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Abstract

While Transformers and their derivatives have
shown strong performance in various NLP
tasks, understanding their internal mechanisms
remains challenging. Mainstream interpretabil-
ity research often focuses solely on numeri-
cal attributes, neglecting the complex semantic
structure inherent in the model. We have devel-
oped the SITH(Semantic Interpreter for Trans-
former Hierarchy) framework to address this
issue. We focus on creating universal text rep-
resentation methods and uncovering the seman-
tic principles of the Transformer’s hierarchical
structure. We use the convex hull method to rep-
resent sequence semantics in an n-dimensional
Semantic Euclidean space and analyze seman-
tic quality and quantity changes across the con-
vex hull’s three dimensions: point, line, and
surface. Our analysis takes a dual perspective:
a multi-layer cumulative perspective and an in-
dividual layer-to-layer shift perspective. When
applied to machine translation, our results re-
veal potential semantic processes and empha-
size the effectiveness of stacking and hierarchi-
cal differences. These insights are valuable for
fine-tuning hyperparameters at the encoder and
decoder layers.

1 Introduction

The Transformer architecture (Vaswani et al.,
2017), acclaimed for its outstanding performance
in many natural language processing tasks, is char-
acterized by a modular encoder-decoder design.
While this clever architecture of stacking encoder
and decoder components improves the model’s scal-
ability, it poses a significant challenge in exploring
model interpretability.

Traditionally, the attention mechanism in Trans-
former models has been considered intrinsic to
their interpretability (Bibal et al., 2022). For in-
stance, the integrated gradient-based self-attention
attribution has illuminated the internal dynamics
of Transformers (Hao et al., 2021), and attention-

based visualization methods have clarified aspects
of BERT’s functioning (Clark et al., 2019). How-
ever, relying solely on attention mechanisms to
explain the model is not enough (Jain and Wallace,
2019), which has drawn attention to other compo-
nents of Transformer, such as the impact of the
arrangement of feedforward layers on model per-
formance (Press et al., 2020) and the importance
of LayerNorm sublayers on model expression abil-
ity (Brody et al., 2023).

These current Transformer interpretation meth-
ods focus on the dissection of model numerical fea-
tures and local components (e.g., attention weights)
in the Transformer. While insightful, this quantita-
tive perspective neglects the interpretable analysis
of the model from a semantic perspective and a
hierarchical stacking perspective.

Semantic Perspective: The Transformer atten-
tion weighting mechanism plays a crucial role. In
addition to the intricate numerical features, the
attention mechanism should also contain rich se-
mantic information. Current research suggests that
relying solely on attention weights for interpreta-
tion may overlook the subtle semantic changes pre-
sented by these models (Jain and Wallace, 2019).
A more profound interpretation approach should
delve into the semantic level of the models to re-
veal their cognitive processes and decision-making
patterns from a semantic perspective.

Hierarchical stacking perspective: Focusing
only on individual components is insufficient to
elucidate the overall structural logic of the Trans-
former. Repeatedly stacking the model’s uniquely
modular components requires a macro-level inter-
pretive perspective. This perspective is critical to
deciphering the collective impact of the structure
and understanding how the interactions of these
stacked components shape the overall behavior of
the model.

Addressing these gaps, our research pivots to-
ward an enriched understanding of the Trans-
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Figure 1: Three unresolved issues in the Transformer hierarchy

former’s semantic complexity and architectural ra-
tionale, especially from a holistic perspective. This
approach is pivotal in demystifying the strategic
selection of layers in Transformer-based models, a
process often guided more by intuition than system-
atic analysis. Our study is anchored around three
critical inquiries, as depicted in Figure 1:

* Layer Stacking Influence: How does the
Transformer’s characteristic multi-layer stack-
ing modulate the model’s semantic processing
and understanding?

 Layer-Specific Impact: What unique semantic
contributions or alterations does each layer
bring to the overall functioning of the Trans-
former model?

