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Abstract

We propose a new approach for learning end-to-end reconstruction operators based
on unpaired training data for ill-posed inverse problems. The proposed method
combines the classical variational framework with iterative unrolling and essen-
tially seeks to minimize a weighted combination of the expected distortion in the
measurement space and the Wasserstein-1 distance between the distributions of
the reconstruction and the ground-truth. More specifically, the regularizer in the
variational setting is parametrized by a deep neural network and learned simultane-
ously with the unrolled reconstruction operator. The variational problem is then
initialized with the output of the reconstruction network and solved iteratively till
convergence. Notably, it takes significantly fewer iterations to converge as com-
pared to variational methods, thanks to the excellent initialization obtained via the
unrolled operator. The resulting approach combines the computational efficiency
of end-to-end unrolled reconstruction with the well-posedness and noise-stability
guarantees of the variational setting. Moreover, we demonstrate with the example
of image reconstruction in X-ray computed tomography (CT) that our approach
outperforms state-of-the-art unsupervised methods and that it outperforms or is at
least on par with state-of-the-art supervised data-driven reconstruction approaches.

1 Introduction

Inverse problems are ubiquitous in imaging applications, wherein one seeks to recover an unknown
model parameter x ∈ X from its incomplete and noisy measurement, given by

yδ = A(x) + e ∈ Y.
Here, the forward operator A : X→ Y models the measurement process in the absence of noise, and
e, with ‖e‖2 ≤ δ, denotes the measurement noise. For example, in computed tomography (CT), the
forward operator computes line integrals of x over a predetermined set of lines in R3 and the goal
is to reconstruct x from its projections along these lines. Without any further information about x,
inverse problems are typically ill-posed, meaning that there could be several possible reconstructions
that are consistent with the measured data, even without any noise.

The variational framework circumvents ill-posedness by encoding prior knowledge about x via a
regularization functionalR : X→ R. In the variational setting, one solves

min
x∈X
LY(yδ,A(x)) + λR(x), (1)

where LY : Y× Y→ R+ measures data-fidelity andR penalizes undesirable or unlikely solutions.
The penalty λ > 0 balances the regularization strength with the fidelity of the reconstruction. The
variational problem (1) is said to be well-posed if it has a unique solution varying continuously in yδ .
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The success of deep learning in recent years has led to a surge of data-driven approaches for solving
inverse problems [5], especially in imaging applications. These methods come broadly in two flavors:
(i) end-to-end trained models that aim to directly map the measurement or a model-based noisy
reconstruction to the corresponding true parameter [11, 2] and (ii) learned regularization methods
that seek to find a data-adaptive regularizer instead of handcrafting it [15, 17, 13]. Techniques in both
categories have their relative advantages and demerits. Specifically, end-to-end approaches offer fast
reconstruction of astounding quality, but lack in terms of theoretical guarantees and need supervised
data (i.e., pairs of input and target images) for training. On the contrary, learned regularization
methods inherit the provable well-posedness properties of the variational setting and can be trained
on unpaired training data, however the reconstruction entails solving a high-dimensional optimization
problem, which is often slow and computationally demanding.

Our work derives ideas from learned optimization and adversarial machine learning, and makes
an attempt to combine the best features of both aforementioned paradigms. In particular, the
proposed method offers the flexibility of training on unpaired samples, produces fast reconstructions
comparable to end-to-end supervised methods in quality, while enjoying the well-posedness and
stability guarantees of the learned regularization framework. We first provide an overview of the
recent literature on data-driven solutions for inverse problems before detailing our contributions.

1.1 Related works

End-to-end learned methods for inverse problems either map the measurement directly to the clean
image [40, 22], or learn to eliminate artifacts from a reconstruction produced by a model-based
technique [11]. Such approaches are data-intensive and may generalize poorly when trained on
limited data. Iterative unrolling [20, 38, 1, 19, 12], with its origin in the seminal work by Gregor
and LeCun on data-driven sparse coding [10], employs reconstruction networks that are inspired by
optimization-based approaches and hence are interpretable. The unrolling paradigm enables one
to encode the knowledge about the acquisition physics into the network architecture [2], thereby
achieving data-efficiency. Nevertheless, end-to-end trained methods are supervised, and it is often
challenging to obtain a large ensemble of paired data, especially in medical imaging applications.

