
Internal Representation Dynamics in Transformers

Anonymous EACL submission

Abstract

In this study, we present an investigation into001
the anisotropy dynamics and intrinsic dimen-002
sion of embeddings in transformer architec-003
tures, focusing on the dichotomy between en-004
coders and decoders. Our findings reveal that005
the anisotropy profile in transformer decoders006
exhibits a distinct bell-shaped curve, with the007
highest anisotropy concentrations in the middle008
layers. This pattern diverges from the more009
uniformly distributed anisotropy observed in010
encoders. In addition, we found that the in-011
trinsic dimension of embeddings increases in012
the initial phases of training, indicating an ex-013
pansion into higher-dimensional space. This014
fact is then followed by a compression phase015
towards the end of training with dimensional-016
ity decrease, suggesting a refinement into more017
compact representations. Our results provide018
fresh insights to the understanding of encoders019
and decoders embedding properties.020

1 Introduction021

Introduced by Vaswani et al. (2017), transformers022

have underpinned many breakthroughs, ranging023

from language modeling to text-to-image genera-024

tion. As the adoption of transformers has grown,025

so has the pursuit to understand the intricacies of026

their internal mechanisms, particularly in the realm027

of embeddings.028

Embeddings in transformers are intricate struc-029

tures, encoding vast amounts of linguistic nuances030

and patterns. Historically, researchers have mainly031

examined embeddings for their linguistic capabili-032

ties (Ettinger et al., 2016; Belinkov et al., 2017; Pi-033

mentel et al., 2022). Yet, more nuanced properties034

lie beyond these traditional scopes, like anisotropy035

and intrinsic dimensionality, which can offer crit-036

ical insights into the very nature and behavior of037

these embeddings.038

Anisotropy, essentially representing the non-039

uniformity of a distribution in space, provides040

a lens through which we can study the orien- 041

tation and concentration of embeddings (Etha- 042

yarajh, 2019; Biś et al., 2021). A higher degree of 043

anisotropy suggests that vectors are more clustered 044

or directed in specific orientations. In contrast, the 045

intrinsic dimension offers a measure of the effec- 046

tive data dimensionality, highlighting the essence 047

of information that embeddings capture. Together, 048

these metrics can serve as pivotal tools to probe 049

into the black-box nature of transformers. 050

Our investigation uncovers striking contrasts in 051

anisotropy dynamics between transformer encoders 052

and decoders. By analyzing the training phases 053

of various transformer models, we shed light on 054

the consistent yet previously unrecognized patterns 055

of anisotropy growth. Even more, our analysis 056

revealed a unique dynamic of the averaged intrin- 057

sic dimension across layers in decoders: an initial 058

growth during the early stages of training is fol- 059

lowed by a decline towards the end. This suggests 060

a two-phase learning strategy where the model ini- 061

tially tries to unfold information in higher dimen- 062

sional spaces and subsequently compresses it into 063

more compact concepts, possibly leading to more 064

refined representations. 065

Main Contributions: 066

• Uncovered a distinct bell-shaped curve for the 067

anisotropy profile1 in transformer decoders, 068

contrasting with the uniformly distributed 069

anisotropy in encoders. 070

• Confirmed that anisotropy increases progres- 071

sively in decoders as the training proceeds. 072

• Identified a two-phase dynamic in the intrinsic 073

dimension of decoder embeddings: an initial 074

expansion into higher-dimensional space, fol- 075

lowed by a compression phase indicating a 076

shift towards compact representations. 077

1Layer-wise anisotropy
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Figure 1: Different anisotropy profiles for transformer-based encoders and decoders.

