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Abstract

While Transformers and their derivatives have001
shown strong performance in various NLP002
tasks, understanding their internal mechanisms003
remains challenging. Mainstream interpretabil-004
ity research often focuses solely on numeri-005
cal attributes, neglecting the complex semantic006
structure inherent in the model. We have devel-007
oped the SITH(Semantic Interpreter for Trans-008
former Hierarchy) framework to address this009
issue. We focus on creating universal text rep-010
resentation methods and uncovering the seman-011
tic principles of the Transformer’s hierarchical012
structure. We use the convex hull method to rep-013
resent sequence semantics in an n-dimensional014
Semantic Euclidean space and analyze seman-015
tic quality and quantity changes across the con-016
vex hull’s three dimensions: point, line, and017
surface. Our analysis takes a dual perspective:018
a multi-layer cumulative perspective and an in-019
dividual layer-to-layer shift perspective. When020
applied to machine translation, our results re-021
veal potential semantic processes and empha-022
size the effectiveness of stacking and hierarchi-023
cal differences. These insights are valuable for024
fine-tuning hyperparameters at the encoder and025
decoder layers.026

1 Introduction027

The Transformer architecture (Vaswani et al.,028

2017), acclaimed for its outstanding performance029

in many natural language processing tasks, is char-030

acterized by a modular encoder-decoder design.031

While this clever architecture of stacking encoder032

and decoder components improves the model’s scal-033

ability, it poses a significant challenge in exploring034

model interpretability.035

Traditionally, the attention mechanism in Trans-036

former models has been considered intrinsic to037

their interpretability (Bibal et al., 2022). For in-038

stance, the integrated gradient-based self-attention039

attribution has illuminated the internal dynamics040

of Transformers (Hao et al., 2021), and attention-041

based visualization methods have clarified aspects 042

of BERT’s functioning (Clark et al., 2019). How- 043

ever, relying solely on attention mechanisms to 044

explain the model is not enough (Jain and Wallace, 045

2019), which has drawn attention to other compo- 046

nents of Transformer, such as the impact of the 047

arrangement of feedforward layers on model per- 048

formance (Press et al., 2020) and the importance 049

of LayerNorm sublayers on model expression abil- 050

ity (Brody et al., 2023). 051

These current Transformer interpretation meth- 052

ods focus on the dissection of model numerical fea- 053

tures and local components (e.g., attention weights) 054

in the Transformer. While insightful, this quantita- 055

tive perspective neglects the interpretable analysis 056

of the model from a semantic perspective and a 057

hierarchical stacking perspective. 058

Semantic Perspective: The Transformer atten- 059

tion weighting mechanism plays a crucial role. In 060

addition to the intricate numerical features, the 061

attention mechanism should also contain rich se- 062

mantic information. Current research suggests that 063

relying solely on attention weights for interpreta- 064

tion may overlook the subtle semantic changes pre- 065

sented by these models (Jain and Wallace, 2019). 066

A more profound interpretation approach should 067

delve into the semantic level of the models to re- 068

veal their cognitive processes and decision-making 069

patterns from a semantic perspective. 070

Hierarchical stacking perspective: Focusing 071

only on individual components is insufficient to 072

elucidate the overall structural logic of the Trans- 073

former. Repeatedly stacking the model’s uniquely 074

modular components requires a macro-level inter- 075

pretive perspective. This perspective is critical to 076

deciphering the collective impact of the structure 077

and understanding how the interactions of these 078

stacked components shape the overall behavior of 079

the model. 080

Addressing these gaps, our research pivots to- 081

ward an enriched understanding of the Trans- 082
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Figure 1: Three unresolved issues in the Transformer hierarchy