Data-driven regularization methods aim to learn a regularizer in the variational setting instead of
handcrafting it. Some notable approaches in this paradigm include adversarial regularization (AR)
[17] and its convex counterpart [21], network Tikhonov (NETT) [15], total deep variation (TDV) [13],
etc., wherein one explicitly parametrizes the regularization functional using a neural network. The
regularization by denoising (RED) and more general Plug-and-play (PnP) approaches aim to solve
inverse problems by using a pre-trained denoiser inside an algorithm for minimizing the variational
objective [24, 25, 39, 36, 26, 16, 7, 31]. Such methods achieve remarkable performances for various
inverse problems when equipped with sophisticated pre-trained denoisers [39, 36, 26, 16, 7], and are
essentially equivalent to data-driven regularization, subject to additional constraints on the denoiser
[23]. The deep image prior technique [33] is training-free, but it regularizes the solution by restricting
it to be in the range of a generator and can thus be interpreted as a deep learning-based regularization
scheme. It is relatively easier to analyze learned regularization schemes using classical functional
analysis [28], but they tend to perform worse than end-to-end supervised methods. Moreover, these
methods require solving a high-dimensional, potentially non-convex, variational optimization, leading
to slow reconstruction with no provably convergent optimization algorithm in general.

Data-driven methods for inverse problems can be classified into different categories based on the
training protocol. Supervised approaches need data in the form of pairs of noisy measurements
(or some model-based reconstructions) and target images (or ground-truths) [2, 40, 11], while fully
unsupervised methods require access to only the noisy measurements for training [29, 32, 8, 37]. Our
approach lies in between these two extremes, as it requires samples from the marginal distributions of
the measurements and the ground-truth images, but not from their joint distribution. Recently, such
unpaired training approaches have been developed in [30, 14] based on the optimal transport theory.
The training objective in [14] only seeks to match the ground-truth distribution via a Wasserstein
generative adversarial network (GAN) without any data-consistency, whereas [30] shows that the
cycle-GAN loss between the image and the measurement spaces is an upper bound on the optimal
transport loss with a penalized least squares objective as the transportation cost. Unlike [30] and [14],
our approach minimizes a fidelity term in the data space alone and not in the image space (together
with an optimal transport-based loss), and allows for a more straightforward theoretical analysis using
the standard variational framework.
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1.2 Specific contributions

Our work seeks to combine iterative unrolling with data-adaptive regularization via an adversarial
learning framework, and hence is referred to as unrolled adversarial regularization (UAR). The
proposed approach learns a data-adaptive regularizer parametrized by a deep neural network, along
with an iteratively unrolled reconstruction network that minimizes the corresponding expected
variational loss in an adversarial setting. Unlike AR [17] where the undesirable images are taken as
the pseudo-inverse reconstruction and kept fixed throughout the training, we update them with the
output of the unrolled reconstruction network in each training step, and, in turn, use them to further
improve the regularizer. Thanks to the Kantorovich-Rubinstein (KR) duality [4], the alternating
learning strategy of the reconstruction and the regularizer networks is equivalent to minimizing
the expected data-fidelity over the distribution of the measurement, penalized by the Wasserstein-1
distance between the distribution of the reconstruction and the ground-truth. Once trained, the
iteratively unrolled operator produces a fast end-to-end reconstruction. We show that this efficient
reconstruction can be improved further by a refinement step that involves minimizing the variational
loss with the corresponding regularizer, starting from this initial estimate. The refinement step not
only produces reconstructions that are superior to state-of-the-art unsupervised methods and are
competitive with supervised methods, but also facilitates well-posedness and stability analyses akin
to classical variational approaches [28]. Our theoretical results on the learned unrolled operator and
the regularizer are corroborated by strong experimental evidence for the CT inverse problem, and
the illustrative inpainting and denoising examples (see Sec. B in the supplementary document). The
unpaired training framework for UAR is particularly useful for medical imaging applications, where
it is in general challenging to collect a large corpus of paired noisy input and reference images.

2 The proposed unrolled adversarial regularization (UAR) approach

In this section, we give a brief mathematical background on optimal transport, followed by a detailed
description of the UAR framework, including the training protocol and the network architectures.

2.1 Background on Optimal transport

Optimal transport theory [9, 34] has recently gained prominence in the context of measuring the
distance between two probability measures. In particular, given two probability measures π1 and π2

on Rn, the Wasserstein-1 distance between them is defined as

W1(π1, π2) := inf
µ∈Π(π1,π2)

∫
‖x1 − x2‖2 dµ(x1,x2), (2)

where Π(π1, π2) denotes all transport plans having π1 and π2 as marginals. The Wasserstein distance
has proven to be suitable for deep learning tasks, when the data is assumed to be concentrated on
low-dimensional manifolds in Rn. It has been shown that in such cases, the Wasserstein distance
provides a usable gradient during training [4], as opposed to other popular divergence metrics.