* Optimal Layer Configuration: What criteria
or methodologies should be employed to de-
termine the most effective number of layers
for both the encoder and decoder components
of the Transformer?

To tackle these pivotal questions, we introduce
SITH(Semantic Interpreter for Transformer Hierar-
chy), a novel analytical framework that leverages
the concept of ubiquitous text representation. SITH
is specifically designed to unravel the semantic un-
derpinnings of the Transformer’s layered structure.
By methodically extracting the model’s output at
each layer, we translate sequence semantics into
an n-dimensional Semantic Euclidean space and
then represent this data through a convex hull. This
unique approach enables us to employ convex hull
metrics to assess variations in the quality and quan-
tity of semantics within the Transformer.

Our primary contributions through this work are
threefold:

* Semantic Evaluation via Convex Hull Met-
rics: We have developed a novel method for
assessing semantic quality and quantity, utiliz-
ing convex hull dimensions (points, lines, and
surfaces) to analyze the semantic complexity
inherent in Transformers.

* Dual-Perspective Hierarchical Analysis: Our
approach introduces a two-pronged analysis
of the Transformer’s structure, encompassing
both a multi-layer cumulative perspective and
an individual layer-to-layer shift perspective,
enabling a more comprehensive understand-
ing of the model’s semantic evolution.

* Insights into Encoding and Decoding Seman-
tics: By exploring the nuances of semantic
processes in encoding and decoding, our re-
search demystifies the model’s layering strat-
egy, highlighting the effectiveness of its hier-
archical structure and offering guidance for its
optimization.

2 Related Work

The internal behavior of transformers is often con-
sidered a black box, which has sparked research on
the interpretability of transformer models. Atten-
tion mechanism has always been an inherent way
for Transformer interpretability. Clark et al. (2019)
proposed attention-based visualization methods
and detection classifiers to explain the behavior of
models. Hao et al. (2021) introduced a heuristic al-
gorithm to construct self-attention attribution trees
and proposed an integrated gradient-based self-
attention attribution method to explain the internal
information interaction in Transformer. Tay et al.
(2021) introduced a new model called SYNTHE-



SIZER, which can learn to synthesize self-attentive
matrices to explain the importance and contribu-
tions of the dot-product self-attention mechanism
to the performance of the Transformer model. The
effect of multiple attention heads has also sparked
discussions among researchers, Ma et al. (2021)
exploring the relative importance of the number of
attention heads in the model to help them achieve
interpretability in cross-linguistic and multilingual
tasks. In addition, some works have also extracted
latent information from the hidden representations
(Hewitt and Manning, 2019; Rosa and Mareek,
2019; Coenen et al., 2019) and attention weights
(Marecek and Rosa, 2019) of the Transformer.

As many studies have shown that relying solely
on attention to explain model predictions is not
enough (Jain and Wallace, 2019), researchers have
begun focusing on other local Transformer com-
ponents. Domhan (2018) evaluated the impor-
tance of each component by retraining the model
with other components removed. Wang and Tu
(2020) conducted granularity analysis on the Trans-
former model components and studied each com-
ponent’s contribution to information flow and the
critical phenomena of different components. In
addition, the detailed study of encoder representa-
tions (Raganato and Tiedemann, 2018; Tang et al.,
2019a,b,c), feed forward layers (Press et al., 2020),
positional encoding (Chi et al., 2023), residual and
normalization layers (Kobayashi et al., 2021; Brody
et al., 2023) has also enhanced our understanding
of Transformers.

3 Semantic Measurement Methods

Traditional word embedding techniques represent
each word as a vector in an n-dimensional Eu-
clidean space (R"™), effectively capturing the mean-
ings of words within predefined vocabulary lists.
However, this approach often struggles to encap-
sulate implicit meanings and novel semantic com-
binations arising from word sequences. In con-
trast, Transformers, with their layered architecture,
generate multiple hidden states that may not corre-
spond directly to words in the existing vocabulary.
Addressing this limitation, our study introduces the
concept of an n-dimensional Semantic Euclidean
space (SR"™) as an extension of R™ to better repre-
sent sequence semantics (Zhang et al., 2020).