former’s semantic complexity and architectural ra-083

tionale, especially from a holistic perspective. This084

approach is pivotal in demystifying the strategic085

selection of layers in Transformer-based models, a086

process often guided more by intuition than system-087

atic analysis. Our study is anchored around three088

critical inquiries, as depicted in Figure 1:089

• Layer Stacking Influence: How does the090

Transformer’s characteristic multi-layer stack-091

ing modulate the model’s semantic processing092

and understanding?093

• Layer-Specific Impact: What unique semantic094

contributions or alterations does each layer095

bring to the overall functioning of the Trans-096

former model?097

• Optimal Layer Configuration: What criteria098

or methodologies should be employed to de-099

termine the most effective number of layers100

for both the encoder and decoder components101

of the Transformer?102

To tackle these pivotal questions, we introduce103

SITH(Semantic Interpreter for Transformer Hierar-104

chy), a novel analytical framework that leverages105

the concept of ubiquitous text representation. SITH106

is specifically designed to unravel the semantic un-107

derpinnings of the Transformer’s layered structure.108

By methodically extracting the model’s output at109

each layer, we translate sequence semantics into110

an n-dimensional Semantic Euclidean space and111

then represent this data through a convex hull. This112

unique approach enables us to employ convex hull113

metrics to assess variations in the quality and quan-114

tity of semantics within the Transformer.115

Our primary contributions through this work are116

threefold:117

• Semantic Evaluation via Convex Hull Met- 118

rics: We have developed a novel method for 119

assessing semantic quality and quantity, utiliz- 120

ing convex hull dimensions (points, lines, and 121

surfaces) to analyze the semantic complexity 122

inherent in Transformers. 123

• Dual-Perspective Hierarchical Analysis: Our 124

approach introduces a two-pronged analysis 125

of the Transformer’s structure, encompassing 126

both a multi-layer cumulative perspective and 127

an individual layer-to-layer shift perspective, 128

enabling a more comprehensive understand- 129

ing of the model’s semantic evolution. 130

• Insights into Encoding and Decoding Seman- 131

tics: By exploring the nuances of semantic 132

processes in encoding and decoding, our re- 133

search demystifies the model’s layering strat- 134

egy, highlighting the effectiveness of its hier- 135

archical structure and offering guidance for its 136

optimization. 137

2 Related Work 138

The internal behavior of transformers is often con- 139

sidered a black box, which has sparked research on 140

the interpretability of transformer models. Atten- 141

tion mechanism has always been an inherent way 142

for Transformer interpretability. Clark et al. (2019) 143

proposed attention-based visualization methods 144

and detection classifiers to explain the behavior of 145

models. Hao et al. (2021) introduced a heuristic al- 146

gorithm to construct self-attention attribution trees 147

and proposed an integrated gradient-based self- 148

attention attribution method to explain the internal 149

information interaction in Transformer. Tay et al. 150

(2021) introduced a new model called SYNTHE- 151
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SIZER, which can learn to synthesize self-attentive152

