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Abstract

We propose the novel certified training method, SABR, which outperforms exist-
ing methods across perturbation magnitudes on MNIST, CIFAR-10, and TINY-
IMAGENET, in terms of both standard and certifiable accuracies. The key insight
behind SABR is that propagating interval bounds for a small but carefully se-
lected subset of the adversarial input region is sufficient to approximate the worst-
case loss over the whole region while significantly reducing approximation errors.
SABR does not only establish a new state-of-the-art in all commonly used bench-
marks but, more importantly, points to a new class of certified training methods
promising to overcome the robustness-accuracy trade-off.

1 Introduction

As neural networks are increasingly deployed in safety-critical domains, formal robustness guaran-
tees against adversarial examples (Biggio et al., 2013; Szegedy et al., 2014) are more important than
ever. However, despite significant progress, specialized training methods that improve certifiability
at the cost of severely reduced accuracies are still required to obtain deterministic guarantees.

Generally, both training and certification methods compute a network’s reachable set given an input
region defined by an adversary specification and a concrete input, by propagating a symbolic over-
approximation of this region through the network (Singh et al., 2018, 2019; Gowal et al., 2018a).
Depending on the method used for propagation, both the computational complexity and tightness of
this approximation can vary widely. For certified training, an over-approximation of the worst-case
loss is computed from this reachable set and then optimized (Mirman et al., 2018; Zhang et al., 2020;
Wong et al., 2018). Surprisingly, the least precise propagation methods yield the highest certified
accuracies as more precise methods induce significantly harder optimization problems (Jovanovic
et al., 2021). However, the large approximation errors incurred by these imprecise methods lead to
over-regularization and thus poor accuracy. Combining precise worst-case loss approximations and
a tractable optimization problem is thus the core challenge of certified training.

In this work, we tackle this challenge and propose a novel certified training method, SABR, Small
Adversarial Bounding Regions, based on the following key insight: by propagating small but care-
fully selected subsets of the adversarial input region with imprecise methods (i.e., BOX), we can
obtain both well behaved optimization problems and precise approximations of the worst case loss.
This yields networks with complex neuron interactions, enabling higher standard and certified accu-
racies, while pointing to a new class of certified training methods with significantly reduced regular-
ization. SABR, thus, achieves state-of-the-art standard and certified accuracies across all commonly
used settings on the MNIST, CIFAR-10, and TINYIMAGENET datasets.
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Main Contributions Our main contributions are:

• A novel certified training method, SABR, reducing over-regularization to improve both
standard and certified accuracy (§3).

• A theoretical investigation motivating SABR by deriving new insights into the growth of
BOX relaxations during propagation (§4).

• An extensive empirical evaluation demonstrating that SABR outperforms all state-of-the-
art certified training methods in terms of both standard and certifiable accuracies on
MNIST, CIFAR-10, and TINYIMAGENET (§5).

2 Background

In this section, we provide the necessary background for SABR.

Adversarial Robustness Consider a classification model h : Rdin 7→ Rc that, given an input x ∈
X ⊆ Rdin , predicts numerical scores y := h(x) for every class. We say that h is adversarially robust
on an `p-norm ball Bεpp (x) of radius εp if it consistently predicts the target class t for all perturbed
inputs x′ ∈ Bεpp (x). More formally, we define adversarial robustness as:

arg max
j

h(x′)j = t, ∀x′ ∈ Bεpp (x) := {x′ ∈ X | ‖x− x′‖p ≤ εp}. (1)

Neural Network Verification To verify that a neural network h is adversarially robust, several
verification techniques have been proposed.

A simple but effective such method is verification with the BOX relaxation (Mirman et al., 2018),
also called interval bound propagation (IBP) (Gowal et al., 2018b). Conceptually, we propa-
gate the input region Bεpp (x) in form of a hyper-box relaxation (each dimension is described as
an interval) through the network to compute an over-approximation of its reachable set and then
check whether all included outputs yield the correct classification. Given an input region Bεpp (x),
we over-approximate it as a hyper-box, centered at x̄0 := x and with radius δ0 := εp, such
that we have the ith dimension of the input x0

i ∈ [x̄0
i − δ0

i , x̄
0
i + δ0

i ]. Given a linear layer
fi(x

i−1) = Wxi−1 + b =: xi, we obtain the hyper-box relaxation of its output defined by center
x̄i = Wx̄i−1 + b and radius δi = |W |δi−1, where | · | denotes the elementwise absolute value.
A ReLU activation ReLU(xi−1) := max(0,xi−1) can be relaxed by propagating the lower and
upper bound separately, resulting in the output hyper-box with x̄i = ui+li

2 and δi = ui−li
2 where

li = ReLU(x̄i−1 − δi−1) and ui = ReLU(x̄i−1 + δi−1). We can now show provable robustness
if we find the upper bound on the logit difference y∆

i := yi − yt < 0, ∀i 6= t to be smaller than 0.

