note that it was
not clear to us where to place the distillation position for OFD, so although we included our result
for this method, we emphasize that this result might be suboptimal.

8



Published as a conference paper at ICLR 2021

5.4 FACIAL LANDMARK DETECTION

Given a face image, the task is to localise a set of facial landmarks in terms of their (x,y) coordinates.
This is often solved by using a CNN to directly regress the (x,y) coordinates of the facial landmarks.
In order to show the suitability of our method for this problem, we use the WFLW Wu et al. (2018)
dataset, which is one of the hardest benchmarks for this task. Performance is measured in terms
of Normalised Mean Error (lower is better), which is the standard metric for the problem. In our
experiment, we use a ResNet50 as the teacher and a ResNet8 as the student. The results, shown in
Table 9, confirm the superior performance of our method when compared to other state-of-the-art
methods.

Table 9: Facial landmark detection with ResNet50 as teacher and ResNet8 as student. KD is adapted
by using an L2 loss instead of a KL loss to measure the discrepancy between the teach and student
predictions.

Student(Params) Teacher(Params) - Student KD RKD PKT LFM AT Ours Teacher
ResNet8(7.25M) ResNet50(26.25M) NME 7.43 7.32 6.94 7.09 7.14 6.96 6.81 6.38

6 CONCLUSION

We presented a method for knowledge distillation that optimizes the output feature of the penulti-
mate layer of the student network and hence is directly related to representation learning. A key
to our method is the newly proposed Softmax Regression Loss which was found necessary for
effective representation learning. We showed that our method consistently outperforms other state-
of-the-art distillation methods for a wide range of experimental settings including multiple network
architectures (ResNet, Wide ResNet, MobileNet) with different teacher-student capacities, datasets
(CIFAR10/100, ImageNet), and domains (real-valued and binary networks).
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A APPENDIX

A.1 STUDY OF THE HYPER-PARAMETERS α AND β

We only performed a very basic search to find the best hyper-parameters. First, we fix α and search
for the best β. Then, we used the best β, and search for the best α. This is sub-optimal compared to a
full grid search over α and β. Furthermore, after some preliminary experimentation, we considered
only for 2 values: 1 and 5. Notably, we found that for all teacher-student pairs but (T:WRN40 4,
S:MV2) alpha=1 is the optimal value. Furthermore, on ImageNet, the optimal values were α = 1,
β = 1 for all teacher-student pairs considered.

A.2 DATASETS AND TRAINING DETAILS

CIFAR-10 CIFAR-10 is a popular image classification dataset consisting of 50,000 training and
10,000 testing images equally distributed across 10 classes. All images are of resolution 32× 32px.
Following (Zagoruyko & Komodakis, 2017), during training, we randomly cropped and horizontally
flipped the images. The ResNet models were trained for 350 epochs using SGD. The initial learning
rate was set to 0.1, and then it was reduced by a factor of 10 at epochs 150, 250 and 320. Similarly,
the WRN models were trained for 200 epochs with a learning rate of 0.1 that was subsequently
reduced by 5 at epochs 60, 120 and 160. In all experiments, we set the dropout rate to 0.
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For traditional KD (Hinton et al., 2015), we set α = 0.9 and T = 4. For AT (Zagoruyko &
Komodakis, 2017), as in (Zagoruyko & Komodakis, 2017; Tung & Mori, 2019), we set the weight of
distillation loss to 1000. We note that, in our experiments, the AT loss is added after each layer group
for WRN and the last two groups for ResNet as in (Zagoruyko & Komodakis, 2017). Following
OFD (Heo et al., 2019a), we set the weight of distillation loss to 10−3. For RKD (Park et al., 2019),
we set β1 = 25 for distance, and β2 = 50 for angle, as described in (Park et al., 2019; Tian et al.,
2020). We did not compare with CRD (Tian et al., 2020) on CIFAR-10 because, in our experiments,
we found that their parameter setting (used in their paper for CIFAR-100 and ImageNet-1K) does
not obtain good performance on CIFAR-10.