matrices to explain the importance and contribu-153

tions of the dot-product self-attention mechanism154

to the performance of the Transformer model. The155

effect of multiple attention heads has also sparked156

discussions among researchers, Ma et al. (2021)157

exploring the relative importance of the number of158

attention heads in the model to help them achieve159

interpretability in cross-linguistic and multilingual160

tasks. In addition, some works have also extracted161

latent information from the hidden representations162

(Hewitt and Manning, 2019; Rosa and Mareek,163

2019; Coenen et al., 2019) and attention weights164

(Mareček and Rosa, 2019) of the Transformer.165

As many studies have shown that relying solely166

on attention to explain model predictions is not167

enough (Jain and Wallace, 2019), researchers have168

begun focusing on other local Transformer com-169

ponents. Domhan (2018) evaluated the impor-170

tance of each component by retraining the model171

with other components removed. Wang and Tu172

(2020) conducted granularity analysis on the Trans-173

former model components and studied each com-174

ponent’s contribution to information flow and the175

critical phenomena of different components. In176

addition, the detailed study of encoder representa-177

tions (Raganato and Tiedemann, 2018; Tang et al.,178

2019a,b,c), feed forward layers (Press et al., 2020),179

positional encoding (Chi et al., 2023), residual and180

normalization layers (Kobayashi et al., 2021; Brody181

et al., 2023) has also enhanced our understanding182

of Transformers.183

3 Semantic Measurement Methods184

Traditional word embedding techniques represent185

each word as a vector in an n-dimensional Eu-186

clidean space (Rn), effectively capturing the mean-187

ings of words within predefined vocabulary lists.188

However, this approach often struggles to encap-189

sulate implicit meanings and novel semantic com-190

binations arising from word sequences. In con-191

trast, Transformers, with their layered architecture,192

generate multiple hidden states that may not corre-193

spond directly to words in the existing vocabulary.194

Addressing this limitation, our study introduces the195

concept of an n-dimensional Semantic Euclidean196

space (SRn) as an extension of Rn to better repre-197

sent sequence semantics (Zhang et al., 2020).198

SRn = {∀x = (x1, . . . , xn) ∈ Rn | x → semantics}
(1)199

The SRn space encompasses the semantic corre- 200

lations of all points in Rn, offering a more nuanced 201

representation of implicit semantic information. 202

Each point in SRn is an n-dimensional vector with 203

semantic value. These semantic vectors are cate- 204

gorized into two types: ‘abstract semantic points’ 205

and ‘specific semantic points’. In the context of 206

the Transformer model, words from the input and 207

output sequences are represented as specific seman- 208

tic points. Meanwhile, abstract semantic points 209

refer to those elements that lack a direct vocabulary 210

correspondence, typically aligning with the hidden 211

states in intermediate layers of the Transformer. 212

This representation enables a more comprehensive 213

and dynamic understanding of the semantic content 214

processed by Transformer models. 215

3.1 Convex Hull Representation of Semantics 216

Zhang et al. (2020) proposed representing the se- 217

mantics of a text sequence as the convex hull in 218

SRn. Given a sequence X = {x1, x2, . . . , xn}, its 219

meaning is defined as ME(X ): 220

ME(X ) = Conv(X ) (2) 221

Where Conv(X ) is a set of convex combinations 222

of all points in X (Faux and Pratt, 1979). Each 223

point xi in X is assigned a coefficient αi, such that 224

all these coefficients are non-negative, and their 225

sum equals 1. The calculation is as follows: 226

Conv(X ) =


|X|∑
i=1

αixi | αi ≥ 0 ∧
|X|∑
i=1

αi = 1

 (3) 227

3.2 Evaluation Metrics for Semantics 228

We are mapping semantic relationships to convex 229

hull relationships through the convex hull. We 230

will use convex hull dimensions (points, lines, and 231

surfaces) to evaluate and measure the semantic rela- 232

tionships between sequences before and after trans- 233

formation. 234

Exploring the semantic ‘quality’ changes be- 235

tween sequences from the dimensions of ‘points’ 236

and ‘lines’ in convex hulls: 237

Central Idea: Using convex hull centroids to 238

represent the central idea of a sequence (Zhang 239

et al., 2020). The formula is as follows: 240

CI(X ) = Centroid (ME(X )) (4) 241

Central Idea Offset: For two sequences X = 242

{x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, where 243

sequence Y is the semantic transformation of se- 244

quence X . We model the distance between the 245
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Figure 2: The sequence X is converted to Y . During the
conversion process, semantics’ central idea (semantic
quality) and coverage (semantic quantity) have changed,
represented by solid orange lines and purple shadows.

central idea of two sequences as the Central Idea246

Offset(CIO). The formula is as follows:247

CIO(X ,Y) = ∥CI(X ),CI(Y)∥ (5)248

Exploring the semantic ‘quantity’ changes be-249

tween sequences from the dimensions of ‘lines’250

and ‘surfaces’ in convex hulls:251

Semantic Coverage: Using semantic cover-252

age (Zhang et al., 2021) to represent the overlap253

between two sequences, as shown in the purple254

shaded portion of Figure 2.255

SC(X ,Y) = ME(X ) ∩ME(Y) (6)256

Semantic Coverage Ratio: Semantic coverage,257

a common part between sequences before and after258

transformation, contains important semantic infor-259

mation, including shared semantics and symbiotic260

implicit semantics between sequences. We measure261

the proportion of the original semantics contained262

in the transformed sequence Y by calculating the263

ratio of the semantic coverage (SC) between se-264

quences X and Y to the semantics quantity of the265

sequence Y . The semantic quantity is represented266

by the different sizes and shapes of convex hulls,267

which are determined by their diameter, perimeter,268

and area. Therefore, we measure the proportion269

of original semantics in the transformed sequence270

from three aspects: the Semantic Coverage Diame-271

ter Ratio (SCDR), the Semantic Coverage Perime-272

ter Ratio (SCPR), and the Semantic Coverage Area273

Ratio (SCAR). The formulas are as follows:274

SCDR(X ,Y) =
CHD(SC(X ,Y))

CHD(ME(Y))
(7)275

276

SCPR(X ,Y) =
CHP(SC(X ,Y))

CHP(ME(Y))
(8)277

278

SCAR(X ,Y) =
CHA(SC(X ,Y))

