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ABSTRACT

Decentralized stochastic gradient descent (D-SGD) allows collaborative learning
on massive devices without the control of a central server. Existing theory suggests
that decentralization degrades generalizability, which conflicts with experimental
results in large-batch settings that D-SGD generalizes better than centralized SGD
(C-SGD). This work presents a new theory that reconciles the conflict between
the two perspectives. We prove that D-SGD introduces an implicit regularization
that simultaneously penalizes (1) the sharpness of the learned minima and (2) the
consensus distance between the global averaged model and local models. We then
prove that the implicit regularization is amplified in large-batch settings when
the linear scaling rule is applied. We further analyze the escaping efficiency of
D-SGD and show that D-SGD favors super-quadratic flat minima. Experiments
are in full agreement with our theory. The code will be released publicly. To our
best knowledge, this is the first work on the implicit regularization and escaping
efficiency of D-SGD.

1 INTRODUCTION

Decentralized stochastic gradient descent (D-SGD) enables simultaneous model training on massive
workers without being controlled by a central server, where every worker communicates only with its
directly connected neighbors (Xiao & Boyd, 2004; Lopes & Sayed, 2008; Nedic & Ozdaglar, 2009;
Lian et al., 2017; Koloskova et al., 2020). This decentralization avoids the requirements of a costly
central server with heavy communication and computation burdens. Despite the absence of a central
server, existing theoretical results demonstrate that the massive models on the edge converge to a
unique steady consensus model (Shi et al., 2015; Lian et al., 2017; Lu et al., 2011), with asymptotic
linear speedup in convergence rate (Lian et al., 2017) as the distributed centralized SGD (C-SGD)
does (Dean et al., 2012; Li et al., 2014). Consequently, D-SGD offers a promising distributed learning
solution with significant advantages in privacy (Nedic, 2020), scalability (Lian et al., 2017), and
communication efficiency (Ying et al., 2021b).

However, existing theoretical studies show that the decentralization nature of D-SGD introduces an
additional positive term into the generalization error bounds, which suggests that decentralization
may hurt generalization (Sun et al., 2021; Zhu et al., 2022). This poses a crippling conflict with
empirical results by Zhang et al. (2021) which show that D-SGD generalizes better than C-SGD by a
large margin in large batch settings; see Figure 1. This conflict signifies that the major characteristics
were overlooked in the existing literature. Therefore,

would decentralization hurt generalization?

This work reconciles the conflict. We prove that decentralization introduces implicit regulariza-
tion in D-SGD, which promotes the generalization. To our best knowledge, this is the first paper
that surprisingly shows the advantages of D-SGD in generalizability, which redresses the former
misunderstanding. Specifically, our contributions are in twofold.

* We prove that the mean iterate of D-SGD closely follows the path of C-SGD on a regularized loss,
which is the addition of the original loss and a regularization term introduced by decentralization.
This regularization term penalizes the largest eigenvalue of the Hessian matrix, as well as the
consensus distance (see Theorem 1). These regularization effects are shown to be considerably
amplified in large-batch settings (see Theorem 2), which is consistent with our visualization (see
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Figure 1: Comparison of the validation accuracy of C-SGD and D-SGD on CIFAR-10. The number
of workers (one GPU as a worker) is set as 16; and the local batch size is set as 64, and 512 per
worker (1024 and 8196 total batch size). The training setting is included in Section 5.

Figure 4) and the empirical results in (Zhang et al., 2021). To prove the above results, we apply
second-order multivariate Taylor approximation (K&nigsberger, 2013) on the gradient diversity (see
Equation (5)) to derive the regularized loss. Then, we prove that the regularization term contained
in the regularized loss scales positively with the largest Hessian eigenvalue, which suggests that
D-SGD implicitly minimizes the sharpness of the learned minima (see Lemma C.2).

* We prove the first result on the expected escaping speed of D-SGD from local minima (see
Theorem 3). Our results show that D-SGD prefers super-quadratic flat minima to sub-quadratic
minima with higher probability (see Proposition 4). The proof is based on the construction of a
stochastic differential equation (SDE) approximation (Jastrzebski et al., 2017; M et al., 2017; Li
et al., 2021) of D-SGD.

2 RELATED WORK

Flatness and generalization. The flatness of minimum is a commonly used concept in the opti-
mization and machine learning literature and has long been regarded as a proxy of generalization
(Hochreiter & Schmidhuber, 1997; Izmailov et al., 2018; Jiang et al., 2020). Intuitively, the loss
around a flat minimum varies slowly in a large neighborhood, while a sharp minimum increases
rapidly in a small neighborhood (Hochreiter & Schmidhuber, 1997). Through the lens of the mini-
mum description length theory (Rissanen, 1983), flat minimizers tend to generalize better than sharp
minimizers, since they are specified with lower precision (Keskar et al., 2017). From a Bayesian per-
spective, sharp minimizers have posterior distributions highly concentrated around them, indicating
that they are more specialized on the training set and thus are less robust to data perturbations than
flat minimizers (MacKay, 1992; Chaudhari et al., 2019).

Generalization of large-batch training. Large-batch training is of significant interest for deep
learning deployment, which can contribute to a significant speed-up in training neural networks
(Goyal et al., 2017; You et al., 2018; Shallue et al., 2019). Unfortunately, it is widely observed that
in the centralized learning setting, large-batch training often suffers from a drastic generalization
degradation, even with fine-tuned hyper-parameters, from both empirical (Chen & Huo, 2016; Keskar
et al., 2017; Hoffer et al., 2017; Shallue et al., 2019; Smith et al., 2020) and theoretical (Li et al.,
2021) aspects. An explanation of this phenomenon is that large-batch training leads to “sharper”
minima (Keskar et al., 2017), which are more sensitive to perturbations (Hochreiter & Schmidhuber,
1997).

