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Abstract

In the robust submodular partitioning problem, we aim to allocate a set of items
into m blocks, so that the evaluation of the minimum block according to a
submodular function is maximized. Robust submodular partitioning promotes
the diversity of every block in the partition. It has many applications in machine
learning, e.g., partitioning data for distributed training so that the gradients
computed on every block are consistent. We study an extension of the robust
submodular partition problem with additional constraints (e.g., cardinality, multiple
matroids, and/or knapsack) on every block. For example, when partitioning data
for distributed training, we can add a constraint that the number of samples of each
class is the same in each partition block, ensuring data balance. We present two
classes of algorithms, i.e., Min-Block Greedy based algorithms (with an ⌦(1/m)
bound), and Round-Robin Greedy based algorithms (with a constant bound) and
show that under various constraints, they still have good approximation guarantees.
Interestingly, while normally the latter runs in only weakly polynomial time, we
show that using the two together yields strongly polynomial running time while
preserving the approximation guarantee. Lastly, we apply the algorithms on a
real-world machine learning data partitioning problem showing good results.

1 Introduction

The problem of partitioning a given set V of items into m blocks, where any two blocks share no
items in common, arises in many real-world scenarios and machine learning applications. As an
optimization problem, partitioning aims to generate the blocks so that the utilities of the blocks, as
measured by a given set function, are good. Submodular functions are a rich family of set functions
that naturally captures diversity of a given set of items. They have been applied in many real-
world problems [26, 30, 21, 17, 13, 18, 28]. By maximizing a submodular utility function for each
partitioned block, we encourage each block to be representative of the ground set V . Many algorithms
have been proposed for various submodular partitioning problems with approximation guarantees.

For the submodular welfare problem [24], we aim to find a partition such that the sum of the
submodular evaluations of every block is maximized. Such an objective promotes the overall utility
of the entire partition but some blocks may still have small function values. The robust submodular
partitioning problem [12, 29] (often called “submodular fair allocation with indivisible goods”) aims
to find the partition such that the minimum-valued block in the partition is maximized according
to the submodular function. The robust objective optimizes the worst block in the partition so that
all blocks are minimally “good.” In the general setting, every block in the partition may have a
different submodular function (the heterogeneous case) although for this work, we study only the
restricted setting where all blocks share the same submodular function (the homogeneous case). The
robust submodular partitioning problem has many applications. Given V as the training dataset for
a machine learning task, Wei et al. [29] finds a partition of V for distributed training: every block
of partitioned data is sent to a single machine for parallel gradient computations, and the gradients

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



are aggregated over all the blocks in the partition for model updates. Since we enforce each block to
be representative of V , the gradients computed across distributed machines are consistent, resulting
in reduced variance and improved convergence for the aggregation step. Using a similar idea, Wang
et al. [25] partitions the training data into mini-batches so that every mini-batch is as representative
as possible, therefore reducing the variance during mini-batch gradient-based training.

In this work, we explore two different algorithmic approaches, Min-Block Greedy and Round-Robin
Greedy, for our partitioning problem but under various constraints, newly applied to this problem. For
Min-Block Greedy based algorithms, we first show that the 1

m
bound for the unconstrained case is tight.

We then modify the algorithm to allow a general down-closed constraint C, and prove an approxima-
tion bound of ↵

↵m+1 , where ↵ is the bound for solving the submodular maximization problem under
constraint C using a greedy based algorithm. For example, for a cardinality constraint, ↵ = 1�1/e [9],
and the bound for constrained robust submodular partitioning is (m+ 1

1�1/e )
�1. Similarly, for C as

an intersection-of-p-matroids constraint, ↵ = (1 + p)�1 [10], and the bound is (m+ p+ 1)�1; for C
as a knapsack constraint, ↵ = 0.5(1� 1/e) [16], and the bound is (m+ 2

1�1/e )
�1. For Round-Robin

Greedy based algorithms, when C is a cardinality constraint, we get a bound of (1�1/e)2

3 , and when C is
a matroid constraint, we get a bound of 1�1/e

5 . The Min-Block Greedy approach gives a weaker bound,
and since the 1

m
bound for the unconstrained case is tight, we cannot improve upon the 1

m
factor for the

constrained case. The Round-Robin Greedy approach gives a constant bound, but its running time is
worse. The running time for Min-Block Greedy is O(n2), where n is the ground set size. For Round-
Robin Greedy under a matroid constraint, the running time is O(n2(log logm+log 1

�
)), as it needs to

use binary search to find the optimal solution value to the given problem over an exponentially decreas-
ing sequence, with 1

1+�
(� > 0) as the multiplicative factor. In all cases, we assume an oracle model,

and the running time is in terms of the number of submodular evaluations. An important contribution
our work shows is that by utilizing the Min-Block Greedy algorithm result as input, our Round-Robin
Greedy algorithm attains strongly polynomial running time — all previous results on the uncon-
strained case using a Round-Robin-like algorithm have only weakly polynomial running time [3].

