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Abstract

Agricultural robotics is an active research area due to global
population growth and expectations of food and labor short-
ages. Robots can potentially help with tasks such as prun-
ing, harvesting, phenotyping, and plant modeling. However,
agricultural automation is hampered by the difficulty in creat-
ing high resolution 3D semantic maps in the field that would
allow for safe manipulation and navigation. In this paper,
we build toward solutions for this issue and showcase how
the use of semantics and environmental priors can help in
constructing accurate 3D maps for the target application of
sorghum. Specifically, we 1) use sorghum seeds as seman-
tic landmarks to build a visual Simultaneous Localization
and Mapping (SLAM) system that enables us to map 78%
of a sorghum range on average, compared to 38% with ORB-
SLAM?2; and 2) use seeds as semantic features to improve 3D
reconstruction of a full sorghum panicle from images taken
by a robotic in-hand camera.

1 Introduction

Imagine a fully automated mobile manipulator with two co-
operative robotic arms tasked to create a full 3D reconstruc-
tion of all fruits in a tree canopy, with some fruit initially
occluded by branches and leaves. One arm pushes a branch
aside while the other arm moves through free space to take
images of the exposed area. Our vision is to move towards
developing such a system. The first step towards this goal is
to develop algorithms that can understand and reason about
3D semantics in the scene to allow for safe and reliable ma-
nipulation. This requires accurate high-resolution 3D recon-
struction.

Existing 3D reconstruction, visual Simultaneous Local-
ization and Mapping (SLAM), and Structure from Motion
(SFM) algorithms fundamentally rely on the accuracy of
traditional visual feature matching methods, such as SIFT
(Lowe 2004) and ORB (Rublee et al. 2011) (used by popu-
lar feature-based SLAM methods such as ORB-SLAM?2 and
ORB-SLAM3). These features perform poorly in agricul-
tural environments due to the lack of texture in the images,
variations in luminosity levels, and the dynamics of the envi-
ronment (for example, leaves or crops moving due to wind).
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In this paper, we demonstrate 1) how the use of seman-
tics and environmental constraints, such as the structure of
robotic navigation in agricultural fields, enables the devel-
opment of robust SLAM systems for 3D mapping in agri-
culture and 2) how semantics can improve ICP-based regis-
tration for high-definition 3D modeling of plants. We focus
on two target applications: mapping in sorghum fields and
full panicle 3D reconstruction using a robotic arm with an
in-hand stereo camera.

2 Related Work

There has been significant progress in visual SLAM for
both direct (Engel, Schops, and Cremers 2014) and indirect
(Mur-Artal and Tardés 2017), (Campos et al. 2021) meth-
ods. However, these methods fail to extend to agricultural
settings due to varying lighting conditions and repeated pat-
terns. (McCormac et al. 2018), (Ok et al. 2019), (Choudhary
et al. 2014), (Nicholson, Milford, and Siinderhauf 2018) use
learned features and landmarks, sometimes with scene struc-
ture or prior model assumptions, but these approaches are
either indoor or assume less cluttered scenes. There are sev-
eral impressive 2D object detection (Bochkovskiy, Wang,
and Liao 2020), (Liu et al. 2016), (Ren et al. 2015) and
semantic segmentation (Zhao et al. 2017), (He et al. 2017)
networks which various works build upon. In agriculture,
(Baweja et al. 2018) and (Parhar et al. 2018) use segmenta-
tion to measure stalk width. (Nellithimaru and Kantor 2019)
build a SLAM system using geometric primitive shapes fit-
ted to grapes as semantic 3D landmarks. (Liu et al. 2018)
uses semantic data for point cloud alignment to count apples.
(Dong, Roy, and Isler 2020) and (Santos et al. 2020) tackle
similar issues for apples and grapes. (Sodhi et al. 2018)
uses a robotic system to create in-field 3D reconstructions
of sorghum plants. (Sepulveda et al. 2020) present segmen-
tation, planning, and occlusion algorithms to increase the
picking accuracy of a dual-arm aubergine harvesting robot.
(Zine-El-Abidine et al. 2021) presents a method to delineate
apple trees in a trellis structured orchard and perform fruit
count. We build on top of these works and present promis-
ing results along with future research directions to promote
in-field 3D semantic mapping and safe manipulation in agri-
culture.