By the KR duality, the Wasserstein-1 distance can be computed equivalently by solving a maximiza-
tion problem over the space of 1-Lipschitz functions (denoted by L1) as

W1(π1, π2) = sup
R∈L1

∫
R(x1) dπ1(x1)−

∫
R(x2) dπ2(x2), (3)

provided that π1 and π2 have compact support [27]. Finally, we recall the definition of push-forward
of probability measures, which is used extensively in our theoretical exposition. Given a probability
measure π on A and a map T : A → B, the push-forward of π by T (denoted as T#π) is defined as
a probability measure on B such that T#π(B) = π(T−1(B)), for all measurable B ⊂ B.

2.2 Training strategy and network parametrization for UAR

The principal idea behind UAR is to learn an unrolled deep network Gφ : Y→ X for reconstruction,
together with a regularization functionalRθ : X→ R parametrized by another convolutional neural
network (CNN). The role of Rθ is to discern ground-truth images from images produced by Gφ,
while Gφ learns to minimize the variational loss withRθ as the regularizer. As the images produced
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Algorithm 1 Learning unrolled adversarial regularization (UAR).

1. Input: Training data-set {xi}Ni=1 ∼ πx and
{
yj
}N
j=1
∼ πyδ , initial reconstruction network

parameter φ and regularizer parameter θ, batch-size nb = 1, penalty λ = 0.1, gradient penalty
λgp = 10.0, Adam optimizer parameters (β1, β2) = (0.50, 0.99).
2. Learn a baseline regularizer:
• for training steps k = 1, 2, · · · , 10 N

nb
, do: (i.e., # epochs = 10, # mini-batches = N

nb
)

– Sample xj ∼ πx, yj ∼ πyδ , and εj ∼ uniform [0, 1]; for 1 ≤ j ≤ nb. Compute uj =

A†(yj) and x
(ε)
j = εjxj + (1− εj)uj .

– θ ← Adamη,β1,β2
(θ,∇ J̃1(θ)), where η = 10−4, and

J̃1(θ) =
1

nb

nb∑
j=1

[
Rθ (xj)−Rθ (uj) + λgp

(∥∥∥∇Rθ (x(ε)
j

)∥∥∥
2
− 1
)2
]
.

3. Learn a baseline reconstruction operator: (with 5 epochs, Nnb batches per epoch)

• for training steps k = 1, 2, · · · , 5 N
nb

, do:

– Sample yj ∼ πyδ , and compute J̃2(φ) = 1
nb

∑nb
j=1

∥∥yj −A (Gφ(yj)
)∥∥2

2
+λRθ

(
Gφ(yj)

)
.

– φ← Adamη,β1,β2
(φ,∇ J̃2(φ)), with step-size η = 10−4.

4. Jointly trainRθ and Gφ adversarially: (over 25 epochs, with N
nb

batches in each epoch)

• for k = 1, 2, · · · , 25 N
nb

, do:
– Sample xj , yj , and εj ∼ uniform [0, 1]; for 1 ≤ j ≤ nb. Compute uj = Gφ(yj) and

x
(ε)
j = εjxj + (1− εj)uj .

– θ ← Adamη,β1,β2(θ,∇ J̃1(θ)), where J̃1(θ) is as in Step 2, with η = 2× 10−5.
– Update φ← Adamη,β1,β2

(φ,∇ J̃2(φ)) twice, with J̃2(φ) as in Step 3, and η = 2× 10−5.
5. Output: The trained networks Gφ andRθ.

by Gφ get better, Rθ faces a progressively harder task of telling them apart from the ground-truth
images, thus leading to an improved regularizer. On the other hand, as the regularizer improves, the
quality of reconstructions obtained using Gφ improves as a consequence. Thus, Gφ andRθ help each
other improve as the training progresses via an alternating update scheme.

2.2.1 Adversarial training

Let us denote by πx the ground-truth distribution and by πyδ the distribution of the noisy measurement.
The UAR approach seeks to learn Gφ andRθ simultaneously starting from an appropriate initialization.
At the kth iteration of training, the parameters φ of the reconstruction network are updated as

φk ∈ arg min
φ

J
(1)
k (φ), where J (1)

k (φ) := Eπ
yδ

[∥∥A(Gφ(yδ))− yδ
∥∥2

2
+ λRθk(Gφ(yδ))

]
, (4)

for a fixed regularizer parameter θk. Subsequently, the regularizer parameters are updated as

θk+1 ∈ arg max
θ:Rθ∈L1

J
(2)
k (θ), where J (2)

k (θ) := Eπ
yδ

[
Rθ
(
Gφk(yδ)

)]
− Eπx [Rθ (x)] . (5)

The learning protocol for UAR only requires unpaired samples of x and yδ , since the loss functionals
J

