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ABSTRACT

Cardiac signals convey a significant amount of information about the health status
of a patient. Upon recording these signals, cardiologists are expected to manually
generate an accompanying report to share with physicians and patients. Gener-
ating these reports, however, can be time-consuming and error-prone, while also
exhibiting a high degree of intra- and inter-physician variability. To address this,
we design a neural, multilingual, cardiac signal captioning framework. In the pro-
cess, we propose a discriminative multilingual representation learning method,
RTLP, which randomly replaces tokens with those from a different language and
tasks a network with identifying the language of all tokens. We show that RTLP-
generated reports are of high quality and clinical utility, and are on par with reports
generated by networks pre-trained with state-of-the-art methods such as MLM and
MARGE. We also show that generated reports exhibit higher quality and clinical
utility when RTLP is fine-tuned in a multilingual setting than in a monolingual
setting, a phenomenon we refer to as the blessing of multilinguality.

1 INTRODUCTION

Cardiac signals convey a significant amount of information about the status of a patient. Upon
recording these signals, an expert cardiologist is often required to interpret the findings, manually
generate an accompanying textual report (Richley & Walters, 2020), and share it with fellow physi-
cians (and patients). Such a report is crucial within medicine, impacting communication between
physicians, facilitating clinical decision-making, and holding care teams accountable for their ac-
tions (Waegemann et al., 2002). Manually generating these reports, however, can be time-consuming
and error-prone, while also exhibiting a high degree of intra and inter-physician variability. Com-
bined, these can detract from a physician’s time with a patient, thus decreasing patient satisfaction,
and hinder communication between physicians (Hibbard et al., 2001; Keselman & Smith, 2012),
thus potentially compromising patient outcomes (Brailer et al., 1997).

One way to address this challenge is by collapsing a clinical report into multiple pertinent medical
conditions and designing a system that identifies such conditions. However, abstracting away the
details of a report can obscure the full assessment of a patient’s health status and defining the per-
tinence of conditions can be disease-specific and non-trivial. Based on these observations, we look
to address the following question: how do we automatically generate clinically accurate reports
that reliably summarize cardiac signals? To address this question, the fields of visual-language
representation learning and captioning hold promise. In this setting, rich representations of visual
inputs and language are learned to automatically generate captions. Representations of the latter can
be learned in a discriminative monolingual setting, as with ELECTRA (Clark et al., 2020), or in a
generative multilingual setting, as with MARGE (Lewis et al., 2020). However, a discriminative
multilingual framework has yet to be explored. Moreover, previous work has focused exclusively
on the captioning of medical images (Hasan et al., 2018; Zeng et al., 2020). It has not explored the
captioning of cardiac time-series signals.

In this paper, we address the outlined question by designing a neural, multilingual, cardiac signal
captioning system while exploiting a large-scale electrocardiogram (ECG) database. Our contribu-
tions are the following: (1) We propose a discriminative multilingual representation learning method,
replaced token language prediction (RTLP), in which we randomly replace tokens with those from
other languages, and task a network with predicting the language of all tokens. (2) We show that
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RTLP allows networks to generate reports, in multiple languages, that are as clinically accurate as
those generated by masked language modelling (MLM). To the best of our knowledge, we are the
first to propose a multilingual cardiac signal captioning system. (3) We conduct extensive studies
to show that generated reports exhibit higher quality and clinical utility when RTLP is fine-tuned
in a multilingual setting than in a monolingual setting, a phenomenon we refer to as the blessing of
multilinguality.

2 RELATED WORK

Language representation learning Representation learning is integral to modern natural lan-
guage processing. Generative tasks such as MLM show promise (Devlin et al., 2019; Liu et al.,
2019b), even in the multilingual setting (Conneau & Lample, 2019; Conneau et al., 2020b; Liu
et al., 2020). MARGE (Lewis et al., 2020) retrieves documents, in potentially different languages,
and attempts to reconstruct a target document. Others propose to jointly learn textual and visual rep-
resentations (Sun et al., 2019; Lu et al., 2019; Zhang et al., 2020b). Similar to our work is ELECTRA
(Clark et al., 2020), where tokens are replaced with those from a generative model, and a network is
tasked with discriminating between the original and replaced tokens. This approach remains com-
putationally expensive where both an MLM and discriminative network are learned. It also does
not optimize a multilingual objective. To the best of our knowledge, we are the first to propose a
discriminative multilingual representation learning method in the context of cardiac signals.

Multilingual representation learning Pre-training and fine-tuning networks on multiple lan-
guages confers benefits to NLP tasks (Conneau et al., 2020b; Pratap et al., 2020; Conneau et al.,
2020a; Artetxe et al., 2020). For example, Conneau et al. (2020b) and Artetxe et al. (2020) show
that multilingual pre-training outperforms its monolingual counterpart in solving downstream NLP
tasks. These findings have been partially driven by monolingual datasets that are machine-translated
to multiple languages, as with XNLI (Conneau et al., 2018). We similarly translate ground-truth
ECG reports into multiple languages in order to guide the generation of multilingual reports. Al-
though Huang et al. (2019) propose a pre-training setup similar to ours, we explore more languages
and define a different pre-training task (RTLP) which we exploit for cardiac signal captioning.

Captioning in healthcare Biomedical image captioning has traditionally focused on chest X-rays
(Kisilev et al., 2016; Jing et al., 2017; Hasan et al., 2018; Jing et al., 2020; Zeng et al., 2020; Liu et al.,
2021). Liu et al. (2019a) condition their captioning system on the medical topic to be discussed and
Wang et al. (2018) propose a multi-level attention model that attends to both the image and the text.
Previous work which captioned electroencephalogram (EEG) signals (Biswal et al., 2019; 2020)
did not explore a multilingual representation learning method and does not extend to the generation
of reports in multiple languages. To the best of our knowledge, we are the first to propose the
multilingual captioning of cardiac signals.