CHA(ME(Y))
(9) 279

We extract the semantic points represented by 280

the vertices of the convex hull to form a sequence 281

V = {v1, v2, . . . , vm} for simplifying calculations. 282

As an example, for the convex hull constructed for 283

SC, the methods for calculating the Convex Hull 284

Diameter (CHD), Convex Hull Perimeter (CHP), 285

and Convex Hull Area (CHA) are as follows: 286

CHD(SC) = max
vi,vj∈ V

∥vi − vj∥ (10) 287

288

CHP(SC) =
m∑
i=1

||vi − vi+1||+ ||vm − v1|| (11) 289

290

CHA(SC) = 1

2

∥∥∥∥∥
m−1∑
i=1

(vi − v1)× (vi+1 − v1)

∥∥∥∥∥ (12) 291

4 Semantic Interpreter for Transformer 292

Hierarchy 293

This section will introduce an analysis framework 294

called SITH(Semantic Interpreter for Transformer 295

Hierarchy). Innovatively, we divide various se- 296

quences in Transformer into different dimensions 297

and propose two analytical perspectives based on 298

this. Each perspective is combined with the se- 299

mantic evaluation metrics in Section 3.2 to form a 300

comprehensive interpretable framework. 301

4.1 Sequence of Different Dimensions 302

The traditional Transformer architecture consists 303

of a multi-layer stack of encoders and decoders. 304

The input sequence is converted into various out- 305

put sequences during the encoding and decoding 306

process, including six encoder output sequences 307

and six decoder output sequences. Previous studies 308

have shown that each word in the sequence has 309

its semantic meaning, and there are more abstract 310

concepts at higher levels (Park et al., 2021). There- 311

fore, we divide these sequences into dimensions, 312

as shown in Figure 3. 313

The first encoder’s input and the sixth decoder’s 314

output, the sequences closest to natural language, 315

are grouped into the same dimension, defined as 316

the ‘language dimension.’ These two sequences 317

are denoted as NLsrc and NLtgt. 318

The output sequence of the sixth encoder under- 319

goes the highest level of encoding and serves as 320

the bridge for cross-lingual translation, containing 321

the essential shared semantics between the source 322

and target languages. This sequence is referred 323
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Figure 3: Two analytical perspectives of SITH(Semantic
Interpreter for Transformer Hierarchy). The framework
categorizes all sequences in the Transformer into differ-
ent dimensions. The multi-layer cumulative perspective
performs ‘top-down’ and ‘bottom-up’ semantic accumu-
lation analysis on dimensions. In contrast, the indepen-
dent layer-to-layer perspective analyzes the semantic re-
lationships between sequences on adjacent dimensions.