SR"™ = {Vx = (z1,...,2,) € R" | z = semantics}

(€3]

The SR™ space encompasses the semantic corre-
lations of all points in R", offering a more nuanced
representation of implicit semantic information.
Each point in SR" is an n-dimensional vector with
semantic value. These semantic vectors are cate-
gorized into two types: ‘abstract semantic points’
and ‘specific semantic points’. In the context of
the Transformer model, words from the input and
output sequences are represented as specific seman-
tic points. Meanwhile, abstract semantic points
refer to those elements that lack a direct vocabulary
correspondence, typically aligning with the hidden
states in intermediate layers of the Transformer.
This representation enables a more comprehensive
and dynamic understanding of the semantic content
processed by Transformer models.

3.1 Convex Hull Representation of Semantics

Zhang et al. (2020) proposed representing the se-
mantics of a text sequence as the convex hull in

SR™. Given a sequence X = {x1,xa,..., Ty}, its
meaning is defined as ME(X):
ME(&X) = Conv(X) )

Where Conv(X') is a set of convex combinations
of all points in X (Faux and Pratt, 1979). Each
point z; in X is assigned a coefficient «;, such that
all these coefficients are non-negative, and their
sum equals 1. The calculation is as follows:

|X] | x|

Conv()()—{Zaixi|ai20/\2ai—1} 3)
=1 i=1

3.2 Evaluation Metrics for Semantics

We are mapping semantic relationships to convex
hull relationships through the convex hull. We
will use convex hull dimensions (points, lines, and
surfaces) to evaluate and measure the semantic rela-
tionships between sequences before and after trans-
formation.

Exploring the semantic ‘quality’ changes be-
tween sequences from the dimensions of ‘points’
and ‘lines’ in convex hulls:

Central Idea: Using convex hull centroids to
represent the central idea of a sequence (Zhang
et al., 2020). The formula is as follows:

CI(X) = Centroid (ME(X)) 4)

Central Idea Offset: For two sequences X =
{z1,29,...,zp}and Y = {y1,y2, ..., Yyn}, where
sequence ) is the semantic transformation of se-
quence X'. We model the distance between the
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Figure 2: The sequence X is converted to ). During the
conversion process, semantics’ central idea (semantic
quality) and coverage (semantic quantity) have changed,
represented by solid orange lines and purple shadows.

central idea of two sequences as the Central Idea
Offset(CIO). The formula is as follows:

CIO(X,Y) = || CI(X), CIV)|| (5)

Exploring the semantic ‘quantity’ changes be-
tween sequences from the dimensions of ‘lines’
and ‘surfaces’ in convex hulls:

Semantic Coverage: Using semantic cover-
age (Zhang et al., 2021) to represent the overlap
between two sequences, as shown in the purple
shaded portion of Figure 2.

SC(X,Y) = ME(X) N ME(Y) (6)

Semantic Coverage Ratio: Semantic coverage,
a common part between sequences before and after
transformation, contains important semantic infor-
mation, including shared semantics and symbiotic
implicit semantics between sequences. We measure
the proportion of the original semantics contained
in the transformed sequence ) by calculating the
ratio of the semantic coverage (SC) between se-
quences &’ and ) to the semantics quantity of the
sequence ). The semantic quantity is represented
by the different sizes and shapes of convex hulls,
which are determined by their diameter, perimeter,
and area. Therefore, we measure the proportion
of original semantics in the transformed sequence
from three aspects: the Semantic Coverage Diame-
ter Ratio (SCDR), the Semantic Coverage Perime-
ter Ratio (SCPR), and the Semantic Coverage Area
Ratio (SCAR). The formulas are as follows:
CHD(SC(X,Y
SCDR(X,Y) = W @)
CHP(SC(X, )

SCPR(Y, V) = —Grp B0

(®)

CHA(SC(X, )

SCAR(Y, Y) = <sHAMEDY)