(1)
k (φ) and J (2)

k (θ) can be computed based solely on the marginals πx and πyδ . The alternating
update algorithm in (4) and (5) essentially seeks to solve the min-max variational problem given by

min
φ

max
θ:Rθ∈L1

Eπ
yδ

∥∥A(Gφ(yδ))− yδ
∥∥2

2
+ λ

(
Eπ

yδ

[
Rθ
(
Gφ(yδ)

)]
− Eπx [Rθ (x)]

)
. (6)

Thanks to KR duality in (3) and the definition of push-forward, (6) can be reformulated as

min
φ

Eπ
yδ

∥∥A(Gφ(yδ))− yδ
∥∥2

2
+ λW1

(
(Gφ)#πyδ , πx

)
. (7)
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We refer the reader to Section 3 for a mathematically rigorous statement of this equivalence as well
as for a well-posedness theory of the problem in (7). Note that the equivalence of the alternating
minimization procedure and the variational problem in (7) holds only if the regularizer is fully
optimized in every iteration. Nevertheless, in practice, the reconstruction and regularizer networks
are not fully optimized in every iteration. Instead, one refines the parameters by performing one (or a
few) Adam updates on the corresponding loss functionals. Notably, if W1

(
(Gφk)#πyδ , πx

)
= 0, i.e.,

the parameters of G are such that the reconstructed images match the ground-truth in distribution,
the loss functional J (2)

k (θ) and its gradient vanish, leading to no further update of θ. Thus, both
networks stop updating when the outputs of Gφ are indistinguishable from the ground-truth images.
The concrete training steps are listed in Algorithm 11.

2.2.2 Variational regularization as a refinement step

The unrolled operator Gφ∗ trained by solving the min-max problem in (6) provides reasonably good
reconstruction when evaluated on X-ray CT, and already outperforms state-of-the-art unsupervised
methods (c.f. Section 4). We demonstrate that the regularizer Rθ∗ obtained together with Gφ∗ by
solving (6) can be used in the variational framework to further improve the quality of the end-to-end
reconstruction Gφ∗(yδ) for a given yδ ∈ Y. Specifically, we solve the variational problem

min
x∈X
‖A(x)− yδ‖2 + λ′

(
Rθ∗(x) + σ‖x‖22

)
, (8)

where λ′, σ ≥ 0, by applying gradient descent, initialized with Gφ∗(yδ). The additional Tikhonov
term in (8) ensures coercivity of the overall regularizer, making it amenable to the standard well-
posedness analysis [28]. Practically, it improves the stability of the gradient descent optimizer
for (8). Nevertheless, one essentially gets the same reconstruction with σ = 0 subject to early
stopping (100 iterations). Notably, the fidelity term in (8) is the `2 distance, instead of the squared-`2
fidelity. We have empirically observed that this choice of the fidelity term improves the quality
of the reconstruction, possibly due to the higher gradient of the objective in the initial solution
Gφ∗(yδ). Since the end-to-end reconstruction gives an excellent initial point, it takes significantly
fewer iterations for gradient-descent to recover the optimal solution to (8), and therefore UAR retains
its edge in reconstruction time over fully variational approaches with learned regularizers (e.g., AR
[17] or its convex version [21]).

2.2.3 Architectures of the iteratively unrolled generator and the deep regularizer

The objective of Gφ is to approximate the minimizer of the variational loss withRθ as the regularizer.
Therefore, an iterative unrolling strategy akin to [2] is adopted for parametrizing Gφ. Iterative
unrolling aims to approximate the variational minimizer via a primal-dual-style algorithm [6], with
the proximal operators in the image and measurement spaces replaced with trainable CNNs. Although
the variational loss in our case is non-convex, this parametrization for Gφ is chosen because of its
expressive power over a generic network. Initialized with x(0) = A† yδ and h(0) = 0, Gφ produces
a reconstruction x(L) by iteratively applying the CNNs Λ

φ
(`)
p

and Γ
φ
(`)
d

in X and Y, respectively:

h(`+1) = Γ
φ
(`)
d

(
h(`), σ(`)A(x`),yδ

)
, andx(`+1) = Λ

φ
(`)
p

(
x(`), τ (`)A∗(h`+1)

)
, 0 ≤ ` ≤ L−1.

The step-size parameters σ(`) and τ (`) are also made learnable and initialized as σ(`) = τ (`) = 0.01
for each layer `. All learnable parameters in the generator are denoted by the shorthand notation φ
for brevity. The number of layers L is typically much smaller (we take L = 20) than the number of
iterations needed by an iterative primal-dual scheme to converge, thus expediting the reconstruction
by two orders of magnitude (as compared to variational methods) once trained.

