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ABSTRACT

An emerging line of research has found that hyperspherical spaces better match
the underlying geometry of facial images, as evidenced by the state-of-the-art fa-
cial recognition methods which benefit empirically from hyperspherical represen-
tations. Yet, these approaches rely on deterministic embeddings and hence suffer
from the feature ambiguity dilemma, whereby ambiguous or noisy images are
mapped into poorly learned regions of representation space, leading to inaccura-
cies (Shi & Jain, 2019). PFE is the first attempt to circumvent this dilemma. How-
ever, we theoretically and empirically identify two main failure cases of PFE when
it is applied to hyperspherical deterministic embeddings aforementioned. To ad-
dress these issues, in this paper, we propose a novel framework for face uncertainty
learning in hyperspherical space. Mathematically, we extend the von Mises Fisher
density to its r-radius counterpart and derive an optimization objective in closed
form. For feature comparison, we also derive a closed-form mutual likelihood
score for latents lying on hypersphere. Extensive experimental results on mul-
tiple challenging benchmarks confirm our hypothesis and theory, and showcase
the superior performance of our framework against prior probabilistic methods
and conventional hyperspherical deterministic embeddings both in risk-controlled
recognition tasks and in face verification and identification tasks.

1 INTRODUCTION

Euclidean space is the most commonly used representation space for modelling face images for
facial recognition. However, an emerging line of research has found that state-of-the-art face recog-
nition systems empirically benefit from Deep Convolutional Neural Networks (DCNNs) that map a
face image from input space into hyperspherical space. This important idea has been explored in
a number of recent works: NormFace pioneered this idea by introducing a normalization operation
on both features and weights (Wang et al., 2017); SphereFace imposed angular discriminative con-
straints on hypersphere (Liu et al., 2017); CosFace pushed the boundary by adding cosine margin
penalty to target logits (Wang et al., 2018b); and ArcFace further improved the discriminative power
of face recoginition models by proposing additive angular margin penalty, which is equivalent to the
geodesic distance margin on a hypersphere (Deng et al., 2019).

However, while achieving clear successes in face recognition, all these approaches aim at learning
deterministic mappings from input space to feature space, and thus are unable to capture data un-
certainty that is ubiquitous in face recognition in the wild. An ambiguous face, for instance, will be
mapped into poorly learned regions of the latent space, thus causing a large bias to the facial features
of its subject if applied in a deterministic way.

First pointed out by PFE (Shi & Jain, 2019), this issue was referred to as the Feature Ambiguity
Dilemma, where ambiguous faces are mapped into a ‘dark space’ in which the distance metric is
distorted, resulting in unwanted effects. Such deterministic mappings act as a bottleneck to further
improvement of face recognition performance, especially in unconstrained face recognition settings.

Probabilistic face representation learning presents a promising avenue for addressing this problem.
Far from being a novel idea, probabilistic face modelling has been explored abundantly in the liter-
ature (Arandjelovic et al., 2005; Shakhnarovich et al., 2002; Hiremath et al., 2007; Li et al., 2013).
Of greatest relevance is PFE (Shi & Jain, 2019), which models latent codes using a multivariate in-
dependent Gaussian distribution that is inherently defined in Euclidean space. While improvements
have been made, we identify two main failure cases when PFE is applied to hyperspherical embed-
dings. On one hand, theoretically, the independent Gaussian assumption inevitably fails in the case
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of hyperspherical embeddings. This is in line with the empirical findings of PFE (Shi & Jain, 2019),
“We also tried implementing ArcFace but it does not converge well in our case. So we did not use
it.” On the other, empirical studies suggest that the framework proposed in PFE leads to unstable
training when built on hyperspherical deterministic embeddings, e.g ArcFace and CosFace. This
further limits PFE’s applicability to the state-of-the-art deterministic embeddings whose ranges are
hypersphere. To address these issues, in this paper, we propose a novel framework, Hypersphere
Face (HypersFace), for face uncertainty learning in an r-radius hyperspherical space. Unlike PFE
defined in Euclidean space, HypersFace captures the most likely feature representation and its local
concentration value on hyperspheres. This concentration value can be interpreted as a measure of
uncertainty in hyperspherical space, dispensing with the independent Gaussian assumption and over-
parameterization of the full covariance matrix. Specifically, as compared to PFE that maximizes the
expectation of the mutual likelihood score, our proposed framework minimizes KL divergence be-
tween hyperspherical Dirac delta and r-radius vMF, which proves to be superior for face uncertainty
learning through extensive experiments.