to as Core_S, and its dimension is defined as the324

‘semantic dimension’.325

Sequences from intermediate encoders, where326

higher encoding corresponds to a closer proximity327

to the semantic dimension, are denoted as Si.328

Sequences from intermediate decoders, where329

higher decoding corresponds to a closer proximity330

to the language dimension, are denoted as NLj .331

The relationship between them is j = 5 - i + 1.332

4.2 Multi-layer Semantic Cumulative333

Perspective334

The multi-layered semantic accumulation perspec-335

tive aims to address the first issue raised in Section336

1. The ‘Layer Stacking Influence’ was analyzed337

from two perspectives: semantic abstract accumu-338

lation and semantic concrete accumulation.339

Semantic abstract accumulation perspective:340

The semantic abstract accumulation perspective341

focuses on the transformation from the ‘language342

dimension’ to the ‘semantic dimension’ and aims343

to analyze how the stacking of encoders affects344

sequence semantics.345

As the original sequence, we choose the encoder346

input NLsrc in the language dimension. The en-347

coder outputs Si (1≤i≤6,S6=Core_S) in other dimen-348

sions as the transformation sequence. We evaluate 349

the impact of i-layer encoders stacking by mea- 350

suring the semantic relationship between NLsrc 351

and Si. Use SEI to represent semantic measure- 352

ment methods, which involve different calculations 353

in Section 3.2. An increase in i represents stack- 354

ing, and SAC_T indicates the change trend. The 355

following formula reflects the analysis method of 356

semantic abstract accumulation: 357

SAC_T = ∆{SEI(NLsrc,Si)}, for 1 ≤ i ≤ 6 (13) 358

Semantic concrete accumulation perspective: 359

The semantic concrete accumulation perspective 360

focuses on the transformation from the ‘semantic 361

dimension’ to the ‘language dimension’ and aims 362

to analyze how the stacking of decoders affects 363

sequence semantics. 364

We choose Core_S in the semantic dimension as 365

the original sequence, and choose the decoder out- 366

puts NLi (1≤i≤6,NL6=NLtgt) in the other dimen- 367

sions as the transformation sequence. We eval- 368

uate the impact of i-layer decoders stacking on 369

semantics by measuring the semantic relationship 370

between Core_S and NLi. Using SCC_T to repre- 371

sent the trend of semantic concrete accumulation, 372

the formula is as follows: 373

SCC_T = ∆{SEI(Core_S,NLi)}, for 1 ≤ i ≤ 6 (14) 374

Semantic measurement in the multi-layer ac- 375

cumulation perspective: 376

For the measurement of semantic ‘quality,’ the 377

metric CIO is used. The semantic abstract accumu- 378

lation perspective can be represented explicitly as 379

SAC_T = ∆{CIO(NLsrc,Si)}, which reflects 380

how the semantic center deviates from the lan- 381

guage dimension during the transformation of a 382

sequence from the ‘language dimension’ to the 383

‘semantic dimension’. Similarly, in the seman- 384

tic concrete accumulation perspective, SCC_T = 385

∆{CIO(Core_S,NLi)} can reflect how the seman- 386

tic center deviates from the semantic dimension 387

when a sequence evolves from the ‘semantic di- 388

mension’ to the ‘language dimension.’ 389

For the measurement of semantic ‘quantity’, in- 390

dicators SCDR, SCPR, and SCAR are used to 391

evaluate the proportion of the semantic quantity 392

of the original sequence contained in the trans- 393

formed sequence, where CHD, CHP, and CDA 394

measure semantic quantity. Therefore, the se- 395

mantic abstract cumulative perspective and the se- 396

mantic concrete cumulative perspective can be ex- 397

pressed explicitly as the following formula, where 398

5



SEI ∈ {CHD,CHP,CHA}399

SAC_T = ∆{SEI(ME(NLsrc) ∩ME(Si))

SEI(ME(NLsrc))
} (15)400

401

SCC_T = ∆{SEI(ME(Core_S) ∩ME(NLi))