Beyond BOX, more precise verification approaches track more relational information at the cost of
increased computational complexity (Palma et al., 2022; Wang et al., 2021; Ferrari et al., 2022).

Training for Robustness For neural networks to be certifiably robust, special training is nec-
essary. Given a data distribution (x, t) ∼ D, standard training generally aims to find a network
parametrization θ that minimizes the expected cross-entropy loss:

θstd = arg min
θ

ED[LCE(hθ(x), t)], with LCE(y, t) = ln
(
1 +

∑
i6=t

exp(yi − yt)
)
. (2)

When training for robustness, we, instead, wish to minimize the expected worst case loss around the
data distribution, leading to the min-max optimization problem:

θrob = arg min
θ

ED
[

max
x′∈Bεpp (x)

LCE(hθ(x′), t)
]
. (3)

Unfortunately, solving the inner maximization problem is generally intractable. Therefore, it is
commonly under- or over-approximated, yielding adversarial and certified training, respectively.

Adversarial Training Adversarial training optimizes a lower bound on the inner optimization
objective in Eq. (3) by first computing concrete examples x′ ∈ Bεpp (x) that maximize the loss term
and then optimizing the network parameters θ for these samples. While networks trained this way
typically exhibit good empirical robustness, they remain hard to formally verify and sometimes also
vulnerable to stronger or different attacks (Tramèr et al., 2020; Croce & Hein, 2020).
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Figure 1: Illustration of SABR training. Instead of propagating a BOX approximation (dashed box ) of the
whole input region (red and green shapes in input space), SABR propagates a small subset of this region
(solid box ), selected to contain the adversarial example (black ×) and thus the misclassified region (red).
The smaller BOX accumulates much fewer approximation errors during propagation, leading to a significantly
smaller output relaxation, which induces much less regularization (medium blue ) than training with the full
region (large blue ), but more than training with just the adversarial example (small blue ).

Certified Training Certified training optimizes an upper bound on the inner maximization ob-
jective in Eq. (3), obtained via a bound propagation method. These methods compute an up-
per bound uy∆ on the logit differences y∆ := y − yt1 to obtain the robust cross-entropy loss
LCE,rob(Bεpp (x), t) = LCE(uy∆ , t). Surprisingly, using the imprecise BOX relaxation (Mirman et al.,
2018; Gowal et al., 2018b) (denoted IBP) consistently produces better results than methods based
on tighter abstractions (Zhang et al., 2020; Balunovic & Vechev, 2020; Wong et al., 2018). Jo-
vanovic et al. (2021) trace this back to the optimization problems induced by the more precise
methods becoming intractable to solve. While the heavily regularized, certifiably trained networks
are amenable to certification, they suffer from severely reduced (standard) accuracies. Overcoming
this robustness-accuracy trade-off remains a key challenge of robust machine learning.

3 Method – Small Regions for Certified Training

We address this challenge by proposing a novel certified training method, SABR — Small
Adversarial Bounding Regions — yielding networks that are amenable to certification and retain rel-
atively high standard accuracies. We leverage the key insight that computing an over-approximation
of the worst-case loss for a small but carefully selected subset of the input region Bεpp (x) often still
captures the actual worst-case loss, while significantly reducing approximation errors.

We illustrate this in Fig. 1. Existing certified training methods propagate the whole input region
(dashed box in the input panel), yielding quickly growing approximation errors. The resulting im-
precise over-approximations of the worst case loss (compare the red and green regions to the dashed
box in the output panel) cause significant over-regularization (large blue arrow ). Adversarial
training methods, in contrast, only consider individual points (× in Fig. 1) and fail to capture the
worst-case loss, leading to insufficient regularization (small blue arrow in the output panel). We
tackle this problem by propagating small, adversarially chosen subsets of the input region (solid box

in the input panel), which we call propagation regions. This yields significantly reduced approxi-
mation errors and thus more precise, although not necessarily sound over-approximation of the loss
(see the solid box in the output panel). The resulting intermediate level of regularization (medium
blue arrow ) allows us to train networks that are both robust and accurate.