The regularizerRθ is taken as a deep CNN with six convolutional layers, followed by one average-
pooling and two dense layers in the end.

3 Theoretical results

The theoretical properties of UAR are stated in this section and their proofs are provided in the
supplementary document. Throughout this section, we assume that X = Rn and Y = Rk, and

1Codes at https://github.com/Subhadip-1/unrolling_meets_data_driven_regularization.
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A1. πx is compactly supported and πyδ is supported on a compact set K ⊂ Rk for every δ ≥ 0.

We then consider the following problem:

inf
φ

sup
R∈L1

J1

(
Gφ,R|λ, πyδ

)
:= Eπ

yδ

∥∥yδ −AGφ(yδ)
∥∥2

2
+ λ

(
Eπ

yδ

[
R(Gφ(yδ))

]
− Eπx [R(x)]

)
.

(9)
Problem (9) is identical to the min-max variational problem defined in (6), with the only difference
that the maximization in R is performed over the space of all 1-Lipschitz functions. Basically,
we consider the theoretical limiting case where the neural networks Rθ are expressive enough to
approximate all functions in L1 with arbitrary accuracy. We make the following assumptions on Gφ:

A2. Gφ is parametrized over a finite dimensional compact set K, i.e. φ ∈ K.
A3. Gφn → Gφ pointwise whenever φn → φ.
A4. supφ∈K ‖Gφ‖∞ <∞.

Assumptions A2-A4 are satisfied, for instance, when Gφ is parametrized by a neural network whose
weights are kept bounded during training. These assumptions apply to all results in this section.

3.1 Well-posedness of the adversarial loss and noise stability

Here, we prove well-posedness and stability to noise for the optimal reconstructions. As a conse-
quence of the KR duality, (9) can be equivalently expressed as

inf
φ
J2

(
Gφ|λ, πyδ

)
:= Eπ

yδ

∥∥yδ −AGφ(yδ)
∥∥2

2
+ λW1(πx, (Gφ)#πyδ) . (10)

In the next theorem, we state this equivalence, showing the existence of an optimal Gφ andR for (9).
Theorem 1. Problems (9) and (10) admit an optimal solution and

inf
φ

sup
R∈L1

J1

(
Gφ,R|λ, πyδ

)
= inf

φ
J2

(
Gφ|λ, πyδ

)
. (11)

Moreover, if (Gφ∗ ,R∗) is optimal for (9), then Gφ∗ is optimal for (10). Conversely, if Gφ∗ is optimal for
(10), then (Gφ∗ ,R∗) is optimal for (9), for allR∗ ∈ arg maxR∈L1

Eπ
yδ

[
R(Gφ∗(yδ))

]
−Eπx [R(x)].

Next, we study the stability of the optimal reconstruction Gφ∗ to noise. We consider Gφn , where

φn ∈ arg inf
φ

J2

(
Gφ|λ, πyδn

)
, (12)

and show that Gφn → Gφ∗ as δn → δ, thus establishing noise-stability of the unrolled reconstruction.
Theorem 2 (Stability to noise). Suppose, for given a sequence of noise levels δn → δ ∈ [0,∞), it
holds that πyδn → πyδ in total variation. Then, with φn as in (12), Gφn → Gφ∗ up to sub-sequences.

3.2 Effect of λ on the end-to-end reconstruction

In order to analyze the effect of the parameter λ in (10) on the resulting reconstruction Gφ∗ , it is
convenient to introduce the following two sets:

ΦL :=
{
φ : Eπ

yδ

∥∥yδ −AGφ(yδ)
∥∥2

2
= 0
}

and ΦW :=
{
φ : (Gφ)#πyδ = πx

}
.

We assume that both ΦL and ΦW are non-empty, which is tantamount to asking that the parametriza-
tion of the end-to-end reconstruction operator is expressive enough to approximate a right inverse
of A (ΦL 6= ∅) and a transport map from πyδ to πx (ΦW 6= ∅), and therefore is not very restrictive
(keeping in view the excellent approximation power of unrolled deep architectures).
Proposition 1. Let Gφ∗ be a minimizer for (10). Then, it holds that

• Eπy
∥∥yδ −AGφ∗(yδ)∥∥2

2
≤ λW1(πx, (Gφ)#πyδ), for every φ ∈ ΦL.