3 BACKGROUND

3.1 CARDIAC SIGNAL CAPTIONING

We begin by assuming access to a dataset, D = {xi, capi}Ni=1 comprising N cardiac signals, x ∈
RD, and their associated captions, cap = {ws}Ss=1, which consist of S words, ws. The goal of
cardiac signal captioning is to generate a caption (report) that reliably summarizes the physiological
state of a patient as manifested in a cardiac signal. To extract features from the signal, an encoder,
fθ : x ∈ RD → {vt ∈ RM}Tt=1, parameterized by θ, maps a D-dimensional instance, x, to a set of
T representations, {vt ∈ RM}Tt=1, each of which is M -dimensional (see Fig. 1 left).

To convert the captions into a format ingestible by a network, we first convert each word, ws, in a
caption, cap = {ws}Ss=1, to a token, us, to form a sequence of tokens {us}Ss=1. Such tokenization
can involve lower-casing and stemming words, in addition to removing punctuation. After deriving
tokens from all captions in a training set, we form a fixed vocabulary, V = {ui}Ci=1, of the C unique
tokens where |V | = C. We then define an embedding matrix (lookup table),E ∈ RC×M : u→ e ∈
RM , which maps each token, u, to an M -dimensional token embedding, e. These embeddings are

2

DaniK
Highlight

DaniK
Highlight

DaniK
Highlight



Under review as a conference paper at ICLR 2022

Figure 1: (Left) Multilingual cardiac signal captioning pipeline. We feed a 12-lead ECG into
an encoder, fθ, to extract representations, v. These are fed, alongside embeddings, e, of tokens
from a particular language, to a decoder, gφ, to generate token representations, h. We feed h into a
language-specific head, pωl

, to generate a caption in a specific language. (Right) Replaced token
language prediction framework. We randomly replace source tokens with those from a target
language and task the network with classifying the language of all tokens. In doing so, we encourage
the network to capture relationships between representations of tokens from different languages.

typically randomly-initialized and learned in an end-to-end manner via gradient descent. As such,
every caption can now be represented as a sequence of token embeddings, {es}Ss=1.

To extract features from language, a decoder, gφ : {vt}Tt=1, {es}Ss=1 → {hs ∈ RM}Ss=1, pa-
rameterized by φ, attends to all encoder representations, {vt}Tt=1, while mapping a token em-
bedding, es, at step, s, to an M -dimensional token representation, hs. Each token representa-
tion, hs, in the sequence of representations, {hs}Ss=1, is then fed into a linear classification head,
pω : hs ∈ RM → ys ∈ RC , to output a probability distribution, ys, over the C tokens in the
vocabulary. This forms a sequence of outputs, {ys}Ss=1. At each step, s, in the sequence, the goal is
to maximize the likelihood of generating the token of the next step, us+1. Therefore, by identifying
the most probable output token at each step, we can form a sentence of words (i.e., a caption).

4 METHODS

4.1 MULTILINGUAL CAPTIONING OF CARDIAC SIGNALS

At the surface, a monolingual captioning framework would appear to be sufficient for physicians
communicating in a single language. However, the motivation for a multilingual captioning frame-
work, in which reports are simultaneously generated in multiple languages, is threefold. First, a
multilingual framework would obviate the cumbersome process of having to train a distinct model
for different languages (Conneau et al., 2020a). Second, recent work has demonstrated the benefits
of incorporating additional languages into the learning process (Artetxe et al., 2020). Lastly, a mul-
tilingual framework exhibits greater flexibility than its monolingual counterpart, as it can always be
collapsed, during inference, to generate captions from a single language.

To enable multilingual captioning, we first assume access to L language-specific datasets, {Dl}Ll
where Dl = {xi, capli}Ni=1 comprises N cardiac signals, x, and captions in a specific language,
l ∈ L = {en, es, · · · }, where en and es represent English and Spanish, respectively. Note that
the cardiac signals are shared across the datasets. We follow the same encoder-decoder approach
mentioned in the previous section with one exception. We replace the single classification head with
L language-specific heads to account for the distinct vocabularies of the L languages. In doing so,
we exploit recent observations that demonstrated the utility of having a network with parameters
that are both language-specific and shared across languages (Zhang et al., 2020a).
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Formally, for each language, l, we have a linear classification head, pωl
: hls ∈ RM → yls ∈

RC , with ωl ∈ {ωen,ωes, · · · } reflecting language-specific parameters. Each head maps the token
representation, hls, at each step, s, in the sequence to a probability distribution, yls, over C tokens
where C ∈ {|Ven|, |Ves|, · · · } reflects the size of a language-specific token vocabulary. When doing
this for each step in the sequence, we arrive at a set of probability distributions, {yls}Ss=1. As with
traditional language models, at each step in the sequence, s ∈ [1, S], we maximize the likelihood of
observing the next token in the sequence, uls+1, from a particular language, l ∈ L. Therefore, for a
mini-batch of B captions in a single language, we would optimize the categorical cross-entropy loss
at each step, s. To extend this to L languages, we load L mini-batches and optimize the following
multi-task categorical cross-entropy loss.