We observe that, depending on the size of the propagated region, SABR can be seen as a continuous
interpolation between adversarial training for infinitesimally small regions and standard certified
training for the full input region.

2ε

2τ

x x∗x′

x∗0

Figure 2: Illustration of
SABR’s propagation re-
gion selection process.

Selecting the Propagation Region We parametrize the propagation
region as an `p-norm ball Bτpp (x′) with center x′ and radius τp ≤ εp −
‖x − x′‖p, ensuring that we indeed propagate a subset of the original
region Bεpp (x). For notational clarity, we drop the subscript p. We first
choose τ = λε by scaling the original perturbation radius ε with the
subselection ratio λ ∈ (0, 1]. We then select x′ by first conducting a
PGD attack, yielding the preliminary center x∗, and then ensuring that
the obtained region is fully contained in the original one by projecting
x∗ onto Bε−τ (x) to obtain x′. We show this in Fig. 2.
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Propagation Method While SABR can be instantiated with any certified training method, we
chose BOX propagation (DIFFAI Mirman et al. (2018) or IBP (Gowal et al., 2018b)) to obtain
well-behaved optimization problems (Jovanovic et al., 2021).

4 Understanding SABR – Robust Loss and Growth of Small Boxes

In this section, we aim to uncover the reasons behind SABR’s success. Towards this, we first analyze
the relationship between robust loss and over-approximation size before investigating the growth of
the BOX approximation with propagation region size.

Robust Loss Analysis Certified training typically optimizes an over-approximation of the worst-
case cross-entropy loss LCE,rob, computed via the softmax of the upper-bound on the logit differ-
ences y∆ := y − yt. When training with the BOX relaxation and assuming the target class t,
w.l.o.g., we obtain y∆ ∈ [ȳ∆ − δ∆, ȳ∆ + δ∆] and the robust cross entropy loss LCE, rob(x) =

ln
(
1 +

∑n
i=2 e

ȳ∆
i +δ∆

i

)
. Further, we note that the BOX relaxations of many functions preserve the

box centers, i.e., x̄i = f(x̄i−1). Only unstable ReLUs, i.e., ReLUs containing 0 in their input
bounds, introduce a slight shift. However, these are empirically few in certifiably trained networks
(see Table 5). We can thus decompose the logit differences determining the robust loss into an ac-
curacy term ȳ∆, corresponding to the misclassification margin of the adversarial example x′ at the
center of the propagation region, and a robustness term δ∆, bounding the difference to the actual
worst-case logits. As these terms generally represent conflicting objectives, robustness and accuracy
are balanced to minimize the robust optimization objective. Consequently, reducing the regulariza-
tion induced by the robustness term will bias the optimization process towards (standard) accuracy.

−2 −1 0 1 2
Pre-Activation Value x

Frequency

IBP

SABR

PGD

Figure 3: Input distribution for
last ReLU layer depending on
training method.

0.0 0.5 1.0 1.5 2.0
Input Size δx

0.0

0.1

0.2

0.3

0.4

0.5
Output Size E[δy] actual

linear

Figure 4: Actual (purple) mean
output size growth and a lin-
ear approximation (orange) for a
ReLU layer with x̄ ∼ N (µ =
−1.0, σ=0.5).

BOX Growth We investigate the growth of BOX relaxations for
an L-layer network with linear layers fi and ReLU activation func-
tions σ. Given a BOX input with radius δi−1 and center distribution
x̄i−1 ∼ D, we define the per-layer growth rate κi = ED[δi]

δi−1 as the
ratio of input and expected output radius.

For linear layers with weight matrixW , we obtain an output radius
δi = |W |δi−1 and thus a constant growth rate κi, corresponding
to the row-wise `1 norm of the weight matrix |Wj,·|1. Empirically,
we find most linear and convolutional layers to exhibit growth rates
between 10 and 100.

