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Abstract

Deep learning approaches have shown promising results in remote sensing high1

spatial resolution (HSR) land-cover mapping. However, urban and rural scenes2

can show completely different geographical landscapes, and the inadequate gener-3

alizability of these algorithms hinders city-level or national-level mapping. Most4

of the existing HSR land-cover datasets only focus on improvement of the se-5

mantic segmentation in one domain (urban or rural), thereby ignoring the model6

transferability. In this paper, we introduce the Land-cOVEr Domain Adaptation7

semantic segmentation (LoveDA) dataset to promote large-scale land-cover map-8

ping. The LoveDA dataset contains 3338 aerial images with 86516 annotated9

objects for seven common land-cover categories. Compared to the existing datasets,10

the LoveDA dataset encompasses two domains (urban and rural), which brings11

considerable challenges due to the: 1) multi-scale objects; 2) complex background12

samples; and 3) inconsistent class distributions. The LoveDA dataset is suitable13

for both land-cover semantic segmentation and unsupervised domain adaptation14

(UDA) tasks. Accordingly, we benchmarked the LoveDA dataset on nine semantic15

segmentation methods and eight UDA methods. Some exploratory studies were16

also carried out to find alternative ways to address these challenges. The code and17

data will be available at: https://github.com/Junjue-Wang/LoveDA18

1 Introduction19

With the continuous development of society and economy, the human living environment is gradually20

being differentiated, and can be divided into urban and rural zones [7]. High spatial resolution (HSR)21

remote sensing technology can help us to better understand the geographical and ecological environ-22

ment. Specifically, land-cover semantic segmentation in remote sensing is aimed at determining the23

land-cover type at every image pixel. The existing HSR land-cover datasets such as the Gaofen Image24

Dataset (GID) [34], DeepGlobe [8], Zeebruges [22], and Zurich Summer [37] contain large-scale25

images with pixel-wise annotations, thus promoting the development of fully convolutional networks26

(FCNs) in the field of remote sensing [6]. However, these datasets are designed for single-domain27

semantic segmentation, and they ignore the diverse styles among geographic areas. For urban and28

rural areas, in particular, the manifestation of the land cover is completely different, in the class29

distributions, object scales, and pixel spectra. In order to improve the model generalizability for30

large-scale land-cover mapping, appropriate datasets are required.31

In this paper, we introduce an HSR dataset for Land-cOVEr Domain Adaptation semantic segmenta-32

tion (LoveDA) for use in two challenging tasks: semantic segmentation and UDA. Compared with33

the UDA datasets [21, 35] that using simulated images, the LoveDA dataset contains real urban and34

rural remote sensing images. Exploring the use of deep transfer learning methods on this dataset35

will be a meaningful way to promote large-scale land-cover mapping. The major characteristics of36
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this dataset are summarized as follows: 1) Multi-scale objects. The HSR images were collected37

from 10 complex urban and rural scenes, covering 11 administrative districts in China. The objects38

in the same category are in completely different geographical landscapes in the different scenes,39

which increases the scale variation. 2) Complex background samples. The remote sensing semantic40

segmentation task is always faced with the complex background samples (i.e., land-cover objects that41

are not of interest) [27, 47], which is particularly the case in the LoveDA dataset. The high-resolution42

and different complex scenes bring more rich details as well as larger intra-class variance for the43

background samples. 3) Inconsistent class distributions. The urban and rural scenes have different44

class distributions. The urban scenes with high population densities contain lots of artificial objects45

such as buildings and roads. In contrast, the rural scenes include more natural elements, such as46

forest and water. The inconsistent class distributions pose a special challenge for the UDA task.47

As the LoveDA dataset was built with two tasks in mind, both advanced semantic segmentation and48

UDA methods were evaluated. Several exploratory experiments were also conducted to solve the par-49

ticular challenges inherent in this dataset, and to inspire further research. A stronger representational50

architecture and UDA method are needed to jointly promote large-scale land cover mapping.51

2 Related Work52

2.1 Land-cover semantic segmentation datasets53

Land-cover semantic segmentation, as a long-standing research topic, has been widely explored54

over the past decades. The early research relied on low- and medium-resolution datasets, such as55

MCD12Q1 [30], the National Land Cover Database (NLCD) [11], GlobeLand30 [12], LandCoverNet56

[1], etc. However, these studies all focused on large-scale mapping and analysis from a macro-level.57

With the advancement of remote sensing technology, massive HSR images are now being obtained58

on a daily basis from both spaceborne and airborne platforms. Due to the advantages of the clear59

geometrical structure and fine texture, HSR land-cover datasets are tailored for specific scenes at a60

micro-level. As is shown in Table 1, datasets such as ISPRS Potsdam 1, ISPRS Vaihingen 2, Zurich61

Summer [37], and Zeebruges [22] are designed for urban parsing. These datasets only contain a small62

number of annotated images, pixels, and instances. In contrast, DeepGlobe [8] and LandCover.ai63

[2] focus on rural areas with a larger scale, in which the homogeneous areas contain few man-made64

structures. The GID dataset[34] was collected from different cities in China, covering both urban65

areas and the surrounding rural areas. Although the LandCoverNet and GID datasets contain both66

urban and rural areas, the geo-locations of these released images are private. Therefore, the urban and67

rural areas are not able to be divided. In addition, the identifications of cities in released GID images68

have been already removed so it is hard to perform UDA tasks. Considering limited coverage and69

annotation cost, the existing HSR datasets only focus on improvement of the semantic segmentation70

in one domain (urban or rural).71

Table 1: Comparison between LoveDA and the main land-cover semantic segmentation datasets.