CIFAR-100 For CIFAR-100 (Krizhevsky & Hinton, 2009), we used a standard data augmentation
scheme (Zagoruyko & Komodakis, 2017) including padding 4 pixels prior to random cropping and
horizontal flipping. We used SGD with weight decay 5e-4 and momentum 0.9. Batch size was set
to 128. Learning rate was set to 0.1; then decayed by 0.1 at epochs 100, 150, until training reached
200 epochs (Heo et al., 2019a).

ImageNet-1K Images are cropped to 224 × 224 pixels for both training and evaluation. We used
SGD with Nesterov momentum 0.9, weight decay 1e − 4, initial learning rate 0.2 which was then
dropped by a factor of 10 every 30 epochs, training in total for 100 epochs (for CRD we trained with
10 more epochs as suggested by the authors). Batch size was set to 512. For simplicity and to enable
a fair comparison, we used pretrained PyTorch models Paszke et al. (2017) as teacher networks Heo
et al. (2019a); Tian et al. (2020). For binary experiments, we used Adam as the optimizer with initial
learning 0.002 which was then reduced by a factor of 10 every 30 epochs, training in total for 100
epochs.

A.3 ADDITIONAL ABLATION STUDIES

Different losses for LSR: This part expands Section 4 of our paper by evaluating different losses
for LSR. The following loss functions are compared:

1. L2 loss: LSR−L2(p, q) = ‖p− q‖2. This is the loss used in Section 4 of our paper

2. Cross Entropy loss (CE) with label y: LSR−CE(q, y) = H(q, y).
3. KL loss with temperature τ Hinton et al. (2015): LSR−KL(p, q) = KL(q/τ, p/τ).

The results, presented in Table 10, show that all loss functions offer significant improvement gains
while LFM+LSR−L2 achieves the best accuracy. Therefore, in our paper, LSR−L2 is used in all
cases.

Table 10: Evaluation of different loss functions for LSR in terms of Top-1 accuracy on CIFAR-100.

Method Top-1(%) Top-5(%)
Student: WRN-16-4 76.97 93.89
Teacher: WRN-40-4 79.50 94.57
LFM+LSR−L2 79.58 95.21
LFM+LSR−CE 78.80 95.13
LFM+LSR−KL 79.04 95.12

Combining our method with KD and AT: Table 11 shows additional comparisons on CIFAR100
by combining our method with AT Zagoruyko & Komodakis (2017) and KD Hinton et al. (2015), re-
spectively. The results show that a straightforward combination did not provide satisfactory results,
however it could be possible that a more comprehensive investigation might prove to be beneficial.

A.4 ADDITIONAL COMPARISONS

This section provides additional comparisons using the evaluation framework of CRD Tian et al.
(2020). Comparisons include distillation between models with the same architecture (e.g. ResNet56
to ResNet20) and between different architectures (e.g. ResNet50 to MobileNetV2). In order to
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Table 11: Top-1 accuracy (%) of combining our method with KD and AT on CIFAR-100.

Student (Params) Teacher (Params) Student KD AT KD+Ours AT+Ours Ours Teacher
WRN-16-2 (0.70M) WRN-40-4 (8.97M) 72.70 74.52 74.33 74.97 75.01 75.96 79.50
WRN-16-4 (2.77M) WRN-40-4 (8.97M) 76.97 78.35 78.06 79.00 79.09 79.58 79.50
WRN-10-10 (7.49M) WRN-16-10 (17.2M) 76.27 78.20 76.44 78.84 77.79 79.17 79.77
ResNet-10 (0.34M) ResNet-34 (1.39M) 68.42 69.18 68.49 70.41 69.41 69.91 72.05
ResNet-18 (0.75M) ResNet-50 (1.99M) 71.07 73.41 71.90 73.46 73.17 73.47 72.83
ResNet-10 (4.95M) ResNet-34 (21.33M) 75.01 77.35 76.87 77.64 77.48 77.90 78.44
WRN-16-2 (0.70M) ResNet-34 (21.33M) 72.70 73.95 72.32 74.90 74.71 75.38 78.44
MobileNetV2 (2.37M) ResNet-34(21.33M) 68.42 69.36 68.60 71.08 70.70 71.58 78.44
MobileNetV2 (2.37M) WRN-40-4 (8.97M) 68.42 69.15 68.95 70.85 70.63 71.82 79.50

maximize the fairness of the comparison, we followed their experimental setting. Thus, we did not
choose the training parameters, teacher-student architecture pairs or methods to compare against.
The competing methods included are:

• Classic: Knowledge Distillation (KD) Hinton et al. (2015), FitNet Romero et al. (2015),
Attention Transfer (AT) Zagoruyko & Komodakis (2017).