• W1(πx, (Gφ∗)#πyδ) ≤
1

λ
Eπ

yδ

∥∥yδ −AGφ(yδ)
∥∥2

2
, for every φ ∈ ΦW.
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method PSNR (dB) SSIM # param. reconstruction
time (ms)

Classical model-based methods
FBP 21.28± 0.13 0.20± 0.02 1 37.0± 4.6
TV 30.31± 0.52 0.78± 0.01 1 28371.4± 1281.5

Trained on paired data
U-Net 34.50± 0.65 0.90± 0.01 7215233 44.4± 12.5
LPD 35.69± 0.60 0.91± 0.01 1138720 279.8± 12.8

Trained on unpaired data
AR 33.84± 0.63 0.86± 0.01 19338465 22567.1± 309.7
ACR 31.55± 0.54 0.85± 0.01 606610 109952.4± 497.8

UAR
λ = 0.001 21.59± 0.11 0.22± 0.02

20477186 252.7± 13.3λ = 0.01 25.25± 0.08 0.37± 0.01
λ = 0.1 34.35± 0.66 0.88± 0.01
λ = 1.0 33.27± 0.76 0.87± 0.01

UAR with λ = λ′ = 0.1 34.77± 0.67 0.90± 0.01 – 5863.3± 106.1
refinement

Table 1: Average PSNR and SSIM (with their standard deviations) for different reconstruction
methods. The reconstruction times and the number of learnable parameters are also indicated.
Without any refinement, UAR outperforms AR and ACR in reconstruction quality and reduces the
reconstruction time by a couple of orders of magnitude. With refinement, UAR narrowly outperforms
supervised U-net post-processing, and the reconstruction is roughly four times faster than AR.

The previous proposition shows in a quantitative way that for small λ, the optimal Gφ∗ has less
expected distortion in the measurement space as the quantity Eπ

yδ

∥∥yδ −AGφ∗(yδ)∥∥2

2
is small. On

the other hand, if λ is large, then the optimal Gφ∗ maps πyδ closer to the ground-truth distribution πx;
as the quantity W(πx, (Gφ∗)#πyδ) is small. Therefore, the regularization is stronger in this case.

We extend this analysis by studying the behavior of the unrolled reconstruction as λ converges to 0
and to +∞. Consider a sequence of parameters λn > 0 and the minimizer of the objective in (10)
with parameter λn:

φ′n ∈ arg inf
φ

J2

(
Gφ|λn, πyδ

)
. (13)

Theorem 3. Let λn → 0. Then, there exists φ∗1 ∈ arg min
φ∈ΦL

W1(πx, (Gφ)#πyδ) such that Gφ′n → Gφ∗1
up to sub-sequences, and lim

n→∞
1
λn

inf
φ
J2

(
Gφ|λn, πyδ

)
= W1(πx, (Gφ∗1 )#πyδ).

Theorem 4. Let λn → +∞. Then, there exists φ∗2 ∈ arg min
φ∈ΦW

Eπ
yδ

∥∥yδ −AGφ(yδ)
∥∥2

2
such that

Gφ′n → Gφ∗2 up to sub-sequences, and lim
n→∞

inf
φ
J2

(
Gφ|λn, πyδ

)
= Eπ

yδ

∥∥yδ −AGφ∗2 (yδ)
∥∥2

2
.

Theorems 3 and 4 characterize the optimal end-to-end reconstruction Gφ∗ as λ → 0 and λ → ∞,
respectively. Specifically, if λ→ 0, Gφ∗ minimizes the Wasserstein distance between reconstruction
and ground-truth among all the reconstruction operators that achieve zero expected data-distortion. In
particular, Gφ∗ is close to the right inverse of A that minimizes the Wasserstein distance. Therefore,
when λ is very small, we expect to obtain a reconstruction that is close to the unregularized solution
in quality. If λ → ∞ on the other hand, the operator Gφ∗ is close to a transport map between
πx and πyδ , i.e., (Gφ∗)#πyδ = πx, which minimizes the expected data-distortion. Therefore the
reconstruction produces realistic images, but they are not consistent with the measurement. These
theoretical observations are corroborated by the numerical results (c.f. Section 4, Fig. 2). One has to
thus select a λ that optimally trades-off data-distortion with the Wasserstein distance to achieve the
best reconstruction performance.
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3.3 End-to-end reconstruction vis-à-vis the variational solution

The goal of this section is two-fold. Firstly, we theoretically justify the fact that the end-to-end recon-
struction performs well, despite minimizing the expected loss over the distribution πyδ . Secondly, we
analyze the role of the regularizer in the variational setting in refining the end-to-end reconstruction.

It is important to remark that the the end-to-end reconstruction is trained with respect to the average
variational loss computed using samples from πyδ and πx. Therefore, the end-to-end reconstruction
cannot learn a point-wise correspondence between measurement and model parameter, but only
a distributional correspondence. Despite that, the end-to-end reconstruction achieves excellent
performance for a given measurement yδ. A justification of this phenomenon is given formally by
the next proposition.