Lmultilingual = − 1

LBS

L∑
l∈L

B∑
i=1

S∑
s=1

log pωl
(yli,s = uli,s+1) (1)

4.2 REPLACED TOKEN LANGUAGE PREDICTION

To facilitate achieving the downstream task of multilingual cardiac signal captioning, we design a
discriminative multilingual pre-training task that learns the decoder parameters, φ, and the token
embeddings, e. At a high-level, this task involves randomly selecting tokens in a sequence, replac-
ing them with semantically-similar tokens from a different language, and tasking a network with
classifying the language of all tokens (see Fig. 1 right).

The intuition behind our framework is that a network exposed to semantically-similar tokens from
distinct languages which share the same context (neighbouring tokens) can learn that such tokens
are indeed similar to one another. We hypothesize that encouraging this behaviour can lead to
the learning of token representations that are beneficial for the downstream task of multilingual
captioning since these tokens (from different languages) are likely to arise in the same generated
report, albeit in a different language. As such, the generated multilingual reports might be more
likely to contain plausible tokens, and thus be clinically accurate. From hereon forward, we refer to
this method as replaced token language prediction (RTLP) and describe its mechanics next.

Source token selection Given tokens, {ulsrcs }Ss=1, in a sequence of length, S, from a source lan-
guage, lsrc ∈ L, we first sample K distinct steps, {sk}Kk=1 where sk ∈ [1, S] from a uniform
distribution, U . We then replace the corresponding source tokens, {ulsrcsk

}Kk=1, with those from a
target language, {ultgtsk }Kk=1. We outline how to select the target language and token next.

Target language and token selection For each source token, ulsrcsk
, we sample a target language,

ltgt ∼ U(L′), uniformly at random from the set of remaining languages L′ = L \ lsrc where
|L′| = L−1. Given ltgt, we now sample a target token, ultgtsk ∼ U(Vltgt), uniformly at random from
the language-specific vocabulary of tokens, Vltgt . Such random sampling, however, can lead to the
selection of a target token that is semantically different from the source token. As such, the network
may discriminate between source and target tokens by using a detrimental shortcut that is based on
semantics instead of language.

To avoid this behaviour, we instead adopt a strategy where the target token is likely to be seman-
tically similar to (e.g., a noisy translation of) the source token. Formally, we quantify the cosine
similarity, simj , between the source token embedding, elsrcsk

∈ RM , and the embedding, eltgtj ∈ RM

of each token, ultgtj ∈ Vltgt in the vocabulary of the target language. By taking the softmax of these

similarities, we form a categorical distribution, q, with elements, qj , from which we sample ultgtsk .
As the token embeddings become more meaningful during training, the sampled target token is more
likely to be semantically similar to the source token.

ultgtsk
∼ q , where qj =

exp(simj)∑|Vltgt |
m exp(simm)

, simj =
elsrcsk

· eltgtj

|elsrcsk ||e
ltgt
j |

(2)

Objective function Equipped with a sequence of tokens in source and target languages, we predict
the language of such tokens. To do so, we define a classification head, pψ : h → y ∈ RL,
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parameterized by ψ, that maps each token representation, h, to a probability distribution, y, over L
languages. Formally, given a mini-batch of B captions of length, S, in the source language, l, we
optimize the categorical cross-entropy loss. This is achieved for the tokens in the source (r = 0)
and target (r = 1) languages. To extend this to L source languages, we load L mini-batches and
optimize the following multi-task categorical cross-entropy loss where 1 is the indicator function.

LRTLP = − 1

LBS

L∑
l∈L

B∑
i=1

S∑
s=1

1r=0 ·log pψ(yi,s = lsrc|ulsrci,s )+1r=1 ·log pψ(yi,s = ltgt|u
ltgt
i,s ) (3)

5 EXPERIMENTAL DESIGN

Datasets We evaluate our framework on the PTB-XL dataset (Wagner et al., 2020), the only
publicly-available dataset which comprises ECG signals with a corresponding clinical report. Each
ECG signal (from a total of 18,885 patients) is also associated with cardiac abnormality labels which
we group into 5 classes (Strodthoff et al., 2020). We provide further details in Appendix A.1.

Representation learning of cardiac signals Supervised pre-training remains an effective way to
learn rich, generalizable representations. As such, we pre-train the encoder, fθ, to map 12-lead ECG
signals in the training set to cardiac abnormalities. We decide on this task because ECG reports are
likely to reflect such abnormalities. Therefore, grounding the captioning process in representations
of cardiac signals that can discriminate between cardiac abnormalities can be beneficial.

Representation learning of clinical reports To tokenize the ECG reports, we exploit L language-
specific tokenizers from SpaCy (see Appendix C.5 for details). For simplicity, we lower-case the text
and remove any punctuation. By keeping track of unique tokens, we form L distinct vocabularies.
Each vocabulary also includes language-specific tokens to indicate the start and end of the report, and
the [PAD] and [OOV] tokens to refer to padded entries and tokens observed during inference that
are not seen during training, respectively. We also introduce the [MASK] token where appropriate.
The details of network architectures can be found in Appendix C.1.

Multilingual cardiac signal captioning After pre-training the encoder, fθ, and the decoder, gφ,
independently of one another, we exploit the learned parameters, {θ, φ}, and token embeddings to
solve the task of cardiac signal captioning (see Fig. 1 left). After experimenting with several variants
of our framework, we chose to freeze the encoder parameters and extract multiple representations per
cardiac signal. Multilingual captioning also requires multilingual ground-truth ECG reports. Since
such paired reports do not exist, we translate the original set of reports in English (en) to six lan-
guages {German (de),Greek (el),Spanish (es),French (fr), Italian (it),Portuguese (pt)} using
the Google Translate API, a strategy similar to that adopted by Conneau et al. (2018). We open-
source these reports1 and provide further details in Appendix B. Although translated reports can be
imperfect ground-truth reports, we hypothesize (and indeed show) that the net effect of multilingual-
ity on the quality and clinical utility of generated reports is advantageous.

