
Score Modeling for Simulation-based Inference

Tomas Geffner∗
University of Massachusetts

George Papamakarios
DeepMind

Andriy Mnih
DeepMind

Abstract

Neural Posterior Estimation methods for simulation-based inference can be ill-
suited for dealing with posterior distributions obtained by conditioning on multiple
observations, as they may require a large number of simulator calls to yield accurate
approximations. Neural Likelihood Estimation methods can naturally handle
multiple observations, but require a separate inference step, which may affect
their efficiency and performance. We introduce a new method for simulation-
based inference that enjoys the benefits of both approaches. We propose to model
the scores for the posterior distributions induced by individual observations, and
introduce a sampling algorithm that combines the learned scores to approximately
sample from the target efficiently.

1 Introduction

Mechanistic simulators have been developed in a wide range of scientific domains [3]. Often
these simulators act as a black box: given a set of parameters, the simulator can be sampled, but
the distribution over the outputs–the likelihood–cannot be evaluated, rendering typical inference
algorithms inapplicable. Simulation-based inference (SBI) methods provide a way to perform
inference with these models [1, 3]. Given a prior over parameters p(θ) and a simulator for the
likelihood p(x|θ), the goal of SBI is to approximate the posterior p(θ|xo1, . . . , xon) for any set of i.i.d.
observations {xo1, . . . , xon}. Most SBI methods work by running the simulator to generate samples
x ∼ p(x|θ) for different parameters θ, and using the resulting samples to build an approximation
of the posterior. Since many domains involve expensive simulators, recent work has focused on
developing algorithms that yield good approximations using a limited budget of simulator calls.

Recent work introduced Neural Posterior Estimation (NPE) methods [20, 17, 8, 2], which use samples
(θ, x1, . . . , xn) ∼ p(θ)

∏n
j=1 p(xj |θ) to train a conditional neural density estimator qψ(θ|x1, . . . , xn)

with parameters ψ, often a normalizing flow [26, 33, 37], via maximum likelihood. After training,
the estimator provides an amortized approximation to p(θ|xo1, . . . , xon) for any set of observations
{xo1, . . . , xon} of size n.1 The drawback of NPE methods is that each training sample requires n
simulator calls, so building a training set of size M requires running the simulator nM times. This
may be problematic in scenarios where n is large and calls to the simulator are expensive.

Neural Likelihood Estimation (NLE) methods [21, 39, 15] are a natural alternative for cases where
n > 1. These methods learn a surrogate likelihood qψ(x|θ) (or a likelihood ratio [22, 4, 10]) using
samples (θ, x) ∼ p̃(θ)p(x|θ), where p̃(θ) is a proposal distribution, which in the simplest case can
default to the prior p(θ). Then, given a set of observations {xo1, . . . , xon}, inference is carried out
on the approximate unnormalized target p(θ)

∏n
j qψ(x

o
j |θ) by standard methods, typically MCMC

[21, 15] or variational inference [38, 7]. While these methods can handle arbitrary sets of observations
at inference time without re-training the surrogate, they do not approximate the posterior directly, and
thus require the inference step to be repeated for each set of observations of interest. Moreover, their

∗Work done during an internship at DeepMind.
1NPE methods can handle sets of observations with varying cardinality as well [23], by training the density

estimator using samples (θi, xi
1, . . . , x

i
ni
) ∼ p(θ)

∏ni
j p(xj |θ) of varying size ni, and conditioning it not only

on the samples x1, . . . , xni but also on the cardinality of the set ni. We give details in Appendix B.

NeurIPS 2022 Workshop on Score-Based Methods.

performance depends on the performance of the underlying generic inference methods, which tend to
struggle e.g. with multimodal distributions.