Development of D-SGD. The earliest work of classical decentralized optimization can be traced
back to Tsitsiklis (1984), Tsitsiklis et al. (1986) and Nedic & Ozdaglar (2009). D-SGD, a typical
decentralized optimization algorithm, has been extended to various settings in deep learning, including
time-varying topologies (Lu & Wu, 2020; Koloskova et al., 2020), asynchronous settings (Lian et al.,
2018; Xu et al., 2021; Nadiradze et al., 2021), directed topologies (Assran et al., 2019; Taheri et al.,
2020), and data-heterogeneous scenarios (Tang et al., 2018; Vogels et al., 2021).

Generalization of D-SGD. Recently, Sun et al. (2021) and Zhu et al. (2022) have established
generalization bounds of D-SGD and have shown that decentralized training hurts generalization.
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Figure 2: An illustration of C-SGD and D-SGD.

However, these works do not analyze the sharpness reduction effect of D-SGD and cannot explain
why D-SGD can generalize better than C-SGD in large batch settings. Another work by Zhang
et al. (2021) demonstrates that D-SGD introduces an “additional” landscape-dependent noise, which
improves the convergence of D-SGD. However, the direction, magnitude, and shape of the noise
remain unexplored. In contrast, we rigorously prove that the additional noise of D-SGD (i.e., the
gradient diversity in Equation (4)) biases the trajectory of D-SGD towards flatter minima, which may
play a distinct role in shaping the generalizability of D-SGD.

3 PRELIMINARIES

Suppose that X C R% and ) C R are the input and output spaces, respectively. We denote the
training set as p = {z1,...,2n}, where zc = (z¢,y¢),( = 1,..., N are sampled independent
and identically distributed (i.i.d.) from an unknown data distribution D defined on Z = X x ).
The goal of supervised learning is to learn a predictor (hypothesis) g(-; w), parameterized by w =
w(z1,22,...,2n) € RY, to approximate the mapping between the input variable € X and the
output variable y € )V, based on the training set ui. Let ¢ : ) x ) — R™ be a function that evaluates
the prediction performance of hypothesis g. The loss of a hypothesis g with respect to (w.r.t.) the
example z. = (x¢, y¢) is denoted by L(w; z¢) = c(g(x¢; W), y¢ ), which measures the effectiveness
of the learned model. Then, the empirical and population risks of w are defined as follows:

N
L (w) = % > L(wizo), L(w)=E..p[L(w;z)].
¢=1

Distributed learning. Distributed learning jointly trains a learning model w on multiple workers
(Shamir & Srebro, 2014). In this framework, the j-th worker (j = 1,...,m) can access ||
independent and identically distributed (i.i.d.) training examples ; = {2;1,...,2j ., }, drawn
from the data distribution D. In this case, the global empirical risk of w is

LA (w) = % > 1w,

where L (w) = 1 ZL.”:] | L(w; z;) denotes the local empirical risk on the j-th worker and
zjc € 1y (C=1,...,|u;|) stands for the local training data.

Distributed centralized stochastic gradient descent (C-SGD).! In C-SGD, there is only one
centralized model w (¢). C-SGD (Dean et al., 2012; Li et al., 2014) updates the model by

Local gradient computation

1 AN
W (t+1) = Wg(t) — — ;n - VLMD (wew) (1
J:
where 7 denotes the learning rate, 11;(t) = {zj1,-..,%j w(t)l} denotes the local training batch

independent and identically distributed (i.i.d.) drawn from the data distribution D at the ¢-th iteration,

'The word “centralized” indicates that in C-SGD, there is a central server receiving gradient information
from local workers (see Figure 2).
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and VL") (w) = o) Z‘nge)(t:)‘l VL(w; zj (1)) stands for the local mini-batch gradient of L

w.r.t. the first argument w. The total batch size of C-SGD at ¢-th iteration is [uu(t)| = 3271, [p ().
In the next section, we will show that C-SGD equals the single-worker SGD with a larger batch size.
Decentralized stochastic gradient descent (D-SGD). The goal of D-SGD is to learn a consensus

model w(t) = % Z;”:l w () on m workers, where w ;(¢) stands for the d-dimensional local model

on the j-th worker. We denote P = [P; ;] € R™*™ as a doubly stochastic gossip matrix (see
Definition A.1) that characterizes the underlying topology G. The vanilla Adapt-While-Communicate
(AWC) version of the mini-batch D-SGD (Nedic & Ozdaglar, 2009; Lian et al., 2017) updates the
model on the j-th worker by

Communication ) )
Local gradient computation

m /_/\—
Wi =Y Piawpm)—n- VIO (w;0) . 2)
j=1

For a more detailed background of D-SGD, please refer to Appendix A .

4 THEORETICAL RESULTS

This section shows the implicit regularization effect and the escaping efficiency of D-SGD. We start
by showing that D-SGD can be interpreted as C-SGD on a regularized loss. Then we prove that
the regularization term in the new loss scales positively with the largest Hessian eigenvalue (see
Theorem 1), which suggests that D-SGD implicitly minimizes the sharpness. Next, we prove that
the regularization effect will increase with the total batch size if we apply the linear scaling rule
(see Theorem 2), which justifies the superiority of D-SGD in large-batch settings. Finally, we prove
the escaping efficiency of D-SGD beyond the quadratic assumption (see Theorem 3) and show that
D-SGD favors super-quadratic minima (see Proposition 4).

4.1 D-SGD IS EQUIVALENT TO C-SGD ON A REGULARIZED LOSS

In this subsection, we theoretically compare D-SGD and C-SGD. We prove that D-SGD is equivalent
to C-SGD on regularized loss with an extra positive regularization term, as shown in the following
theorem.