Baseline Methods As the first to propose multilingual captioning of cardiac signals, we cannot
trivially compare to previous methods. However, we compare our pre-training method, RTLP, to
the following state-of-the-art pre-training methods: 1) MLM (Devlin et al., 2019), masked language
modelling where the decoder is tasked with identifying masked tokens, 2) ELECTRA (Clark et al.,
2020), where the decoder is tasked with identifying whether tokens have been replaced with those
from an MLM model, and 3) MARGE (Lewis et al., 2020), a multilingual generative language rep-
resentation learning approach where source documents in various languages are retrieved to generate
a similar target document (see Appendix C.3 for details on how we adapted these methods).

Evaluation Metrics We quantify the quality of the generated reports by comparing the degree
of overlap of tokens in such reports to those in the ground-truth report. Specifically, we use the
BLEU−1 (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005), and ROUGE−L (Lin, 2004)
scores (see Appendix C.4 for more details).

1Code and data: https://tinyurl.com/CardiacSignalCaptioning
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Hyperparameters We conduct our experiments using PyTorch (Paszke et al., 2019). We pre-train
the encoder and decoder with a patience value of 10 and 25 epochs, respectively, on the validation
loss. When transferring the parameters to the task of cardiac signal captioning, we use those asso-
ciated with the lowest validation loss. When fine-tuning, we checkpoint the parameters associated
with the highest validation BLEU score. We implement a greedy decoding mechanism by taking
the argmax of the probability distribution over tokens at each step. We leave for future work other
decoding mechanisms such as beam search (Graves, 2012).

6 EXPERIMENTAL RESULTS

6.1 QUANTITATIVE EVALUATION OF GENERATED REPORTS

We begin by quantitatively evaluating the ability of the pre-training methods to generate high quality
multilingual reports. In Table 1, we present the BLEU−1, METEOR, and ROUGE−L scores of
reports generated in seven different languages.

We find that RTLP performs on par with state-of-the-art generative pre-training methods. For
example, on average, RTLP achieves BLEU−1 = 28.5 whereas MLM and MARGE achieve
BLEU−1 = 29.4 and 28.9, respectively. This finding holds across languages and evaluation met-
rics. Furthermore, we find that RTLP outperforms the state-of-the-art discriminative pre-training
method, ELECTRA. For example, on average, RTLP and ELECTRA achieve ROUGE−L = 33.4
and 0.5, respectively. We note that we were unable to achieve satisfactory performance with ELEC-
TRA despite extensive experimentation (please see code for reproducibility). One hypothesis for
this stems from the difficulty of optimizing its objective function which comprises a generative and
discriminative term. We also find that, regardless of the pre-training method implemented, perfor-
mance varies significantly across languages. For example, RTLP achieves BLEU−1 = 19.8 and
33.5 on Greek (el) and English (en) reports, respectively. We hypothesize that this is due to a high
level of dissimilarity between the Greek vocabulary and that of the remaining languages. This, in
turn, reduces the amount of knowledge transferred from the other languages to the Greek language.
Overall, our findings suggest that RTLP can be an effective discriminative multilingual pre-training
method. Qualitative evidence to support this claim is provided in the next section.

Table 1: Multilingual cardiac signal captioning performance of pre-training methods. Results
are shown on the test set across five seeds. The standard deviation is shown in brackets. For clarity,
we have highlighted our method in gray. We find that RTLP performs on par with state-of-the-art
language pre-training methods, MLM and MARGE.

Language Pre-training German Greek English Spanish French Italian Portuguese AverageMethod (de) (el) (en) (es) (fr) (it) (pt)

BLEU-1

MLM (Devlin et al., 2019) 25.9 (0.6) 20.5 (0.3) 31.3 (0.5) 33.2 (0.8) 29.7 (0.6) 30.3 (0.2) 34.9 (0.7) 29.4 (4.6)
ELECTRA (Clark et al., 2020) 0.1 (0.1) 0.2 0.2 (0.2) 0.3 (0.1) 0.6 (0.1) 0.5 (0.1) 0.5 (0.1) 0.3 (0.2)
MARGE (Lewis et al., 2020) 24.9 (1.0) 19.5 (0.9) 30.8 (0.5) 32.9 (0.5) 29.7 (0.6) 29.4 (0.5) 34.5 (1.0) 28.9 (4.8)

RTLP 25.4 (1.1) 19.8 (0.6) 30.0 (0.7) 33.1 (0.9) 28.3 (0.8) 30.0 (0.1) 33.5 (1.0) 28.5 (4.5)

METEOR

MLM (Devlin et al., 2019) 36.7 (1.0) 23.6 (0.2) 37.3 (1.1) 38.6 (0.6) 33.5 (0.7) 33.9 (0.7) 38.8 (0.7) 34.6 (5.0)
ELECTRA (Clark et al., 2020) 0.3 (0.5) 0.2 (0.1) 0.2 (0.1) 0.5 (0.4) 1.1 (0.3) 0.9 (0.2) 0.5 (0.2) 0.5 (0.4)
MARGE (Lewis et al., 2020) 35.6 (1.5) 22.2 (1.0) 36.5 (0.8) 37.1 (0.6) 33.1 (1.0) 32.9 (0.9) 37.8 (1.1) 33.6 (5.1)

RTLP 36.5 (0.7) 22.6 (1.0) 36.0 (0.9) 38.5 (0.8) 32.4 (0.4) 33.7 (0.9) 37.6 (0.6) 33.9 (5.1)