®

We extract the semantic points represented by
the vertices of the convex hull to form a sequence
V = {vy,v3,...,vy} for simplifying calculations.
As an example, for the convex hull constructed for
SC, the methods for calculating the Convex Hull
Diameter (CHD), Convex Hull Perimeter (CHP),
and Convex Hull Area (CHA) are as follows:

CHD(SC) = vigljag}cv||v¢ —vj| (10)
CHP(SC) = > " [jvi = viga|| + [[om — || (11)
i=1
1 m—1
CHA(SC) = 5 ; (i —v1) X (vig1 —o1)||  (12)

4 Semantic Interpreter for Transformer
Hierarchy

This section will introduce an analysis framework
called SITH(Semantic Interpreter for Transformer
Hierarchy). Innovatively, we divide various se-
quences in Transformer into different dimensions
and propose two analytical perspectives based on
this. Each perspective is combined with the se-
mantic evaluation metrics in Section 3.2 to form a
comprehensive interpretable framework.

4.1 Sequence of Different Dimensions

The traditional Transformer architecture consists
of a multi-layer stack of encoders and decoders.
The input sequence is converted into various out-
put sequences during the encoding and decoding
process, including six encoder output sequences
and six decoder output sequences. Previous studies
have shown that each word in the sequence has
its semantic meaning, and there are more abstract
concepts at higher levels (Park et al., 2021). There-
fore, we divide these sequences into dimensions,
as shown in Figure 3.

The first encoder’s input and the sixth decoder’s
output, the sequences closest to natural language,
are grouped into the same dimension, defined as
the ‘language dimension.” These two sequences
are denoted as N L, and N L.

The output sequence of the sixth encoder under-
goes the highest level of encoding and serves as
the bridge for cross-lingual translation, containing
the essential shared semantics between the source
and target languages. This sequence is referred
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Figure 3: Two analytical perspectives of SITH(Semantic
Interpreter for Transformer Hierarchy). The framework
categorizes all sequences in the Transformer into differ-
ent dimensions. The multi-layer cumulative perspective
performs ‘top-down’ and ‘bottom-up’ semantic accumu-
lation analysis on dimensions. In contrast, the indepen-
dent layer-to-layer perspective analyzes the semantic re-
lationships between sequences on adjacent dimensions.

to as Core_S, and its dimension is defined as the
‘semantic dimension’.

Sequences from intermediate encoders, where
higher encoding corresponds to a closer proximity
to the semantic dimension, are denoted as S;.

Sequences from intermediate decoders, where
higher decoding corresponds to a closer proximity
to the language dimension, are denoted as N L;.
The relationship between themisj=5-1i+ 1.

4.2 Multi-layer Semantic Cumulative
Perspective

The multi-layered semantic accumulation perspec-
tive aims to address the first issue raised in Section
1. The ‘Layer Stacking Influence’ was analyzed
from two perspectives: semantic abstract accumu-
lation and semantic concrete accumulation.

Semantic abstract accumulation perspective:

The semantic abstract accumulation perspective
focuses on the transformation from the ‘language
dimension’ to the ‘semantic dimension’ and aims
to analyze how the stacking of encoders affects
sequence semantics.

As the original sequence, we choose the encoder
input V'L, in the language dimension. The en-
coder outputs S; (1<i<6,S¢=Core_S) in other dimen-

sions as the transformation sequence. We evaluate
the impact of i-layer encoders stacking by mea-
suring the semantic relationship between N L.
and S;. Use SEI to represent semantic measure-
ment methods, which involve different calculations
in Section 3.2. An increase in i represents stack-
ing, and SAC_T indicates the change trend. The
following formula reflects the analysis method of
semantic abstract accumulation:

SAC_T = A{SEI(N Ly, Si)}, for1 <i <6 (13)

Semantic concrete accumulation perspective:

The semantic concrete accumulation perspective
focuses on the transformation from the ‘semantic
dimension’ to the ‘language dimension’ and aims
to analyze how the stacking of decoders affects
sequence semantics.