Dataset Sensor Area (km2) Resolution (m) Classes Image width Images Domain Task

Urban Rural SS UDA

LandCoverNet [1] Sentinel-2 30000 10 7 256 1980 X X X
GID [34] GF-2 75900 4 5 4800∼6300 150 X X X

LandCover.ai [2] Airborne 216.27 0.25∼0.5 3 4200∼9500 41 X X
Zurich Summer [37] QuickBird 9.37 0.6 8 622∼1830 20 X X
DeepGlobe [8] WorldView-2 1716.9 0.5 7 2448 1146 X X
Zeebruges [22] Airborne 1.75 0.05 8 10000 7 X X
ISPRS Potsdam 1 Airborne 3.42 0.05 6 6000 38 X X
ISPRS Vaihingen 2 Airborne 1.38 0.09 6 1887∼3816 33 X X

LoveDA (Ours) Airborne 300.48 0.3 7 1024 3338 X X X X

The abbreviations are: SS – semantic segmentation, UDA – unsupervised domain adaptation.

These HSR land-cover datasets have all promoted the development of semantic segmentation, and72

many variants of FCNs [18] have been evaluated [6, 13, 25, 40]. Recently, some UDA methods73

have been developed from the combination of two public datasets [43]. However, directly utilizing74

1http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
2http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
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combined datasets may result in two problems: 1) Insufficient shared categories. Different datasets75

are designed for different purposes, and the insufficient shared categories limit further exploration. 2)76

Inconsistent annotation granularity. The different spatial resolutions and labeling styles lead to77

different annotation granularities, which can result in unreliable conclusions. Compared with these78

datasets, LoveDA dataset encompasses two domains (urban and rural), representing a novel UDA task79

for land-cover mapping. The LoveDA dataset also has the following advantages in statistical diversity:80

1.Considerable geographic area: As is shown in the Table 1, the area of LoveDA dataset surpasses81

all existing airborne datasets and demonstrates its diversity. 2.Sub-meter resolution: Compared82

with GID and LandCoverNet datasets which cover larger scale areas due to lower spatial resolutions,83

our spatial details are more than ten times richer than them. The rich feature details increase our84

diversity 3.Fine annotations: The LoveDA dataset has instance-level annotations compared with85

the DeepGlobe dataset. The fine annotation granularity increases the diversity of samples, i.e. every86

building has its unique shape (Figure 1). 4.Complex scenes: The LoveDA dataset was constructed87

from both urban and rural scenes, further reducing the biased statistics. In addition, the area of urban88

scenes (≈ 150 km2) far exceeds the existing urban datasets, which can also highlight its value and89

significance in urban mapping.90

2.2 Unsupervised domain adaptation91

UDA is aimed at transferring a model trained on the source domain to the target domain. Some92

conventional image classification studies [19, 31, 36] have directly minimized the discrepancy of the93

feature distributions to extract domain-invariant features. The recent works have mainly proceeded in94

two directions, i.e., adversarial training and self-training.95

Adversarial training. In adversarial training, the architecture includes a feature extractor and a96

discriminator. The extractor aims to learn domain-invariant features, while the discriminator attempts97

to distinguish these features. For semantic segmentation, Tsai et al. [35] considered the semantic98

outputs containing spatial similarities between the different domains, and adapted the structured99

output space for segmentation (AdaptSeg) with adversarial learning. Luo et al. [21] introduced a100

category-level adversarial network (CLAN) to align each class with an adaptive adversarial loss.101

Differing from the binary discriminators, Wang et al. [38] proposed a fine-grained adversarial learning102

framework for domain adaptive semantic segmentation (FADA), aligning the class-level features.103

From the aspect of structure, the transferable normalization (TransNorm) method [41] was proposed104

to enhance the transferability of the FCN-based feature extractors. All these advanced adversarial105

learning methods were implemented on the LoveDA dataset for evaluation.106

Self-training. Self-training involves alternately generating pseudo-labels on the target data and fine-107

tuning the model. Recently, the self-training UDA methods have focused on improving the quality of108

the pseudo-labels [44, 50]. Zou et al. [49] proposed a class-balanced self-training (CBST) strategy109

to sample pseudo-labels, thus avoiding the dominance of the large classes. Mei et al. [23] used an110

instance adaptive self-training (IAST) selector for sample balance. Lian et al. [16] designed the111

self-motivated pyramid curriculum (PyCDA) to observe the target properties, and fused multi-scale112

features. In addition to testing these self-training methods on the LoveDA dataset, we also performed113

the multi-scale analysis for the PyCDA.114

UDA in the remote sensing community. The early UDA methods focused on scene classification115

tasks [20, 26]. Recently, adversarial training [10, 32] and self-training [34] have been studied for116

UDA land-cover semantic segmentation . The main algorithms follow the general UDA approach117

in the computer vision field, with some improvements. However, with only the public datasets,118

the advancement of the UDA algorithms has been limited by the insufficient shared categories and119

the inconsistent annotation granularity. Hence, we built the LoveDA dataset to provide a more120

challenging and solid platform for UDA in remote sensing.121

3 Dataset Description122

China has been experiencing a rapid process of urbanization since the implementation of the “reform123

and opening up” policy in 1978 [17]. The city of Nanjing, which is regarded as an important national124

research center and transportation junction, is the epitome of the developed cities in China. Therefore,125

the LoveDA dataset was constructed using 0.3 m aerial images obtained from Nanjing in July 2016,126

covering 300.48km2 (Figure 1).127
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3.1 Image Distribution and Division128

Figure 1: Overview of the dataset distribution. The images were collected from 10 spatially indepen-
dent areas, covering 11 administrative districts in Nanjing. The examples were sampled from the
Qinhuai (urban) and Lishui (rural) areas.