Lemma C.2

The first term Ay (w, (¢)),1 is commonly regraded as a sharpness measure (Jastrzebski et al., 2017
Wen et al., 2020). It is related to the (C., A)-sharpness (i.e., maxy/cc, L(w + Aw’) — L(w)) in
Keskar et al. (2017) and is an equivalent measure to the Sharpness Aware Minimization (SAM) loss
proposed by Foret et al. (2021) at a local minimum (Zhuang et al., 2022). Theorem 1 shows that the
decentralization navigates D-SGD towards the flatter directions, in order to lower the regularization
term Ap(w,(t)),1- The second term, the trace of E(t), equals to the consensus distance, a key
component measuring the overall effect of decentralized learning (Kong et al., 2021),
: IR
consensus distance = - ;(wj(t)—wa(t))T(wj(t)—wa(t)).
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Consequently, Theorem 1 also suggests that D-SGD implicitly controls the discrepancy between the
global averaged model w,(¢) and the local models w;(¢) (j = 1,...,m) during training.

Our derived implicit regularization on the sharpness of learned minima is similar to how label noise
(Blanc et al., 2020; Damian et al., 2021) and artificial noise (Orvieto et al., 2022) smooth the loss
function in centralized gradient methods, including distributed centralized gradient methods (C-SGD)
and single-worker gradient methods. To the best of our knowledge, this is the first work that shows
D-SGD is equivalent to C-SGD on a regularized loss with implicit sharpness regularization. In the
existing literature, initial efforts have viewed D-SGD as C-SGD in a higher-dimensional space that
penalizes the weight norm |W||?_p, where W = [wy, -+, w,,]T € R™*< stands for all local
models across the network (Yuan et al., 2021; Gurbuzbalaban et al., 2022).

We summarize the proof sketch below. The full proof is given in Appendix C.
Proof sketch.

(1) Deriving the dynamics of the global averaged model 2. We first start by rewriting the update of
the global averaged model w, (¢) of D-SGD as follows,

Wa(t+1) =wa®)-1[ VL (Wa () + VL (Wa (1)) -VL*® (wa(1))

unbiased gradient gradient noise over the superbatch zu(t)

1 m
_ Mg (t) ) _ g (t)
+— DIV (wj) -VLM O (wam)]]. (4)

=1

gradient diversity among workers

Remark. The equality shows that decentralization introduces an additional noise, which char-
acterizes the gradient diversity between the global averaged model wy (¢+) and the local models
w;@t) (j =1,...,m). It implies that distributed centralized SGD, which has constant zero gradient
diversity, is equivalent to standard single-worker SGD with larger batch size. Note that the gradient
diversity also equals to zero on quadratic loss L (see Corollary C.1). Consequently, the quadratic
approximation in the analysis of mini-batch SGD (Zhu et al., 2019b; Ibayashi & Imaizumi, 2021; Liu
et al., 2021) fails to capture how decentralization affects the training dynamics of D-SGD.

(2) Performing Taylor expansion on the gradient diversity. Analyzing the effect of the gradient
diversity on the training dynamics of D-SGD on the general non-convex losses is highly non-trivial.
Technically, we perform a second-order Taylor expansion on the gradient diversity around w(t),
omitting the high-order residuals R:

—Z VLMY (w(t)) VLMY (wo(t))]
j=1

1 m
= Z HY O (wo 1) (W) -Wa(1) + = Z THI D (W) @ [(Wit)-Wa ) (W) -Wa )],
j=1 J 1

Here H" ) (wq (1) 2 mall (t ‘ Zl‘“(t)l H (wq(1); 2j,c(+)) stands for the empirical Hessian at w(t)

and TH O (wa(t) = m] B Z‘CIZ;) 1 T(Wa(t); 2j,¢(r)) denotes the empirical third-order partial

derivative tensor at w (t), where p;(t) and z; ¢(;) follows the notation in Equation (1).

Analogous to the works investigating the SGD dynamics (M et al., 2017; Zhu et al., 2019b; Ziyin et al.,
2022; Wu et al., 2022), we will calculate the expectation and covariance of the gradient diversity. The
expectation of gradient diversity is calculated first as follows. We defer the analysis of its covariance
to Subsection 4.3. Taking expectation over all local mini-batches ;) (j =1,...,m) provides®

1 i(t (L (t
By, )~D [E Z [VLF® (w;t)) -V L (wa )] ]

j=1,..., m =1

Note that there is no central server In D-SGD. In the following we analyze the training dynamics of
the global averaged model w, (¢) of D-SGD, which has been proved to be close to the individual models
w;®)(j =1,...,m) (Yuan et al., 2016; Fallah et al., 2022).

*Taking expectation over /. (+) means taking expectation over all z; (1) (C(t) = 1,..., |u;]).
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1 & 1 1 &
=H (w,(t) %E:: W (6)~Wq(t)) —|—2T Wa(t)) E; W () =W (t)( wj(t)—wa(t))T]+R.

=0
The i-th entry of the above equation will be

m

1 i(t t
Em(f)ND [m Z [0,L45 P (wy(t) -0, L"® (wa(0))]]

m j=1

1 1 «
=5 > L (Wa(®) — > (W= Wa(0) (W (0)-Wa(0); +O (|W;0)-Wat)[5). ()
j=1

=0; Ty 05 L(2n) 7 7y (w5 ()= wa (1)), (W; () =wa (1)),

where (W (t)-Wq(¢))) denotes the k-th entry of the vector w;(t)-wq(t). The equality in the brace is
due to Clairaut’s theorem (Rudin et al., 1976).