We choose Core_S in the semantic dimension as
the original sequence, and choose the decoder out-
puts N'L; (1<i<6,NLe=NL:y:) in the other dimen-
sions as the transformation sequence. We eval-
uate the impact of i-layer decoders stacking on
semantics by measuring the semantic relationship
between Core_S and N L;. Using SCC_T to repre-
sent the trend of semantic concrete accumulation,
the formula is as follows:

SCC_T = A{SEI(Core_S,N'L;)}, for1 <i<6 (14)

Semantic measurement in the multi-layer ac-
cumulation perspective:

For the measurement of semantic ‘quality,” the
metric CIO is used. The semantic abstract accumu-
lation perspective can be represented explicitly as
SAC_T = A{CIO(N Ls¢,S;i)}, which reflects
how the semantic center deviates from the lan-
guage dimension during the transformation of a
sequence from the ‘language dimension’ to the
‘semantic dimension’. Similarly, in the seman-
tic concrete accumulation perspective, SCC_T =
A{CIO(Core_S, N'L;)} can reflect how the seman-
tic center deviates from the semantic dimension
when a sequence evolves from the ‘semantic di-
mension’ to the ‘language dimension.’

For the measurement of semantic ‘quantity’, in-
dicators SCDR, SCPR, and SCAR are used to
evaluate the proportion of the semantic quantity
of the original sequence contained in the trans-
formed sequence, where CHD, CHP, and CDA
measure semantic quantity. Therefore, the se-
mantic abstract cumulative perspective and the se-
mantic concrete cumulative perspective can be ex-
pressed explicitly as the following formula, where
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SEI(ME(Core_S) N ME(NL;))

SCC_T = A{ SEI(ME(Core_S))
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With the stacking of encoders, Equation 15 re-
flects the changes in semantic quantities containing
language dimensions as the sequence approaches
the semantic dimension.

With the stacking of decoders, Equation 16 re-
flects the changes in semantic quantities containing
semantic dimensions as the sequence approaches
the language dimension.

4.3 Individual Layer-to-layer Semantic Shifts
Perspective

The independent layer-to-layer semantic shifts per-
spective aims to address the second issue raised
in Section 1. The sequence is distributed in di-
mensions, and the changes in adjacent sizes are
attributed to the role of the encoder or decoder be-
tween layers. From this perspective, the semantic
relationship of sequences on adjacent dimensions
is gradually calculated to evaluate the effectiveness
of encoders and decoders at different levels.

For the encoding process, the transformation
Si—1_>8i (lgigﬁ,SozNﬁsm,Ss:Core_S) is attributed
to the effects of the i-th layer encoder. Simi-
larly, for the decoding process, the transformation
Nﬁifl — ./\/—ﬁZ (1giSG,NL():Core_S,NLGZNEtgt) is
attributed to the effects of the i-th layer decoder.
SEI is used to represent semantic evaluation met-
rics (SEI € {CIO,SCDR, SCPR,SCAR}), and
the effects of the i-th layer encoder and i-th layer
decoder are denoted as Enc; and Dec;, respectively.
Therefore, the effects of different layers under this
perspective can be expressed as:

Enc; = SEI(Si_1,S;), Dec; = SEINLi_1,NL:) (17)

5 Experiment

5.1 Experimental Setup

To ensure the simplicity of the analysis, we uti-
lized a standard Transformer model as described
in (Vaswani et al., 2017), with a layer size of
512, feedforward sub-layer of 2048, 8 attention
heads, and a dropout rate of 0.1. The experiment
focused on machine translation tasks using the
multi30k dataset (Elliott et al., 2016), conducting
interpretability analysis on four datasets, includ-
ing the 2016_flickr and 2017_flickr test sets for
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Figure 4: Results of multi-layer semantic cumulative
perspective

English-German and English-French. Semantic
analysis were integrated into the translation pro-
cess, utilizing greedy decoding for text generation.
For visualization, we employed t-SNE to reduce
vector dimensions to two for convex hull calcula-
tions in this reduced space. Code will be available
at https://anonymous.4open.science/r/SITH-39BE.