Our contributions include:

1. We theoretically and empirically identify the downsides of the existing framework for un-
certainty learning in the case of hyperspherical embeddings and propose a novel framework
for hyperspherical uncertainty learning as a remedy to these issues.

2. By extending the von Mises Fisher distribution to its r-radius counterpart, we show our
proposed framework admits closed-forms for optimization and for feature comparison.

3. We showcase that our proposed framework outperforms prior probabilistic methods (PFE)
and state-of-the-art deterministic embeddings on multiple challenging datasets in risk-
controlled face recognition tasks as well as in face verification and identification tasks.

2 PROPOSED METHOD

2.1 DILEMMA ENCOUNTERED IN PFE

We first identify failure cases of PFE from a theoretical perspective before delving into our proposed
framework. Due to space limitations, we refer readers to Shi & Jain (2019) for details. Recall that
PFE gives a distributional estimate z of the appearance of a person’s face x using a multivariate
independent Gaussian distribution p(z|x) = N (z;µ,σ2I). This implies that given x, each latent
dimension zi is independent of one another. However, this independence assumption fails when
PFE is applied to the state-of-the-art deterministic embeddings whose ranges are hypersphere (i.e
z21 + ... + z2d = 1 in d-dimensional Euclidean space). One might argue that a full covariance
matrix can be learned instead to address this issue. However, this inevitably leads to inefficiency
and difficulty in fitting many more parameters (e.g at least d(d+1)/2 in d-dimensional space) while
preserving the positive semidefiniteness of the covariance matrix. In contrast, we propose a new
framework suitable for hyperspherical uncertainty learning that elegantly resolves this issue.

2.2 r-RADIUS von Mises Fisher DISTRIBUTION

The remarkable recognition performance of state-of-the-art methods (e.g ArcFace and CosFace)
indicates that hyperspherical space is better-suited for facial feature representation than Euclidean
space. We adopt this idea and further extend it to probabilistic modelling. Specifically, given a face
image x from input space X , the conditional latent distribution is modelled as a von Mises-Fisher
(vMF) distribution (Fisher et al., 1993) defined on a d-dimensional unit hypersphere Sd−1 ⊂ Rd,

p(z′|x) = Cd(κx) exp

(
κxµ

T
xz
′
)

with Cd(κx) =
κ
d/2−1
x

(2π)d/2Id/2−1(κx)
(1)

where z′,µx ∈ Sd−1, κx ≥ 0 (subscripts indicate statistical dependencies on x) and Iα denotes the
modified Bessel function of the first kind at order α:
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Figure 1: Empirical comparison of training dynamics between the optimization objectives of two frameworks.
Our proposed framework (a)(b) gives rise to a stable training process whereas that of PFE (c) (built on Arc-
Face) suffers from instability when it is instantiated with r-radius vMF; so does PFE (d) (built on CosFace).
Implementation details can be found in Section 3.2. Here, s(·, ·) denotes mutual likelihood score, of which the
explicit form is given by Eqn (7).

The parameters µx and κx are called the mean direction and concentration parameter, respectively.
The greater the value of κx, the higher the concentration around the mean direction µx. The distri-
bution is unimodal for κx > 0, and degenerate to uniform on the hypersphere for κx = 0.