Then we prove that with probability greater than 1-O(n), the iterate of D-SGD can be written as

Ey; ty~D[Wa(t+1)]
j=1,...,m

1
=w,(0)-nV [L (Wa (1)) +§ Tr(H (wq())E*(1))] +O(n%1)+0 (T]HWj(t)*Wa(t)Hg 1).

the regularized loss

(3) Controlling the top Hessian eigenvalue with Tr(H (w,(¢))=*(¢)). According to Lemma C.2,
we obtain

0 <Tr(H(wWwa®)E"®) < Aa(wat)),1 - Tr(Ew) < di Tr(H(wWa()E" (1)),
—— ——
sharpness consensus distance

where A\pp(w, (1)),1 denotes the largest eigenvalue of H (wq(t)) and d; stands for the marginal contri-

bution of Agr(w,(#)),1 on the full spectrum of H(w, (1)) (i.e., Ay (wa (1)1 = %1 Tr(H (wq(t))).
Therefore, combined with Equation (3), we conclude that D-SGD also implicitly regularizes

AH(w, (1)1 - Tr(E@)).
4.2 AMPLIFIED REGULARIZATION OF D-SGD IN LARGE-BATCH SETTING

In practice, the decentralization (and also distribution) ordinarily implies an equivalent large total
batch size, since a massive number of workers are involved in the system in many practical scenarios.
Moreover, large-batch training can enhance the utilization of super computing facilities and further
speeds up the entire training process. Thus, studying the large-batch setting is of significant interest
for fully understanding the application of D-SGD.

Despite the importance, theoretical understanding of the generalization of large-batch training in
D-SGD remains an open problem. This subsection examines how the total batch size affects the
sharpness reduction effect of D-SGD if the linear scaling rule, as presented below, is applied.

Linear scaling rule (LSR). The linear scaling rule is a widely used hyper-parameter-free rule for
deep learning (Krizhevsky, 2014; He et al., 2016a; Goyal et al., 2017; Bottou et al., 2018; Smith et al.,
2020), which states that a fixed learning rate to total batch size ratio allows maintaining generalization
performance when the total batch size increases.

Definition A.2

*Recall that Theorem 1 implies that the loss function D-SGD optimizes is close to the original loss L plus
LT (B) - AH(wa(t)),1- The second term Agr(w, (¢+)),1 is a sharpness measure, and the first term Tr(Z(t)) is
the “regularization coefficient” which characterizes the strength of the sharpness regularization.
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Theorem 2 states that the sharpness regularization effect of D-SGD is amplified in large-batch settings
if we apply the linear scaling rule. It is worth noting that this amplified sharpness regularization effect
requires no additional communication and computation, which verifies that significant advantages in
generalizability surprisingly exist in the large-batch D-SGD. The proof is included in Appendix C.

4.3 ESCAPING EFFICIENCY OF D-SGD FROM LOCAL MINIMA

This subsection presents an analysis of the escaping efficiency of D-SGD, based on the construction
of a stochastic differential equation (SDE) approximation (Jastrzebski et al., 2017; M et al., 2017; Li
et al., 2021) of D-SGD. This escaping efficiency analysis shows that D-SGD favors super-quadratic
minima.

To construct the SDE approximation of D-SGD, we combine Equation (3) and Equation (4) and write
the iterates of D-SGD as follows,

W (t+1)
1 N 1
= wa()-nV[L (W (1)) +§ Tr(H (W, (1) E (t))]+neo(t)+(9(n§ 1)+O (’I’}”Wj(t)*wa(t)”g 1), (6)

where €%(¢) denotes the zero-mean noise in D-SGD. Applying Lemma C.4, Equation (6) can be
viewed as the discretization of the following SDE

1
dw, (1) = —[VL (wa () 5T (Wa(0) ® E (0] dt + /nZpmdW (1),

where ® denotes the tensor product (see Appendix A.2), 3,(¢) denotes the covariance matrix of
the total noise ep(t) = + Z;"’:l[VL“J'(” (w;(t)) -VL (wg(t))], and W () is a standard Brownian

m

motion (Feynman, 1964) in R?. We then utilize the SDE approximation of D-SGD to study the
escaping efficiency of D-SGD, defined as follows.

Definition 1 (Escaping efficiency). Let w* denote one of the local minimum of the loss function L.
Then, we call By, ) [L(W4(t)) — L(w*)] the escaping efficiency of the dynamic W (t+1) from w*,
where By, (1) denotes the expectation with respect to the distribution of w(¢).

5

We then have the following theorem on the escaping efficiency of D-SGD.

Theorem 3 (Escaping efficiency of D-SGD). If the loss L is continuous and has fourth-order partial
derivatives, the escaping efficiency of D-SGD from minimum w* satisfies

Ew. @t [L(Wa®) = L(w")]

t
1
— / Ew, () [VL(wo )T VL(W, ) — igrandsum((T(Wa(t))VL(wa(t))) ©E*@)|dt
0

t
+ / g Tr (H (wo ()X, 1)) dt,
0

where © denotes the Hadamard product (Davis, 1962), and grandsum(-) (Merikoski, 1984) of a
matrix M satisfies grandsum(M) =3, . M;;.

A detailed proof and the escaping efficiency of C-SGD (see Proposition C.5) are given in Appendix C.

Comparing Theorem 3 and Proposition C.5, we can see that the main difference between the escaping
efficiency of D-SGD and C-SGD lies in the integral of grandsum((T'(w, (1)) VL(w (1)) ® B* (1)),
which correlates with the gradient diversity in Equation (4). We then study how this term affects the
escaping efficiency of D-SGD on super-quadratic minima, a typical class of minima as defined below.
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Figure 3: An illustration of super-quadratic and sub-quadratic minimum.