For ReLU layers xi = σ(xi−1), the growth rate depends on the
location and size of the inputs. Shi et al. (2021) assume the in-
put BOX centers x̄i−1 to be symmetrically distributed around 0,
i.e., PD(x̄i−1) = PD(−x̄i−1), and obtain a constant growth rate of
κi = 0.5. While this assumption holds at initialization, trained net-
works tend to have more inactive than active ReLUs (see Table 5),
indicating asymmetric distributions with more negative inputs (see
also Fig. 3). We investigate this more realistic setting. When input
radii are δi−1 ≈ 0, active neurons will stay stably active, yielding
δi = δi−1 and inactive neurons will stay stably inactive, yielding
δi = 0. Thus, we obtain a growth rate, equivalent to the portion of
active neurons. In the other extreme δi−1 → ∞, all neurons will
become unstable with x̄i−1 � δi−1, yielding δi ≈ 0.5 δi−1, and
thus a constant growth rate of κi = 0.5. Assuming pointwise asym-
metry favouring negative inputs, i.e., p(x̄i−1 = −z) > p(x̄i−1 =
z), ∀z ∈ R>0, we show that between those two extremes, output
radii grow strictly super-linear in the input size :
Theorem 4.1 (Hyper-Box Growth). Let y := σ(x) = max(0, x) be a ReLU function and consider
box inputs with radius δx and asymmetrically distributed centers x̄ ∼ D such that PD(x̄ = −z) >
PD(x̄ = z), ∀z ∈ R>0. Then the mean output radius δy will grow super-linearly in the input radius
δx. More formally:

∀δx, δ′x ∈ R≥0 : δ′x > δx =⇒ ED[δ′y] > ED[δy] + (δ′x − δx)
∂

∂δx
ED[δy]. (4)
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We defer a proof to App. A and illustrate this behavior in Fig. 4. Multiplying all layer-wise growth
rates, we obtain the overall growth rate κ =

∏L
i=2 κ

i, which is exponential in network depth and
super-linear in input radius. When not specifically training with the BOX relaxation, we empir-
ically observe that the large growth factors of linear layers dominate the shrinking effect of the
ReLU layers, leading to a quick exponential growth in network depth. Further, for both SABR and
IBP trained networks, the super-linear growth in input radius empirically manifests as exponential
behavior (see Figs. 7 and 8). Using SABR, we thus expect the regularization induced by the robust-
ness term to decrease super-linearly, and empirically even exponentially, with subselection ratio λ,
explaining the significantly higher (standard) accuracies compared to IBP.

5 Evaluation
In this section, we evaluate SABR in the challenging `∞-norm setting, deferring a detailed descrip-
tion of the experimental setup to App. B
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Figure 5: Certified over standard accu-
racy for different certified training meth-
ods. The upper right-hand corner is best.

Main Results We compare SABR to state-of-the-art certi-
fied training methods in Table 2 and Fig. 5, reporting the best
results achieved with a given method on any architecture.

In Fig. 5, we show certified over standard accuracy (up-
per right-hand corner is best) and observe that SABR ( )
dominates all other methods, achieving both the highest cer-
tified and standard accuracy across all settings. Methods
striving to balance accuracy and regularization by bridg-
ing the gap between provable and adversarial training ( ,

)(Balunovic & Vechev, 2020; Palma et al., 2022) perform
only slightly worse than SABR at small perturbation radii,
but much worse at large radii, e.g., attaining only 27.5%
( ) and 27.9% ( ) certifiable accuracy for CIFAR-10 at
ε = 8/255 compared to 35.25% ( ). Similarly, methods
focusing only on certified accuracy by directly optimizing
over-approximations of the worst-case loss ( , ) (Gowal
et al., 2018b; Zhang et al., 2020) tend to perform well at large
perturbation radii, but poorly at small perturbation radii, e.g.,
on CIFAR-10 at ε = 2/255, SABR improves certified accu-
racy to 62.6% ( ) up from 52.9% ( ) and 54.0% ( ).

Table 1: Comparison of standard (Std.) and certified (Cert.)
accuracy [%] to `∞-distance Net (Zhang et al., 2022).

Dataset ε
`∞-distance Net SABR (ours)

Std. Cert. Std. Cert.

MNIST 0.1 98.93 97.95 99.25 98.06
0.3 98.56 93.20 98.82 93.38

CIFAR-10 2/255 60.61 54.12 79.52 62.57
8/255 54.30 40.06 52.00 35.25

In contrast to certified training, Zhang et al. (2021)
propose an architecture with inherent `∞-robustness
properties. While they attain higher certified accura-
cies on CIFAR-10 ε = 8/255, their training is noto-
riously hard (Zhang et al., 2021, 2022), yielding low
standard accuracies of, e.g., only 60.6% compared to
79.52% at ε = 2/255. Further, robustness can only be
obtained against one perturbation type at a time.

0.01 0.10 1.00
λ

0

20
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100
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Box

Figure 6: Standard, adversarial, and certified
accuracy depending on the certification method
for 1000 CIFAR-10 samples at ε = 2/255 .