SEI(ME(Core_S))
} (16)402

With the stacking of encoders, Equation 15 re-403

flects the changes in semantic quantities containing404

language dimensions as the sequence approaches405

the semantic dimension.406

With the stacking of decoders, Equation 16 re-407

flects the changes in semantic quantities containing408

semantic dimensions as the sequence approaches409

the language dimension.410

4.3 Individual Layer-to-layer Semantic Shifts411

Perspective412

The independent layer-to-layer semantic shifts per-413

spective aims to address the second issue raised414

in Section 1. The sequence is distributed in di-415

mensions, and the changes in adjacent sizes are416

attributed to the role of the encoder or decoder be-417

tween layers. From this perspective, the semantic418

relationship of sequences on adjacent dimensions419

is gradually calculated to evaluate the effectiveness420

of encoders and decoders at different levels.421

For the encoding process, the transformation422

Si−1→Si (1≤i≤6,S0=NLsrc,S6=Core_S) is attributed423

to the effects of the i-th layer encoder. Simi-424

larly, for the decoding process, the transformation425

NLi−1 →NLi (1≤i≤6,NL0=Core_S,NL6=NLtgt) is426

attributed to the effects of the i-th layer decoder.427

SEI is used to represent semantic evaluation met-428

rics (SEI ∈ {CIO, SCDR,SCPR,SCAR}), and429

the effects of the i-th layer encoder and i-th layer430

decoder are denoted as Enci and Deci, respectively.431

Therefore, the effects of different layers under this432

perspective can be expressed as:433

Enci = SEI(Si−1,Si),Deci = SEI(NLi−1,NLi) (17)434

5 Experiment435

5.1 Experimental Setup436

To ensure the simplicity of the analysis, we uti-437

lized a standard Transformer model as described438

in (Vaswani et al., 2017), with a layer size of439

512, feedforward sub-layer of 2048, 8 attention440

heads, and a dropout rate of 0.1. The experiment441

focused on machine translation tasks using the442

multi30k dataset (Elliott et al., 2016), conducting443

interpretability analysis on four datasets, includ-444

ing the 2016_flickr and 2017_flickr test sets for445

Figure 4: Results of multi-layer semantic cumulative
perspective

English-German and English-French. Semantic 446

analysis were integrated into the translation pro- 447

cess, utilizing greedy decoding for text generation. 448

For visualization, we employed t-SNE to reduce 449

vector dimensions to two for convex hull calcula- 450

tions in this reduced space. Code will be available 451

at https://anonymous.4open.science/r/SITH-39BE. 452

5.2 Analysis from the Multi-layer Semantic 453

Cumulative Perspective 454

The results are depicted in Figure 4. The left col- 455

umn represents the observation results of SAC_T , 456

and the right column represents the observations 457

of SCC_T . Based on this, we provide insights into 458

the internal semantic transformation mechanism of 459

the Transformer and demonstrate the effectiveness 460

of stacking encoders and decoders: 461

• Encoder stacking results in an increasing de- 462

viation of the sequence’s central idea from 463

the source language, manifested as a highly 464

abstract process of semantics. 465

• Decoder stacking results in a broader coverage 466

of core semantics. The central idea aligns 467

more closely with the core semantics, thereby 468

improving the accuracy and semantic richness 469

of the target language. This manifests as a 470

process of semantic determination. 471
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A opposite trend is shown in SAC_T and472

SCC_T . In the perspective of semantic abstraction473

accumulation, there is a ‘top-down’ transformation474

of sequence dimensions, where the semantic devia-475

tion of each dimension from the initial language di-476

mension increases (∆{CIO(NLsrc,Si)}shows an477

upward trend), and the semantic quantity contain-478

ing the language dimension decreases (observed in479

the left column SCDR, SCPR, SCAR). On the other480

hand, in the perspective of semantic concretization481

accumulation, the sequence dimensions undergo482

a ‘bottom-up’ transformation. In the process of483

approaching the language dimension, the central484

idea of the sequence becomes increasingly aligned485

with the essential core semantics of the semantic di-486

mension (∆{CIO(NLsrc,Si)} shows a downward487

trend), and the quantity of semantic dimension con-488

tained in the sequence increases (observed in the489

right column SCDR, SCPR, SCAR).490

Therefore, the process of encoder stacking is a491

semantic abstraction process. As the number of492

stacking layers increases, the rich semantic infor-493

mation is abstracted into higher-level representa-494

tions, corresponding to a greater deviation from the495

semantic center of the language dimension. Usu-496

ally, we consider the original sequence to be ‘con-497

crete’. Hence, each layer of the encoder aims to ex-498

tract more advanced, universal, and concise seman-499

tic information, while ignoring certain specific and500

unnecessary details of the input sequence. There-501

fore, the semantic quantity of language dimensions502

gradually decreases during the superposition pro-503

cess, but becomes more general and abstract.504

Decoder stacking is considered a process of se-505

mantic determination. Core_ S, as the input for506

each decoder layer, encapsulates the highly uni-507

versal and advanced semantic representation of508

NLsrc, fundamentally reflecting the core seman-509

tics. The source language and target language share510

this core semantics. The decoder is responsible for511

generating the target language. In the process of512

layer-by-layer stacking, each decoder layer fine-513

tunes the sequence around Core_ S. On the one514

hand, the semantic center is more consistent with515

the core semantics, ensuring the accuracy of the516

meaning in the target language. On the other hand,517

the translation results are gradually refined and con-518

cretized, aiming to cover as much core semantic519

content as possible, ensuring that the generated520

text has expressive power. This gradually leads the521

target language towards a deterministic direction522

consistent with the core semantic expression.523

Figure 5: Results of individual layer-to-layer semantic
shifts perspective

5.3 Analysis from the individual layer-to-layer 524

semantic shifts perspective 525

Results of individual layer-to-layer semantic shifts 526

perspective are shown in Figure 5 and Table 1. Cal- 527

culate the effect of different layers by measuring 528

the convex hull between adjacent dimensions. Ac- 529

cording to 5.2, the encoding process is a continuous 530

abstraction of semantics. For semantic quality, a 531

larger deviation indicates a higher level of abstrac- 532

tion. In terms of semantic quantity, the lower the 533

degree of inclusion of the original sequence, the 534

higher the level of abstraction. Therefore, larger 535

CIOs and smaller SCDR, SCPR, and SCAR rep- 536

resent better hierarchical effects in the encoder 537

section. On the other hand, the stacking of de- 538

coders leads to the continuous determination of 539

semantics, which makes semantic expression more 540

specific and reduces deviations from the semantic 541

core. Therefore, smaller CIOs are preferred in the 542

decoder section, while larger SCDR, SCPR, and 543

SCAR values represent better layering effects. The 544
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en-de en-fr
D_1 D_2 D_3 D_4 D_5 D_6 D_1 D_2 D_3 D_4 D_5 D_6