The super-quadratic growth implies that the losses become flatter when the parameters get closer to
minima. We then present the intuition of the second condition in Definition 2. A second-order Taylor
approximation of L around w* reads,

L(w) — L(w*) = VL(w)T(w — w*) + (w — w*)  H(w)(w — w*),
and the second condition in Definition 2 further guarantees that,

L(w) - L(w") = VL(W)" (w = w*) + a(w)||w = w*[[{™ (w - w") " (w - w"),

quadratic growth

which suggests that the growth of L(w) is -locally super-quadratic as long as a(w), 5(w) > 0.

A related study by Ma et al. (2022) observes that the minima learned by centralized gradient descent
methods obey a “sub-quadratic growth” (i.e., the loss becomes sharper as parameters get closer to the
minimum). We also give a formalization of the sub-quadratic minima in Definition C.1. Intuitively,
super-quadratic minima are flatter than sub-quadratic minima with the same depth, as illustrated in
Figure 3. The following proposition studies the sign of grandsum((T(w, (1)) VL(w,(®))) © E*®))
on the super-quadratic and sub-quadratic minima.

Proposition 4. Suppose that w,) is sufficiently close to a local minimum w7,
grandsum((T (wq(0))VL(wa (1)) © B*®) is (1) zero if w* is a quadratic minima, (2) posi-
tive if w* is a §-locally super-quadratic minima, and (3) negative if w* is a 6-locally sub-quadratic
minima.

Combined with Theorem 3, Proposition 4 shows that D-SGD favors super-quadratic minima over
sub-quadratic minima with a higher probability. The proof is included in Appendix C.

Theorem 1 and Proposition 4 indicate that the additional noise (i.e., the gradient diversity in Equa-
tion (4)) of D-SGD may play a distinct role in shaping the generalizability of D-SGD.

5 EMPIRIAL RESULTS

This section empirically validates our theory. We first introduce the experimental setup and then
study how decentralization favours the flatness of minima.

Implementation settings. Vanilla D-SGD and C-SGD are employed to train image classifiers on
CIFAR-10 (Krizhevsky et al., 2009) with AlexNet (Krizhevsky et al., 2017), ResNet-18 and ResNet-
34 (He et al., 2016b), three popular neural networks. Batch normalization (Ioffe & Szegedy, 2015)
is employed in training AlexNet. The number of workers (one GPU as a worker) is set as 16; and
the local batch size is set as 8, 64, and 512 per worker in three different cases. For the case of local
batch size 64, the initial learning rate is set as 0.1 for ResNet-18 and 0.01 for AlexNet. The learning
rate is divided by 10 when the model has passed the 2/5 and 4/5 of the total number of iterations
(He et al., 2016a). We apply the linear scaling law to avoid different total batch sizes caused by the
different local batch size (see Subsection 4.2). In order to understand the effect of decentralization on
the flatness of minima, all other training techniques are strictly controlled. The code is written based
on PyTorch (Paszke et al., 2019).

Hardware enviornment. The experiments are conducted on a computing facility with NVIDIA®
Tesla™ V100 16GB GPUs and Intel® Xeon® Gold 6140 CPU @ 2.30GHz CPUs.

We plot the minima learned by C-SGD and D-SGD in Figure 4 using the loss landscape 3D visual-
ization tool in Li et al. (2018). See more plots in Appendix B. Two observations are obtained from
these figures: (1) the minima of D-SGD are flatter than those of C-SGD; and (2) the gap in flatness
becomes larger as the total batch size increases. These observations support the claims in Theorem 1
and Theorem 2 that D-SGD favors flatter minima than C-SGD, especially in the large-batch settings.
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(d) D-SGD, 128 total batch size (e) D-SGD, 1024 total batch size (f) D-SGD, 8196 total batch size

Figure 4: Minima 3D visualization of C-SGD and D-SGD with ResNet-18 on CIFAR-10.

6 DISCUSSION AND FUTURE WORK

Scalability to complex or sparse topologies. Our theory holds for arbitrary topologies (see Defini-
tion A.1). We also conduct experiments on grid-like and static exponential topologies (Ying et al.,
2021a) and obtain results similar to Figure 4 and Figure B.1. For spare topologies, which has a very
small spectral gap, the regularization term in Theorem 1 would be extremely large during training,
which may hinder optimization and lead to a large total excess risk of D-SGD. Can we design a new
decentralized training algorithm that can alleviate the optimization issue on spare topologies while
maintaining the generalization advantage in large-batch setting?

Non-IIDness and the flatness of minima. In real-world settings, a fundamental challenge in
distributed learning is that data may not be i.i.d. across workers (Tang et al., 2018; Vogels et al.,
2021; Mendieta et al., 2022). In this case, different workers may collect distinct or even contradictory
samples (i.e., data-heterogeneity) (Criado et al., 2021). It is widely observed that the non-IIDness hurts
the generalizability of D-SGD. Can we rigorously analyze how the degree of data-heterogeneity affects
the flatness of minima and design theoretically motivated algorithms to promote the generalizability
of D-SGD in non-IID settings?

7 CONCLUSION

This work provides a new theory that reconciles the conflict between the empirical observations
showing that D-SGD can generalize better than centralized SGD (C-SGD) in large-batch settings
and the existing generalization theories of D-SGD which suggest that decentralization degrades
generalizability. We prove that D-SGD introduces an implicit regularization that penalizes the learned
minima’s sharpness and this effect will be amplified in large-batch settings if we apply the linear
scaling rule. We further analyze the escaping efficiency of D-SGD, which shows that D-SGD favors
super-quadratic flat minima. To our best knowledge, this is the first work on the implicit sharpness
regularization and escaping efficiency of D-SGD.
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A ADDITIONAL BACKGROUND

A.1 DECENTRALIZED LEARNING

To handle an increasing amount of data and model parameters, distributed learning across multiple
computing workers emerges. A traditional distributed learning system usually follows a centralized
setup. However, such a central server-based learning scheme suffers from two main issues: (1) A
centralized communication protocol significantly slows down training since central servers are easily
overloaded, especially in low-bandwidth or high-latency cases (Lian et al., 2017); (2) There exists a
potential information leakage through privacy attacks on model parameters despite decentralizing
data using Federated Learning (Zhu et al., 2019a; Geiping et al., 2020; Yin et al., 2021). As an
alternative, decentralized training allows workers to balance the load on the central server through
the gossip technique (Lian et al., 2017), as well as maintain confidentiality (Warnat-Herresthal et al.,
2021).