Certification Method and Propagation Region
Size To analyze the interaction between certification
method precision and propagation region size, we train
a range of models with subselection ratios λ varying
from 0.0125 to 1.0 and analyze them with verification
methods of increasing precision (BOX, DEEPPOLY,
MN-BAB) and a 50-step PGD attack (Madry et al.,
2018) with 5 random restarts and the targeted logit
margin loss (Carlini & Wagner, 2017). We illustrate
results in Fig. 6 and observe that standard and adver-
sarial accuracies increase with decreasing λ, as regu-
larization decreases. For λ = 1, i.e., IBP training, we
observe little difference between the verification methods. However, as we decrease λ, the BOX
verified accuracy decreases quickly, despite BOX relaxations being used during training. In con-
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Table 2: Comparison of the standard (Acc.) and certified (Cert. Acc.) accuracy for different certified training
methods on the full MNIST, CIFAR-10, and TINYIMAGENET test sets. We use MN-BAB (Ferrari et al., 2022)
for certification and report other results from the relevant literature.

Dataset ε∞ Training Method Source Acc. [%] Cert. Acc. [%]

MNIST

0.1

COLT Balunovic & Vechev (2020) 99.2 97.1
CROWN-IBP Zhang et al. (2020) 98.83 97.76
IBP Shi et al. (2021) 98.84 97.95
SABR this work 99.25 98.06

0.3

COLT Balunovic & Vechev (2020) 97.3 85.7
CROWN-IBP Zhang et al. (2020) 98.18 92.98
IBP Shi et al. (2021) 97.67 93.10
SABR this work 98.82 93.38

CIFAR-10

2/255

COLT Balunovic & Vechev (2020) 78.4 60.5
CROWN-IBP Zhang et al. (2020) 71.52 53.97
IBP Shi et al. (2021) 66.84 52.85
IBP-R Palma et al. (2022) 78.19 61.97
SABR this work 80.27 61.57
SABR ∗ this work 79.52 62.57

8/255

COLT Balunovic & Vechev (2020) 51.7 27.5
CROWN-IBP Xu et al. (2020) 46.29 33.38
IBP Shi et al. (2021) 48.94 34.97
IBP-R Palma et al. (2022) 51.43 27.87
SABR this work 52.00 35.25

TINYIMAGENET 1/255
CROWN-IBP Shi et al. (2021) 25.62 17.93
IBP Shi et al. (2021) 25.92 17.87
SABR this work 28.64 20.34

∗ With shrinking, see App. B

trast, using the most precise method, MN-BAB, we initially observe increasing certified accuracies,
as the reduced regularization yields more accurate networks, before the level of regularization be-
comes insufficient for certification. While DEEPPOLY loses precision less quickly than BOX, it can
not benefit from more accurate networks. This indicates that the increased accuracy, enabled by the
reduced regularization, may rely on complex neuron interactions, only captured by MN-BAB.

This qualitatively different behavior depending on the precision of the certification method high-
lights the importance of recent advances in neural network verification for certified training. Even
more importantly, these results clearly show that provably robust networks do not necessarily require
the level of regularization introduced by IBP training.

0.0 0.2 0.4 0.6 0.8 1.0
λ

100

101
Loss

Box
DP
Std
IBP
SABR

Figure 7: Standard and robust cross-
entropy loss, computed with BOX (Box)
and DEEPPOLY (DP) bounds for an IBP
and SABR trained network over subselec-
tion ratio λ.

Loss Analysis In Fig. 7, we compare the robust loss of a
SABR and an IBP trained network across different propa-
gation region sizes (all centered around the original sam-
ple) depending on the bound propagation method used.
When propagating the full input region (λ = 1), the SABR
trained network yields a much higher robust loss than the
IBP trained one. However, when comparing the respec-
tive training subselection ratios, λ = 0.05 for SABR and
λ = 1.0 for IBP, SABR yields significantly smaller train-
ing losses, allowing the SABR trained network to reach a
much lower standard loss. Finally, we observe the losses to
clearly grow super-linearly with increasing propagation re-
gion sizes (note the logarithmic scaling of the y-axis) agree-
ing well with our theoretical results in §4.