Our goal is to develop a method that enjoys the benefits of both types of approaches while avoiding
their drawbacks—a method that approximates the posterior directly, is trained on samples (θ, x) ∼
p(θ)p(x|θ), and is able to naturally handle a varying number of observations at test time. We propose
such an approach that relies on score-based modeling [30, 31, 11, 32]. Simply put, we train a
single conditional score network to approximate the score of (diffused versions of) p(θ|x) for any
x, and propose an algorithm that uses the trained network to approximately sample the posterior
p(θ|xo1, . . . , xon) for any set of observations {xo1, . . . , xon}. Our method satisfies the three desiderata
outlined above: it directly approximates the posterior, learns form samples (θ, x) ∼ p(θ)p(x|θ)
produced with a single call to the simulator, and provides a sampling algorithm that can handle
arbitrary sets of observations without re-training.

1.1 Conditional score-based generative modeling

The goal of conditional generative modeling is to learn an approximation of a target distribution p(θ|c)
for some conditioning variable c given samples (θ, c) ∼ p(θ, c), which is exactly the problem SBI
methods need to solve. Methods based on score modeling have shown impressive performance for
this task [31, 5, 12, 25, 28, 29]. They define a sequence of conditional densities p0(θ|c), . . . , pT (θ|c)
by diffusing the target p(θ|c) with Gaussian kernels of increasing levels of noise, learn the scores of
each density in the sequence using denoising score matching [13, 35], and use Langevin dynamics
[27, 36] with the learned scores to approximately sample from the target distribution.

Specifically, for the noise levels 0 = γT < γT−1 < . . . < γ1 < 1 and the corresponding Gaussian
diffusion kernels pt(θ|θ′) = N (θ|√γt θ′, (1− γt)I), the sequence of densities is defined as

p0(θ|c) = p(θ|c) and pt(θ|c) =
∫
dθ′ p(θ′|c)pt(θ|θ′) for t = 1, . . . , T. (1)

Since γT = 0, this sequence gradually bridges between the initial tractable reference N (θ|0, I) =
pT (θ) and the target p(θ|c) = p0(θ|c). Score-based methods train a score network sψ(θ, t, c)
parameterized by ψ to approximate the scores of these densities, ∇θ log pt(θ|c). As only samples
from the target are available, this is done via denoising score matching [13, 35], minimizing

LDSM(ψ) =
∑T−1
t=1 Ep(θ′,c)pt(θ|θ′)

[
∥sψ(θ, t, c)−∇θ log pt(θ|θ′)∥2

]
. (2)

Finally, the score network is used to approximately sample the target using annealed Langevin
dynamics, as shown in Algorithm 1.

Algorithm 1 Approximate sampling with learned scores
Input: Score network sψ(θ, t, c) ≈ ∇θ log pt(θ|c), reference distribution pT (θ)
Input: Conditioning variable c, number of Langevin steps L, Langevin step sizes δt
θ ∼ pT (θ) ▷ Sample reference
for t = T − 1, T − 2, . . . , 1 do

for s = 1, 2, . . . , L do
θ ← θ + δt

2 sψ(θ, t, c) +
√
δt ηts [ηts ∼ N (0, I)] ▷ Unadjusted Langevin step

return θ

2 Score-based Neural Posterior Estimation

This section presents our approach for SBI using score modeling. Our goal is to develop a method
that can be trained using parameter/single-observation pairs (θ, x) ∼ p(θ)p(x|θ), and that can be
used at test time to approximate p(θ|xo1, . . . , xon) for arbitrary sets of observations {xo1, . . . , xon} with
any cardinality n. As we explain in Appendix A, a naive application of conditional score based
modeling fails to satisfy our desiderata. Instead, we propose an alternative approach based on score
modeling, involving different choices for the bridging densities and the reference distribution.

Our method is based on the observation that p(θ|x1, ..., xn) ∝ p(θ)1−n
∏n
j=1 p(θ|xj) (see Ap-

pendix A). Using this factorization, we propose the sequence of densities

pt(θ|x1, . . . , xn) ∝
(
p(θ)1−n)

)T−t
T

∏n
j=1 pt(θ|xj) for t = 0, . . . , T, (3)