Proposition 2. Let (Gφ∗ ,R∗) be an optimal pair for (9) such thatR∗ ≥ 0 almost everywhere under
(Gφ)# πyδ . Define M1 := Eπ

yδ

∥∥yδ −AGφ∗(yδ)∥∥2

2
and M2 := W1(πx, (Gφ∗)#πyδ). Then, the

following two upper bounds hold for every η > 0:

• Pπ
yδ

{
yδ :

∥∥yδ −AGφ∗(yδ)∥∥2

2
≥ η

}
≤ M1

η .

• Suppose,R∗(x) = 0 for πx-almost every x. Then, P(Gφ∗ )#πyδ

{
x : R∗(x) ≥ η

}
≤ M2

η .

Proposition 2 provides an estimate in probability of the sets {yδ :
∥∥yδ −AGφ∗(yδ)∥∥2

2
≥ η} and

{x : R∗(x) ≥ η}. In particular, if M1 is small, then
∥∥yδ −AGφ∗(yδ)∥∥2

2
is small in probability. If

instead M2 is small, thenR∗(x) is small in probability on the support of (Gφ∗)#πyδ , implying that
samples Gφ∗(yδ) are difficult to distinguish from the ground-truth. We remark that the assumption
R∗(x) = 0 can be justified using a data manifold assumption as in Section 3.3. of [17]. We
now analyze the role of the regularizer R∗ in the optimization of the variational problem (8) that
refines the end-to-end reconstruction Gφ∗ . We rely on a similar distributional analysis as the one
performed in [17]. For η > 0, consider the transformation by a gradient-descent step onR∗ given by
gη(x) = x− η∇R∗(x). Using the shorthand πG∗ := (Gφ∗)#πyδ , and by denoting the distribution
of gη(x) as πη := (gη)#πG∗ for x ∼ πG∗ , we have the following theorem.

Theorem 5 ([17]). Suppose that η →W1(πη, πx) is differentiable at η = 0. Then, the derivative at

η = 0 satisfies d
dηW1(πη, πx)

∣∣∣
η=0

= −EπG∗ ‖∇R∗(x)‖22.

This theorem states that a gradient-descent step performed on R∗ at x = Gφ∗(yδ) decreases the
Wasserstein distance with respect to the ground-truth distribution πx. Therefore, if the gradient-
descent step to solve the variational problem (8) is initialized with the reconstruction Gφ∗(yδ), the
next iterate gets pushed closer to the ground-truth distribution πx. We stress that this property holds
because of the chosen initialization point, due to the relation between R∗ and Gφ∗ . For a different
initialization, this property may not hold.

4 Numerical results

On the application front, we consider the prototypical inverse problem of CT reconstruction from
noisy sparse-view projections. The abdominal CT scans for 10 patients, made publicly available by
the Mayo-Clinic for the low-dose CT grand challenge [18], were used in our numerical experiments.
Specifically, 2250 2D slices of size 512 × 512 corresponding to 9 patients were used to train the
models, while 128 slices from the remaining one patient were used for evaluation. The projections
were simulated in ODL [3] using a parallel-beam geometry with 200 uniformly spaced angular
positions of the source, with 400 lines per angle. Subsequently, Gaussian noise with standard
deviation σe = 2.0 was added to the projection data to simulate noisy sinograms. Notably, the
CT projection data are typically corrupted by Poisson noise, but the data-likelihood for Poisson
noise is not the `22 distance and is therefore not amenable to the theoretical analysis presented in
Sec. 3. Hence, we simulate the noisy projection data by adding Gaussian noise to demonstrate a
proof-of-concept for the UAR method. Extending the theoretical results to deal with Poisson noise in
the data remains to be undertaken as a future work. Additionally, since the UAR approach seeks to
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(a) ground-truth (b) FBP: 21.19 dB, 0.22 (c) TV: 29.85 dB, 0.79 (d) U-net: 34.42 dB, 0.90

(e) LPD: 35.76 dB, 0.92 (f) ACR: 31.24 dB, 0.86 (g) AR: 33.52 dB, 0.86 (h) UAR: 33.85 dB, 0.87

Figure 1: Reconstruction on Mayo clinic data. UAR achieves better reconstruction quality than
AR and ACR, while significantly reducing the reconstruction time (c.f. Table 1). The reduction in
reconstruction time comes at the expense of higher training complexity as compared to AR. The
numbers below the images indicate the corresponding PSNR and SSIM scores.