We further extend it to r-radius vMF that is defined over the support of the r-radius hypersphere
rSd−1. Formally, for any z ∈ rSd−1, there exists a one-to-one correspondence between z′ and z
such that z = rz′. Then, the r-radius vMF density (denoted as r-vMF(µx, κx)) can be obtained by
applying the change-of-variable formula

p(z|x) = p(z′|x)

∣∣∣∣det

(
∂z′

∂z

)∣∣∣∣ =
Cd(κx)

rd
exp

(
κx
r
µTxz

)
(3)

2.3 HYPERSPHERE FACE (HYPERSFACE)

State-of-the-art deterministic embeddings, such as ArcFace and CosFace, that are defined in hyper-
spherical spaces, are essentially Dirac delta p(z|x) = δ(z − f(x)), where f : X 7→ rSd−1 is a
deterministic mapping. Here we formally extend Dirac delta into hyperspherical space:
Definition 1 (Hyperspherical Dirac delta). A probability density p(z) is hyperspherical Dirac delta
δ(z− z0) (where z, z0 ∈ rSd−1) if and only if it is subject to the following three conditions:

δ(z− z0) =

{
0 z 6= z0
∞ z = z0

;

∫
rSd−1

δ(z− z0)dz = 1;

∫
rSd−1

δ(z− z0)φ(z)dz = φ(z0)

To address the dilemma encountered in the existing framework, we propose an alternative as a
remedy by leveraging these extended definitions.

As common practice, deep face recognition models map the hyperspherical feature space rSd−1 to
a label space L using a linear mapping that can be represented as a matrix W ∈ Rn×d, where n is
the number of face identities. Let wx∈c denote the classifier weight given a face image x belonging
to class c, which can be obtained from any given pretrained model by extracting the cth row of
W . Our key observation is that, by virtue of these classifier weights, a conventional deterministic
embedding as hyperspherical Dirac delta can act as a desired latent prior over the hypersphere, to
which regularization can be performed. To this end, we propose to minimize the KL divergence
between the hypersphere Dirac delta and the model distribution q(z|x).

Specifically, our optimization objective is to minimize Ex[DKL(p(z|x)||q(z|x))], where p(z|x) =
δ(z−wx∈c) and q(z|x) is modelled as r-radius vMF parameterized by µ(x) and κ(x) (||µ(x)||2 = 1
and κ(x) > 0; here dependencies on x are shown in functional forms in place of subscripts). Then,
we expand the objective as

min
q

Ex

[
DKL(p(z|x)||q(z|x))

]
= Ex

[
−
(∫

rSd−1

p(z|x) log q(z|x)dz

)
−Hp(z|x)(z)

]
(4)

Note that minimizing Equation (4) with regard to q is equivalent to minimizing the cross-entropy
between p and q with regard to µ and κ conditional on x. Therefore, it is sufficient to minimize

3



Under review as a conference paper at ICLR 2021

Ex[L(µ(x), κ(x))] over all µ and κ, where

L(µ(x), κ(x)) = −
∫
rSd−1

δ(z−wx∈c)

[
κ(x)

r
µ(x)T z + logCd(κ(x))− d log r

]
dz

= −κ(x)

r
µ(x)Twx∈c −

(
d

2
− 1

)
log κ(x) + log(Id/2−1(κ(x))) +

d

2
log 2πr2

(5)

Remark 1. Unlike PFE which maximizes the expectation of mutual likelihood score of genuine
pairs, our proposed framework, by virtue of classifier weights, minimizes the KL divergence be-
tween hypersphere Dirac delta and r-radius vMF. This is a reasonable choice and can be theoreti-
cally justified by Theorem 1 and Corollary 1. Intuitively, regularization to δ encourages the latents
that are closer to their corresponding classifier weights to have larger concentration values; and vice
versa.

Theorem 1. An r-radius vMF density r-vMF(µ, κ) tends to a hyperspherical Dirac delta δ(z−rµ),
as κ→∞.

Corollary 1. DKL(δ(z− rµx)||r-vMF(µx, κx))→ 0 as κx →∞.

Proof Sketch. By leveraging the asymptotic expansion of the modified Bessel function of the first
kind (developed by Hermann Hankel): for any complex number z with large |z| and | arg z| < π/2,

Iα(z) ∼ ez√
2πz

(
1 +

∞∑
N=1

(−1)N
∏N
n=1

(
4α2 − (2n− 1)2

)
N !(8z)N

)
(6)

we have Id/2−1(κ) ∼ eκ/
√

2πκ as κ → ∞. Then, these results (Theorem 1 and Corollary 1) can
be readily shown with this fact given. Full proofs can be found in Appendix A and B.