6 Conclusion
We introduced a novel certified training method called SABR (Small Adversarial Bounding
Regions) based on the key insight, that propagating small but carefully selected subsets of the input
region combines small approximation errors and thus regularization with well-behaved optimiza-
tion problems. This allows SABR trained networks to outperform all existing certified training
methods on all commonly used benchmarks in terms of both standard and certified accuracy. Even
more importantly, SABR lays the foundation for a new class of certified training methods promising
to overcome the robustness-accuracy trade-off and enabling the training of networks that are both
accurate and certifiably robust.
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A Deferred Proofs

In this section, we provide the proof for Lemma A.1. Let us first consider the following Lemma:
Lemma A.1 (Hyper-Box Growth). Let y := σ(x) = max(0, x) be a ReLU function and consider
box inputs with radius δx and centers x̄ ∼ D. Then the mean radius Eδy of the output boxes will
satisfy:

∂

∂δx,i
ED[δy,i] =

1

2
PD[−δx,i < x̄i < δx,i] + PD[x̄i > δx,i] > 0, (5)

and
∂

∂2δx,i
ED[δy,i] =

1

2
(PD[x̄i = −δx,i]− PD[x̄i = δx,i]). (6)

Proof. Recall that given an input box with center x̄ and radius δx, the output relaxation of a ReLU
layer is defined by:

ȳi =


0, if x̄i + δx,i ≤ 0
x̄i+δx,i

2 , elif x̄i − δx,i ≤ 0

x̄i, else
, δy,i =


0, if x̄i + δx,i ≤ 0
x̄i+δx,i

2 , elif x̄i − δx,i ≤ 0

δx,i, else
(7)

We thus obtain the expectation

ED[δy,i] =

∫ δx,i

−δx,i

x̄i + δx,i
2

p[x̄i]dx̄i +

∫ ∞
δx,i

δx,ipD(x̄i)dx̄i

=
δx,i
2
PD[−δx,i < x̄i < δx,i] + δx,iPD[x̄i > δx,i] +

∫ δx,i

−δx,i

x̄i
2
p[x̄i]dx̄i, (8)

its derivative
∂

∂δx,i
ED[δy,i] =

1

2
PD[−δx,i < x̄i < δx,i] +

δx,i
2

(PD[x̄i = −δx,i] + PD[x̄i = δx,i])

+ PD[x̄i > δx,i]− δx,iPD[x̄i = δx,i]

+
δx,i
2

(PD[x̄i = −δx,i]− PD[x̄i = δx,i])

=
1

2
PD[−δx,i < x̄i < δx,i] + PD[x̄i > δx,i] > 0, (9)

and its curvature
∂

∂2δx,i
ED[δy,i] =

1

2
(PD[x̄i = −δx,i] + PD[x̄i = δx,i])− PD[x̄i = δx,i]

=
1

2
(PD[x̄i = −δx,i]− PD[x̄i = δx,i]). (10)

Now, we can easily proof Theorem 4.1, restated below for convenience.
Theorem 4.1 (Hyper-Box Growth). Let y := σ(x) = max(0, x) be a ReLU function and consider
box inputs with radius δx and asymmetrically distributed centers x̄ ∼ D such that PD(x̄ = −z) >
PD(x̄ = z), ∀z ∈ R>0. Then the mean output radius δy will grow super-linearly in the input radius
δx. More formally:

∀δx, δ′x ∈ R≥0 : δ′x > δx =⇒ ED[δ′y] > ED[δy] + (δ′x − δx)
∂

∂δx
ED[δy]. (4)

Proof. We apply Lemma A.1 by substituting an asymmetric center distribution D, satisfying
PD(x̄ = −z) > PD(x̄ = z), ∀z ∈ R>0 into Eq. (6) to obtain:

∂

∂2δx,i
ED[δy,i] =

1

2
(PD[x̄i = −δx,i]− PD[x̄i = δx,i]) > 0.

The theorem follows trivially from the strictly positive curvature.

9



Example for Piecewise Uniform Distribution Let us assume the centers x̄ ∼ D are distributed
according to:

PD[x̄ = z] =


a, if − l ≤ z < 0

b, elif 0 < u ≤ l
0, else

, l =
1

a+ b
, (11)

where a and b. Then we have by Lemma A.1

ED[δy] =
δx
2
PD[−δx < x̄ < δx] + δxPD[x̄ > δx] +

∫ δx

−δx

x̄

2
p[x̄]dx̄ (12)

=
δ2
x

2
(a+ b) + bδx(l − δx) +

δ2
x

4
(b− a) (13)

= δ2
x

a− b
4

+ δx
b

a+ b
. (14)

We observe quadratic growth for a > b and recover the symmetric special case of ED[δy] = 0.5δx
for a = b.