2

where pt(θ|xj) is defined in Eq. (1), taking c = xj . This construction has four key properties. First,
the distribution for t = 0 recovers the target p(θ|x1, ..., xn). Second, the distribution for t = T is a
tractable Gaussian pT (θ|x1, . . . , xn) = pT (θ) = N (θ|0, 1

nI),
2 and thus can be used as a reference

for the process. Third, the score of the resulting densities can be decomposed in terms of the score of
the prior (available exactly) and the scores of pt(θ|xj) as

∇θ log pt(θ|x1, . . . , xn) = (1−n)(T−t)
T ∇θ log p(θ) +

∑n
j=1∇θ log pt(θ|xj). (4)

And fourth, the scores ∇θ log pt(θ|xj) can all be approximated using a single score network
sψ(θ, t, x) trained via denoising score matching using samples (θ, x) ∼ p(θ)p(x|θ), as explained in
Section 1.1.

After training, given an arbitrary set of observations {xo1, . . . , xon} we can approximately sample the
target p(θ|xo1, . . . , xon) by running Algorithm 1 with the reference distribution pT (θ) = N (θ|0, 1

nI),
conditioning variable c = {xo1, . . . , xon}, and the approximate score given by

sψ(θ, t, c) =
(1−n)(T−t)

T ∇θ log p(θ) +
∑n
j=1 sψ(θ, t, x

o
j). (5)

It is straightforward to verify that our approach satisfies our original desiderata: the score network
sψ(θ, t, x) is trained using samples (θ, x) ∼ p(θ)p(x|θ), and the sampling algorithm can be used
with any set of observations {xo1, . . . , xon}, as it relies on Langevin dynamics with Eq. (5).

2.1 Alternative sampling approach

The sampling process described in Algorithm 1 requires choosing step-sizes δt, the number of
steps L per noise level, and has complexity O(LT). This section introduces a different method to
approximately sample the target p(θ|x1, . . . , xn), which does not use Langevin dynamics and runs in
O(T) steps. The approach is based on the formulation by Sohl-Dickstein et al. [30] to use diffusion
models to approximately sample from a product of distributions. The final method involves sampling
T Gaussian transitions with means and variances computed using the learned score network. We
describe the method in Algorithm 2, and give its derivation in Appendix C.

Algorithm 2 Approximately sampling without unadjusted Langevin dynamics
Input: Score network sψ(θ, t, x) ≈ ∇θ log pt(θ|x), reference distribution pT (θ)
Input: Conditioning variables x1, . . . , xn, noise levels γ1, . . . , γT

Define α1 = γ1, αt = γt/γt−1, and βt = 1− αt, for t = 1, . . . , T − 1
θ ∼ pT (θ) ▷ Sample reference
for t = T − 1, T − 2, . . . , 1 do

µjt =
1√
αt
(θ + (1− αt)sψ(θ, t, xj)) for j = 1, . . . , n ▷ Compute auxiliary variables

σ2
t = βt

n−αt(n−1) , µt =
∑

j µjt−(n−1)
√
αtθ

n−αt(n−1) +
σ2
t (1−n)(T−t)

T ∇θ log p(θ)
▷ Set transition mean and variance

θ ∼ N (θ|µt, σ2
t I) ▷ Sample transition

return θ

3 Empirical Evaluation

This section presents an empirical evaluation on two problems commonly used to evaluate SBI
methods [16]. One involves a “simulator” consisting of a Gaussian prior and likelihood, p(θ) =
N (θ|0, I) and p(x|θ) = N (x|θ,Σ) (we set Σ to a diagonal matrix with elements increasing linearly
from 0.6 to 1.4), while the other uses a Gaussian prior and a mixture-of-Gaussians likelihood, p(θ) =
N (θ|0, I) and p(x|θ) = 0.5N (x|θ, 2.25Σ) + 0.5N (x|θ, 19Σ). In both cases we set θ, x ∈ R10.

We compare our approach, called Score NPE, to NPE using a normalizing flow with four Real NVP
layers [6] (details in Appendix B). We compare the methods’ performance when trained on datasets of
different sizes, corresponding to different budgets of simulator calls B ∈ {103, 3 · 103, 104, 3 · 104}.
In all cases we use 20% of the training data as a validation set for early stopping, and train for a
maximum of 20k epochs. We train all methods using Adam [14] with a learning rate of 10−4.