The various constraints (e.g., cardinality, matroids, and knapsack) we study greatly improves the
applicability of robust submodular partitioning. Several applications that benefit from the constraints
include: (1) Partition a training data for machine learning models in distributed training or forming
deterministic mini-batches [29, 25]. The additional constraint can be the number of samples from
each class to be no more than a certain value. If there are enough samples in the training data, every
resulting block will have the same number of samples for each class, which avoids imbalance, further
promoting each block’s diversity, and improving the gradients’ consistency. (2) Given an undirected
graph, we partition the edges into subgraphs so that each subgraph is representative based on the
submodular evaluation, and we also constrain each subgraph to have no cycles (a cycle matroid). A
practical scenario is that we wish to send information efficiently over a graph of devices. We partition
the graph so that information can be sent in parallel, and the constraint to have no cycles enforces that
information is not redundantly sent twice to the same device, leading to improved communications
efficiency. (3) Again, for an undirected and connected graph, we partition the edges into subgraph
blocks such that if we were to remove any block of the partition from the original graph, the remaining
graph remains connected (which can be done via a bond matroid, where min-cuts are cycles and
anything not a cut is independent). In practice, this functions as a form of reliability insurance. For a
graph of devices, we partition the graph to perform computation in parallel, so that if the connections in
one block fail, the other blocks can still operate and communicate since the graph remains connected.

2 Related Work

Golovin [12] introduces robust submodular partitioning (i.e., submodular fair allocation of indivisible
goods), and proposes a matching-based algorithm with a bound of 1

n�m+1 . Khot & Ponnuswami [14]
proposes a binary search based algorithm and gives an improved bound of 1

2m�1 . Asadpour & Saberi
[2] uses an ellipsoid approximation approach and gives a bound of ⌦( 1p

nm1/4 logn log3/2 m
). Wei et al.

[29] gives a simple Min-Block Greedy algorithm and proves a 1
m

bound. A Round-Robin Greedy ap-
proach is given in [3] with a bound of 1�e

�1

3 . Ghodsi et al. [11] proposes a local search algorithm with
a bound of 1

3 . Both [3] and [11] requires guessing of the optimal solution value from an exponentially
decreasing sequence of values, so strictly speaking, they lose an extra (1+ �)-factor in the approxima-
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tion bound where (1 + �) is the exponential factor for the guessing sequence. We can set the � value
small to get close to the constant bounds shown above at the costs of computation. Wang et al. [25]
extends the Min-Block Greedy algorithm with a cardinality constraint, and also shows a hierarchical
partitioning framework to reduce the memory costs. We adapt the Min-Block Greedy approach [29]
and the Round-Robin Greedy approach [3] to the constrained case. To the best of our knowledge, this
work is the first (as far as we know) to study the robust submodular partitioning problem under all of
the various constraints (cardinality, intersection of matroid, knapsack). Wang et al. [25] is a special
case of our work as it only studies the cardinality constraint. Cotter et al. [8] studies (as well as allow-
ing multiple blocks to be jointly scored) a matroid constrained “groupings” (i.e.,coverings, packings,
or partitions) problem but only a fractional subset of groups (rather than the minimum of the groups),
is guaranteed to have values larger than the bounded max-min OPT, while our bound compares the
min block evaluation to the optimal max-min value. Another line of related research is the submodular
load balancing problem, which minimizes the maximum-valued block in the partition according to the
submodular evaluations. In contrast to promoting diversity of each block for the robust submodular
partition problem, submodular load balancing encourages every block to contain redundant items,
similar to standard clustering objectives. Theoretically, this problem has been shown to be much
harder as Svitkina & Fleischer [22] shows a information theoretical lower bound of o(

q
n

logn
), and

also gives a sampling algorithm to match the lower bound up to constant factors. Similar to the
max-min case, Ghodsi et al. [11] uses the ellipsoidal approximation to get a bound of O(

p
n log n).

Wei et al. [29] gives a Lovász extension based relaxation algorithm and achieves a bound of m.

3 Preliminaries and Formulation
With a ground set V of n items, a submodular function f is a set function 2V ! R that satisfies the
property: f(A) + f(B) � f(A [ B) + f(A \ B), where A,B ✓ V . Equivalently, a submodular
function is characterized by diminishing returns: f(v|A) � f(v|B) 8v /2 B and A ⇢ B ✓ V , where
f(v|B) = f({v} [B)� f(B). Submodular functions naturally describe the diversity or representa-
tiveness of a given set of items. Many simple greedy-based algorithms have been developed to solve
optimization problems involving submodular functions, giving both theoretical approximation guar-
antees, as well as good empirical performance. We restrict the submodular functions discussed in this
paper to be monotone non-decreasing and normalized, i.e., f(B) � f(A) 8A ✓ B ✓ V , f(;) = 0.

A matroid M = (V, I) is a set system that describes the independence relationships among the
subsets of the ground set V . I is a set of subsets of V and every S 2 I is considered an independent
subset. The matroid rank function is defined as rM(A) = max{|S| : S ✓ A,S 2 I}. rM(V )
indicates the maximum size of a subset that may be independent according to the matroid M. All
subsets of cardinality  k with some integer k > 0 form a uniform matroid, which we denote by M

u

k
.