Remark 2. Empirical studies further suggest that our proposed framework for hyperspherical face
uncertainty learning exhibits empirical advantages over PFE even when PFE is instantiated with
r-radius vMF. As shown in Figure 1, when built on the state-of-the-art hyperspherical embeddings,
the optimization objective proposed in PFE (mutual likelihood score maximization) for uncertainty
learning in hyperspherical space is empirically difficult to attain, suffering from training instability
(‘nan’ loss value), whereas our proposed objective (5) gives rise to a stable training process. This,
again, corroborates the empirical findings of PFE (Shi & Jain, 2019), “We also tried implementing
ArcFace but it does not converge well in our case. So we did not use it.”

We argue that this stems from two reasons. First, the optimization objective proposed in PFE has to
be carried out in a pairwise manner. Selecting pairs in the early training stage requires a tricky and
heuristic strategy; otherwise, training tends to become unstable. Second, our proposed objective (5)
resorts to additional information, wx∈c’s, which can be regarded as class templates for each subject.
By leveraging class templates, the hyperspherical Dirac delta acts as a desired prior to which the
resultant latent distribution can be regularised. Intuitively, the objective proposed in PFE can be
understood as an alternative to maximizing the likelihood q(z|x): if the latent distributions of all
possible genuine pairs have a large overlap, then the latent target z should have a large likelihood
q(z|x) for any corresponding x (Shi & Jain, 2019). However, maximizing the likelihood q(z|x)
without regularization to p(z|x) := δ(z−wx∈c) loses the holistic control of the latent distribution,
inviting unwanted effects. The resultant latent representations tend to bear undesired manifestations
confirmed in our empirical studies. Our treatment dispenses with pairwise training and relaxes the
independent Gaussian assumption while better capturing uncertainty in hyperspherical space.

2.4 FEATURE FUSION AND INFERENCE

We adopt mutual likelihood score proposed in (Shi & Jain, 2019) to compare feature similarity. The
mutual likelihood score of two faces, xi and xj , is defined as s(xi,xj) = log p(zi = zj). We show
that a closed-form mutual likelihood score can be obtained for hyperspherical latents:

s(xi,xj) = log Cd(κi) + log Cd(κj)− log Cd(κ̃)− d log r (7)
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Table 1: Comparison results on LFW, CFP-FP, CALFW and CPLFW. The results of base embed-
dings (ArcFace and CosFace) are successfully replicated as reported in the ArcFace officially re-
leased repository: https://github.com/deepinsight/insightface/wiki/Model-Zoo.

Models Training Set Backbone LFW CFP-FP AgeDB CALFW CPLFW
ArcFace MS1MV2 ResNet24 99.651 96.772 97.121 94.083 88.450
+ PFE-G MS1MV2 ResNet24 N/A N/A N/A N/A N/A
+ PFE-v MS1MV2 ResNet24 N/A N/A N/A N/A N/A
+ HypersFace MS1MV2 ResNet24 99.768 97.210 98.200 94.755 89.492
CosFace MS1MV2 ResNet24 99.639 96.924 97.093 94.118 88.054
+ PFE-G MS1MV2 ResNet24 99.690 97.072 97.412 94.399 88.210
+ PFE-v MS1MV2 ResNet24 N/A N/A N/A N/A N/A
+ HypersFace MS1MV2 ResNet24 99.728 97.395 98.105 94.716 88.833
ArcFace MS1MV2 ResNet100 99.770 98.270 98.280 96.083 92.700
+ PFE-G MS1MV2 ResNet100 N/A N/A N/A N/A N/A
+ PFE-v MS1MV2 ResNet100 N/A N/A N/A N/A N/A
+ HypersFace MS1MV2 ResNet100 99.783 98.286 98.350 96.133 93.333
CosFace MS1MV2 ResNet100 99.730 97.440 98.521 94.960 89.149
+ PFE-G MS1MV2 ResNet100 99.731 97.439 98.530 94.962 89.150
+ PFE-v MS1MV2 ResNet100 N/A N/A N/A N/A N/A
+ HypersFace MS1MV2 ResNet100 99.740 97.452 98.540 95.015 89.154