2Since the prior term vanishes and pT (θ|xj) = N (θ|0, I) for all j.

3

After training we generate a set of observations by drawing θ ∼ p(θ) and xo1, . . . , x
o
8 ∼iid p(x|θ),

and report the squared MMD [9] between the true posterior and the approximation returned by each
method for subsets of {xo1, . . . , xo8} of different size. Figure 1 shows average results over 40 random
seeds. We observe that both methods perform similarly for the simpler Gaussian-Gaussian model, but
that Score NPE outperforms the flow baseline for the model with the mixture-of-Gaussians likelihood.

Figure 1: Squared MMD between the true posterior and approximation returned by different methods.
(A1) and (A2) refer to using Algorithms 1 and 2 for sampling (details for step size and other parameters
are in Appendix B). The MMD is computed using a Gaussian kernel with scale determined by the
median heuristic [24]. Samples from the true posterior were obtained with HMC [19].

Multimodal posterior. We also consider a two-dimensional example with a multimodal posterior,
with the prior and likelihood given by p(θ) = N (θ|0, I) and p(x|θ) = 0.5N (x|θ, 0.5I)+0.5N (x|−
θ, 0.5I). We train each method using a budget of 104 simulator calls. After training we sample
θ ∼ p(θ) and xo1, . . . , x

o
5 ∼iid p(x|θ), and use each method to generate samples from the approximate

posterior obtained by conditioning on subsets of {xo1, . . . , xo5} of different size. Results are shown in
Fig. 2, where it can be observed that our method is able to capture both modes well for all subset
sizes of observations despite only being trained on parameters/single-observation pairs.

Figure 2: Posteriors for the multimodal example. True parameters θ used to generate xo1, . . . , x
o
5 are

shown in black in the first row. Score NPE samples were obtained using Algorithm 2.

4

Acknowledgments and Disclosure of Funding

We thank Francisco Ruiz for useful comments and suggestions.

References
[1] Mark A Beaumont. Approximate Bayesian computation. Annual review of statistics and its

application, 6:379–403, 2019.

[2] Jeffrey Chan, Valerio Perrone, Jeffrey Spence, Paul Jenkins, Sara Mathieson, and Yun Song.
A likelihood-free inference framework for population genetic data using exchangeable neural
networks. Advances in Neural Information Processing Systems, 31, 2018.

[3] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 117(48):30055–30062, 2020.

[4] Kyle Cranmer, Juan Pavez, and Gilles Louppe. Approximating likelihood ratios with calibrated
discriminative classifiers. arXiv preprint arXiv:1506.02169, 2015.

[5] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis.
Advances in Neural Information Processing Systems, 34:8780–8794, 2021.

[6] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP.
arXiv preprint arXiv:1605.08803, 2016.

[7] Manuel Glöckler, Michael Deistler, and Jakob H Macke. Variational methods for simulation-
based inference. arXiv preprint arXiv:2203.04176, 2022.

[8] David Greenberg, Marcel Nonnenmacher, and Jakob Macke. Automatic posterior transformation
for likelihood-free inference. In International Conference on Machine Learning, pages 2404–
2414. PMLR, 2019.

[9] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773,
2012.

[10] Joeri Hermans, Volodimir Begy, and Gilles Louppe. Likelihood-free MCMC with amortized
approximate ratio estimators. In International Conference on Machine Learning, pages 4239–
4248. PMLR, 2020.

[11] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

[12] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[13] Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score
matching. Journal of Machine Learning Research, 6(4), 2005.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[15] Jan-Matthis Lueckmann, Giacomo Bassetto, Theofanis Karaletsos, and Jakob H Macke.
Likelihood-free inference with emulator networks. In Symposium on Advances in Approx-
imate Bayesian Inference, pages 32–53. PMLR, 2019.

[16] Jan-Matthis Lueckmann, Jan Boelts, David Greenberg, Pedro Goncalves, and Jakob Macke.
Benchmarking simulation-based inference. In International Conference on Artificial Intelligence
and Statistics, pages 343–351. PMLR, 2021.