Data from the rural and urban areas were collected referring to the “Urban and Rural Division Code”129

issued by the National Bureau of Statistics. There are six districts (Gulou, Xuanwu, Jianye, Qinhuai,130

Qixia, and Yuhuatai) in the center of Nanjing, which are all densely populated (> 1000 person/km2)131

[45]. As shown in Figure 1, we selected five economically developed areas as representative urban132

areas: Qixia, Gulou & Xuanwu, Jianye, Qinhuai, and Yuhuatai. The other five areas were selected as133

rural areas with a low population density, i.e., Liuhe, Pukou, Jiangning, Lishui, and Gaochun. All134

the HSR images were captured with a Leica DMC digital camera mounted on an airborne platform.135

The spatial resolution is 0.3 m, with red, green, and blue bands. After geometric registration and136

pre-processing, each area is covered by 1024× 1024 images, without overlap. Considering Tobler’s137

First Law, i.e., everything is related to everything else, but near things are more related than distant138

things [33], the training, validation, and test sets were split so that they were spatially independent139

(Figure 1), thus enhancing the difference between the split sets. There are two tasks that can be140

evaluated on the LoveDA dataset: 1) Semantic segmentation. There are 1989 images from six141

areas for training, and the others are for validation and testing. The training, validation, and test sets142

cover both urban and rural areas.2) Unsupervised domain adaptation. The UDA process considers143

two cross-domain adaptation sub-tasks: a) Urban → Rural. The images from the Qixia, Jianye,144

and Gulou & Xuanwu areas are included in the source training set. The images from Liuhe are145

included in the validation set, and the Jiangning images included in the test set. The Oracle setting146

is designed to test the upper limit of accuracy in a single domain [28]. Hence, the training images147

were collected from the Pukou, Gaochun, and Lishui areas. b) Rural→ Urban. The images from the148

Pukou, Gaochun and Lishui areas are included in the source training set. The images from Yuhuatai149

are used for the validation set, and the Qinhuai images are used for the test set. In the Oracle setting,150

the training images cover the Qixia, Jianye, and Gulou & Xuanwu areas.151

With the division of these images, a comprehensive annotation pipeline was adopted, including152

professional annotators and strict inspection procedures [42]. Further details of the annotation can be153

found in the Appendix. The seven common land-cover types were considered, i.e., buildings, road,154

water, forest, agriculture, and background classes.155

3.2 Statistics for LoveDA156

Some statistics of the LoveDA dataset are analyzed in this section. With the collection of public HSR157

land-cover datasets, the number of labeled objects and pixels has been counted. As is shown in the158

Figure 2(a), the DeepGlobe dataset contains the largest number of labeled pixels (≈ 4.8 billion) and159

covers a large-scale rural area. Our proposed LoveDA dataset contains 86516 annotated objects of160

seven categories. This is because the LoveDA dataset covers large-scale urban scenes (five areas161

of about 151.05 km2), which contain many buildings (Figure 2(b)). Among the artificial objects,162
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the number of road objects is small due to the continuous characteristic of roads. There are a lot163

of objects in the forest class because the trees in the urban scenes are scattered. As is shown in164

Figure 2(c), the background class contains the most pixels with complex samples [27, 47]. The165

complex background samples have larger intra-class variance in the complex scenes and cause166

serious false alarms.

(a) (b) (c)

Figure 2: Statistics for the pixels and objects in the LoveDA dataset. (a) Number of objects vs.
number of pixels. The radius of the circles represents the number of classes. (b) Histogram of the
number of objects for each class. (c) Histogram of the number of pixels for each class.

167

3.3 Differences Between Urban and Rural Scenes168

During the process of urbanization, cities differentiate into rural and urban forms. Affected by169

different lifestyles, the living environment also presents different styles, especially for land cover.170

In this section, we list the main differences between the urban and rural scenes, which reveal the171

meaning and challenges of the UDA task. For the LoveDA dataset, the main differences come from172

the shape, layout, scale, spectra, and class distribution. As is shown in Figure 1, the buildings in173

the urban area are neatly arranged, with various shapes, while the buildings in the rural area are174

disordered, with simple shapes. The roads are wide in the urban scenes. In contrast, the roads are175

narrow in the rural scenes. Water is often present in the form of large-scale rivers or lakes in the176

urban scenes, while small-scale ponds and ditches are common in the rural scenes. The agricultural177

land is found in the gaps between the houses in the urban scenes, but occurs in a large-scale and178

continuously distributed form in the rural scenes.179

#Urban

#Rural

(a) Class distributions (b) Spectral values (c) Building scales

Figure 3: Statistics for the urban and rural scenes in LoveDA. (a) Class distribution. (b) Spectral
statistics. The mean and standard deviation (σ) for 10 areas are reported. (c) Distribution of the
building sizes. The Jianye (urban) and Lishui (rural) scenes are reported.
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For the class distribution, spectra, and scale, the related statistics are reported in Figure 3. The urban180

areas always contain more man-made objects such as buildings and roads due to their high population181

density (Figure 3(a)). In contrast, the rural areas have more agricultural land. The inconsistent class182

distributions between the urban and rural scenes increases the difficulty of model generalization.183

For the spectral statistics, the mean values are similar (Figure 3(b)). Because of the large-scale184

homogeneous geographical areas, such as agriculture, forest and water, the rural images have lower185

standard deviations. This reflects the fact that the urban features are more complex than those in the186

rural scenes. As is shown in Figure 3(c), most of the buildings have relatively small scales in the187

rural areas, representing the “long tail” phenomenon. However, the buildings in the urban scenes188

have a larger size variance. Scale differences also exist in the other categories, as shown in Figure 1.189