A partition matroid is one where we partition the ground set into blocks, and a set is independent
if it intersects each block by no more than a block-specific limit. We define a particularly useful
partition matroid on an expanded ground set V̄ as follows: We first duplicate the ground set m times,
creating V1 = V2 = . . . Vm = V , which are ground set copies. We create an expanded ground set
V̄ = ]j=1:mVj as the disjoint union. A subset S ✓ V̄ is independent in M

p
m

if for every element
v 2 V , let its m copies in V̄ be {v1, v2, . . . , vm}, we have |S \ {v1, v2, . . . , vm}|  1, i.e., S
contains at most one copy of element v. Apart from the uniform matroid and this particular partition
matroid, there are many other matroids reflecting a natural notion of independence, for example, the
linearly-independent set of real vectors and the spanning trees in a graph. In the below, we use both
S 2 M and, when clear, S 2 I, to indicate that S is independent in the matroid M = (V, I).

Matroids are often used as constraints in submodular optimization problems: maxS2I f(S) with a
matroid M = (V, I). When M is a uniform matroid M

u

k
, this reduces to the cardinality submodular

max and the greedy algorithm gives a 1�e
�1 bound [9]. For a general constraint with the intersection

of p matroids, the simple greedy algorithm gives a 1
p+1 bound [10]. Suppose we represent a set S as a

binary indicator vector xS 2 {0, 1}n, i.e., 8i 2 [n], xS [i] = 1 if vi 2 S or otherwise xS [i] = 0. Then
for all the independent sets of a matroid M = (V, I), the convex hull over all the xS , S 2 I forms a
polytope, which is called the matroid polytope PM of matroid M [9]. Based on the convex property
of the matroid polytope, algorithms [4–6, 24] have been proposed to firstly solve a continuous
extension of the submodular optimization problem under the matroid polytope constraint, which
generates a fractional solution in [0, 1]n, and then round the fractional solution to an integral solution
to get the resulting set. The continuous greedy algorithm [4] gives a 1� e

�1 guarantee under a single
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matroid constraint using pipage rounding [1, 4]. Interestingly, running the continuous greedy under a
partition matroid constraint (submodular welfare problem) gives a uniform fractional solution, i.e., on
the expanded ground set V̄ , the fractional solution x = ( 1

m
,

1
m
, . . . ,

1
m
) (i.e., assigning 1

m
of every

element to each block) leads to a 1� e
�1 bound in expectation for an integral solution that assigns

each element in V uniformly to one of the m blocks. This observation also constitutes the basic
idea of Round-Robin Greedy for solving the robust submodular partition problem [3], which we will
discuss in more detail later.

For a submodular function f on a ground set V , the robust submodular partition problem (submodular
fair allocation) [12] is defined as:

max
⇡2⇧(V,m)

min
A2⇡

f(A), (1)

where m is the number of blocks in a partition, we denote all possible partitions with m blocks of
ground set V as ⇧(V,m), and one partition ⇡ with |⇡| = m is a collection of m disjoint sets. Equiva-
lently, we can represent the partition using a partition matroid constraint on the expanded ground set V̄ :

max
S✓V̄ ,S2Mp

m

min
j2[m]

f(S \ Vj). (2)

Intuitively, the above optimization for robust submodular partitioning encourages the minimum-
valued block to have a high submodular evaluation. Compared to the submodular welfare problem,
the robust submodular partition promotes fairness for every one of the partition blocks.

There have been three recent approximation algorithms developed to solve Eq. (1). Particularly, Wei
et al. [29] uses a Min-Block Greedy algorithm, which greedily adds the element with the largest gain
to the block with the minimum evaluation. Barman & Krishna Murthy [3] propose a Round-Robin
Greedy algorithm, which iteratively traverses all the blocks in a fixed order, and greedily adds an
element with the largest gain to each block. Ghodsi et al. [11] applies a local search approach, which
starts with an arbitrary partition and keeps moving an element from a non-minimum block to the
minimum block if this relocation improves the objective by certain threshold until no such element
can be found.

For [3] and [11], they both require guessing the optimal solution’s value, and they need to run multiple
instances of their algorithms with the guessed optimal values as an exponentially decreasing sequence
from the maximal possible value f(V ) to the optimal solution value µ = max⇡2⇧(V,m) minS2⇡ f(S).
With the exponential decreasing factor as 1 + �, the running time (in terms of submodular function
calls) is O(n2 1

�
log f(V )

µ
) for [3], and O(n2

m
2 1
�
log f(V )

µ
) for [11]. Min-Block Greedy, a much

simpler algorithm, has a running time of O(n2). Note that the settings of [3] and [11] are slightly
more general than Eq. (1) as the submodular function for each block can be different. But it’s not the
heterogeneous case either as they focus on a different notion of optimality.

3.1 Discussions about the Optimality in [3, 11] and the Heterogeneous Case

The works [3, 11] both study the partitioning problem in the economics context of fair allocation
of indivisible goods. In such a setting, every block is an agent, and we want to find an allocation
of the goods to each agent in a fair manner, so that each agent’s evaluation of the allocated goods
to himself is optimized. Each agent can have different evaluations for the goods, which means that
the submodular function for each block can be different. Taking [3] as an example, the theoretical
guarantee they prove is
Lemma 1 (Theoretical Guarantee in [3]). Let A1, A2, . . . , Am be the solution to the Round-Robin
Greedy algorithm for the unconstrained problem, and given m submodular functions for the m blocks
as fj for j = 1, 2, . . .m, for every agent j we have fj(Aj) �

1�e
�1

3 max⇡2⇧(V,m) minS2⇡ fj(S).