ROUGE-L

MLM (Devlin et al., 2019) 34.6 (0.8) 11.4 (1.9) 28.5 (0.2) 39.3 (1.3) 34.5 (0.8) 36.9 (0.5) 39.1 (0.6) 33.5 (9.3)
ELECTRA (Clark et al., 2020) 0.2 (0.3) 0 0.2 0.5 (0.3) 1.0 (0.2) 0.8 (0.1) 0.5 (0.1) 0.5 (0.4)
MARGE (Lewis et al., 2020) 33.2 (0.7) 11.1 (2.3) 38.1 (0.5) 39.2 (0.6) 34.4 (0.8) 36.1 (0.6) 39.0 (0.5) 33.0 (9.4)

RTLP 34.0 (1.1) 11.6 (2.3) 36.3 (0.9) 39.1 (1.2) 33.1 (0.9) 36.5 (1.0) 37.3 (0.9) 32.6 (8.9)

6.2 QUALITATIVE EVALUATION OF GENERATED REPORTS

We also manually inspect the multilingual clinical reports generated by RTLP. Ideally, such reports
should accurately reflect clinical information. In Fig 2, we present a 12-lead ECG segment alongside
the multilingual ground-truth reports and those generated by RTLP and MLM.

6

https://tinyurl.com/CardiacSignalCaptioning


Under review as a conference paper at ICLR 2022

There are three main takeaways from Fig 2. First, RTLP allows networks to generate reports that
accurately capture the aberrant morphology (shape) of the ECG signal. For example, in Spanish (es),
the ground-truth and RTLP-generated reports both explicitly mention the cardiac abnormality “blo-
queo de rama izquierda” (left bundle branch block). Second, we find that RTLP-generated reports
manage to capture critical aspects of the ECG signal that their MLM counterparts struggle with. For
example, in English (en), both the ground-truth and RTLP-generated reports both explicitly mention
“left hypertrophy possible”, whereas this phrase is noticeably absent from the MLM-generated re-
port. Such an absence is problematic as it might result in a physician overlooking this aspect, and
thus failing to act accordingly. Lastly, we find that MLM-generated reports can include additional
erroneous phrases which are neither present in the ground-truth report nor in the RTLP-generated
report. For example, in Portuguese (pt), the MLM-generated report mentions “atrial flutter”, which
is noticeably (and correctly) absent from the remaining reports. Similar erroneous inclusions can
also be found in the German (de) and French (fr) reports. This is also problematic since physicians
can be misled by such statements, potentially resulting in unnecessary medical treatments. These
findings indicate that RTLP allows networks to generate reliable and clinically accurate reports.

Figure 2: 12-lead ECG, multilingual ground-truth reports, and those generated by RTLP and
MLM. We show some phrases in bold which exhibit a high level of agreement in both the ground-
truth report and that generated by RTLP, in blue which are captured by RTLP and not captured by
MLM (false negatives), and in red which MLM erroneously includes (false positives). Overall, we
show that RTLP can generate reports that accurately capture the pathology of the cardiac signal.

6.3 QUANTIFICATION OF CLINICAL UTILITY OF GENERATED REPORTS

So far, we have qualitatively shown that RTLP is capable of generating clinically accurate and plau-
sible reports. It could be argued, however, that such a qualitative evaluation presents a limited view
of the clinical utility of these reports. More broadly, our evaluation setup can be questioned since
we are comparing generated reports to potentially noisy multilingual “ground-truth” reports, which
were, for the most part, generated via translation. In this section, we aim to allay this concern and
demonstrate the clinical utility of our generated reports in a systematic manner, as explained next.

To demonstrate that the translated ground-truth reports exhibit clinically useful information, we
examine their ability to identify characteristics (e.g., cardiac abnormalities) of the corresponding
cardiac signal. The intuition is that a report which is highly predictive of such characteristics, which
inform clinical decision-making, is likely to be of clinical utility. For example, this report could be
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used for decision support. As such, we set out to learn a model that maps translated ground-truth
reports to a single cardiac abnormality label (5 classes) associated with the ECG. We represent these
reports as a bag-of-words (BoW) on which a Random Forest model is trained (see Appendix D for
further details). In Fig. 3, we illustrate the performance of such models when trained and evaluated
on mutually-exclusive ground-truth reports in different languages (Target). We find that ground-
truth reports are indeed highly predictive of cardiac abnormalities. This is evident by the strong
performance of these models (e.g., AUC > 0.90). Such a finding suggests that the translated
ground-truth reports are of clinical value.

To demonstrate the clinical utility of the generated reports, we follow a procedure similar to the
one just described with one exception. Instead of training a model on ground-truth reports, we do
so on held-out reports that are generated by a framework (e.g., RTLP). Importantly, we evaluate all
models on the same set of ground-truth reports. The intuition here is that high quality generated
reports should allow for the learning of a predictive model that can generalize to the ground-truth
reports. In Fig. 3, we illustrate the performance of such models when trained on MLM- and RTLP-
generated reports. There are two main findings here. First, we see that the generated reports exhibit
lower clinical utility than ground-truth reports. This is evident by the ↓ AUC when comparing
the Target setting to the MLM setting. For example, in German (de), AUC ≈ 0.92 → 0.82.
Second, we show that the generated reports are predictive of cardiac abnormalities. This is evident
by ↑ AUC of models trained on such reports. For example, in Italian (it), RTLP-generated reports
lead to AUC ≈ 0.84. Such a finding supports the claim that RTLP-generated reports are of clinical
value.