We then summarize some commonly used notions regarding decentralized learning.

Definition A.1 (Doubly Stochastic Matrix). Let G = (V, £) stand for the decentralized communica-
tion topology where V denotes the set of m computational nodes and E represents the edge set. For
any given topology G = (V, £), the doubly stochastic gossip matrix P = [P ] € R™*™ is defined
on the edge set £ that satisfies

o P = P7 (symmetric);
o Ifj # kand (j, k) ¢ &, then Pj, = 0 (disconnected) and otherwise, P; i, > 0 (connected);
* P, e€0,1] Vk,land ), Pj =, Pj i = 1 (standard weight matrix for undirected graph).

In the following we illustrate some commonly-used communication topologies.

@gasted

Ring Grid Exponential Fully-connected

Figure A.1: An illustration of some commonly used topologies.

The intensity of gossip communications is measured by the spectral gap (Seneta, 2006) of P.

Definition A.2 (Spectral Gap). Denote A = max {| s, |A\m|} where A; (i = 2,...,m) is the i-th
largest eigenvalue of gossip matrix P € R™*™, The spectral gap of a gossip matrix P can be defined
as follows:

spectral gap :=1 — A.
According to the definition of doubly stochastic matrix (Definition A.1), we have 0 < X\ < 1. The

spectral gap measures the connectivity of the communication topology, which is close to 0 for sparse
topologies and will approach 1 for well-connected topologies.

Assumption A.1. We assume that the sum of the off-diagonal entries of Z(t) is smaller than d — 1
times of the sum of the diagonal entries of Z(t) in expectation:

1 m m 1 m
E pyyimn (Y — D (Wi -Wa(0)k(W;()-Wa(0)1) < By rmn((d—1) ) — D (win-wa®)3),

m

Y B e k=1 j=1

where d stands for the dimensionality of W ;(t)=Wq(t).

15



Under review as a conference paper at ICLR 2023

A.2 EXPLANATION OF TENSOR PRODUCT
The tensor product between a third-order tensor T' € R¥*xd
M € R¥ in this paper is defined as

(T ® M), = grandsum(T; © M),
——
the i-th entry

and a second-order tensor (matrix)

where T, € R%*9 is a second-order tensor (matrix), ® denotes the Hadamard prodgct (Davis,
1962), and the grandsum(-) (Merikoski, 1984) of a second-order tensor (matrix) M satisfies
grandsum(M) = >, . M;;.
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B ADDITIONAL MINIMA VISUALIZATION

We plot the minima learned by C-SGD and D-SGD as follows using the 2D loss landscape visualiza-
tion tool in Li et al. (2018).

(a) C-SGD, 128 total batch size (b) C-SGD, 1024 total batch size

®

0.4

0.0 0.2

-0.4 -0.2 0.0 0.2 0.4

(d) D-SGD, 128 total batch size (e) D-SGD, 1024 total batch size  (f) D-SGD, 8196 total batch size

Figure B.1: Minima 2D visualization of C-SGD and D-SGD with ResNet-18 on CIFAR-10.
From Figure B.1, we observe that (1) the minima of D-SGD is flatter than those of C-SGD; and (2)

the gap in flatness becomes larger as the total batch size increases. Similar results are obtained with
AlexNet and ResNet-34 on CIFAR-10.
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C PROOF

Corollary C.1. The gradient diversity in Equation (4) equals to zero in the following cases: (1) the
loss L = wT Hw is quadratic; and (2) the optimization algorithm is distributed centralized SGD
(Equation (1)),

Proof of Corollary C.1.

On quadratic loss, we have

1 & il L
— ; [VLH® (wj(t)) -VLF Y (wq(1))] = z:: Hw;t)-Hw, ()] = E z:: W;i(H)-Wo (t)] .

0
In distributed centralized SGD, the gradient diversity statisfies

1 m
— Z[VL”J“) (w;(t)) -VL* (wy(1))] = 0.
m =1 N—_——
=w,(t)

O
Lemma C.2. We denote E(t) = % Z;nzl(Wj(t)—Wa(t))(Wj(t)—Wa(t))T the weight diversity ma-

trix and B*(t) = Z'j (eiel \Bw)p ejel. We assume that dy (dy < d), the marginal contribu-
tion of A (w.,(1)),1 on the full spectrum OfH(Wa(f)) is non-negative and satisfies A\g(w,(t)),1 =

d TI"(H(Wa(t)). Then the product of Tr(E(t)) and the maximum eigenvalue of H(w(t)) is upper
and lower bounded as

0 < Tr(H(Wa1))E" () < Aa(wat)),1 - Tr(E®) < di Tr(H(wa)E"1).
N———— N———

sharpness consensus distance

Proof of Lemma C.2.