[17] Jan-Matthis Lueckmann, Pedro J Goncalves, Giacomo Bassetto, Kaan Öcal, Marcel Nonnen-
macher, and Jakob H Macke. Flexible statistical inference for mechanistic models of neural
dynamics. Advances in Neural Information Processing Systems, 30, 2017.

5

[18] Calvin Luo. Understanding diffusion models: A unified perspective. arXiv preprint
arXiv:2208.11970, 2022.

[19] Radford M Neal. MCMC using Hamiltonian dynamics. Handbook of Markov chain Monte
Carlo, 2(11):2, 2011.

[20] George Papamakarios and Iain Murray. Fast ε-free inference of simulation models with Bayesian
conditional density estimation. Advances in Neural Information Processing Systems, 29, 2016.

[21] George Papamakarios, David Sterratt, and Iain Murray. Sequential neural likelihood: Fast
likelihood-free inference with autoregressive flows. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 837–848. PMLR, 2019.

[22] Kim Cuc Pham, David J Nott, and Sanjay Chaudhuri. A note on approximating ABC-MCMC
using flexible classifiers. Stat, 3(1):218–227, 2014.

[23] Stefan T Radev, Ulf K Mertens, Andreas Voss, Lynton Ardizzone, and Ullrich Köthe. Bayesflow:
Learning complex stochastic models with invertible neural networks. IEEE transactions on
neural networks and learning systems, 2020.

[24] Aaditya Ramdas, Sashank Jakkam Reddi, Barnabás Póczos, Aarti Singh, and Larry Wasserman.
On the decreasing power of kernel and distance based nonparametric hypothesis tests in high
dimensions. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

[25] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125, 2022.

[26] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International Conference on Machine Learning, pages 1530–1538. PMLR, 2015.

[27] Gareth O. Roberts and Richard L. Tweedie. Exponential convergence of Langevin distributions
and their discrete approximations. Bernoulli, 2(4):341–363, 1996.

[28] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al.
Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022.

[29] Yuyang Shi, Valentin De Bortoli, George Deligiannidis, and Arnaud Doucet. Conditional
simulation using diffusion Schrödinger bridges. arXiv preprint arXiv:2202.13460, 2022.

[30] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International Conference on Machine
Learning, pages 2256–2265. PMLR, 2015.

[31] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in Neural Information Processing Systems, 32, 2019.

[32] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[33] Esteban G Tabak and Cristina V Turner. A family of nonparametric density estimation algo-
rithms. Communications on Pure and Applied Mathematics, 66(2):145–164, 2013.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

[35] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011.

[36] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics.
In Proceedings of the 28th International Conference on Machine Learning, pages 681–688.
Citeseer, 2011.

6

[37] Christina Winkler, Daniel Worrall, Emiel Hoogeboom, and Max Welling. Learning likelihoods
with conditional normalizing flows. arXiv preprint arXiv:1912.00042, 2019.

[38] Samuel Wiqvist, Jes Frellsen, and Umberto Picchini. Sequential neural posterior and likelihood
approximation. arXiv preprint arXiv:2102.06522, 2021.

[39] Simon N Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature,
466(7310):1102–1104, 2010.

A Failure of direct application of conditional score modeling

The target distribution is given by p(θ|x1, . . . , xn). A direct application of conditional score modeling
yields the sequence of densities

p0(θ|x1, . . . , xn) = p(θ|x1, . . . , xn)

pt(θ|x1, . . . , xn) =
∫
dθ′ p(θ′|x1, . . . , xn)pt(θ|θ′) for t = 1, . . . , T.

(6)

It can be seen from the equation above that the score ∇θ log pt(θ|x1, . . . , xn) does not factorize
in terms of the single-observation scores ∇θ log pt(θ|xj), meaning that the corresponding score
network would have to be trained using samples (θ, x1, . . . , xn) ∼

∏n
j p(xj |θ), obtained by calling

the simulator n times for a single sample θ. As mentioned in Section 1 this is one of the drawbacks
of NPE methods that we seek to avoid.