where κ̃ = ||p||2, p = (κiµi + κjµj), µ̃ = p/||p||2. In the cases where one subject has multiple
face images (observations), it can be shown that a compact hyperspherical distributional represen-
tation of the particular subject can be built by iteratively merging learned statistics. Specifically,
iterative updating formulae after observing (n+ 1) observations of a given subject are given by:

κ̃n+1 = ||κn+1µn+1 + κ̃nµ̃n||2, µ̃n+1 = (κn+1µn+1 + κ̃nµ̃n)/κ̃n+1. (8)

Detailed derivations and analyses can be found in Appendix C and D.

3 EXPERIMENTS

3.1 DATASETS

We employ MS1MV2 (Deng et al., 2019) as our training data in order to conduct fair comparison
with state-of-the-art deterministic face embeddings including ArcFace (Deng et al., 2019), Cos-
Face (Wang et al., 2018b) and their PFE counterparts (Shi & Jain, 2019). PFE counterparts include
PFE with Gaussian (PFE-G) and PFE with vMF (PFE-v). Note that these deterministic embed-
dings are all in hyperspherical space where independent Gaussian assumption of PFE-G fails and
that PFE-v suffers from training issues in various settings. Models are evaluated on seven chal-
lenging benchmarks, including LFW (Huang et al., 2008), CFP-FP (Sengupta et al., 2016), AgeDB
(Moschoglou et al., 2017), CALFW (Zheng et al., 2017), CPLFW (Zheng & Deng, 2018), MegaFace
(Kemelmacher-Shlizerman et al., 2016) and IJB-C (Whitelam et al., 2017).

3.2 IMPLEMENTATION DETAILS

To conduct fair comparison, all experimental settings including data preprocessing, embedding net-
work architectures and related hyperparameters are kept identical. Specifically, data preprossessing
is performed by generating normalized face crops (112 × 112) with five facial points. ResNet100
and ResNet24 (He et al., 2016) are employed as deterministic embedding backbones as in Arc-
Face(Deng et al., 2019) and CosFace (Wang et al., 2018b). We follow ArcFace and CosFace to set
the hypersphere radius r to 64 and choose the angular margin 0.5 for ArcFace and 0.35 for CosFace.
The mean direction module µ(·) is initialized by deterministic embeddings under consideration.
The concentration module κ(·) is parameterized by three-layer perceptrons with the architecture:
FC(12544)− BN− ReLU− FC(6272)− BN− ReLU− FC(1)− exp, where FC(d′) denotes a
fully-connected layer with output dimension d′, and ReLU and exp denote ReLU and exponent non-
linearity, respectively. HypersFace is trained using an ADAM optimizer with a momentum of 0.9.
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Figure 2: Risk-controlled face recognition on IJB-A, IJB-B and IJB-C.

The learning rate starts at 3 × 10−5 and is dropped by 0.5 every two epochs with the weight decay
0.0005.

3.3 RISK-CONTROLLED FACE RECOGNITION

In the real-world scenarios, one may expect a face recognition system to be able to reject input im-
ages with low confidence of being faces, as those highly undermine the recognition performance.
Such images may exhibit large pose variations, poor image quality and severe or partial occlu-
sion. Conventional deterministic embeddings including ArcFace and CosFace are unable to handle
such cases whereas uncertainty-aware models, such as PFE and our proposed HypersFace, provide
natural solutions for this task. In particular, by performing image-level face verification on IJB
datasets, we demonstrate the advantage of HypersFace over PFE in hyperspherical space. Setting
aside the original protocols, we take all images from a data set and rank them by confidence scores
of uncertainty-aware models (concentration values for HypersFace, the inverse of harmonic mean of
variances for PFE-G or the detection score of MTCNN (Wen et al., 2016)). Then the system is able
to filter out a proportion of all images according to the rankings in order to achieve better verifica-
tion performance. For fairness, all methods employ original deterministic embeddings and cosine
similarity for matching. To avoid saturated results, models are trained on MSM1V2 with ResNet24
using AM-Softmax (Wang et al., 2018a). As shown in Figure 2, HypersFace outperforms PFE-G, in-
dicating that our proposed framework is better-suited for face uncertainty learning in hyperspherical
space. Note that PFE-v fails in all cases due to the training convergence issue.