The multi-scale objects require the models to have multi-scale capture capabilities. When faced190

with large-scale land cover mapping tasks, the differences between urban and rural scenes bring new191

challenges to the model transferability.192

4 Experiments193

4.1 Semantic Segmentation194

For the semantic segmentation task, the general architectures as well as their variants, and particularly195

those most often used in remote sensing, were tested on the LoveDA dataset. Specifically, the selected196

networks were: UNet[29], UNet++[48], LinkNet[3], DeepLabV3+[5], PSPNet[46], FCN8S[18],197

PAN[15], Semantic-FPN[14], HRNet[39], and FarSeg[47]. Following the common practice[18, 39],198

we use the intersection over union (IoU) to report the semantic segmentation accuracy. With respect199

to the IoU for each class, the mIoU represents the mean of the IoUs over all the categories. Besides,200

the prediction speed is reported with 512× 512 inputs, using frames per second (FPS).

Table 2: Semantic segmentation results obtained on the test set of LoveDA.

Method Backbone IoU per category (%) mIoU (%) Speed (FPS)
Background Building Road Water Barren Forest Agriculture

FCN8S [18] VGG16 48.28 51.34 50.16 70.2 17.93 47.49 63.69 49.87 86.02
DeepLabV3+ [5] ResNet50 46.96 51.88 53.01 72.85 14.56 45.18 65.11 49.94 71.35
PSPNet [46] ResNet50 49.09 54.41 53.3 72.86 11.14 47.34 66.09 50.61 27.22
UNet [29] ResNet50 48.89 56.31 51.82 71.86 15.04 45.57 65.25 50.68 75.33
UNet++ [48] ResNet50 48.75 55.3 52.61 73.01 14.06 48.05 68.37 51.45 61.09
PAN [15] ResNet50 48.48 55.13 51.83 70.73 16.89 46.40 65.37 50.69 73.98
Semantic-FPN [14] ResNet50 48.23 51.92 54.78 71.36 21.41 46.09 67.08 51.55 25.5
LinkNet [3] ResNet50 48.56 53.69 52.76 73.02 16.37 47.76 66.54 51.24 67.01
FarSeg [47] ResNet50 49.42 55.23 53.89 72 12.55 47.91 65.41 50.92 66.99
HRNet [39] W32 50.48 56.55 54.33 73.72 19 49.99 69.53 53.37 16.74

201

Implementation details. The data splits followed the table in Figure 1. During the training, we used202

the Stochastic Gradient Descent (SGD) optimizer with a momentum of 0.9 and a weight decay of203

10−4. The learning rate was initially set to 0.01, and a ‘poly’ schedule with power 0.9 was applied.204

The number of training iterations was set to 15k with a batch size of 12. For the data augmentation,205

512× 512 patches were randomly cropped from the raw images, with random mirroring and rotation.206

The backbones used in all the networks were pre-trained on ImageNet.207

Multi-scale objects. As ground objects show considerable scale variance, especially in complex208

scenes (§3.3), a powerful multi-scale feature fusion ability is required. There are three noticeable209

observations from Table 2: 1) UNet++ outperforms UNet due to its nested cross-scale connections210

between different scales. 2) Among the different fusion strategies, UNet++, Semantic-FPN, LinkNet211

and HRNet outperform DeepLabV3+ and PSPNet. This demonstrates that the multi-scale fusion212

between different layers works better than the in-module fusion. 3) HRNet outperforms the other213

methods, due to its sophisticated architecture, where the features are repeatedly exchanged across214

different scales. 4) As is shown in Table 3, multi-scale augmentation (with scale = {0.5, 0.75, 1.0,215

1.25, 1.5, 1.75}) was conducted during the training and testing, further improving the performance.216

Complex background samples. The complex background samples in LoveDA dataset cause serious217

false alarms in HRS imagery semantic segmentation [9, 47]. As is shown in Figure 4, the four218

confusion matrices show that lots of objects were misclassified into background. This observation219

is consistent with our analysis in §3.2, so that we adopted an additional loss for the background220
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Table 3: Multi-scale augmentation on different methods.

Method Backbone mIoU (%)

Baseline +MST +MSTT

Semantic-FPN ResNet50 51.55 51.71 52.01
UNet ResNet50 50.68 51.21 51.93
DeepLabV3+ ResNet50 49.94 50.03 50.6
HRNet W32 53.37 54.09 54.32

The abbreviations are: MST – multi-scale augmentation during
training. MSTT – multi-scale augmentation during training and
testing.

(a) UNet++ (b) Semantic-FPN (c) LinkNet (d) HRNet

Figure 4: The confusion matrices for the test set. The categories from left to right (up to down):
background, building, road, water, barren, forest, agriculture.

supervision. Dice loss [24] and binary cross-entropy loss were utilized with the corresponding221

modulation factors. We calculated the total loss as: Ltotal = Lce + αLdice + βLbce, where Lce222

denotes the original cross-entropy loss. Table 4 and Table 5 additionally report the precision (P),223

recall (R) and F1-score (F1) of the background class with varying modulation factors. Besides,224

the standard deviations are also reported after 3 runs. Table 4 shows that the addition of dice loss225

improves the background accuracy and the overall performance. The combination of dice loss and226

binary cross-entropy loss performs well because they optimize the background class from different227

directions.228

Table 4: Varied α for the dice loss in HRNet

α
Background mIoU (%)

P (%) R (%) F1(%)

0 61.64 73.59 67.09 53.37 ± 0.16

0.1 61.65 75.07 67.70 53.57 ± 0.12
0.2 61.94 76.39 68.41 53.97 ± 0.19
0.5 62.33 75.90 68.45 54.16 ± 0.19
0.7 62.21 76.38 68.57 54.35 ± 0.15
1.0 62.25 76.84 68.78 54.26 ± 0.11
1.5 61.65 75.07 67.70 53.49 ± 0.16