A.1 Derivation of posterior factorization

The factorization for the posterior distribution p(θ|x1, . . . , xn) is obtained applying Bayes rule twice:

p(θ|x1, . . . , xn) ∝ p(θ)p(x1, . . . , xn|θ) (Bayes rule) (7)

= p(θ)

n∏
j=1

p(xj |θ) (8)

∝ p(θ)
n∏
j=1

p(θ|xj)
p(θ)

(Bayes rule) (9)

= p(θ)1−n
n∏
j=1

p(θ|xj). (10)

B Details for empirical evaluation

B.1 Score NPE

Our implementation of the score network sψ(θ, t, x) has three blocks:

• An MLP with 3 hidden layers that takes θ as input and outputs an embedding θemb,

• An MLP with 3 hidden layers that takes x as input and outputs an embedding xemb,

• An MLP with 3 hidden layers that takes [θemb, xemb, temb] as input, where temb is a posi-
tional embedding obtained as described by Vaswani et al. [34], and outputs the estimate for
the score. (We parameterize the score in terms of the noise variables ϵ [18].)

All MLPs use residual connections throughout.

Running Algorithm 1 to generate samples using the learned score network requires choosing step sizes
δt and the number of Langevin steps L for each noise level γt. We use L = 50 and δt = 0.05 1−αt√

αt
,

where α1 = γ1 and αt = γt
γt−1

for t = 2, . . . , T − 1. For all our experiments we use T = 400.

7

B.2 Flow NPE

We use an implementation of NPE methods based on flows able to handle sets of observations of
any size n ∈ {1, 2, . . . nmax}. The flow can be expressed as qψ(θ|x1, . . . , xn, n). Following Chen et
al. [2] and Radev et al. [23, §2.4], we use an exchangeable neural network to process the observations
x1, . . . , xn. Specifically, we use an MLP with 3 hidden layers to generate an embedding xej for each
observation xj . We then compute the mean embedding across observations x̄e = 1

n

∑n
j xej , which we

use as input for the conditional flow. Finally, we model the flow qψ(θ|x1, . . . , xn, n) = qψ(θ|x̄e, ne),
where ne is an untrained embedding for the number of observations n. For the flow we use 4 Real
NVP layers [6], each one consisting on MLPs with three hidden layers. As for the Score NPE method,
we use residual connections throughout.

We train the flow via maximum likelihood using samples (n, θ, x1, . . . , xn) ∼ Unif(n|min =
1,max = 10)p(θ)

∏n
j p(xj |θ). At test time, this architecture can handle sets of observations of any

size n ∈ {1, 2, . . . , 10}.

C Alternative sampling method without unadjusted Langevin dynamics

This section gives the derivation for the sampling method shown in Algorithm 2. In short, the
derivation uses the formulation of score-based methods as diffusions, and has 3 main steps: (1)
using the scores of pt(θ|x) to compute the Gaussian transition kernels of the corresponding dif-
fusion process [18]; (2) composing n Gaussian transitions corresponding to the n diffusions of
pt(θ|x1), . . . , pt(θ|xn) (this is based on Sohl-Dickstein et al. [30]); and (3) adding a correction for
the prior term (also based on Sohl-Dickstein et al. [30]). We note that steps 2 and 3 require some
approximations. Despite this, our empirical evaluation indicates that the method works well in
practice. We believe a thorough analysis of these approximations would be useful in understanding
when the sampling method from Appendix C can be expected to work. For clarity, we use [A] to
indicate when the approximations are introduced/used.