B Additional Experimental Details

In this section, we provide detailed informations on the exact experimental setup.

Experimental Setup We implement SABR in PyTorch (Paszke et al., 2019) and use MN-BAB
(Ferrari et al., 2022) for certification. We conduct experiments on MNIST (LeCun et al., 2010),
CIFAR-10 (Krizhevsky et al., 2009), and TINYIMAGENET (Le & Yang, 2015) for the challenging
`∞ perturbations, using the same 7-layer convolutional architecture CNN7 as prior work (Shi et al.,
2021) unless indicated otherwise (see App. B for more details). We choose similar training hyper-
parameters as prior work (Shi et al., 2021) and provide more detailed information in App. B.

Datasets We conduct experiments on the MNIST (LeCun et al., 2010), CIFAR-10 (Krizhevsky
et al., 2009), and TINYIMAGENET (Le & Yang, 2015) datasets. For TINYIMAGENET and CIFAR-
10 we follow Shi et al. (2021) and use random horizontal flips and random cropping as data aug-
mentation during training and normalize inputs after applying perturbations. Following prior work
(Xu et al., 2020; Shi et al., 2021), we evaluate CIFAR-10 and MNIST on their test sets and TINY-
IMAGENET on its validation set, as test set labels are unavailable. Following Xu et al. (2020) and in
contrast to Shi et al. (2021), we train and evaluate TINYIMAGENET with images cropped to 56×56.

Table 3: Hyperparameters for the experi-
ments shown in Table 2.

Dataset ε `1 λ

MNIST 0.1 10−5 0.4
0.3 10−6 0.6

CIFAR-10 2/255 10−6 0.1
8/255 0 0.7

TINYIMAGENET 1/255 10−6 0.4

Training Hyperparameters We mostly follow the hyperpa-
rameter choices from Shi et al. (2021) including their weight
initialization and warm-up regularization2, and use ADAM
(Kingma & Ba, 2015) with an initial learning rate of 5×10−4,
decayed twice with a factor of 0.2. For CIFAR-10 we train
160 an 180 epochs for ε = 2/255 and ε = 8/255, respectively,
decaying the learning rate after 120 and 140 and 140 and 160
epochs. For TINYIMAGENET ε = 1/255 we use the same set-
tings as for CIFAR-10 at ε = 8/255. For MNIST we train 70
epochs, decaying the learning rate after 50 and 60 epochs. We
choose a batch size of 128 for CIFAR-10 and TINYIMAGENET, and 256 for MNIST. We use `1
regularization with factors according to Table 3. For all datasets, we perform one epoch of stan-
dard training (ε = 0) before annealing ε from 0 to its final value over 80 epochs for CIFAR-10 and
TINYIMAGENET and for 20 epochs for MNIST. We use an n = 8 step PGD attack with an initial
step size of α = 0.5, decayed with a factor of 0.1 after the 4th and 7th step to select the center of
the propagation region. We use a constant subselection ratio λ with values shown in Table 3. For
CIFAR-10 ε = 2/255 we use shrinking with cs = 0.8 (see below).

2For the ReLU warm-up regularization, the bounds of the small boxes are considered.
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Figure 8: Standard (Std.) and robust cross-entropy loss, computed with BOX (Box) bounds for an adversarially
(left) and IBP (right) trained network over subselection ratio λ. Note the logarithmic y-scale and different axes.

ReLU-Transformer with Shrinking Additionally to standard SABR, outlined in §3, we propose
to amplify the BOX growth rate reduction (see §4) affected by smaller propagation regions, by
adapting the ReLU transformer as follows:

ȳi =


0, if x̄i + δx,i ≤ 0

cs
x̄i+δx,i

2 , elif x̄i − δx,i ≤ 0

x̄i, else
, δy,i =


0, if x̄i + δx,i ≤ 0

cs
x̄i+δx,i

2 , elif x̄i − δx,i ≤ 0

δx,i, else
. (15)

We call cs the shrinking coefficient, as the output radius of unstable ReLUs is shrunken by multi-
plying it with this factor. We only use these transformers for the marked (∗) CIFAR-10 ε = 2/255
network discussed in Table 2.