3 Semantic Features as SLAM Landmarks

In this section, we demonstrate how using semantics, lever-
aging environment specific constraints, and reasoning about
the geometry of the scene can alleviate some of the the 3D
reconstruction and data association challenges in agricul-
ture. One such prior is robotic navigation in agricultural en-
vironments; robots traverse the field one row at a time, gen-
erally moving in a straight line. We show how incorporating
this prior and assumptions about the geometric relationship
between semantic landmarks leads to improvements in data
association accuracy and hence increased SLAM robustness.
Our focus application is 3D mapping in sorghum fields using
sorghum seeds as semantic landmarks.

3.1 Semantic SLAM Leveraging Robotic
Navigation Constraints

This section describes the front-end system where seman-
tic and geometric constraints are enforced. The full SLAM
system is further described in (Qadri 2021).

Feature Extraction The feature extraction pipeline (Fig.
1) is based on (Parhar et al. 2018). A Faster-RCNN network
with a VGG16 backbone is used for detection, and returns
a bounding box for each seed in the image. Each bounding
box is cropped and passed to a pix2pix (Isola et al. 2017)
network, which generates a new image with a segmentation
mask for each detected seed. After segmentation, a 2D el-
lipse is fitted to the segmented areas, and ellipse centers are
used as semantic keypoints.
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Figure 1: Detection and segmentation pipeline.

Data association algorithm The object-level data associ-
ation between stereo pairs and successive temporal frames is
framed as linear sum assignment problem (LSAP) optimiza-
tion (Burkard, Dell’ Amico, and Martello 2012). We define a
bipartite graph G = (U, V, E). Each vertex s,;, € U, with
coordinates (a,b) in the camera frame, corresponds to the
projection of a 3D landmark onto image A. Similarly, each
vertex S, with coordinates (m,n) € V corresponds to a
projection onto image B. An edge ¢;; € E between nodes
Sqb and S, defines the cost of associating s,; to Sy,y,. By
introducing an assignment matrix ¢ where ¢;; € {0,1},
LSAP can be framed as the following optimization problem:
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Figure 2: Proposed feature association pipeline.

i ; subject to : =1,ieU
iy >3 wisto: S0 <1,

=1 j5=1

N

Z pij=1,j€V

i=1
Where S is the set of all possible assignments of nodes in
U to nodes in V. Since sorghum panicles are rigid bodies,
the distance from a particular seed to its neighboring seeds
should stay approximately constant as the robot moves in the
environment. Hence, we add the constraint that the sum of
the Euclidean distances of a node s,;, € U to its surrounding
nodes in U should be approximately equal to the sum of
the Euclidean distances of ¢*(s45) € V and its surrounding
nodes in V', where ¢* is the optimal assignment. We define a
heuristic cost function that captures this geometric structure
between the landmarks. For each node s,;, € U, we define
sets of neighbouring nodes: L, (left), R,y (right), T, (top),
and By, (bottom) satisfying the conditions:

Loy ={Vs'=(c,d)eU|0<a—c<Aand|d—b| <€}
Ry ={Vs'=(c,d) eU|0<c—a<Aand|d—b| < e}
Ty ={Vs'=(c,d) eU|0<b—d<Aand|c—al| <€}
Bay ={Vs'=(c,d) eU|0<d—b< Aand|c—a| <€}

We define L.,,,, Rinns Tinns Bmn similarly for s,,, € V.
The cost of associating node s, to node $,,,, is defined as:
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7 is a constant, and |b—n/| is a term added to penalize match-
ing landmarks with high vertical difference due to the hori-
zontal nature of the robot trajectory. s/, and s; are the x and
y coordinates of one of the surrounding nodes s’.

Cost as a matching confidence measure The Hungarian
algorithm returns the optimal assignment matrix ¢*, which
is a bijection from U to V. Each row in ¢* is a one-hot vec-
tor, where gaz‘j = 1 indicates node ¢ has been matched with
node j, and has a cost ¢;;. Removing assignments where c;;
is over a threshold keeps only high confidence matches.