Intuitively, the bound guarantees that based on each agent’s evaluation fj , the goods allocated to
himself is not bad compared to the worst block in the allocation. When all the fj’s are the same, the
bound reduces to the bound for the homogeneous case of robust submodular partitioning, which is
the focus of this paper. The heterogeneous case for robust submodular partitioning is different, as it
requires to show a bound like (suppose the algorithm solution is Aj for j 2 [m])

min
j2[m]

fj(Aj) � � max
⇡2⇧(V,m)

min
S2⇡

fj(S). (3)
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We give an example of the m functions so that the two guarantees vary. Say we have a predefined
partition over the ground set V into m blocks as C1, C2, . . . , Cm and [j2[m]Cj = V , Cj \ Cj0 = ;,
|Cj | = |Cj0 | (assume |V | is a multiple of m). Let fj(S) = |S \ Cj |. The optimal solution to the
heterogeneous case max⇡2⇧(V,m) minj2[m] fj(Aj) is to assign the items in the same way as the
predefined partition C1, C2, . . . Cm, and the optimal solution value is |Cj |. However, for the bound
in [3, 11], the optimal solution {O1, O2, . . . , Om} 2 argmax⇡2⇧(V,m) minA2⇡ fj(A) is to intersect

each predefined block equally, i.e., |Oj \ Cj0 | =
|Cj0 |
m

8j, j
0
2 1, . . . ,m. Therefore, the optimal

solution value is then |Cj |
m

.

In this work, we study the constrained case for the submodular robust partition problem in the
homogeneous setting (submodular functions for all blocks are the same). We extend Min-Block
Greedy algorithm [29] and Round-Robin Greedy algorithm [3] to adapt to various constraints, e.g.,
cardinality, matroid, and intersection of matroids.

4 Min-Block Greedy Based Algorithms
Wei et al. [29] proposes a Min-Block Greedy Algorithm 2 for Eq. (1), which loops over n iterations,
and at every iteration, for the minimum-valued block Aj⇤ 2 argminj f(Aj), it finds the element
with the largest gain f(v|Aj⇤). Wei et al. [29] proves a 1/m bound of Min-Block Greedy. In
fact, their proof works for a simpler algorithm, Min-Block Streaming Algorithm 1, which assumes
that the algorithm accesses elements from the ground set in an arbitrary order as a stream V =
(v1, v2, . . . , vn), and it assigns the incoming element to the block with the least evaluation. We denote
the optimal partition to Eq. (1) as ⇡⇤ = {O1, O2, . . . , Om}.
Lemma 2 (Unconstrained Min-Block Streaming[29]). For a ground set V and its elements
(v1, v2, . . . , vn) coming in an arbitrary streaming order, the output solution of Alg. 1 has
minj2[m] f(Aj) �

1
m
minj2[m] f(Oj).

Corollary 1 (Unconstrained Min-Block Greedy[29]). The output solution of Alg. 2 has
minj2[m] f(Aj) �

1
m
minj2[m] f(Oj) since the order of adding elements in Min-Block Greedy

is one possible order of the ground set elements.

Intuitively, Alg. 2 optimizes the objective Eq. (1) greedily, i.e., it always increases the current value
(the minimum-block evaluation) with the largest possible gain, while the performance of Alg. 1
greatly depends on the order of elements, so it might seem that the bound for Min-Block Greedy
should improve upon the current 1

m
bound. However, as shown in our new result in the following

lemma, the bound in Corollary 1 is tight.
Lemma 3 (Tightness of Corollary 1 ). 8✏ > 0, 9 a submodular function f such that the output
solution of Alg 2 minj=1:m f(Aj) =

1
m
minj=1:m f(Oj) + ✏.

Algorithm 1: Min-Block Streaming
input : submodular function f , ground

set as a stream
V = (v1, v2, . . . , vn), number of
blocks m

1 R := V ;
2 Let A1 = A2 = . . . = Am = ;;
3 for i = 1 : n do
4 j

⇤
2 argminj f(Aj);

5 Aj⇤ := Aj⇤ [ {vi} ;
6 return (A1, A2, . . . , Am)

Algorithm 2: Min-Block Greedy
input : submodular function f , ground

set V , number of blocks m
1 R := V ;
2 Let A1 = A2 = . . . = Am = ;;
3 while R 6= ; do
4 j

⇤
2 argminj f(Aj);

5 v
⇤
2 argmaxv2R f(v|Aj⇤);

6 Aj⇤ := Aj⇤ [ {v
⇤
} ;

7 R := R \ {v
⇤
};

8 return (A1, A2, . . . , Am)

We elaborate on how to construct the submodular function in Appendix A. The key idea is that
we can find a set-cover function where even though Min-Block Greedy selects the element with
the largest gain, the element can still be quite redundant with the current minimum block. Say
the current minimum block is A, and the maximum-gain element is v chosen by the greedy step,
meaning f(v|A) is larger than f(v0|A) for v0 2 R \ v. However, f(v|A)

f(v) can still be very small, i.e.,
the area covered by v according to the set-cover function is already mostly covered by A. On the
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other hand, the optimal solution can fully utilize f(v) thus making a more lonesome v cover a much
larger area overall. Note that Lemma 3 also serves as the tightness for Lemma. 2 since the order
of adding elements in Min-Block Greedy follows a streaming order.