5.2 Analysis from the Multi-layer Semantic
Cumulative Perspective

The results are depicted in Figure 4. The left col-
umn represents the observation results of SAC_T,
and the right column represents the observations
of SCC_T . Based on this, we provide insights into
the internal semantic transformation mechanism of
the Transformer and demonstrate the effectiveness
of stacking encoders and decoders:

* Encoder stacking results in an increasing de-
viation of the sequence’s central idea from
the source language, manifested as a highly
abstract process of semantics.

* Decoder stacking results in a broader coverage
of core semantics. The central idea aligns
more closely with the core semantics, thereby
improving the accuracy and semantic richness
of the target language. This manifests as a
process of semantic determination.



A opposite trend is shown in SAC_T and
SCC_T . In the perspective of semantic abstraction
accumulation, there is a ‘top-down’ transformation
of sequence dimensions, where the semantic devia-
tion of each dimension from the initial language di-
mension increases (A{CIO(N Ly, S;) } shows an
upward trend), and the semantic quantity contain-
ing the language dimension decreases (observed in
the left column SCDR, SCPR, SCAR). On the other
hand, in the perspective of semantic concretization
accumulation, the sequence dimensions undergo
a ‘bottom-up’ transformation. In the process of
approaching the language dimension, the central
idea of the sequence becomes increasingly aligned
with the essential core semantics of the semantic di-
mension (A{CIO(N L., S;)} shows a downward
trend), and the quantity of semantic dimension con-
tained in the sequence increases (observed in the
right column SCDR, SCPR, SCAR).

Therefore, the process of encoder stacking is a
semantic abstraction process. As the number of
stacking layers increases, the rich semantic infor-
mation is abstracted into higher-level representa-
tions, corresponding to a greater deviation from the
semantic center of the language dimension. Usu-
ally, we consider the original sequence to be ‘con-
crete’. Hence, each layer of the encoder aims to ex-
tract more advanced, universal, and concise seman-
tic information, while ignoring certain specific and
unnecessary details of the input sequence. There-
fore, the semantic quantity of language dimensions
gradually decreases during the superposition pro-
cess, but becomes more general and abstract.

Decoder stacking is considered a process of se-
mantic determination. Core_ S, as the input for
each decoder layer, encapsulates the highly uni-
versal and advanced semantic representation of
N L., fundamentally reflecting the core seman-
tics. The source language and target language share
this core semantics. The decoder is responsible for
generating the target language. In the process of
layer-by-layer stacking, each decoder layer fine-
tunes the sequence around Core_ S. On the one
hand, the semantic center is more consistent with
the core semantics, ensuring the accuracy of the
meaning in the target language. On the other hand,
the translation results are gradually refined and con-
cretized, aiming to cover as much core semantic
content as possible, ensuring that the generated
text has expressive power. This gradually leads the
target language towards a deterministic direction
consistent with the core semantic expression.
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Figure 5: Results of individual layer-to-layer semantic
shifts perspective

5.3 Analysis from the individual layer-to-layer
semantic shifts perspective

Results of individual layer-to-layer semantic shifts
perspective are shown in Figure 5 and Table 1. Cal-
culate the effect of different layers by measuring
the convex hull between adjacent dimensions. Ac-
cording to 5.2, the encoding process is a continuous
abstraction of semantics. For semantic quality, a
larger deviation indicates a higher level of abstrac-
tion. In terms of semantic quantity, the lower the
degree of inclusion of the original sequence, the
higher the level of abstraction. Therefore, larger
CIOs and smaller SCDR, SCPR, and SCAR rep-
resent better hierarchical effects in the encoder
section. On the other hand, the stacking of de-
coders leads to the continuous determination of
semantics, which makes semantic expression more
specific and reduces deviations from the semantic
core. Therefore, smaller CIOs are preferred in the
decoder section, while larger SCDR, SCPR, and
SCAR values represent better layering effects. The