3.2 SLAM Results

Figure 3: Example of a reconstructed 3D scene. The green
dots correspond to 3D sorghum seeds and grouping of points
correspond to different sorghum panicles. The first Im is
reconstructed from the sequence of images in Fig. 7 (ap-
pendix).

Once features are detected and associated, we frame the
back-end optimization as a standard factor-graph problem
which returns the optimized 3D landmark locations and
camera trajectory. Fig. 3 is an example of a reconstructed
sorghum range'. We use Maximum Distance Mapped as an
indicator metric for the stability of SLAM systems and per-
formance of data association algorithms. This is the distance
that SLAM was able to map before a failure occurred in
the back-end optimization or the system lost track. Table 1
compares the maximum distance mapped with our seman-
tic features against traditional descriptors with a brute force
matcher (BF). Using our proposed matching algorithm, we
can map 3 out of 8 sorghum ranges completely and map
65% of the remaining 5 ranges on average (78% on average
across the 8 sorghum ranges). SIFT performed the best out
of the remaining four algorithms, with which we are able to
map around 38% of the 8 sorghum ranges on average. This
shows that using geometric relationships between semantic
landmarks can improve performance when visual feature de-
scriptors perform poorly.

Feature detector + Matcher \

Range ID

(lengthinm) | SIFT + BF | SURF + BF | ORB + BF | AKAZE + BF | OURS
1(3.56 m) 1.86 m 1.55m 0.2m 1.55m 3.56 m
2 (5.00 m) 0.25m 0.25m Failed 0.19m 5.00 m
3(4.42m) 0.5m 0.38 m Failed 0.38 m 2.85m
4 (4.1 m) 1.47m 0.6 m Failed 1.14m 231m
5(4.78 m) 0.57m 0.74 m failed 0.74 m 231 m
63.94m 1.4m 0.19 m 0.11 m 0.45m 32m
75.03m 3.15m 0.26 m Failed 0.46 m 372m
8443 m 4.04 m 0.94 m Failed 0.94 m 4.43 m

Table 1: Maximum distance mapped. For fair comparison,
we remove all matches that do not adhere to the camera
motion assumptions (horizontal travel) for all methods. All
ground truth distances are extracted from GPS.

In Table 2, we compare the performance of our SLAM al-
gorithm against ORB-SLAM?2, a feature-based SLAM sys-
tem using DBoW?2 for feature matching. We report the max-
imum distance mapped before the system become “lost”.

'Sorghum fields are composed of rows, each containing several
ranges. A range is ~4m long and may contain different varieties of
sorghum. Empty spaces with no plants separate consecutive ranges.

ORB-SLAM2 | OURS
Range 1 (3.56m) 0.35m 3.56m
Range 2 (5.00m) 0.25m Sm
Range 3 (4.42m) 0.18m 2.85m
Range 4 (4.10m) 0.25m 2.31m
Range 5 (4.78m) 0.31m 2.31m
Range 6 (3.94m) 0.12m 3.2m
Range 7 (5.03m) 0.33m 3.72m
Range 8 (4.43m) 0.26m 4.43m

Table 2: ORB-SLAM2 vs. OURS

These results illustrate the expected performance of
feature-based SLAM methods when feature descriptors, a
fundamental building block, perform poorly due to lack
of texture and variations in luminosity levels, which fur-
ther motivates the use of semantic features. We also ran
ORB-SLAM3 on our dataset which improves on the re-
localization capabilities of ORB-SLAM?2 by building local
maps when the system is lost. Local maps are merged when
revisiting already mapped areas. We observed that ORB-
SLAM3 performs similarly to ORB-SLAM2; the system re-
peatedly enters one of the “lost” states every few frames,
indicating that ORB-SLAM3 is only able to construct local
maps using a few images before losing track again.