Table 5: Varied β for the binary cross-entropy
loss in HRNet (w. optimal α)

β α
Background mIoU (%)

P (%) R (%) F1(%)

0 0 61.64 73.59 67.09 53.37 ± 0.17

0.1 1.0 62.59 75.20 68.32 54.28 ± 0.16
0.2 1.0 62.51 75.48 68.38 54.13 ± 0.13
0.5 1.0 62.54 72.39 67.11 53.57 ± 0.10
0.5 0.7 62.96 76.14 68.93 54.94 ± 0.08
0.7 0.7 62.75 73.69 67.78 54.45 ± 0.15
1.0 0.7 62.42 73.76 67.62 53.85 ± 0.07

Visualization. Some representative results are shown in Figure 5. With the shallow backbone229

(VGG16), FCN8S can hardly recognize the road due to its lack of feature extraction capability.230

The other methods which utilize deep layers can produce better results. Because of the disorderly231

arrangement and varied scales, the edges of the buildings are hard to extract accurately, and the small232

buildings are easy to miss. In contrast, the natural classes, especially water, achieve higher accuracies233

for all the methods. This may be because natural objects have strong spectral homogeneity and low234

intra-class variance [34]. The forest is easy to misclassify into agriculture because these classes have235

similar spectra. Because of the high-resolution retention and multi-scale fusion, HRNet produces the236

best visualization result, especially in the details.237
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(a) Image (b) Ground truth (c) FCN8S (d) DeepLabV3+ (e) PSPNet (f) UNet

(g) UNet++ (h) PAN (i) Semantic-
FPN

(j) LinkNet (k) FarSeg (l) HRNet

Figure 5: Visual results on images from the LoveDA test set in the Liuhe (Rural) area. The artificial
classes (building and road) obtain lower performances than the natural classes (water, agricultural).
The forest and agricultural classes are easy to misclassify due to their similar spectra.

4.2 Unsupervised Domain Adaptation238

The advanced UDA methods were evaluated on the LoveDA dataset. In addition to the original239

metric-based approach of MCD [36], two mainstream UDA approaches were tested, i.e., adversarial240

training (AdaptSeg [35], CLAN [21], TransNorm [41], FADA [38]) and self-training (CBST [49],241

PyCDA [16], IAST [23]).242

Table 6: Unsupervised domain adaptation results obtained on the test set of the LoveDA dataset.

Domain Method Type IoU (%) mIoU(%)
Background Building Road Water Barren Forest Agriculture

Urban
↓

Rural

Oracle - 46.73 47.07 33.32 65.57 11.65 54.33 57.66 45.19

Source only - 32.85 25.49 29.23 52.17 9.69 33.29 32.99 30.82
MCD [36] - 34.71 28.71 27.98 46.49 23.57 49.95 26.92 34.05
AdaptSeg [35] AT 33.85 29.49 20.71 45.71 26.03 48.85 30.98 33.66
CLAN [21] AT 36.61 32.29 22.12 41.58 31.42 43.15 36.08 34.74
TransNorm [41] AT 28.15 22.35 19.26 34.94 0.56 13.57 0.37 18.97
FADA [38] AT 34.30 29.37 18.41 48.57 36.68 45.43 32.29 35.45
CBST [49] ST 32.89 41.39 16.43 43.02 16.45 51.88 54.97 36.72
IAST [23] ST 18.76 18.56 28.18 59.17 28.53 45.11 62.33 37.23
PyCDA [16] ST 19.65 18.54 23.73 60.55 52.60 54.56 62.05 41.66

Rural
↓

Urban

Oracle - 52.35 55.97 53.69 66.32 11.95 29.77 25.00 42.12

Source only - 45.93 29.68 22.59 53.94 9.99 5.73 21.14 27.00
MCD [36] - 44.05 27.70 19.66 54.34 25.32 20.35 14.66 29.44
AdaptSeg [35] AT 42.93 13.76 6.57 54.92 29.20 19.46 16.43 26.18
CLAN [21] AT 43.56 18.92 8.27 53.37 21.31 18.73 18.02 26.03
TransNorm [41] AT 33.97 9.04 4.83 43.30 20.63 17.39 7.54 19.53
FADA [38] AT 33.87 20.03 7.00 37.88 21.99 16.49 9.94 21.03
CBST [49] ST 49.14 40.68 39.63 68.66 23.12 5.7 30.72 36.80
IAST [23] ST 48.07 33.89 34.86 69.74 21.98 8.6 24.66 34.12
PyCDA [16] ST 40.37 42.42 37.05 58.41 30.91 33.96 27.28 38.63

The abbreviations are: AT – adversarial training methods. ST – self-training methods.