en-de en-fr

D1 D2 D3 D4 DS D6 | D1 D2 D3I D4 DS D6
E_1 1928 2201 22.12 21.82 2231 21.61|29.78 3493 36.14 3486 33.88 34.67
E_2 1955 2260 2259 2279 2221 2274|3241 3524 3637 3584 36.62 35.76
E_3 2007 2334 23.57 23.04 2249 2249|3172 3734 37.70 3630 37.07 35.70
E 4 2249 2233 2320 2240 2285 23.00|31.67 3642 3832 37.89 37.27 3643
E_ 5 1937 2216 2279 2284 2327 2313|3171 3696 37.63 3748 3696 36.23
E_ 6 19.17 2255 22.60 23.03 2330 2346|3125 36.86 38.05 38.07 36.81 36.53

Table 1: Translation BLEU scores for Transformers of different sizes

en-de Transformers of various sizes en-fr Transformers of various sizes
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Figure 6: Translation BLEU scores for Transformers of
different sizes

experimental results indicate that:

* The stacking effectiveness of Transformer is
not a simple accumulation of equal effects,
nor does it follow that higher layers are al-
ways more effective. Instead, it exhibits clear
hierarchical differences.

* The hierarchical difference in the impact of
encoders on semantic quality is significant,
while the hierarchical difference in the impact
of decoders on semantic quantity is signifi-
cant.

Analyze the hierarchical differences of encoders:
The second-row of Figure 5 has been added to
highlight the differences. For semantic quality,
the hierarchical effect first increases and then de-
creases, and the best performance occurs in Encg
or Ency. Higher layers cannot function more effec-
tively. The high level of the encoder mainly affects
the quantity of semantics.

As for the hierarchical differences in decoders, a
turning point can be seen in Decy, this is attributed
to the influence of cross-language and the intro-
duction of Decy. It can be seen that Decy has a
significant positive impact on both semantic qual-
ity and quantity. Therefore, we believe that a layer
of decoder is not enough. For semantic quality,
the best performance occurs in Decs. For semantic

quantities, the hierarchical effects of different lan-
guage pairs vary. For English German, Decy has
the greatest impact, while for English French, Decs
and Decy show the best performance.

To verify the correctness of the explanation for
hierarchical differences mentioned above, we con-
ducted 36 experiments on the English-German and
English-French datasets, respectively, and obtained
the BLEU scores of transformers of different sizes
in machine translation tasks, as shown in Figure 6.
Tacking the encoder when there is only one de-
coder layer cannot optimize performance, which
is consistent with our previous analysis that more
than one decoder layer is required. Both datasets
exhibit similar characteristics at the best perfor-
mance point, approximately at three layers. Using
the original 6-layers model as the baseline, in the
en-de, the 3-layers encoder and 2-layers decoder,
as well as the 3-layers encoder and 3-layer decoder,
performed similarly to the baseline. On the en-fr,
the best performance occurred on the 4-layers en-
coder and 3-layers decoder, with 1.79 BLEU higher
than the baseline. The performance of the 3-layers
encoders and 3-layers decoders surpasses the base-
line by 1.17 BLEU points, which aligns with our
calculation above results for hierarchical effects.

6 Conclusions

In this work, we introduce SITH, a new framework
designed to explore text representation in Trans-
former models. SITH delves into the semantic in-
tricacies of Transformers’ hierarchical structure,
analyzing how layer stacking and different levels
affect semantic transformation. It highlights the
importance of the model’s architecture in semantic
processing and offers insights for optimizing hyper-
parameters in Transformer encoders and decoders,
thus effectively linking theoretical concepts with
practical applications.



Limitations

Due to limitations in computing power, this article
only constructed convex hulls in a two-dimensional
space and conducted semantic measurements. For
simplicity in analysis, this article only verifies and
analyzes the traditional structure of Transformers.
In the future, we will conduct experiments on larger
Transformer based model structures, while incor-
porating high-dimensional convex hull calculations
as much as possible to solve the semantic problems
in Transformers.
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