Architectures Similar to prior work (Shi et al., 2021), we use a 7-layer convolutional architecture,
CNN7. The first 5 layers are convolutional layers with filter sizes [64, 64, 128, 128, 128], kernel size
3, strides [1, 1, 2, 1, 1], and padding 1. They are followed by a fully connected layer with 512
hidden units and the final classification. All but the last layers are followed by batch normalization
(Ioffe & Szegedy, 2015) and ReLU activations. For the BN layers, we train using the statistics of
the unperturbed data similar to Shi et al. (2021). During the PGD attack we use the BN layers in
evaluation mode. We further consider narrower version, CNN7-narrow which is identical to CNN7
expect for using the filter sizes [32, 32, 64, 64, 64] and a fully connected layer with 216 hidden
units.

Table 4: SABR training times on a single
NVIDIA RTX 2080Ti.

Dataset ε Time

MNIST 0.1 3h 23 min
0.3 3h 20 min

CIFAR-10 2/255 7h 6 min
8/255 7h 20 min

TINYIMAGENET 1/255 57h 24 min

Hardware and Timings We train and certify all networks
using single NVIDIA RTX 2080Ti, 3090, Titan RTX, or
A6000. Training takes roughly 3 and 7 hours for MNIST and
CIFAR-10, respectively, with TINYIMAGENET taking two and
a half days on a single NVIDIA RTX 2080Ti. For more De-
tails see Table 4. Verification with MN-BAB takes around 34h
for MNIST, 28h for CIFAR-10 and 2h for TINYIMAGENET
on a NVIDIA Titan RTX.

C Additional Experimental Results
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Box Adex

Std Adex

IBP

SABR

Figure 9: Comparison of the robust cross-entropy
losses computed with BOX (Box) centered around
unperturbed and adversarial examples for an IBP and
SABR trained network over subselection ratio λ.

Loss Analysis In Fig. 8, we show the error
growth of an adversarially trained (left) and IBP
trained model over increasing subselection ratios
λ. We observe that errors grow only slightly
super-linear rather than exponential for the ad-
versarially trained network. We trace this back
to the large portion of crossing ReLUs (Table 5),
especially in later layers, leading to the layer-
wise growth being only linear. For the IBP
trained model, in contrast, we observe exponen-
tial growth across a wide range of propagation re-
gion sizes, as the heavy regularization leads to a
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small portion of active and unstable ReLUs. In Fig. 9, we compare BOX errors around the unper-
turbed sample and the center computed with an adversarial attack, as described in §3. We observe
that while the loss is larger around the adversarial centers, especially for small propagation regions,
this effect is small compared to the difference between training or certification methods.

Table 5: Average percentage of active, inac-
tive, and unstable ReLUs for concrete points and
boxes depending on training method.

Point Whole Region

Method Act Inact Unst Act Inact

IBP 26.2 73.8 1.18 25.6 73.2
SABR 35.9 64.1 3.67 34.3 62.0
PGD 36.5 63.5 65.5 15.2 19.3

ReLU Activation States The portion of ReLU acti-
vations which are (stably) active, inactive, or unstable
has been identified as an important characteristic of cer-
tifiably trained networks (Shi et al., 2021). We evaluate
these metrics for IBP, SABR, and adversarially (PGD)
trained networks on CIFAR-10 at ε = 2/255, using the
BOX relaxation to compute intermediate bounds, and
report the average over all layers and test set samples in
Table 5. We observe that, when evaluated on concrete
points, the SABR trained network has around 37% more active ReLUs than the IBP trained one
and almost as many as the PGD trained one, indicating a significantly smaller level of regulariza-
tion. While the SABR trained network has around 3-times as many unstable ReLUs as the IBP
trained network, when evaluated on the whole input region, it has 20-times fewer than the PGD
trained one, highlighting the improved certifiability.

Table 6: Cosine similarity
between∇θLrob for IBP and
SABR and ∇θLCE for ad-
versarial (Adv.) and unper-
turbed (Std.) examples.

Loss IBP SABR

Std. 0.5586 0.8071
Adv. 0.8047 0.9062

Gradient Alignment To analyze whether SABR training is actually
more aligned with standard accuracy and empirical robustness, as in-
dicated by our theory in §4, we conduct the following experiment for
CIFAR-10 and ε = 2/255: We train one network using SABR with
λ = 0.05 and one with IBP, corresponding to λ = 1.0. For both, we
now compute the gradients∇θ of their respective robust training losses
Lrob and the cross-entropy loss LCE applied to unperturbed (Std.) and
adversarial (Adv.) samples. We then report the mean cosine similarity
between these gradients across the whole test set in Table 6. We clearly
observe that the SABR loss is much better aligned with both the cross-
entropy loss of unperturbed and adversarial samples, corresponding to
standard accuracy and empirical robustness, respectively.
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