More generally, given a constraint C, we define the constrained robust submodular partition as:

max
⇡2⇧(V,m,C)

min
A2⇡

f(A), (4)

where ⇧(V,m, C) is the set of all possible partitions on set V into m blocks such that for every
partition ⇡ 2 ⇧(V,m, C), every block A 2 ⇡ should satisfy the constraint A 2 C. We denote the
optimal partition in Eq. (4) as ⇡⇤

C
= {O

C
1 , O

C
2 , . . . , O

C
m
}. We remark that due to the constraints, some

elements might not be assigned to a partition block, so strictly speaking the solution is an allocation
(or “grouping”, Cotter et al. [8]) of elements rather than a partition.

For now, we will take C as any down-closed constraint: Let C be a collection of subsets of the ground
set V , and by satisfying the constraint, we require the solution A to be one of the subsets in C. The
down-closed property means that if A 2 C we have B 2 C for any B ✓ A. Following Eq. (4), we
can define the constrained problem in terms of the expanded subset V̄ :

max
S✓V̄ ,S2Mp

m,8j:(S\Vj)2C
min
j2[m]

f(S \ Vj). (5)

Based on the Min-Block Greedy algorithm for the unconstrained case, we propose a natural extension
to the constrained case (Alg. 3), where at every iteration, for the minimum-valued block Aj⇤ , we
greedily find the best element v⇤ that retains block feasibility under the constraint C, i.e., {v⇤}[Aj⇤ 2

C. If we cannot find any element in the remaining set to add to the current minimum block, we
remove the current block from the candidate blocks and move to the next smallest valued block.

In Line 6 of Alg. 3, we call a subroutine GreedyStep(R, C, Aj⇤) to greedily find a feasible ele-
ment. The subroutine varies according to the type of constraint C. Particularly, for the constrained
submodular maximization problem defined as

max
S✓V,S2C

f(S). (6)

GreedyStep(·) is shared by Alg. 3 and Alg. 4, and if Alg. 4 is an approximation algorithm of solving
Eq. (6) with some bound ↵, we can prove the following result for Alg. 3.

Algorithm 3: Constrained Min-Block Greedy
input : submodular function f , ground set V ,

number of blocks m, constraint C
1 Let A1 = A2 = ... = Am = ;;
2 Let J = [m], R = V ;
3 while R 6= ; and J 6= ; do
4 j

⇤
2 argminj2J f(Aj);

5 if 9v 2 R s.t. Aj⇤ [ {v} 2 C then
6 v

⇤ := GreedyStep(R, C, Aj⇤);
7 Aj⇤ := Aj⇤ [ {v

⇤
}, R := R \ {v

⇤
};

8 else
9 a

⇤
2 argmaxa2Aj⇤[R f({a});

10 if f({a⇤}) � f(Aj⇤) then
11 Aj⇤ := {a

⇤
}, R := R \ {a

⇤
} ;

12 Let J = J \ j
⇤;

13 return (A1, A2, ..., Am)

Algorithm 4: Constrained Submodular
Greedy Max
input : submodular function f , ground

set V , constraint C
1 R := V ;
2 Let Sg = ;;
3 while R 6= ; do
4 if 9v 2 R s.t. Aj⇤ [ {v} 2 C then
5 v

⇤ := GreedyStep(R, C, S
g) ;

6 S
g := S

g
[ {v

⇤
} ;

7 R := R \ {v
⇤
};

8 else
9 Break;

10 a
⇤
2 argmaxa2V f({a});

11 return argmaxA2{Sg,{a⇤}} f(A)

Theorem 1 (Constrained Min-block Greedy). Given a constraint C, if the greedy solution S
g

to problem maxS2C f(S) using Alg. 4 has a bound of ↵, i.e., f(Sg) � ↵maxS2C f(S), then the
solution of Alg. 3 has minj2[m] f(Aj) �

↵

↵m+1 minj2[m] f(O
C
j
). Assuming GreedyStep(·) takes

O(1) oracle calls, the time complexity of of Alg. 4 is O(n2).

The general idea of the proof (details in Appendix A) is that we divide the ground set V into two
disjoint parts V = V

0
[R

0, where the min block in the output solution A intersecting V
0 corresponds

6



to the min block solution of an instance of unconstrained robust partition problem (Eq. (1)) defined
on the ground set V 0, and A \ R

0 with the other part corresponds to the solution of an instance of
submodular maximization (Eq. (6)) under the constraint C defined on the ground set A [ R

0. We
bound the two parts separately and combine them to obtain the above bound.
Corollary 2 (Cardinality Constrained Min-block Greedy). For C as a cardinality constraint, the
output of Alg 3 has minj=1:m f(Aj) �

1
m+ 1

1�e�1
minj=1:m f(OC

j
).