Connection between score-based methods and diffusion models We begin by noting that score-
based methods can be equivalently formulated as diffusion models, where the mean of Gaussian
transitions that act as denoising steps are learned instead of the scores. Specifically, letting α1 = γ1,
αt = γt/γt−1, and βt = 1 − αt, for t = 1, . . . , T − 1, the learned model is given by a sequence
of Gaussian transitions pt(θt−1|θt, x) = N (θt−1|µψ(θt, t, x), βt) trained to invert a sequence of
noising steps given by qt(θt|θt−1) = N (θt|

√
1− βt θt−1, βtI). The connection between diffusion

models and score-based methods comes from the fact that the optimal means and scores are linearly
related [18]

µψ(θ, t, x) =
1
√
αt
θ +

1− αt√
αt

sψ(θ, t, x). (11)

Approximately composing n diffusions To simplify notation, we use a superscript j to indicate
distributions that are conditioned on xj (e.g. pjt (θt) = pt(θt|xj)). Assume we have transition kernels
pjt (θt−1|θt) that exactly reverse the forward kernels q(θt|θt−1) [A1], meaning that pjt−1(θt−1) =∫
dθt p

j
t (θt) p

j
t (θt−1|θt), or equivalently pjt (θt) p

j
t (θt−1|θt) = pjt−1(θt−1) qt(θt|θt−1). Our goal is

to find a transition kernel p̃t(θt−1|θt) that satisfies

p̃t−1(θt−1) =

∫
dθt p̃t(θt) p̃t(θt−1|θt), (12)

where p̃t(θt) = 1
Zt

∏n
j p

j
t (θt).

3 It is straightforward to verify that the condition from Eq. (12) can be
re-written as

p1t−1(θt−1) =

∫
dθt p

1
t (θt)

p2t (θt)

p2t−1(θt−1)
· · · pnt (θt)

pnt−1(θt−1)

Zt−1

Zt
p̃t(θt−1|θt) (13)

=

∫
dθt p

1
t (θt)

qt(θt|θt−1)

p2t (θt−1|θt)
· · · qt(θt|θt−1)

pnt (θt−1|θt)
Zt−1

Zt
p̃t(θt−1|θt) [A1]. (14)

3This is closely related to our formulation in Section 2, since our definition for the bridging densities involves
the product

∏n
j pt(θ|xj).

8

Then, one way to satisfy Eq. (14) is by setting p̃t(θt−1|θt) so that the term in blue above is equal to
p1t (θt−1|θt). That is,

p̃t(θt−1|θt) = p1t (θt−1|θt)
Zt
Zt−1

p2t (θt−1|θt)
qt(θt|θt−1)

· · · p
n
t (θt−1|θt)
qt(θt|θt−1)

. (15)

However, the resulting p̃t(θt−1|θt) may not be a normalized distribution [30]. Following Sohl-
Dickstein et al. [30], we propose to use the corresponding normalized distribution defined as
p̃Nt (θt−1|θt) ∝ p̃t(θt−1|θt) [A2]. Given that Eq. (15) corresponds to the product of Gaussian
densities, the resulting normalized transition is also Gaussian, with mean and variance given by

µt =

∑
j µjt − (n− 1)

√
αtθ

n− αt(n− 1)
and σ2

t =
βt

n− αt(n− 1)
, (16)

where each µjt is obtained using Eq. (11).

Prior correction term The formulation above ignores the fact that the bridging densities defined in
Eq. (3) involve the prior p(θ). We use the method proposed by Sohl-Dickstein et al. [30] to correct
for this, which involves adding the term σ2

t (1−n)(T−t)
T ∇θ log p(θ) to the mean µt from Eq. (16). (The

derivation for this is similar to the one above, and also requires setting the resulting transition kernel
to the normalized version of an unnormalized distribution [30].)

As mentioned previously, this derivation uses two assumptions/approximations. [A1] assumes that
the learned score function/reverse diffusion approximately reverses the noising process, which is
reasonable if the forward kernels qt add small amounts of noise per step (equivalently, if the noise
levels γ1, . . . , γT increase slowly). [A2] assumes that the normalized version of p̃t(θt−1|θt), given
by p̃Nt (θt−1|θt), approximately satisfies Eq. (14).

9

	Introduction
	Conditional score-based generative modeling

	Score-based Neural Posterior Estimation
	Alternative sampling approach

	Empirical Evaluation
	Failure of direct application of conditional score modeling
	Derivation of posterior factorization

	Details for empirical evaluation
	Score NPE
	Flow NPE

	Alternative sampling method without unadjusted Langevin dynamics