4 High Resolution 3D Modeling with
Semantic Features

In the previous section, we presented a system with a cam-
era rigidly attached to a mobile robot moving in the envi-
ronment, commonly used in agricultural robotics. However,
a fundamental shortcoming of this approach is its inability
to build full 3D reconstructions because it is limited to map-
ping the visible face of an object. This is a substantial limi-
tation since occlusions are common in agricultural settings.
Hence, development of novel methodologies on the system
and algorithmic levels should be made to reason and deal
with such occlusions. In this section, we propose a process
in which a robotic arm with an attached in-hand camera (Fig.
4b) is able to capture a full 360° set of stereo images of a
single sorghum panicle and calculate phenotyping data. We
qualitatively show how combining forward kinematics (FK)
with semantic features can improve 3D reconstruction. We
plan to eventually evaluate reconstruction and seed matching
accuracy on a surrogate metric, seed count.

4.1 Reconstruction and Seed Matching

The main components for the reconstruction and matching
pipeline are shown in Fig. 4a: at each time step, a stereo im-
age pair is used to generate a 3D point cloud and predict
bounding boxes as described in 3.1. To mitigate the effect
of noise in the robot kinematics, ICP is used to refine the
3D cloud by finding the relative transformation between the
current and previous frame. We compare running ICP on the
full point clouds vs ICP only on the projected 3D seeds cen-
ters. The final 3D reconstructed cloud is then updated.

4.2 Preliminary Results

Captured stereo images using the robotic arm are down-
sampled to 3cm spacing and then passed to the 3D recon-
struction pipeline as described in 4.1, forming the final point
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cloud. Preliminary 3D reconstruction results can be seen in
Fig. 5. We note that running ICP only on the centers of de-
tected seeds produces results that are less blurred, brighter,
and capture more of the seed surface compared to full-cloud
ICP, where we register full point clouds. The comparatively
greater blurring in full-cloud ICP is a result of mixing be-
tween seed surfaces and inter-seed points in the final 3D re-
construction, and occurs because ICP is prone to run into lo-
cal minima. In contrast, ICP using only seed centers shows
comparatively better results since we operate on fewer se-
mantically meaningful points (seed centers). These results
are highlighted in Fig. 6. Note that there are black areas in
the 3D reconstruction not present in the RGB image. This
is a result of invalid disparity values calculated by SGBM
(Hirschmuller 2008). An interesting direction is to explore
is deep-learning depth generation networks such as FCRN
Depth Prediction (Laina et al. 2016).

Figure 5: Reconstructions of a sorghum panicle over 90°.
Shown are full-cloud ICP (left), ICP on seed centers (mid-
dle), and source RGB (right). Enlarged version in appendix.

5 Future Work

The SLAM results and initial 3D reconstructions show
promise, but there is still much to do to fully realize the ben-
efits of semantic reasoning. Going forward, both SLAM and

Full-cloud ICP  ICP on seed centers
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¥
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T
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Figure 6: Zoomed view of Fig. 5. We see that there is bet-
ter stem alignment and the reconstructed surface appears
brighter (less blurred) when using ICP on seed centers.

reconstruction efforts could be improved by considering ad-
ditional relevant information in the feature matching step.
For example, integrating wind speed into the optimization
formulation and incorporating learned deep visual features
such as (Wang et al. 2020) for a more robust data associa-
tion process on semantic landmarks. In future work, we also
plan to explore high-resolution reconstructions with a larger
dataset, containing more varied panicles. An important is-
sue which will need to be addressed is how to assess both
the 3D reconstruction and seed match steps in a scaleable
manner without ground truth. Eventually, we envision that
a better understanding of the scene semantics will allow for
motion planning of robotic arms over semantic occupancy
maps which could lead to safer and efficient manipulation in
various agricultural settings. An interesting question is how
to combine scene understanding with reasoning about envi-
ronment dynamics to create robotic systems that can confi-
dently perform complex manipulation tasks.
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Appendix

Figure 7: The first row shows the bounding box detections for the SLAM system presented in Section 3, one bounding box per
sorghum seed. The second row shows the output of the proposed data association pipeline for five consecutive images.

Figure 8: Full-size version Fig. 5. Shown are full-cloud ICP (left), ICP on seed centers (middle), and source RGB image (right).



