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ABSTRACT

There is an increasing interest in the use of automatic mathematical word problem
(MWP) generation in educational assessment. Different from standard natural
question generation, MWP generation needs to maintain the underlying math-
ematical operations between quantities and variables, while at the same time
ensuring the relevance between the output and the given topic. To address
above problem we develop an end-to-end neural model to generate personalized
and diverse MWPs in real-world scenarios from commonsense knowledge graph
and equations. The proposed model (1) learns both representations from edge-
enhanced Levi graphs of symbolic equations and commonsense knowledge; (2)
automatically fuses equation and commonsense knowledge information via a self-
planning module when generating the MWPs. Experiments on an educational
gold-standard set and a large-scale generated MWP set show that our approach is
superior on the MWP generation task, and it outperforms the state-of-the-art mod-
els in terms of both automatic evaluation metrics, i.e., BLEU-4, ROUGE-L, Self-
BLEU, and human evaluation metrics, i.e, equation relevance, topic relevance, and
language coherence.

1 INTRODUCTION

A mathematical word problem (MWP) is a coherent narrative that provides clues to the underlying
correct mathematical equations and operations between variables and numerical quantities (Ver-
schaffel et al., 2000; Cetintas et al., 2010; Moyer et al., 1984). MWPs challenge a student from a
wide range of skills such as literacy skills for understanding the question, analytical skills for recog-
nizing the problem type and applying arithmetical operators (Rembert et al., 2019; Moon-Rembert
& Gilbert, 2019). Table 1 shows one such problem where students are asked to infer the counts of
chickens and rabbits.

Table 1: An illustrative example of a MWP.

Mathematical Word Problem Equations Solutions

Chickens and rabbits were in the yard. Together they had 27 heads x+y = 27 x = 11
and 86 legs. How many chickens and rabbits were in the yard?1 2x+4y = 86 y = 16

In this paper, our objective is to automatically generate well-formed MWPs. Such automation will
not only reduce the teachers’ burden of manually designing MWPs, but provide students with a suf-
ficiently large number of practice exercises, which help students avoid rote memorization (Williams,
2011; Wang & Su, 2016).

A large spectrum of models have been developed and successfully applied in broad area of natural
question generation (NQG) (Pan et al., 2019; Li et al., 2018; Sun et al., 2018; Zhang & Bansal, 2019;
Kurdi et al., 2020) and there has been a recent movement from the NQG community towards auto-
matic generation of MWPs (Koncel-Kedziorski et al., 2016; Polozov et al., 2015; Zhou & Huang,
2019). For example, Koncel-Kedziorski et al. (2016) proposed a two-stage rewriting approach to
edit existing human-authored MWPs. Polozov et al. (2015) conducted the MWP generation as a
constrained synthesis of labeled logical graphs that represent abstract plots.
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In general, there exist a large number of NQG models representing various text data and their syntax
and semantics (Pan et al., 2019). However, automatic generation of MWPs still presents numerous
challenges that come from special characteristics of real-world educational scenarios as follows:

• Equation based symbolic representation. MWP generation models need to not only gener-
ate fluent sentences but understand the mathematical variables, numerical quantities, oper-
ations, and their relations. Moreover, the models are supposed to be able to generalize to
unsee equations.

• Story plots in real-life scenarios. Multiple studies have found that MWPs with real-life
plots help conceptual knowledge understanding, discourse comprehension and children en-
gagement (Carpenter et al., 1980; Jacque, 1996; Cummins et al., 1988; Davis-Dorsey et al.,
1991; Polozov et al., 2015; Wang & Su, 2016; Rembert et al., 2019).

• Narrative diversity. Computerized educational assessment systems require diverse MWP
results even given similar input equations, which helps prevent students from rote memo-
rization(Deane & Sheehan, 2003).