2 Methodology078

2.1 Datasets079

As our source for embedding we chose enwik8080

dataset (English Wikipedia2) that contains the ini-081

tial 100 million bytes of Wikipedia, making it a082

rich source of diverse textual content. It is pub-083

licly available through the Hutter Prize website 3.084

The preprocessing includes the removal of all code,085

media, and HTML tags, resulting in a clean and086

structured dataset with a vocabulary of 205 distinct087

characters.088

2.2 Embeddings089

The vectors are grouped into batches, each with090

a minimum of 4096 elements. We apply the se-091

lected method to determine anisotropy or intrinsic092

dimension. Prior to assessing intrinsic dimension,093

embeddings are shuffled (before batching) to miti-094

gate potential correlations. Results from individual095

batches are then averaged to gauge the metric for096

that layer, also capturing the standard deviation.097

2.3 Anisotropy098

To compute anisotropy, we employed singular099

value decomposition (SVD).100

Let X ∈ Rn_samples×emb_dim represent the cen-101

tered matrix of embeddings, where σ1, . . . , σk are102

its singular values. The anisotropy score of X is103

given by:104

anisotropy(X) =
σ2
1∑k

i=1 σ
2
i

.105

2https://www.wikipedia.org/
3http://prize.hutter1.net

Equivalently, this can be deduced using the 106

eigenvalues σ2
1, . . . , σ

2
k of the covariance matrix: 107

C =
XTX

n_samples− 1
. 108

2.4 Intrinsic Dimension 109

To determine the intrinsic dimension of a set of 110

embeddings, we utilized the approach proposed by 111

Facco et al. (2018). This method explores how the 112

volume of an n-dimensional sphere (representing 113

the count of embeddings) scales with dimension d. 114

For each data point within our embeddings, we 115

determine the distances r1 and r2 to its two closest 116

neighboring points. This process generates a set 117

of pairs {(r1, r2)}. Using this set, the intrinsic 118

dimension d can be estimated. Hence, we define: 119

µi =
r2
r1
, 120

for each point i. 121

The cumulative distribution function (CDF) of 122

{µi} is provided by: 123

F (µ) = (1− µ−d)1[1,+∞)(µ). 124

This expression for F is based on the derivations 125

and proofs presented by the authors of the refer- 126

enced paper. From the CDF, we deduce: 127

log(1− F (µ))

log(µ)
= d. 128

To estimate d, linear regression y = kx is ap- 129

plied on the plane (x, y), with: 130

xi = log(µi) and yi = 1− Femp(µi), 131

where Femp signifies the empirical CDF for {µi}. 132
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Figure 2: Intrinsic dimension averaged across layers for
different pretraining stages.