3.4 COMPARISON WITH STATE-OF-THE-ART

The uncertainty module of HypersFace, κ(·), can be plugged into any hyperspherical embedding
given by backbones of different depths. To demonstrate the applicability of the proposed framework,

Figure 3: Identity versus concentration value. Each row corresponds to one single identity sorted from left to
right with concentration values decreasing.
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we first train two backbones, ResNet24 (a shallower backbone) and ResNet100 (a deeper backbone),
with a regular classifier on the training set, MS1MV2. Then, uncertainty modules are jointly trained
based upon these backbones, respectively.

Table 2: Comparison results on MegaFace. Models
are trained on MS1MV2. “Ver.” refers to face verifica-
tion TAR(@FAR=1e-6). “Id.” denotes rank-1 identifi-
cation accuracy.

ResNet24 ResNet100
Metric Id. Ver. Id. Ver.
SphereFace 73.12 87.19 75.63 89.40
CosFace 78.84 92.09 80.56 96.56
+ PFE-G 78.91 91.78 80.23 96.51
+ PFE-v N/A N/A N/A N/A
+ HypersFace 80.03 93.12 80.95 96.72
ArcFace 79.12 92.35 81.11 97.00
+ PFE-G N/A N/A N/A N/A
+ PFE-v N/A N/A N/A N/A
+ HypersFace 80.42 92.93 81.43 97.01

Table 3: Comparison results on IJB-C. Models with
different backbones are trained on MS1MV2. The
evaluation metric is 1:1 verification TAR@FAR at 1e-
4 and 1e-5, respectively.

ResNet24 ResNet100
TAR@FAR 1e-4 1e-5 1e-4 1e-5
SphereFace 87.91 85.10 89.32 88.51
CosFace 92.63 89.39 95.34 93.13
+ PFE-G 92.60 89.55 95.42 93.15
+ PFE-v N/A N/A N/A N/A
+ HypersFace 93.43 90.67 95.75 93.24
ArcFace 92.81 89.77 95.65 93.15
+ PFE-G N/A N/A N/A N/A
+ PFE-v N/A N/A N/A N/A
+ HypersFace 93.57 90.43 95.76 93.23

Figure 4: Empirical correlation (bottom)
between cosine value cos 〈µ(x),wx∈c〉
and concentration value κ and its marginal-
ized empirical density of cosine value (top)
on two backbones.

Results on LFW, CFP-FP, AgeDB, CALFW, CPLFW.
As shown in Table 1, our proposed framework yields
state-of-the-art performance on LFW, CFP-FP, AgeDB,
CALFW and CPLFW when built upon ArcFace and Cos-
Face with various deep backbones, whereas PFE either
fails or exhibits inferior improvements in different cases.
This showcases the effectiveness and the wide applicabil-
ity of our proposed framework.
Results on MegaFace. There are two testing scenarios
in MegaFace including identification and verification. As
shown in Table 2, our model achieves the highest rank-
1 accuracy and TAR(@FAR=1e-6) accuracy performance
among all of the existing methods.
Results on IJB-C. We evaluate models by the 1:1 veri-
fication TAR@FAR protocol on IJB-C. As shown in Table
3, HypersFace outperforms PFE as well as state-of-the-art
deterministic embeddings at different FARs (1e-4 and 1e-
5). This benefits from the theoretical correctness of Hy-
persFace as compared to PFE; for PFE, improper feature
fusion accumulates representation error, leading to subop-
timal recognition performance.

Empirically, we note that the proposed framework exhibits
clearer advantages over PFE with a shallower backbone
than with a deeper one. In the next section, we will make a quantitative analysis of this phenomenon.