To overcome the above challenges, in this paper, we present a novel neural generation model that
aims to automatically generate coherent and diverse MWPs from given equations in students’ real-
life scenarios. More specifically, to fully understand the mathematical variables, numerical quan-
tities, operations, and their relations, equations are transformed into an edge-enhanced Levi graph.
We adopt the Gated Graph Neural Networks (GGNN) to learn representative embeddings from the
equation based symbolic Levi graph. Meanwhile, the same procedure is applied on the external
commonsense based knowledge graph (CSKG), which helps generate topic-relevant and semanti-
cally valid sentences in real-life settings. We choose to use the conditional Variational AutoEncoder
(VAE) framework to generate MWPs from diversity promoting latent states. Furthermore, in the
decoding stage, we develop a self-planning module to dynamically select and fuse information from
both equations and commonsense knowledge, which improves syntax structure of generated MWP
sentences.

Overall this paper makes the following contributions:

• We propose a GGNN based conditional VAE model for MWP generation. To the best of
our knowledge, we are the first to introduce the combinational architecture of GGNN and
condition VAE for MWP generation.

• We design a novel self-planning decoding module to wisely fuse information from equa-
tions and commonsense knowledge, which helps generate semantically and syntactically
valid MWPs.

• The proposed model achieves state-of-the-art scores and outperforms existing methods by a
significant margin on real-world educational MWP datasets from both automatic machinery
and human evaluation metrics.

2 RELATED WORK

2.1 NATURAL QUESTION GENERATION

Previous research has directly approached the task of automatically generating questions for many
useful applications such as augmenting data for the QA tasks (Tang et al., 2017; Zhao et al., 2018; Li
et al., 2018; Sun et al., 2018; Zhang & Bansal, 2019), helping semantic parsing (Guo et al., 2018) and
machine reading comprehension (Yu et al., 2020; Yuan et al., 2017), improving conversation quality
(Mostafazadeh et al., 2016; Jain et al., 2018; Dong et al., 2019; Yao et al., 2012), and providing
student exercises for education purposes (Deane & Sheehan, 2003; Koncel-Kedziorski et al., 2016;
Zhou & Huang, 2019).

Various NQG methods are developed which can be divided into two categories: heuristic based
approaches and neural network based approaches (Pan et al., 2019; Kurdi et al., 2020). The former
generates questions in two stages: it first obtains intermediate symbolic representations and then
constructs the natural language questions by either rearranging the surface form of the input sentence
or generating with pre-defined question templates. The latter neural approaches view the NQG task
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as a sequence-to-sequence (seq2seq) learning problem and jointly learn generation process in an
end-to-end manner. Recently, advanced models are well studied to incorporate attention, copy, and
coverage mechanisms into the NQG task (Du et al., 2017; Yao et al., 2018; Zhou et al., 2018).

2.2 MATHEMATICAL WORD PROBLEM GENERATION

Different from standard NQG tasks, generating MWPs not only needs the syntax, semantics and
coherence of the output narratives, but requires understandings of the underlying symbolic represen-
tations and the arithmetic relationship between quantities. In general MWP generation approaches
can be divided into three categories: (1) template based approaches; (2) rewriting based approaches;
(3) neural network based approaches.

Template based approaches usually fall into a similar two-stage process: they first generalize an
existing problem into a template or a skeleton, and then generate the MWP sentences from the tem-
plates (Deane & Sheehan, 2003; Williams, 2011; Wang & Su, 2016; Polozov et al., 2015; Bekele,
2020). Deane & Sheehan (2003) used semantic frames to capture both scene stereotypical expecta-
tions and semantic relationships among words and utilize a variant of second-order predicate logic to
generate MWPs. Wang & Su (2016) leveraged the binary expression tree to represent the story of the
MWP narrative and composed the natural language story recursively via a bottom-up tree traversal.
Template based approaches heavily rely on the tedious and limited hand-crafted templates, leading
to very similar generated results. This cannot meet the demand of a large number of high-quality
and diverse MWPs.