Figure 3: Performance of models trained on clinical reports, either ground-truth or generated,
to predict cardiac abnormalities. In all experiments, a Random Forest model is trained either on
ground-truth reports (Target) or those generated by MLM and RTLP. Models are evaluated on a
mutually-exclusive set of ground-truth reports across five random seeds. Translated ground-truth
reports and those generated, for example, by RTLP are predictive of cardiac abnormalities. Such a
finding demonstrates the clinical utility of reports, and by extension, the system that generates them.

6.4 INVESTIGATION OF THE CURSE OF MULTILINGUALITY

Multilingual neural systems can experience the curse of multilinguality (Conneau et al., 2020b).
Concisely, this attributes the potentially poorer performance of multilingual models relative to their
monolingual counterparts to interference between the various languages. Intuitively, tasking a net-
work with generating reports in multiple languages, analogous to multi-task learning (Caruana,
1993), can be too demanding and thus hinder its ability to generate sensible reports. We explore
this curse through the lens of the quality and clinical utility of generated reports. To do so, we first
pre-train our networks, as per usual, and fine-tune them in the monolingual setting. We then com-
pare the quality (BLEU−1) and clinical utility (AUC) of the generated reports in the multilingual
setting to those in the monolingual setting. Such a comparison is presented in Fig. 4.

In Fig. 4 (left column), we find that MARGE does not experience the curse of multilinguality when
evaluated along the dimension of either performance or clinical utility. This can be seen by the
similar performance achieved by MARGE irrespective of whether it is fine-tuned in the monolin-
gual or multilingual setting. For example, when generating Spanish (es) reports, MARGE achieves
BLEU−1 ≈ 32 and AUC ≈ 0.80 in both settings. Such a finding suggests that incorporating mul-
tiple languages into the fine-tuning process has little to no effect on the quality and clinical utility
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Figure 4: Effect of multilinguality on the (top row) quality and (bottom row) clinical utility
of the generated reports. The multilingual setting involves simultaneously generating reports in
all seven languages, L = {de, el, en, es, fr, it,pt}. Results are shown across five random seeds.
Through the lens of report quality and clinical utility, MARGE does not consistently experience
the curse of multilinguality. In contrast, RTLP benefits significantly from incorporating multiple
languages into the fine-tuning process, a phenomenon we refer to as the blessing of multilinguality.

of the generated reports. This is in contrast to findings with RTLP (Fig. 4 right column), which
reflect a significant benefit from the inclusion of multiple languages. This can be seen by the higher
quality (↑ BLEU−1) and clinical utility (↑ AUC) of reports generated by RTLP in the multilingual
setting than in the monolingual setting. For example, for French (fr) reports and in both settings, the
network achieves BLEU−1 ≈ 30 and ≈ 2, respectively, and AUC ≈ 0.80 and 0.52, respectively.
We denote this positive effect of multilinguality on the quality and clinical utility of reports as the
blessing of multilinguality. We hypothesize that such benefits stem from the transfer and sharing of
knowledge across languages. We also note the poorer performance of RTLP in the monolingual set-
ting relative to the multilingual setting. For English (en) reports, RTLP achieves BLEU−1 ≈ 13 and
≈ 31, respectively. We hypothesize that this is due to the relative importance placed by the model
on particular languages during multilingual RTLP pre-training. For example, such pre-training may
implicitly weight languages differently. As such, the learned language-specific token representations
may differ in their expressiveness. In light of this, networks fine-tuned in the monolingual setting
may perform poorly.

7 DISCUSSION

In this paper, we proposed a neural multilingual cardiac signal captioning framework. In the process,
we designed a discriminative multilingual pre-training method, RTLP, which randomly replaced to-
kens in a caption with those from a different language and tasked the network with identifying the
language of all tokens. We showed that RTLP-generated reports exhibit high quality and clinical util-
ity, and are on par with those generated by state-of-the-art pre-training methods such as MLM. We
also showed that generated reports exhibit higher quality and clinical utility when RTLP is fine-tuned
in a multilingual setting than in a monolingual setting, a phenomenon we refer to as the blessing of
multilinguality. Based on these findings, we recommend exploiting RTLP for multilingual cardiac
signal captioning. Several exciting paths remain. These include the design of a captioning frame-
work that incorporates multiple modalities (e.g., medical videos, electronic health records). Doing
so may result in higher quality reports and increase the likelihood of system adoption by medical
professionals. In order to further validate our framework, we aim to exploit it to generate reports of
a higher level of complexity.
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A DATASETS

A.1 DATA PREPROCESSING

The ECG frames consisted of 2500 samples and consecutive frames had no overlap with one another.
Data splits were always performed at the patient-level.

PTB-XL (Wagner et al., 2020). Each ECG recording was originally 10 seconds with a sampling
rate of 500Hz. We extract 5-second non-overlapping segments of each recording generating frames
of length 2500 samples. We follow the diagnostic class labelling setup suggested by Strodthoff et al.
(2020) which resulted in five classes: Conduction Disturbance (CD), Hypertrophy (HYP), Myocar-
dial Infarction (MI), Normal (NORM), and Ischemic ST-T Changes (STTC). Furthermore, we only
consider ECG segments with one label assigned to them. The ECG frames were standardized to
follow a standard Gaussian distribution.

A.2 DATA SAMPLES

In this section, we outline the number of instances used during training.

Table 2: Number of instances (number of patients) used during training. These represent sample
sizes for all 12 leads.

Dataset Train Validation Test

PTB-XL 22,670 (11,335) 3,284 (1,642) 3,304 (1,152)

A.3 VOCABULARY TOKENS

In this section, we outline the number of language-specific tokens available in each language’s vo-
cabulary for the two datasets.