(a) ground-truth (b) 21.60, 0.21 (c) 25.33, 0.37 (d) 34.65, 0.88 (e) 33.96, 0.88

Figure 2: UAR reconstruction for different λ. The values of λ for (b), (c), (d), and (e) are 0.001,
0.01, 0.1, and 1.0, respectively. For λ→ 0, the unrolled generator seeks to find the minimizer of the
expected data-fidelity loss, hence the reconstruction looks similar to FBP. The corresponding PSNR
(dB) and SSIM with respect to the ground-truth are indicated below the images.

minimize a variational loss, which includes a data-fidelity term arising from the noise distribution,
one needs to systematically investigate the robustness of UAR to the change in noise statistics to
make it fully applicable to CT reconstruction from real low-dose projection data.

The proposed UAR method is compared with two classical model-based approaches for CT, namely
filtered back-projection (FBP) and total variation (TV). The LPD method [2] and U-net-based post-
processing [11] of FBP are chosen as two supervised approaches for comparison. The AR approach
[17] and its convex variant [21], referred to as adversarial convex regularizer (ACR), are taken
as the competing unpaired training approaches. For LPD and AR, we develop a PyTorch-based
implementation based on their publicly available TensorFlow codes2 3, while for ACR, we use the
publicly available PyTorch implementation4.

The unrolled network Gφ has 20 layers, with 5×5 filters in both primal and dual spaces to increase the
overall receptive field for sparse-view measurements. The hyper-parameters involved in training the

2LPD: https://github.com/adler-j/learned_primal_dual.
3AR: https://github.com/lunz-s/DeepAdverserialRegulariser.
4ACR: https://github.com/Subhadip-1/data_driven_convex_regularization.
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(a) ground-truth (b) 34.94, 0.88 (c) 35.46, 0.90 (d) ground-truth (e) 33.84, 0.87 (f) 34.24, 0.89

Figure 3: Effect of refinement: (b) and (e): end-to-end reconstruction Gφ∗(yδ); (c) and (f): the
respective refined reconstructions. The PSNR (dB) and SSIM scores are indicated below.

UAR are specified in Algorithm 1. We found that training a baseline regularizer and a corresponding
baseline reconstruction operator stabilized the training process. Training UAR took approximately
three hours per epoch on an NVIDIA Quadro RTX 6000 GPU (with 24 GB of memory).

The average performance on the test images in terms of PSNR and SSIM [35] indicates that UAR
(with λ = 0.1 and no refinement) outperforms AR and ACR by approximately 0.5 dB and 2.8 dB,
respectively (see Table 1). We would like to emphasize that this gain was found to be consistent across
all test images and not just realized on average. With the refinement step, UAR surpasses AR by almost
1 dB and slightly surpasses the U-net-based post-processing. The end-to-end UAR reconstruction is a
couple of orders of magnitude faster than AR, while the reduction in reconstruction time is by a factor
of four with the refinement. Since the refinement step entails running a few gradient-descent iterations
on a high-dimensional variational loss, it makes UAR slower than supervised end-to-end methods.
However, thanks to a superior initialization provided by the generator, one requires significantly
fewer gradient-descent iterations to refine as compared to a fully variational scheme such as AR.
The reconstructions of a representative test image using the competing methods are shown in Fig.
1 for a visual comparison. The effect of λ on the reconstruction of UAR is demonstrated in Fig. 2,
which confirms the theoretical results in Section 3.2. The refinement step also visibly improves the
reconstruction quality of the end-to-end operator, as shown in Fig. 3.

Some additional numerical examples for the task of CT reconstruction, and some illustrative examples
of the performance of UAR on two other important imaging inverse problems, namely inpainting and
denoising, are provided in Sec. B of the supplementary document.

5 Conclusions and outlook

To the best of our knowledge, this work makes the first attempt to blend end-to-end reconstruction
with data-driven regularization via an adversarial learning framework. The proposed UAR approach
retains the fast reconstruction of the former together with provable guarantees of the latter. We
rigorously analyze the proposed framework in terms of well-posedness, noise-stability, and the
effect of the regularization penalty, and establish a link between the trained reconstruction operator
and the corresponding variational objective. We show strong numerical evidence of the efficacy of
the UAR approach for CT reconstruction, wherein it achieves the same performance as supervised
data-driven post-processing and outperforms competing unsupervised techniques. Our work paves
the way to better understand the role of adversarially learned regularizers in solving ill-posed inverse
problems, although several important aspects need further investigation. Since the learned regularizer
is non-convex, the performance of gradient-descent on the variational objective greatly depends on
initialization. This problem is partly addressed by the unrolled reconstruction operator that efficiently
computes a better initial point for gradient descent. However, the precise relationship between the
end-to-end reconstruction and the variational minimizer for a given measurement vector remains
elusive. Moreover, the quality of the reconstruction relies on the expressive power of neural networks
and thus suffers from the curse of dimensionality. We believe that addressing such limitations will be
important to better understand adversarial regularization methods.
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