• Most recent: Similarity-Preserving KD (SP) (Tung & Mori, 2019), Correlation Congruence
(CC) (Peng et al., 2019), Variational Information Distillation (VID) (Ahn et al., 2019),
Relational Knowledge Distillation (RKD) (Park et al., 2019), Distillation of Activation
Boundaries (AB) (Heo et al., 2019b), Factor Transfer (FT) (Kim et al., 2018), Flow of
Solution (FSP) (Yim et al., 2017) and Contrastive Representation Distillation (CRD) (Tian
et al., 2020).

Table 12: Distillation experiment with the same architectures (Tian et al., 2020): Top-1 accuracy
(%) on CIFAR-100. The student models were trained with a teacher of the same architecture. We
report average over 3 runs as in (Tian et al., 2020).

wrn-40-2 wrn-40-2 resnet56 resnet110 resnet110 resnet32x4 vgg13
wrn-16-2 wrn-40-1 resnet20 resnet20 resnet32 resnet8x4 vgg8

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36

KD 74.92 73.54 70.66 70.67 73.08 73.33 72.98
FitNet 73.58 72.24 69.21 68.99 71.06 73.50 71.02

AT 74.08 72.77 70.55 70.22 72.31 73.44 71.43
SP 73.83 72.43 69.67 70.04 72.69 72.94 72.68
CC 73.56 72.21 69.63 69.48 71.48 72.97 70.71
VID 74.11 73.30 70.38 70.16 72.61 73.09 71.23
RKD 73.35 72.22 69.61 69.25 71.82 71.90 71.48
PKT 74.54 73.45 70.34 70.25 72.61 73.64 72.88
AB 72.50 72.38 69.47 69.53 70.98 73.17 70.94
FT 73.25 71.59 69.84 70.22 72.37 72.86 70.58

FSP 72.91 0.00 69.95 70.11 71.89 72.62 70.23
NST 73.68 72.24 69.60 69.53 71.96 73.30 71.53
CRD 75.48 74.14 71.16 71.46 73.48 75.51 73.94
Ours 75.96 74.75 71.44 71.51 73.80 75.92 74.40
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Table 13: Distillation experiment with different architectures (Tian et al., 2020): Top-1 accuracy
(%) on CIFAR-100. The student models were trained with a teacher of different architecture. We
report average over 3 runs as in (Tian et al., 2020).

vgg13 ResNet50 ResNet50 resnet32x4 resnet32x4 wrn-40-2
MobileNetV2 MobileNetV2 vgg8 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1

Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.60 64.60 70.36 70.50 71.82 70.50

KD 67.37 67.35 73.81 74.07 74.45 74.83
FitNet 64.14 63.16 70.69 73.59 73.54 73.73

AT 59.40 58.58 71.84 71.73 72.73 73.32
SP 66.30 68.08 73.34 73.48 74.56 74.52
CC 64.86 65.43 70.25 71.14 71.29 71.38
VID 65.56 67.57 70.30 73.38 73.40 73.61
RKD 64.52 64.43 71.50 72.28 73.21 72.21
PKT 67.13 66.52 73.01 74.10 74.69 73.89
AB 66.06 67.20 70.65 73.55 74.31 73.34
FT 61.78 60.99 70.29 71.75 72.50 72.03

NST 58.16 64.96 71.28 74.12 74.68 74.89
CRD 69.73 69.11 74.30 75.11 75.65 76.05
Ours 69.14 69.45 74.46 75.66 76.40 76.61
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