Table 3: Number of language-specific tokens in each dataset

Dataset de el en es fr it pt

PTB-XL 2206 2662 1606 1950 1974 1866 2010
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B TRANSLATION DETAILS

In this section, we outline the steps taken to translate the ECG reports originally found in the PTB-
XL dataset. We remind readers that although these ECG reports are a mixture of English and Ger-
man, they are predominantly in the latter. As a result, we treat German as the source language from
which we translate the reports to other languages. More specifically, we follow these steps.

1. We leverage the Google Translate API2 to first detect the source language of each ECG
report. Although the majority of the reports are in German, some are in English, and this
language detection step ensures that the ultimate translation is of a higher quality.

2. We continue to leverage the Google Translate API to translate ECG reports from the iden-
tified source language to the target language of interest.

3. Due to imperfections in the Google Translate API, certain ECG reports may not be trans-
lated in full or translated at all. To minimize the incidence of such cases, we repeat Step
2 several times and stop once we reach the following criterion: we deploy the language
detection module of the Google Translate API on the translated reports to confirm that over
90% of them are indeed in the translated language. Although this implies that the final
translated reports may have some noise, we found that this did not prevent our algorithm
from learning appropriately.

2https://pypi.org/project/googletrans/
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C IMPLEMENTATION DETAILS

C.1 NETWORK ARCHITECTURES

In this section, we outline the neural network architectures used for our encoder and decoder. More
specifically, we use the architecture shown in Table 4 for the encoder and that shown in Table 5 for
the decoder.

Table 4: Encoder architecture used for experiments conducted on the PTB-XL dataset. P, Cin, and
Cout represent the kernel size, number of input channels, and number of output channels, respec-
tively. A stride of 3 was used for all convolutional layers. M represents the dimension of the final
representation. We only use layer 5 when performing supervised pre-training. When captioning,
layer 4 outputs T temporal features.

Layer Number Layer Components Kernel Dimension

1

Conv 1D 7 × 12 × 32 (P × Cin × Cout)
BatchNorm

ReLU
MaxPool(2)
Dropout(0.1)

2

Conv 1D 7 × 32 × 64
BatchNorm

ReLU
MaxPool(2)
Dropout(0.1)

3

Conv 1D 7 × 64 × 128
BatchNorm

ReLU
MaxPool(2)
Dropout(0.1)

4 Linear 128 ×M
ReLU

5 Linear M × C (classes)

Table 5: Decoder architecture used for experiments conducted on the PTB-XL dataset. E = 300
represents the dimension of the representations from the encoder and the representations of the
decoder tokens. H = 4 represents the number of heads used in each of the self and cross-attention
modules. Clang represents the number of tokens in a specific language.

Layer Number Layer Components Kernel Dimension

1 Transformer Decoder Layer E, H

2 Transformer Decoder Layer E, H

3 Transformer Decoder Layer E, H

4 Transformer Decoder Layer E, H

5 Linear E x Clang

15



Under review as a conference paper at ICLR 2022

Table 6: Batchsize and learning rates used for training. The Adam optimizer was used for all
experiments.

Stage Batchsize Learning Rate

Encoder

Supervised Pre-training 128 10-5

Decoder

MLM Pre-training 128 10-3

ELECTRA Pre-training 128 10-3

RTLP Pre-training 128 10-3

MARGE Pre-training 64 10-4

Combined

Fine-tuning 128 10-3

C.2 ENCODER PRE-TRAINING

In this section, we outline the task used to pre-train the encoder of the captioning system in a su-
pervised manner. Specifically, we learn an encoder, fθ : u ∈ RP×D → y ∈ RC parameterized
by θ, that maps P = 12 D-dimensional ECG signals, u, (where P represents the number of leads)
to a C-dimensional output representing the probability assigned to each of the cardiac arrhythmia
classes. When leveraging the PTB-XL dataset, C = 5. For a mini-batch of size, B, and where ci
represents the ground-truth class for a particular instance, xi, we learn this behaviour by optimizing
the following categorical cross-entropy loss.

LCE = − 1

B

B∑
i=1

log pθ(yi = ci) (4)

We checkpoint, and eventually exploit, the parameters, θ, that coincide with the lowest loss observed
on the validation set. This ensures that we use parameters that do not exhibit overfitting.
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C.3 BASELINE IMPLEMENTATIONS

Masked Language Modelling. Masked language modelling (MLM) can be thought of as analogous
to a denoising autoencoder. Inputs are perturbed and the network is tasked with generating the
original, unperturbed version of the input. In the context of natural language processing, a fraction
F = 0.15 of the tokens in a sentence are chosen to be masked. Of these chosen tokens, 80% are
replaced with the token [MASK], 10% are replaced with a random token from the vocabulary, and
the final 10% are not replaced at all. The motivation behind this task lies in the ability of the network
to leverage the context of masked tokens to correctly predict them. This, in turn, allows for the
learning of rich representations. In our context, and to allow for a fair comparison to the multilingual
pre-training methods, we follow the original implementation introduced by Devlin et al. (2019) for
each of the language mini-batches. More specifically, at each iteration, we load N mini-batches
corresponding to N languages and perform MLM on each of these batches.

ELECTRA. ELECTRA, as opposed to MLM introduced above, is a discriminative language rep-
resentation learning method. ELECTRA builds upon the implementation of MLM in the following
ways. First, instead of masking tokens and tasking the network with generating the original token,
ELECTRA performs a binary classification of whether a token was replaced or not. The motiva-
tion for doing so lies in the alleged unnecessary complexity associated with generative language
representation learning methods. Moreover, instead of replacing tokens with the [MASK] token,
ELECTRA proposes to do so by exploiting the predicted outputs of an MLM. This increases the
likelihood that replaced tokens are in-distribution. As a result, ELECTRA simultaneously trains
an MLM network and a binary classifier. In our context, we follow the original implementation
introduced by Clark et al. (2020) for each of the N mini-batches.