3.5 QUANTITATIVE ANALYSIS

We demonstrate the latent manifold learned by our framework, HypersFace. As illustrated in Fig-
ure 4, there is a strong correlation between the cosine value cos 〈µ(x),wx∈c〉 and the concentration
parameter κ, where 〈·, ·〉 denotes the angle between two vectors. The closer the angular distance
between µ(x) and wx∈c, the higher the concentration value becomes. This indicates that our model
indeed learns the latent distribution that is unimodal vMF for each single class and forms a mixture
of vMFs overall, which confirms our hypothesis. We also visualize what the learned concentration
values represent. As shown in Figure 3, higher concentration values correspond to high quality
frontal face images whereas lower ones correspond to those with large pose variations, low qual-
ity and partial occlusion, or even mislabeled examples. Along with Figure 4, this indicates that
concentration values estimated by our uncertainty module indeed captures the data uncertainty in
hyperspherical space.
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Figure 5: False negative examples made by PFE while being true positive by HypersFace, where cos θ is the
cosine distance of a verification pair x1,x2, s(·, ·) is mutual likelihood score and κ1, κ2 are the correspond-
ing concentration values. Thresholds are set to −1254.677 and −1364.735 for PFE (accuracy: 88.210) and
HypersFace (accuracy: 88.883), respectively, on the CPLFW benchmark.

Figure 6: False positive examples made by PFE while being true positive by HypersFace, where cos θ is the
cosine distance of a verification pair x1,x2, s(·, ·) is mutual likelihood score and κ1, κ2 are the correspond-
ing concentration values. Thresholds are set to −1254.677 and −1364.735 for PFE (accuracy: 88.210) and
HypersFace (accuracy: 88.883), respectively, on the CPLFW benchmark.

Noticeably, as shown in Table 1, 2 and 3, the improvement of the proposed uncertainty learning
framework using the shallower backbone ResNet24 is consistently higher than that using the deeper
backbone ResNet100. The empirical density of cosine value marginalized from the joint density
in Figure 4 also sheds lights on why this is the case: a deeper deterministic backbone itself leads
to latent embeddings more concentrated around the mean direction than otherwise. Such deeper
deterministic embeddings already exhibit highly separable latent hyperspherical space with fewer
ambiguous samples lying on the classifier boundaries, which acts as a bottleneck to further im-
provement. A shallower deterministic backbone, on the other hand, gives rise to hyperspherical
embeddings more scattered around the mean direction, whereby the uncertainty module shows its
clearer advantage in assigning proper concentrating parameters, thereby making correct predictions.

3.6 QUALITATIVE ANALYSIS

We conduct qualitative analysis of the advantage of the proposed framework over that of PFE. As
shown in Figure 5 and Figure 6, CosFace and PFE both fail to make correct predictions due to the
large pose variations and low-quality images whereas HypersFace is able to assign proper concen-
tration values to face images under different conditions, thereby making correct predictions. More
detailed analyses are relegated to Appendix E.

4 CONCLUDING REMARKS

A plethora of research has demonstrated the advantage of spherical latent space in modelling certain
types of data (Fisher et al., 1993; Reisinger et al., 2010; Wilson et al., 2014). Yet, modelling un-
certainty in hyperspherical space remains underexploited. Our work bridges this gap by proposing
a general framework for uncertainty learning in hyperspherical space. Towards going beyond face
recognition, e.g text modeling (Guu et al., 2018) and link prediction (Davidson et al., 2018), we
believe that the presented research sheds light on a promising direction towards learning uncertainty
of general data whose manifold is not trivially Euclidean.
From the theoretical and empirical views, we have identified two main failure cases of the exist-
ing framework for uncertainty learning when it is applied to hyperspherical embeddings. To ad-
dress these issues, we have proposed a novel framework for hyperspherical face uncertainty learn-
ing, which empirically proves to be superior to prior probabilistic methods on multiple challenging
benchmarks. Future work includes theoretical comparison and analyses of these two frameworks in
the context of general uncertainty learning.
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