3 Related Work133

3.1 Isotropy of Hidden Representations134

Gao et al. (2019) introduce the representation de-135

generation problem. This is the phenomena of136

degenerating in the representation of the learned137

embeddings in the generative models, particularly138

when they are tied. The authors conclude that139

unlike fixed word embeddings (e.g., word2vec140

(Mikolov et al., 2013)), the vanilla transformer em-141

beddings are clustered within the narrow cone.142

Recent research reveals that global anisotropy is143

a common trait among all transformer-based ar-144

chitectures (Ait-Saada and Nadif, 2023; Godey145

et al., 2023; Tyshchuk et al., 2023). However,146

within local subspaces, isotropy prevails, enhanc-147

ing model expressiveness and contributing to high148

performance in downstream tasks.149

Ding et al. (2022) conducted an extensive em-150

pirical evaluation of modern anisotropy calibration151

methods, showing no statistically significant im-152

provements in downstream tasks. They conclude153

that the local isotropy of the hidden space of trans-154

formers may lead to the high level of model’s ex-155

pressiveness (Cai et al., 2021). While most isotropy156

findings are observed in encoder-only or encoder-157

decoder architectures, Cai et al. (2021) brought to158

light an interesting variation. Their study demon-159

strated that the cosine similarity among embed-160

dings varies across different transformer architec-161

tures. The authors conducted experiments on vari-162

ous architectures, evaluating the reduced effective163

embedding dimension using PCA, and observed164

high cosine values across layers, especially in mod-165

els such as GPT-2 (decoder).166

The work (Ait-Saada and Nadif, 2023) supports167

previous research through extensive experimental 168

evaluation. This study was motivated by the pres- 169

ence of local isotropy in hidden representations, 170

suggesting that anisotropy does not necessarily 171

compromise the expressiveness of these represen- 172

tations. 173

Godey et al. (2023) investigates the potential 174

causes of anisotropy, particularly its connection to 175

rare words in the transformer’s vocabulary. They 176

explore character-level models to eliminate the in- 177

fluence of rare tokens, but these models do not show 178

significant improvements in experiments. The au- 179

thors also uncovered that adding common bias term 180

to the inputs can lead to increased attention score 181

variance, promoting the emergence of categorical 182

patterns in self-attention softmax distributions. In- 183

creasing input embeddings norm shows signs of 184

anisotropy based on query and key values. 185

3.2 Intrinsic Dimensionality 186

Following the idea of local isotropy of the hid- 187

den representations, the investigation of the intrin- 188

sic task-specific subspaces offers new insights into 189

fine-tuning and the potential to improve model effi- 190

ciency. Li et al. (2018) suggested that the training 191

trajectory of the Transformer architectures occurs 192

in a low-dimensional subspace. Zhang et al. (2023) 193

demonstrated that fine-tuning engages only a small 194

portion of the model’s parameter, and it is possible 195

to identify the principal directions of these intrin- 196

sic task-specific subspaces. Using their method 197

of identifying the training direction they achieved 198

performance similar to fine-tuning in the full pa- 199

rameter space. 200

3.3 Encoder and Decoder Architecture 201

The original transformer architecture consists of 202

both encoder and decoder blocks, and each of 203

these blocks can operate independently. The self- 204

attention mechanism is a shared key feature, with 205

decoders utilizing causal self-attention. Decoders 206

are typically trained for language modeling tasks, 207

focusing on generating coherent sequences of text. 208

In contrast, encoders are aimed to produce contex- 209

tual representations (i.e., embeddings), from the 210

input text. 211

With limited previous research on the distinc- 212

tions between the inner representations of encoders 213

and decoders, our study analyzes multiple encoder- 214

based models (such as BERT (Devlin et al., 2019), 215

RoBERTa (Liu et al., 2019), and ALBERT (Lan 216

et al., 2020)) and decoder-based models (includ- 217
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Figure 3: Anisotropy profile for Bloom-2.5 at different
number of pretraining steps.

Figure 4: Anisotropy profile for Pythia-2.8B at different
number of pretraining steps.

ing OPT 125M-13B (Zhang et al., 2022), Llama-2218

7B-13B, Llama-2 7B Chat (Touvron et al., 2023),219

GPT2 (Radford et al., 2019), GPT-J (Wang and220

Komatsuzaki, 2021), Falcon-7B, and Falcon-7B-221

Instruct (Almazrouei et al., 2023)) to offer a com-222

prehensive comparison of their behavior.223

4 Results224

In this section, we present our empirical findings225

concerning the anisotropy dynamics and intrinsic226

dimensionality of transformer embeddings at dif-227

ferent layers. Our results span various pretrained228

transformer models, showcasing clear patterns in229

the behavior of encoders versus decoders and il-230

luminating the transformation of their properties231

during training.232

4.1 Anisotropy Across Pretrained233

Transformers234

We began by comparing the anisotropy levels235

across various pretrained transformers, analyzing236

both encoder and decoder models. Their anisotropy 237

profiles can be found in the Figure 1. 238

Encoders: Anisotropy levels remain relatively 239

consistent across models, with minor variations 240

based on model size and training data. 241

Decoders: In contrast to the encoders, decoders 242

showcase a unique bell-shaped structure, indicat- 243

ing that the middle layers tend to have a higher 244

anisotropy concentration among all examined mod- 245

els. 246

4.2 Anisotropy Dynamics During Training 247

To further probe the evolution of anisotropy, we ex- 248

amined its progression through the training phases 249

of various models. 250

Figure 3 and Figure 4 captures this trajectory by 251

plotting anisotropy values for decoders at different 252

training checkpoints at all internal layers. The con- 253

sistent growth pattern, followed by stabilization, 254

is observed across various models, suggesting an 255

inherent characteristic of the language modeling 256

training dynamics of decoders. 257

4.3 Intrinsic Dimensionality During Training 258

Our exploration into the intrinsic dimensionality 259

revealed intriguing patterns: Figure 2 displays the 260

averaged intrinsic dimension of models throughout 261

the training process. The initial stages exhibit a 262

sharp rise, indicating the model’s attempt to map 263

the information to higher dimensional spaces. How- 264

ever, as training progresses, there is a notable de- 265

cline, suggesting a subsequent phase where the 266

model compresses this information, refining more 267

compact concepts. 268

5 Conclusion 269

Our exploration into the anisotropy dynamics and 270

intrinsic dimensionality of transformer embeddings 271

has brought to light significant distinctions between 272

encoder and decoder transformers. Notably, the 273

intrinsic dimensionality showcased a two-phased 274

training behaviour, where models initially expand 275

information into higher-dimensional spaces and 276

then refine it into compact concepts towards the 277

end of training. These insights not only deepen 278

our understanding of transformer architectures but 279

also suggest new avenues for tailoring training ap- 280

proaches in future NLP research. 281
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Limitations282

While our study offers valuable insights into the283

behavior of transformer embeddings, there are a284

few limitations to consider.285

Model Diversity: Our findings predominantly286

revolve around specific transformer models, and287

generalization to all transformer architectures is288

not guaranteed.289

Training Dynamics: The observed two-phased290

behavior in intrinsic dimensionality might be influ-291

enced by the datasets or specific training configura-292

tions.293

Anisotropy Interpretation: While we identi-294

fied distinct anisotropy patterns in encoders and295

decoders, the direct implications of these patterns296

on downstream tasks remain to be fully explored.297

Ethics Statement298

Our research focuses on analyzing transformer em-299

beddings and does not involve human subjects or300

sensitive data. All findings are derived from pub-301

licly available models and datasets. We strive for302

transparency and reproducibility in our methods303

and analyses.304
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