Corollary 3 (Matroid Constrained Min-block Greedy). For C as an intersection of p matroids
constraint, the output of Alg 3 has minj=1:m f(Aj) �

1
m+p+1 minj=1:m f(OC

j
).

Corollary 4 (Knapsack Constrained Min-block Greedy). For C as a knapsack constraint, the
output of Alg 3 has minj=1:m f(Aj) �

1
m+ 2

1�1/e
minj=1:m f(OC

j
).

For C as a cardinality constraint, GreedyStep(·) just picks the element with the largest gain assuming
the block has not yet reached the cardinality limit k. For C as an intersection of p matroid constraints,
GreedyStep(·) finds the element v⇤ that has the largest gain f(v⇤|Aj⇤) assuming the block can be
kept feasible, i.e., v⇤ [Aj⇤ 2 C. For C as a knapsack constraint with the weight of each element v
as w(v), GreedyStep(·) finds the element v⇤ with the largest ratio f(v⇤|Aj⇤ )

w(v) assuming the sum of
weights can be kept below the given budget. In line 9-11 of Alg. 3 and line 10-11 of Alg. 4, we
include an extra step of comparing with the largest singleton value. Such step is redundant when
C is an intersection of matroid constraints, but is essential for the knapsack constraint case, as the
modified greedy algorithm for the knapsack problem [16] requires this extra step or otherwise ↵ is
unbounded. Due to the tightness of the 1

m
bound we have proved for the unconstrained case, the 1

m

dependence in the constrained bound cannot be improved.

5 Round-Robin Greedy Based Algorithms

Barman & Krishna Murthy [3] propose a round-robin style algorithm for the unconstrained robust
submodular partition problem (Eq. (1)) and gives a constant bound of 1�e

�1

3 with weakly polynomial
running time. Compared to Min-Block Greedy, Round-Robin Greedy requires guessing the optimal
values by an exponentially decreasing sequence, and for each guessed value, it runs one instance
of the round-robin subroutine. Specifically, suppose µ = minj2[m] f(Oj), i.e., µ is the optimal
solution value for the unconstrained case, then for a parameter � > 0, Round-Robin Greedy runs the
round-robin subroutine with the guessed optimal values from a sequence (f(V ), f(V )

1+�
,

f(V )
(1+�)2 , . . .)

and ends when the guessed value is no larger than µ. The running time of each round-robin
subroutine is O(n2), as it greedily finds the element with the largest gain by iterating over all the
remaining elements. There are log1+�

f(V )
µ

guessed values in the exponentially decreasing sequence,

so the overall running time is O(n2 log1+�

f(V )
µ

) = O(n2 1
�
log f(V )

µ
). Note that since we use a

(1 + �) factor exponentially decreasing sequence, we lose a (1 + �) factor in the approximation
bound, which can be improved arbitrarily by using a smaller � value but with a cost of running more
instances of the round-robin subroutine.

The major idea behind Round-Robin Greedy comes from the solution of Continuous Greedy for
the submodular welfare problem, which is an uniform fractional vector x = ( 1

m
,

1
m
, . . . ,

1
m
) with the

length of x equal to the size of the expanded ground set |V̄ |. Let F be the multilinear extension [4] of f ,
Continuous Greedy gives a bound that F (x) = ER⇠x f(R) � (1� e

�1)max⇡2⇧(V,m)

P
A2⇡

f(A),
where ER⇠x f(R) takes the expectation of f(R) on a random set R with each element sampled
independently according to the probability in the fractional vector x. Note that the hardness for
submodular optimization under a matroid constraint is 1 � e

�1, which means that the random
assignment strategy achieves the best possible theoretical bound on the submodular welfare problem.

Round-Robin Greedy can be thought as a rounding mechanism for the fractional solution x. The
round-robin style iteration is similar to the uniform random assignment in a deterministic manner, and
by greedily finding the element, the value of every block can be bounded against that for the random
assignment. In fact, Round-Robin Greedy bounds every block Aj to be f(Aj) �

1
3
F (x)
m

, and since
the welfare solution bounds the robust solution in terms of the sum: max⇡2⇧(V,m)

P
A2⇡

f(A) �P
j2[m] Oj � mµ, we get the desired bound for the robust partition problem.

7



We extend Round-Robin Greedy to the constrained case (Eq. (4)) firstly with C as a cardinality
constraint k. This is a relatively simple case due to the nature of Round-Robin Greedy that every
block gets assigned with the same number of elements at the end of every round-robin iteration.
We present the modified algorithm in Alg. 5, which also helps to explain the essential ideas of the
original Round-Robin Greedy as we describe below.
Lemma 4 (Cardinality Constrained Round-Robin). For the problem in Eq. (4), with C as a
cardinality constraint k, Alg. 5 gives a solution minj2[m] f(Aj) �

(1�e
�1)2

3 minj2[m] f(O
k

j
).