Implementation details. All the UDA methods adopted the same feature extractor and discriminator,243

following the common practice [21, 35, 38]. Specifically, DeepLabV2 [4] with ResNet50 was utilized244

as the extractor, and the discriminator was constructed by fully convolutional layers [35]. For the245

adversarial training (AT), the classification and discriminator learning rates were set to 5 × 10−3246

and 10−4, respectively. The Adam optimizer was used for the discriminator with the momentum247

of 0.9 and 0.99. The number of training iterations was set to 10k, with a batch size of 16. For the248
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self-training (ST), the classification learning rate was set to 10−2. Full implementation details are249

provided in the Appendix.250

Benchmark results. As is shown in Table 4.2, the Oracle setting obtains the best overall perfor-251

mances. However, DeepLabV2 has lost its effectiveness due to the domain divergence, referring to252

the result of Source only setting. The transfer learning methods relatively improve the model transfer-253

ability, and surpass the Oracle setting in the barren class by mitigating the overfitting. Noticeably,254

TransNorm obtains the lowest mIoUs. This is because the source and target images were obtained by255

the same sensor, and their spectral statistics are similar (Figure 3(2)). These rural and urban domains256

require similar normalization weights, so that the adaptive normalization can lead to optimization257

conflicts (more analysis are provided in the Appendix). PyCDA [16] achieves the best performance258

due to its self-motivated pyramid curriculum for multi-scale fusion. This allows the guidance of the259

pseudo-labels to be more accurate when addressing the multi-scale objects in the images.260

Inconsistent class distribution. It is noticeable to find that the AT methods cannot exceed the Source261

only setting in the Rural→ Urban experiments, even though we tried a variety of hyper-parameters.262

We conclude that the main reason for this is the extremely inconsistent class distribution (Figure 3(a)).263

The rural scenes only contain a few artificial samples and large-scale natural objects. In contrast, the264

urban scenes have a mixture of buildings and roads. Because natural objects have low intra-class265

variance and are easy to classify (Figure 5), it is easy to transfer models from urban to rural scenes.266

However, the difficulty of inconsistent distributions is prominent in the Rural→ Urban experiments.267

The AT methods cannot address this difficulty, so that they report low accuracies. However, differing268

from the AT methods, the ST methods generate pseudo-labels on the target images. With the addition269

of urban samples, the class distribution divergence is eliminated during the training. The more varied270

samples in the urban scenes revise the direction of the network optimization. Hence, the ST methods271

show more potential in the UDA land-cover semantic segmentation task.272

Visualization. The qualitative results for the Rural→ Urban experiments are shown in Figure 6.273

The Oracle result successfully recognizes the buildings, roads, and water, and is the closest to the274

ground truth. According to the experimental results for the semantic segmentation, the Oracle setting275

can be further improved by using a more robust backbone. The AT methods (f)–(i) achieve worse276

results and fail to exceed the Source only setting. The ST methods (j)–(l) produce better results, but277

there is still much room for improvement. The large-scale mapping visualizations are provided in the278

Appendix.

(a) Image (b) Ground truth (c) Oracle (d) Source only (e) MCD (f) AdaptSeg

(g) CLAN (h) TransNorm (i) FADA (j) CBST (k) IAST (l) PyCDA

Figure 6: Visual results for the Rural→ Urban experiments. (f)–(i) and (j)–(l) were obtained from
the AT and ST methods, respectively. The ST methods produce better results than the AT methods.

279

Multi-scale analysis for PyCDA. As multi-scale is important in HSR mapping, we varied the280

pyramid curriculum sampling scales in PyCDA, which is a hyper-parameter controlling the scale of281

the super-pixel generation. The mean precision (mP), mean recall (mR), mean F1-score (mF1) and282

mIoU are reported in Table 7. Without the pyramid curriculum, PyCDA achieves a low accuracy. With283

the addition of scale = 2, the improvement is very significant (+5.56 % in mIoU). This also proves284

the importance of multi-scale fusion in HSR land-cover mapping. The fusion of scales = {1, 2, 4, 8}285
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achieves the highest overall performances. However, the additional scale = 16 brings a negative286

effect. Because the size of 16× 16 covers lots of geographical area (≈ 23m2), the fusion of complex287

objects increases the difficulty of the optimization.288

Table 7: Varied pyramid scales in PyCDA (Rural→ Urban).

Scales mP(%) mR(%) mF1 (%) mIoU (%)

- 52.37 54.7 48.05 32.28
1, 2 55.92 57.79 54.37 37.84
1, 2, 4 56.03 58.22 54.92 38.49
1, 2, 4, 8 56.24 58.91 54.98 38.63
1, 2, 4, 8, 16 54.24 55.57 51.92 35.98

5 Conclusion289

The differences between urban and rural scenes limit the generalization of deep learning approaches290

in land-cover mapping. In order to address this problem, we built an HSR dataset for Land-cOVEr291

Domain Adaptation semantic segmentation (LoveDA). The LoveDA dataset reflects the main chal-292

lenges in large-scale remote sensing mapping, including multi-scale objects, complex background293

samples, and inconsistent class distributions. The state-of-the-art methods were evaluated on the294

LoveDA dataset, revealing the challenges of LoveDA. In addition, some exploratory studies based on295

these challenges were carried out, which we hope will inspire further research.296
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Checklist424

1. For all authors...425

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s426

contributions and scope? [Yes] The LoveDA dataset encompasses two domains (urban427

and rural), which brings considerable challenges to the large-scale mapping task, due428

to the: 1) multi-scale objects; 2) complex background samples; and 3) inconsistent429

class distributions. The LoveDA dataset is suitable for both land-cover semantic430

segmentation and unsupervised domain adaptation (UDA) tasks. Accordingly, we431

benchmarked the LoveDA dataset on nine semantic segmentation methods and eight432

UDA methods. Some exploratory studies were also carried out to find alternative ways433

to address these challenges.434

(b) Did you describe the limitations of your work? [Yes] The LoveDA currently covers435

Nanjing in China, and the diversity of the ground objects is limited. More countries436

and typical cities need to be considered in the future.437

(c) Did you discuss any potential negative societal impacts of your work? [No] The authors438

do not foresee any negative societal impacts. A potential positive societal impact may439

arise from the development of generalizable models that can produce large-scale high440

spatial resolution land-cover mapping accurately. This could help reduce the manpower441

and material resource consumption of surveying and mapping.442

(d) Have you read the ethics review guidelines and ensured that your paper conforms to443

them? [Yes] We have read the ethics review guidelines and ensured that our paper444

conforms to them.445

2. If you are including theoretical results...446

(a) Did you state the full set of assumptions of all theoretical results? [N/A]447