On the one hand, von Neumann’s trace inequality (Von Neumann, 1937) guarantees

TI‘(H(W (t) = (t) < Z)\H(Wa(t == (t),r < )‘H(w )1 TI‘(E(t)), (C.1)

where Agr(w, (1)),r and A=), represent the r-th largest eigenvalue of H (Wa(t)) and E(), respec-

tively. On the other hand, we will prove that A gz (w, (1)),1 - Tr(E(t)) < O(Tr(H (wq(t))E*(t))). Since

E*(t) = 2?21 (e;el | E)) r e;el is a diagonal matrix, Tr(H (w,(t))Z*(t)) can be lower bounded as
Tr(H (wo1)E* 1) > E Tr(H (wa (1)),

where £? is the lower bound of -1 Z;”:l (Wj(t)*Wa(t))i (k=1,...,d).

Knowing that Tr(Z*(+)) = Tr(E(¢)), we can bound the right hand side of Equation (C.1) as follows:

dq N - —_
0 < AW, t),1 - Tr(Ew) < d7§2 Tr(H(wa)Z2" @) - Tr(BE®) < di Tr(H (Wa()E*®)).

Note than we can also obtain
0 <Tr(H(we)=*®) < Tr(H(wa®)) - Tr(Ew) < dy Tr(H(wa®)ZE* @),
which shows that D-SGD also implicitly regularizes Tr(H (w4 (t))).
O

Lemma C.3 ((Kong et al., 2021)). Suppose that the averaged gradient norm satisfies

TJY-L Z_} 1 ||VL (W] )” (1 + > A) ZJ 1 ||VL (Wj(t+1)) 2,
of D-SGD satisfies

_ 1 m
Tr(Ew) = ooy Z l|w ) — Wa(t)Hg
j=1

then the the consensus distance
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s AT IVE (wWie)? LS B e VIR (wi0) -V L (wi0)|)
=0 5 + ;
(1=X) L=A

where A equals to 1 — spectral gap (see Definition A.2).
Lemma C.4. D-SGD is approximated by the following SDE
1
dw,(t) = = [VL (wa (1)) 5T (Wa) @ E*0]dt + /0SB dW (),

where ® denotes the tensor product (see Appendix A.2), 3,(t) denotes the covariance matrix of the
unbiased noise €(t), and W (+) is a standard Brownian motion (Feynman, 1964) in RA.

Proof of Lemma C 4.
If we omit the residual terms, the iterate of D-SGD becomes

Wa(t+1) = Wo()-nV [L (Wa(®)) + Tr(H (wo (1) E* ()] + nep)
1
=w,)-[VL (wq(t)) +§T(Wa(t) E 0+ nEpt)/1e,

where ep(t) ~ N (0, X)) (Gaussian approximation) and €* is a standard Gaussian random variable.

For small enough constant learning rate 7, we arrive at

1
dw,(t) = —[VL (wa(t)) +§T(Wa(t)) ® E*w]dt + V/nEpdW ().
The stochastic processes give a way to model D-SGD as a continuous-time evolution (i.e., SDE)
without ignoring the role of mini-batch noise if the learning rate is infinitesimal.
L]
Theorem 1 (Implicit regularization of D-SGD). Given the loss L is continuous and
has fourth-order partial derivatives. Denote the weight diversity matrix as Z() =

% ZT:l (w; (t)—Wa(t))(Wj(t)—Wa(t))T, its diagonal matrix as Z* (t), and the d-dimensional all-ones
vector as 1. With probability greater than 1 — O(n), the mean iterate of D-SGD becomes

E/LJ (f)ND [Wa (H”l)}

1 . N ,
=w,0)-nV [L (W, (1)) +§ Tr(H(w,(1)E*1)] +O(n21)+0 (’f]”Wj(t)—Wa(t)”g 1),

the regularized loss

Under the mild assumptions in Lemma C.2, D-SGD implicitly regularizes
reg( Wit) )= AH(wa(t).1 - Tr(BEw)
—_——— ———

Jj=1,....m -
maximum Hessian eigenvalue ~ consensus distance

Proof of Theorem 1.

We start by rewriting the update of the global averaged model w () of D-SGD as follows,
W (t+1) :Wa(t)—’/][ VL (wa) + VL (wa@) -VL*? (wa )

unbiased gradient gradient noise over the superbatch fi(¢)

i Z [VLH O (wi) -VL"® (wa)] ]
m

gradient diversity among workers

Analyzing the effect of the gradient diversity on the training dynamics of D-SGD on the general
non-convex losses is highly non-trivial. Technically, we perform a second-order Taylor expansion
(see Appendix A.2) on the gradient diversity around w(¢), omitting the high-order residuals R:

1 m
— D IVLHO (w0) ~V LM (wa(0)]
j=1
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—ZHW” Wa(t) (W (1)-Wa (1) +—ZT’”“> o) @ [(W;(1)-Wa () (W (1) -Wa()"].
j=1

Here H" ) (wg (1) 2 ol Zl‘” @)l H (wq(t); 2j,¢(t)) stands for the empirical Hessian at w, (t)

and TH D (w(t) = 5 t)l Z‘C’E;)(t ‘1 T(Wa(t); 2; ¢(+)) denotes the tensor containing all empirical
third-order partial derivatives at w(t), where p1;(¢) and z; ¢(4) follows the notation in Equation (1).

Analogous to the works investigating the SGD dynamics (M et al., 2017; Zhu et al., 2019b; Ziyin et al.,
2022; Wu et al., 2022), we will calculate the expectation and covariance of the gradient diversity. The
expectation of gradient diversity is first calculated as follows. We defer the analysis of its covariance
to Subsection 4.3. Taking expectation over all local mini-batches 1t (j = 1,...,m) provides

By ~p | [VLHO (W) -VL* (wa )] ]

j=1,...,m

3=

1

J

=H (w,(t))

S~

1

1 1 "
(W, (t)-Wq(t) + T(wa(t)) E Zl W (6)-We (t)( Wj(t)fwa(t))T}+R.
J j=

=0
The i-th entry of the above equation will be

m

1
w~D|— E O; LM (w(t)) —0; LM (Wt
7“1)5 m i(®) (Wa(®)]]
1 3 1 & 3
=3 E O L(wa (1) — E (Wi (t)-Wa (1), (W;(t)-Wa®), +O ([[W;6)-Wa®)||3), (C.2)
k,l j=1

=0; Ty 03y L(2n) 7 7y (W5 (8)=Wa (1)), (W; ()= Wa (1)),

where (W (t)-Wq(t))x denotes the k-th entry of the vector w;(1)-w, (t). The equality in the brace is
due to Clairaut’s theorem (Rudin et al., 1976).