MARGE. MARGE is a generative multilingual language representation learning method that ex-
ploits source documents in various languages to generate text from a similar yet distinct target doc-
ument. For example, M source documents with M ∗ S tokens are encoded and leveraged by a
decoder to generate the T tokens in the target document. In doing so, the network is able to capture
relationships between languages and thus learn representations useful for downstream multilingual
tasks. In the original implementation (Lewis et al., 2020), similar documents need to be retrieved
from a database. In our context, however, our ECG reports are available in N different languages
and thus the target document is formed by a report in one language and the source documents are
formed by reports in the remaining N − 1 languages. Since our ECG reports were translated from
a single original language, we used reports in this language as target documents. For PTB-XL, this
amounts to using German.

C.4 EVALUATION METRICS

As we are mainly interested in the cardiac captioning task, we leverage three automatic metrics com-
monly used to evaluate image-captioning (BLEU score (Papineni et al., 2002), METEOR (Banerjee
& Lavie, 2005) and ROUGE−L (Lin, 2004)). At a high-level, these metrics quantify the degree
of overlap of n-grams between a ground-truth sentence and a generated sentence. An n-gram can
be thought of as a combination of tokens (words) that neighbour one another. For example, a 1-
gram simply consists of all individual tokens in a sentence whereas a 2-gram consists of all pairs of
adjacent tokens in the sentence.

BLEU Score. The BLEU score first requires calculating the precision of n-grams for a particular
value of n. This precision is defined as the number of overlapping n-grams between the generated
and ground-truth sentence, Overlapn, divided by the total number of n-grams in the generated
sentence Totaln. Such a calculation is repeated for multiple values of n ∈ [1, . . . , N ] before being
averaged and weighted according to a brevity penalty, BP , which penalizes generated sentences
which are shorter than the ground-truth sentence.

BLEU−N = BP ·
(
ΠN
n=1Precisionn

) 1
N Precisionn =

Overlapn
Totaln

(5)

METEOR Score. The METEOR score was designed, for the most part, to explicitly account for
recall in n-gram overlap calculations, an operation not included in the BLEU score. Specifically,
it aligns the ground-truth and generated sentences with one another, calculates the unigram (1-

17



Under review as a conference paper at ICLR 2022

gram) precision and recall, and derives an F-score with greater emphasis on recall than on precision.
Similar to BLEU, it weights the F-score with a sentence brevity penalty, BP .

METEOR =
10 · Precision ·Recall
9 · Precision+Recall

(6)

ROUGE Score. Although there exist multiple ROUGE scores (e.g., ROUGE-N, ROUGE-L,
ROUGE-W, and ROUGE-S), we opt for the ROUGE-L score because it obviates the need to set
a value of n for the n-grams. Formally, ROUGE-L calculates the F-score (geometric mean of pre-
cision and recall) of the longest common sub-sequence (LCS) of tokens between the ground-truth
sentence with m tokens and the generated sentence with n tokens.

ROUGE− L =
2 · Precision ·Recall
Precision+Recall

(7)

Precision =
LCS

n
and Recall =

LCS

m

C.5 CLINICAL REPORT TOKENIZERS

Throughout the manuscript, we exploit SpaCy as the main natural language processing package.
Specifically, we use language-specific pipelines that are publicly-available such as the following
for the Italian language: https://spacy.io/models/it#it_core_news_md. Pipelines
similar to this allow us to tokenize the reports in specific languages. For all languages, except for
English, we use the pipelines with the suffix “core news md”. For English reports, we use the
pipeline with the suffix “core web md”.
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D QUANTIFICATION OF CLINICAL UTILITY OF REPORTS

In this section, we outline the implementation details for conducting the experiments that attempt to
demonstrate the clinical utility of reports. In order to allay concerns about the quality of the trans-
lated ground-truth reports, and to demonstrate the clinical utility of generated reports, we propose to
train a model that maps such reports to single-label cardiac abnormalities reflected in the correspond-
ing cardiac signals. The intuition is that reports which are highly predictive of such abnormalities
(which are used for clinical decision-making) are likely to be of clinical value.

From a mechanistic perspective, we consider the translated ground-truth reports found exclusively
in a held-out set (3284 reports). We split this subset of reports into a training, validation, and test
set using a 50 : 20 : 30 split. This amounts to 1642, 656, and 986 reports, respectively. Given the
relatively small size of the corpus, and the simplicity of the reports, and to avoid overfitting, we opted
for a straightforward bag-of-words (BoW) unigram feature representation (maximum features =
50). We train a Random Forest model on such representations in the training set to perform a multi-
class classification of cardiac abnormalities. These abnormalities are Conduction Disturbance (CD),
Hypertrophy (HYP), Myocardial Infarction (MI), Normal (NORM), and Ischemic ST-T Changes
(STTC). We then evaluate the model on the mutually-exclusive set of reports in the test set.

In order to demonstrate the clinical utility of generated reports, we follow the same procedure as the
one described above, with one exception. Instead of training on ground-truth reports, we now train
on generated reports. In all cases, we continue to evaluate on the same set of ground-truth reports in
order to allow for a fair comparison between the models in both settings. The intuition of this setup
is, once again, that reports of higher clinical utility should allow for a model that is more predictive
of cardiac abnormalities.
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