(b) Did you include complete proofs of all theoretical results? [N/A]448

3. If you ran experiments...449

(a) Did you include the code, data, and instructions needed to reproduce the main experi-450

mental results (either in the supplemental material or as a URL)? [Yes] The code and451

dataset were shared at: Google Drive452

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they453

were chosen)? [Yes]454

(c) Did you report error bars (e.g., with respect to the random seed after running exper-455

iments multiple times)? [Yes] We report the error bars in the Appendix after five456

runs.457

(d) Did you include the total amount of compute and the type of resources used (e.g.,458

type of GPUs, internal cluster, or cloud provider)? [Yes] All the experiments were459

conducted using one 24GB RTX TITAN GPU.460

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...461

(a) If your work uses existing assets, did you cite the creators? [N/A]462

(b) Did you mention the license of the assets? [N/A]463

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]464

465

(d) Did you discuss whether and how consent was obtained from people whose data you’re466

using/curating? [N/A]467

(e) Did you discuss whether the data you are using/curating contains personally identifiable468

information or offensive content? [N/A]469

5. If you used crowdsourcing or conducted research with human subjects...470

(a) Did you include the full text of instructions given to participants and screenshots, if471

applicable? [N/A]472

(b) Did you describe any potential participant risks, with links to Institutional Review473

Board (IRB) approvals, if applicable? [N/A]474

(c) Did you include the estimated hourly wage paid to participants and the total amount475

spent on participant compensation? [N/A]476
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A Appendix477

A.1 Additional Guides478

1. Submission introducing new datasets must include the following in the supplementary479

materials:480

(a) Dataset documentation and intended uses. Recommended documentation frame-481

works include datasheets for datasets, dataset nutrition labels, data statements482

for NLP, and accountability frameworks. The datasheet for LoveDA dataset is483

provided in the supplementary material.484

(b) URL to website/platform where the dataset/benchmark can be viewed and down-485

loaded by the reviewers. The code and dataset were shared at: Google Drive486

(c) Author statement that they bear all responsibility in case of violation of rights,487

etc., and confirmation of the data license. The authors state that they bear all respon-488

sibility in case of violation of rights, and confirmation of the data license.489

(d) Hosting, licensing, and maintenance plan. The choice of hosting platform is490

yours, as long as you ensure access to the data (possibly through a curated in-491

terface) and will provide the necessary maintenance. The hosting plan follows the492

provided datasheet in the supplemental material. We will publish the LoveDA dataset493

on Codalab.494

2. To ensure accessibility, the supplementary materials for datasets must include the following:495

(a) Links to access the dataset and its metadata. This can be hidden upon submission496

if the dataset is not yet publicly available but must be added in the camera-ready497

version. In select cases, e.g when the data can only be released at a later date, this498

can be added afterward. Simulation environments should link to (open source)499

code repositories. The code and dataset were shared at: Google Drive500

(b) The dataset itself should ideally use an open and widely used data format. Pro-501

vide a detailed explanation on how the dataset can be read. For simulation envi-502

ronments, use existing frameworks or explain how they can be used. Each instance503

in the dataset contains an image and corresponding semantic mask that are 1024 by504

1024 pixels in PNG format.505

(c) Long-term preservation: It must be clear that the dataset will be available for506

a long time, either by uploading to a data repository or by explaining how the507

authors themselves will ensure this. We will publish the LoveDA dataset on Codalab.508

All questions and comments can be sent to Junjue Wang: kingdrone@whu.edu.cn. All509

changes to the dataset will be announced through the LoveDA mailing list.510

(d) Explicit license: Authors must choose a license, ideally a CC license for datasets,511

or an open source license for code (e.g. RL environments). The LoveDA dataset512

will be released under the Creative Commons Attribution-NonCommercial-ShareAlike513

4.0 International license (CC BY-NC-SA 4.0).514

(e) Add structured metadata to a dataset’s meta-data page using Web standards (like515

schema.org and DCAT): This allows it to be discovered and organized by anyone.516

If you use an existing data repository, this is often done automatically. The dataset517

is provided with the guideline of data division.518

(f) Highly recommended: a persistent dereferenceable identifier (e.g. a DOI minted519

by a data repository or a prefix on identifiers.org) for datasets, or a code repos-520

itory (e.g. GitHub, GitLab,...) for code. If this is not possible or useful, please521

explain why. The persistent dereferenceable identifier and code repository will be522

added after the dataset is open source. The dataset will be submitted at IEEE DataPort523

and the code will be released at GitHub.524

3. For benchmarks, the supplementary materials must ensure that all results are easily525

reproducible. Where possible, use a reproducibility framework such as the ML repro-526

ducibility checklist, or otherwise guarantee that all results can be easily reproduced,527

i.e. all necessary datasets, code, and evaluation procedures must be accessible and528

documented. The code, dataset, pre-trained model parameters, and executable scripts have529

been provided to ensure reproducibility.530
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4. For papers introducing best practices in creating or curating datasets and bench-531

marks, the above supplementary materials are not required.532

A.2 Dataset Annotation Procedure533

The seven common land-cover types were developed according to the “Data Regulations and Collec-534

tion Requirements for the General Survey of Geographical Conditions”, i.e., buildings, road, water,535

forest, agriculture, and background classes. Based on the advanced ArcGIS geo-spatial software ,536

all the images were annotated by professional remote sensing annotators. With the division of these537

images, a comprehensive annotation pipeline was adopted referring to [42]. The annotators labeled all538

objects belonging to six categories (except background) using polygon features. As for the 10 selected539

areas, it took approximately 24.6 h to finish the single-area annotations, resulting in a time cost of540