Algorithm 5: Cardinality Round-Robin Greedy
input : f , V , m, cardinality constraint k, discounting factor for guessing optimal �

1 Let ⌧ be the solution value of Alg. 3;
2 Let high = dlog1+�(m+ 2)e, low = 0;
3 Create a sequence of guessed values: (⌧, (1 + �)⌧, (1 + �)2⌧, . . . , (1 + �)high⌧);
4 Create an empty solution (; for each block in the partition) for each guessed value

⇡0,⇡1, . . . ,⇡high ;
5 while high � low do
6 Let idx = b(high + low)/2c; Let A1 = A2 = . . . = Am = ;;
7 Let V 0 = {v|v 2 V, f(v)  (1�e

�1)2

3 (1 + �)idx ⌧}; Let G = V \ V
0;

8 Assign G to Am�|G|+1, Am�|G|+2, . . . , Am with one element per block;
9 Let m0 = m� |G|;

10 Let A0
1, A

0
2, . . . , A

0
m0 be the solution to max⇡2⇧(V 0,m0,k)

P
S2⇡

f(S) using continuous
greedy and swap rounding; Let V 00 = [j2[m]0A

0
j
;

11 Let {A1, A2, . . . , Am0} = RR(f, V 00
,m

0
,M

u

k
, [m0]);

12 if f(Aj) �
(1�e

�1)2

3 (1 + �)idx ⌧ 8j 2 [m0] then
13 Let ⇡idx = {A1, A2, . . . , Am}; Let low = idx + 1;
14 else
15 Let high = idx � 1;
16 return best of ⇡0,⇡1, . . . ,⇡high ;

Algorithm 6: Round-Robin Greedy Itera-
tions (RR(f,R,m

0
,M, J))

input : f , R, m0, matroid constraint M,
set of block indices J

1 while J 6= ; and R 6= ; do
2 for j 2 [m0] do
3 if j 2 J then
4 if 9v 2 R s.t. Aj [ {v} 2 M

then
5 v

⇤
2

argmax
v2R,Aj[v2M

f(v|Aj);

6 Aj := Aj [ {v
⇤
} ;

7 R := R \ {v
⇤
};

8 else
9 Let J = J \ j;

10 return (A1, A2, . . . , Am0)

Here is how we achieve strongly-polynomial time.
Different from the original Round-Robin Greedy,
which performs a grid search over guessed optimal
values, we perform a binary search over the sequence
of values and therefore the number of outer iterations
is reduced. Most importantly, we use the Min-Block
Greedy solution’s value as the minimum guessed
value ⌧ . Because of the 1

m+ 1
1�1/e

bound of the Min-
Block Greedy solution, the maximum guessed value
is thus bounded by (m+2)⌧ . We then create a 1+ �-
factor exponential decreasing sequence between ⌧

and (m+2)⌧ to binary search for the optimal solution
value. This improves the number of outer iterations of
the algorithm to O(log log1+� m) = O(log logm +
log 1

�
), which is strongly-polynomial while the num-

ber of outer iterations O(log1+�

f(V )
µ

) for the origi-
nal unconstrained case is only weakly-polynomial as
it has a log dependence on the function value.

In every outer iteration (Line 12-15), Alg 5 checks if the round-robin solution based on the guessed
optimal value (1 + �)idx ⌧ satisfy the approximation bound, i.e., f(Aj) �

(1�1/e)2

3 (1 + �)idx ⌧
8j 2 [m]0. If the bound is (not) satisfied, the guessed value is large (small) and we move to an
increased (decreased) search value. Within every outer iteration, we perform round-robin greedy
(iterate over every block in some fixed order and greedily add to the block the element with the
largest gain). Line 10 of Alg. 5 is the major change to Round-Robin Greedy specifically for the
cardinality constraint case, where we first find the solution to the cardinality constrained submodular
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welfare problem max⇡2⇧(V 0,m0,k)

P
S2⇡

f(S), and then only apply Round-Robin Greedy to the
union V

00 of the solution A
0
1, A

0
2, . . . , A

0
m0 .

The running time of Alg. 5 is similar to Round-Robin Greedy, with additional costs caused by
Line 10, which solves a cardinality constrained submodular welfare problem. Using Continuous
Greedy and swap rounding [7] for Line 10 can be quite costly (O(n5) for the inner loop), which may
improve in the future by a better algorithm. In Alg. 7, we propose another algorithm that addresses
the constrained robust submodular problem with C as any matroid constraint M and incurs no
additional computation costs compared to Round-Robin Greedy.
Theorem 2 (Matroid Constrained Round-Robin). For the problem in Eq. (4), with C as any
matroid constraint M, Alg 7 gives a solution minj2[m] f(Aj) �

(1�e
�1)

5 minj2[m] f(O
M
j

). The
time complexity of of Alg. 7 is O(n2(log logm+ log 1

�
)).