Assumption A.1

Lemma C.3
Equation (C.2)
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Lemma C.2

Equation (3)

Ll
Theorem 2. Suppose that the averaged gradient norm satisfies Z;":l IVL (Wj(t))H2 < (1+
) L IVL (W e+1)
sharpness regularization coefficient of D-SGD at t-th iteration is 0(|u(t)|2(1 + % Z;nzl m)),
J
which increases with the total batch size |u(t)| if we apply the linear scaling rule.

Proof of Theorem 2.

? where 1 — X denotes the spectral gap (see Definition A.2). The

Theorem 1 states that the regularization coefficient of Agr(w,1)),1 is 7 Tr(E(t)). According to
Lemma C.3, Tr(Z(t)) satisfies

m

1 — 1 , 2
Ti(E0) =720 — S IVE(w0)* 4= > By [VEHY (w;0) -V (w;0)
j=1

2

noise covariance, O( ﬁ) M et al., 2017)
J
(C.3)

Given that we apply the linear scaling rule (see Subsection 4.2), we have n = O(|u(t)|), which
completes the proof.

independent of total batch size |fu(t)|

O
Theorem 3 (Escaping efficiency of D-SGD). If the loss L is continuous and has fourth-order partial
derivatives, the escaping efficiency of D-SGD from minimum w* satisfies

Ew, ¢ [L(Wa(t) — L(w")]

t
1
= /0 Ew, (¢) [VL(wa(t))TVL(Wa(t)) — Qgrandsum((T(wa(t))VL(wa(t))) ©E*@)]dt

t
+/ gTr (H(wa ()X, 1)) dt,
0

where © denotes the Hadamard product (Davis, 1962), and the grandsum(-) (Merikoski, 1984) of a
matrix M satisfies grandsum(M) =3, . M;;.

Proof of Theorem 3.
Since L is continuous and has second-order partial derivatives, we can write
1
dL(w,t) = — (VL(wa 1) ' VL(Wa(t) — B VL(w,)"(T(wat) ® E* 1)) )dt

grandsum((T'(wq (¢)) VL(w, (1)) OE*(t))
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+ g Tr <2D(t)%H(wa(t))2D(t)%) dt + VL(wa(t))TED(t)dW(t),

according to the Ito’s lemma (@ksendal, 2003). The term V. L(w(t))” Xy, t)dW () will be averaged
if we take the expectation with respect to the distribution of w,(¢). Finally, integrating over ¢ will
provide

Ew, ) [L(Wa ()]

t
:L(w*)+/ gTr(H(Wa(t))ED(t))dt
0

¢
1
— /0 Ew, (¢) [VL(wot)TVL(wa(t) — §grandsum((T(wa(t))VL(Wa(t))) © E*@)]dt,

which completes the proof.
O
Proposition C.5 (Escaping efficiency of C-SGD). If the loss L has second-order partial derivatives,
the escaping efficiency of C-SGD from minimum w* satisfies
]E/jtj (;)Nﬁ [L(Wq(t+1)) — L(wW™)]
t

t
= — VL(Wa(t))TVL(Wa(t)) + / gTr (H(wq)Xc)) dt,
0 0

where 3..(t) denotes the covariance matrix of the gradient noise of C-SGD (Equation (1)).

The proof is analogous to Theorem 3.

O
Definition C.1 (Sub-quadratic minimum). Given that the loss L is continuous and has second-order
partial derivatives, we call the mimimum w* of L -locally sub-quadratic if for any w in the open

punctured neighbourhood of w* (i.e., w € f](w*)), the following condition holds: (1) H(w*) =
H(w); and (2) 3 a(w) € RY, B(w) € R~ s.t. H(w)(w—w*) = a(w)(|w—w*|[;™) (w—w*)).
Proposition 4. grandsum((T'(w,(t))VL(w, (1)) © B*@)) is (1) zero on quadratic minima, (2)
positive on super-quadratic minima, and (3) negative on sub-quadratic minima.

Proof of Proposition 4.

(1) quadratic minima.

It is obvious that on quadratic loss, grandsum((T(w,(t))VL(wg(t))) ® E*®)) = 0 due to zero
gradient diversity (see Corollary C.1).

(2) super-quadratic minima.
Performing the Taylor expansion of H(w) — H (w*) around w* provides
H(w)—H(WwW") ~T(w)(w—w") = 0.
According to the definition of super-quadratic minima, we know that 3 a(w) € R™, f(w) € R s.t.
T(w)(H (w)(w = w")) = a(w)|[w — w3 (w)(w — w’) 0.

Another Taylor expansion of VL(w) — VL(w*) around w* will give
T(w)(VL(w) — VL(w")) ~ T(w)(H(w)(w - w")) = a(w)|[w - w*[|; ™ T(w)(w — w") = 0.

——

0

Then we arrive at grandsum((T'(w, (t)) VL(wq4(t))) © E*(¢)) > 0 since E*(¢) is a diagonal matrix
with all positive entries.

(3) sub-quadratic minima.

By the same token, we can prove that grandsum((T(w,(t))VL(w,(t))) ® E*)) < 0 on sub-
quadratic minima.
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