E_1 19.28 22.01 22.12 21.82 22.31 21.61 29.78 34.93 36.14 34.86 33.88 34.67
E_2 19.55 22.60 22.59 22.79 22.21 22.74 32.41 35.24 36.37 35.84 36.62 35.76
E_3 20.07 23.34 23.57 23.04 22.49 22.49 31.72 37.34 37.70 36.30 37.07 35.70
E_4 22.49 22.33 23.20 22.40 22.85 23.00 31.67 36.42 38.32 37.89 37.27 36.43
E_5 19.37 22.16 22.79 22.84 23.27 23.13 31.71 36.96 37.63 37.48 36.96 36.23
E_6 19.17 22.55 22.60 23.03 23.30 23.46 31.25 36.86 38.05 38.07 36.81 36.53

Table 1: Translation BLEU scores for Transformers of different sizes

Figure 6: Translation BLEU scores for Transformers of
different sizes

experimental results indicate that:545

• The stacking effectiveness of Transformer is546

not a simple accumulation of equal effects,547

nor does it follow that higher layers are al-548

ways more effective. Instead, it exhibits clear549

hierarchical differences.550

• The hierarchical difference in the impact of551

encoders on semantic quality is significant,552

while the hierarchical difference in the impact553

of decoders on semantic quantity is signifi-554

cant.555

Analyze the hierarchical differences of encoders:556

The second-row of Figure 5 has been added to557

highlight the differences. For semantic quality,558

the hierarchical effect first increases and then de-559

creases, and the best performance occurs in Enc3560

or Enc4. Higher layers cannot function more effec-561

tively. The high level of the encoder mainly affects562

the quantity of semantics.563

As for the hierarchical differences in decoders, a564

turning point can be seen in Dec1, this is attributed565

to the influence of cross-language and the intro-566

duction of Dec2. It can be seen that Dec2 has a567

significant positive impact on both semantic qual-568

ity and quantity. Therefore, we believe that a layer569

of decoder is not enough. For semantic quality,570

the best performance occurs in Dec3. For semantic571

quantities, the hierarchical effects of different lan- 572

guage pairs vary. For English German, Dec2 has 573

the greatest impact, while for English French, Dec3 574

and Dec5 show the best performance. 575

To verify the correctness of the explanation for 576

hierarchical differences mentioned above, we con- 577

ducted 36 experiments on the English-German and 578

English-French datasets, respectively, and obtained 579

the BLEU scores of transformers of different sizes 580

in machine translation tasks, as shown in Figure 6. 581

Tacking the encoder when there is only one de- 582

coder layer cannot optimize performance, which 583

is consistent with our previous analysis that more 584

than one decoder layer is required. Both datasets 585

exhibit similar characteristics at the best perfor- 586

mance point, approximately at three layers. Using 587

the original 6-layers model as the baseline, in the 588

en-de, the 3-layers encoder and 2-layers decoder, 589

as well as the 3-layers encoder and 3-layer decoder, 590

performed similarly to the baseline. On the en-fr, 591

the best performance occurred on the 4-layers en- 592

coder and 3-layers decoder, with 1.79 BLEU higher 593

than the baseline. The performance of the 3-layers 594

encoders and 3-layers decoders surpasses the base- 595

line by 1.17 BLEU points, which aligns with our 596

calculation above results for hierarchical effects. 597

6 Conclusions 598

In this work, we introduce SITH, a new framework 599

designed to explore text representation in Trans- 600

former models. SITH delves into the semantic in- 601

tricacies of Transformers’ hierarchical structure, 602

analyzing how layer stacking and different levels 603

affect semantic transformation. It highlights the 604

importance of the model’s architecture in semantic 605

processing and offers insights for optimizing hyper- 606

parameters in Transformer encoders and decoders, 607

thus effectively linking theoretical concepts with 608

practical applications. 609
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Limitations610

Due to limitations in computing power, this article611

only constructed convex hulls in a two-dimensional612

space and conducted semantic measurements. For613

simplicity in analysis, this article only verifies and614

analyzes the traditional structure of Transformers.615

In the future, we will conduct experiments on larger616

Transformer based model structures, while incor-617

porating high-dimensional convex hull calculations618

as much as possible to solve the semantic problems619

in Transformers.620
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