Algorithm 7: Matroid Round-Robin Greedy
input : f , V , m, matroid constraint M, discounting factor for guessing optimal �

1 Let ⌧ be the solution value of Alg. 3;
2 Let high = dlog1+�(m+ 2)e, low = 0;
3 Create a sequence of guessed values: (⌧, (1 + �)⌧, (1 + �)2⌧, . . . , (1 + �)high⌧);
4 Create an empty solution (; for each block in the partition) for each guessed value

⇡0,⇡1, . . . ,⇡high ;
5 while high � low do
6 Let idx = b(high + low)/2c; Let A1 = A2 = . . . = Am = ;;
7 Let V 0 = {v|v 2 V, f(v)  1�e

�1

5 (1 + �)idx ⌧}; Let G = V \ V
0;

8 Assign G to Am�|G|+1, Am�|G|+2, . . . , Am with one element per block;
9 Let m0 = m� |G|;

10 Let {A1, A2, . . . , Am0} = RR(f, V 0
,m

0
,M, [m0]);

11 if f(Aj) �
(1�e

�1)
5 (1 + �)idx ⌧ 8j 2 [m0] then

12 Let ⇡idx = {A1, A2, . . . , Am}; Let low = idx + 1;
13 else
14 Let high = idx � 1;
15 return best of ⇡0,⇡1, . . . ,⇡high ;

Comparing to Alg. 5, the major change in Alg. 7 is (1) we do not need to run the costly Continuous
Greedy and swap rounding to get a solution to the constrained welfare problem, which makes the
algorithm applicable in practice; (2) for the RR(·) subroutine, we find a feasible element and add
it to the current block, and we remove a block from the candidate set J if there are no element in
the remaining set that can be added to the block without violating the matroid constraint. Note for the
cardinality constraint case, we can always find a feasible element until every block has k elements. The
overall running time is O(n2(log logm+log 1

�
)). The general idea of proving Theorem 2 is to bound

the solution to the fractional solution of the continuous relaxation. For every block in the solution, we
inspect the elements that have been evaluated during the greedy step. For those elements with large
gains when being evaluated but not added due to the violation of the matroid constraint, we bound
their gains as submodular maximization with a matroid constraint on a reduced ground set. For the
remaining elements, we bound their gains by the greedy step and together we get the desired bound.

6 Experiments

We empirically test Algs. 3 and. 7 on the CIFAR-10 training set [19] (|V | = 50000). We use facility
location as our submodular function, i.e., f(S) =

P
v2V

maxv02S sim(v, v0), where sim(v, v0)
measures the affinity between elements v and v

0. This function is widely used and naturally describes
a subset’s diversity via its similarities/distances to all other points in the ground set, and it has achieved
much practical success [27, 26, 23]. For similarity, we use a Gaussian kernel with L2 distances, i.e.,
sim(v, v0) = exp(�||v�v

0||2
�

), where � is the bandwidth of the kernel, set to the average L2 distance,
i.e., � =

P
v,v02V

||v � v
0
||2/n

2. The features used to calculate the L2 distance is the bottleneck
layer’s outputs generated by a deep auto-encoder model (details are in Appendix D).
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Figure 1: Matroid Constrained results. The x-axis denotes the
number of samples per class for the matroid. A total of 2000
samples are selected for each case.
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Figure 2: Training ResNet-9 (Myrtle AI) on partitioned mini-
batches under matroid constraints with various parameters. The
y-axis denotes the test set accuracy. The x-axis denotes the num-
ber of samples per class for the matroid.

We test the algorithms and compare
their objective values (Eq. (4)) with
a matroid constraint where we limit
the number of samples selected for
each class in CIFAR-10 for each block
(CIFAR-10 has 10 classes). We com-
pare the two algorithms with a random
selection baseline — we randomly
sample from each class and assign to
each block with the constrained number
of elements. Hence, the random selec-
tion results satisfy the constraints. In
Fig. 1, we report the results for different
matroid constraints with various block
sizes. The random baseline results
are reported with means and standard-
deviations over 10 runs. For all cases,
we see that both Alg. 3 and Alg. 7
significantly outperform the baselines.
Although Alg. 7 has a better theoretical
bound, Alg. 3 consistently gives better
performance. Intuitively, Alg. 3 directly
optimizes the objective as it greedily
adds elements to the minimum-valued
block. We expect Alg. 3 to perform
better in practice compared to Alg. 7
as Alg. 7 has a fixed ordering of the
blocks, and the minimum-valued block
tends to be the last block in the ordering,
in which case it does not get to select
samples that have already been selected
by prior blocks in the ordering. In
Fig. 2, we use the partitioned blocks as
minibatches to train a ResNet-9 model
and compare their performance on the
test set. We observe that the blocks with higher submodular evaluations tend to generate better
performance for the trained model. We also provide results on synthetic data in Appendix Section C.

7 Conclusions
We study the problem of constrained submodular robust partitioning. We propose two classes of
algorithms, Min-Block Greedy and Round-Robin Greedy based, and prove approximation bounds
under various constraints. This improves the applicability of the robust partitioning framework to
different scenarios. In future work, we wish to extend the current approach to the heterogeneous
submodular partitioning setting where each block may be evaluated by a different submodular
function. Given the good performance of Alg. 3 in practice, it is worth investigating if further
conditions or modifications to Alg. 3 yield improved theoretical bounds.

This work was supported in part by the CONIX Research Center, one of six centers in JUMP, a
Semiconductor Research Corporation (SRC) program sponsored by DARPA.
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