246 man hours in total. After the first round of labeling, self-examination and cross-examination541

was conducted, correcting the false labels, missing objects, and inaccurate boundaries. The team542

supervisors then randomly sampled 600 images for quality inspection. The unqualified annotations543

were then refined by the annotators. Finally, several statistics (e.g. object numbers per image,544

object areas, etc.) were computed to double check the outliers. Based on DeepLabV3, preliminary545

experiments were conducted to ensure the validity of the annotations.546

A.3 Implementation Details547

All the networks were implemented under the PyTorch framework, using an NVIDIA 24 GB RTX548

TITAN GPU. The backbones used in all the networks were pre-trained on ImageNet. The number of549

training iterations was set to 10k with a batch size of 16. The eight source images and eight target550

images were alternately input. The other settings were the same as in the semantic segmentation. As551

for self-training (ST), the pseudo-generation hyper-parameters remained the same as in the original552

literature. The classification learning rate was set to 10−2. All the networks were trained for 10k553

steps including two stages: 1) for the first 4k steps, the models were trained only on the source images554

for initialization; and 2) the pseudo-labels were then updated every 1k steps during the remaining555

training process.556

All the networks were then re-implemented following the original literature. The segmentation557

models followed the default settings in [35], including a modified ResNet50 and atrous spatial558

pyramid pooling (ASPP)[4]. By using dilated convolutions, the stride of the last two convolution559

layers was modified from 2 to 1. The final output stride of the feature map was 16.560

Following [35], the discriminator was made up of five convolutional layers with a kernel of 4× 4 and561

a stride of 2, where the channel numbers were {64, 128, 256, 512, 1}, respectively. Each convolution562

was followed with a Leaky ReLU, and the parameter was set to 0.2. Bilinear interpolation was used563

for re-scaling the output to the size of the input.564

As for the hyperparameter settings, the adversarial scale factor λ was set to 0.001 following [21, 38].565

With respect to the two segmentation outputs in [35], λ1 and λ2 were set to 0.001 and 0.002,566

respectively. The weight discrepancy loss was used in CLAN[21], and the default settings were567

adopted, i.e., λw = 0.01, λlocal = 10, and ε = 0.4. FADA [38] adopts the temperature T to568

encourage a soft probability distribution over the classes, which was set to 1.8 by default. The569

confidence of pseudo-label θ in PyCDA[16] was set to 0.5 by default and the parameters in IAST570

remained the same as in [23]. The target proportion p in CBST was set to 0.3 and 0.5 when transferring571

to the rural and urban domains, respectively.572

A.4 Error bar visualization for the UDA experiments573

In order to make the results more convincing and reproducible, we ran all UDA methods five times574

using a random seed. The error bar visualization for the UDA experiments is shown in Figure 7. The575

adversarial training methods achieve smaller error fluctuations than the self-training methods. This576

is because the self-training methods assign and update the pseudo-labels alternately, which brings577

greater randomness. Hence, for the self-training methods, we suggest that three times more repeats578

are preferred to provide more convincing results.579
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Figure 7: Error bar visualization for the UDA experiments.

A.5 Batch Normalization Statistics in the Different Domains580

The batch normalization (BN) statistics are shown in Figure 8. We observe that in the Oracle source581

and target settings, the model has similar BN statistics in both mean and variance. This demonstrates582

that the gap between the source and target domains does not lie in the BNs, which is different from583

the conclusion in [41]. Hence, the modification of the BN statistics may have a negative effect, as in584

TransNorm[41], where the target BN statistics are far different from those of the Oracle target model.585

This observation is consistent with the results listed in Table 4.2. We speculate that the cause of this586

failure in the combined simulation dataset UDA experiments[21, 38, 41] is that the source and target587

domains have large spectral differences, and thus require domain-specific BN statistics. However, the588

LoveDA dataset is real data obtained from the same sensor at the same time. The spectral difference589

in the source and target domains is very small (Figure 3(b)), so the BN statistics are very similar590

(Figure 8).

(a) Layer1’s running mean (b) Layer2’s running mean (c) Layer3’s running mean (d) Layer4’s running mean

(e) Layer1’s running var (f) Layer2’s running var (g) Layer3’s running var (h) Layer4’s running var

Figure 8: Statistics of the running mean and running var of the batch normalization in the different
layers of ResNet50. Two Oracle models and TransNorm in the Urban→ Rural experiments are
shown.

591

A.6 Large-scale Visualizations on UDA Test Set592

The large-scale visualizations are shown in the Figure 9. Compared with the baseline, PyCDA can593

produce better results on large-scale mapping, which highlights the importance of developing UDA594
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methods. However, PyCDA still has a lot of room for improvement. More tailored UDA algorithms595

requires to be developed on the LoveDA dataset.

(a) Baseline on Jiangning area (b) PyCDA on Jiangning area

(c) Baseline on Qinhuai area (d) PyCDA on Qinhuai area

Figure 9: Large-scale Visualizations on UDA Test Set.
596

A.7 Broader Impact597

This work offers a free and open dataset with the purpose of advancing land-cover semantic segmen-598

tation in the area of remote sensing. We also provide two benchmarked tasks with three considerable599

challenges. This will allow other researchers to easily build off of this work and create new and600

enhanced capabilities. The authors do not foresee any negative societal impacts of this work. A601

potential positive societal impact may arise from the development of generalizable models that can602

produce large-scale high-spatial-resolution land-cover mapping accurately. This could help to reduce603

the manpower and material resource consumption of surveying and mapping.604
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