Rewriting based approaches target the MWP generation problem by editing existing human-written
MWP sentences to change their theme without changing the underlying story (Koncel-Kedziorski
et al., 2016; Moon-Rembert & Gilbert, 2019). For example, Koncel-Kedziorski et al. (2016) pro-
posed a rewriting algorithm to construct new texts by substituting thematically appropriate words
and phrases. Rewriting based approaches are more flexible compared with templates based ap-
proaches. However, there are several drawbacks that prevent them from providing the large number
of personalized MWPs. First, the generation process is based on existing MWPs, which significantly
limits the generation ability. Second, students easily fall into rote memorization since it is too trivial
to notice that the underlying mathematical equations are still unchanged.

Recent attempts have been focused on exploiting neural network based approaches that generating
MWPs from equations and topics in an end-to-end manner (Zhou & Huang, 2019; Liyanage &
Ranathunga, 2019; 2020). Zhou & Huang (2019) designed a neural network with two encoders
to fuse information of both equations and topics and dual-attention mechanism to generate relevant
MWPs. Liyanage & Ranathunga (2020) tackled the generation problem by using the long short term
memory network with enhanced input features, such as character embeddings, word embeddings and
part-of-speech tag embeddings.

The closest work to our approach is Zhou & Huang (2019) and the main differences are as follows:
(1) Zhou & Huang (2019) directly encode the equation by a single-layer bidirectional gated recurrent
unit (GRU), while we first convert equations into Levi graph and conduct the encoding by the GGNN
model; (2) instead of directly using the pre-trained embeddings of similar words given the topic, we
choose to learn the topic relevant representations from an external CSKG; and (3) we choose to use
the VAE framework to promoting more diverse results.

3 LEARNING FROM COMMONSENSE KNOWLEDGE AND EQUATIONS

Our objective is to automatically generate a significant number of diverse MWPs in students’ real-
life scenarios from valid equations. Similar to Polozov et al. (2015), we support the personalized
generation in which students (or teachers) can determine the story plots of MWPs by specifying
topics. A topic indicates a type of real-world scenarios, such as animals, sports, etc.

Following most work on NQG tasks, we adopt the encoder-decoder architecture, shown in Figure 1.
The input includes a set of equations and a knowledge graph with a specific topic. We construct Levi
graphs (Levi, 1942) from symbolic equations and the CSKG respectively (See Section 3.1). After
that, we employ GGNNs to extract the full graph structure information about equations and real-life
story plots (See Section 3.2). Then, we generate target sentence by a conditional VAE with a self-
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planning module (See Section 3.3). The self-planning module enables the decoder to pay different
portions of attention to the equations and the CSKG.

Please note that in this paper, we focus on generating MWPs with linear equations of two variables
without any constraint. Our framework can be easily generalized into MWPs with different numbers
of variables with little modification.
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Figure 1: The overview of the proposed framework. The blue dot line (or red dash line) is only
enabled in the training (or inference) stage. � denotes the vector concatenation. Linear represents
the linear transformation and Plan denotes the self-planning module (discussed in Section 3.3).

3.1 LEVI GRAPH CONSTRUCTION

3.1.1 EQUATION BASED SYMBOLIC GRAPH

The equation based symbolic graph is designed to capture the relations among mathematical vari-
ables and numerical quantities, and build connections between mathematical variables and the cor-
responding commonsense knowledge. In this work, we consider the linear equations (with two
variables) behind the MWPs as ax+ by = m; cx+ dy = n, where x and y are the variables and a,
b, c, d, m, and n are positive integer quantities. Equation variants are discussed in Section 4.1.

Equations are first converted to a symbolic graph as shown in Figure 2 (a). In the symbolic graph,
edge labels, i.e., Add, Mul, etc. representing the mathematical relations play important roles in
the MWP generation. In order to well capture such relations, we model the edge labels as explicit
nodes. Following previous work in Beck et al. (2018), we transform the symbolic graph into its
equivalent edge-enhanced Levi graph (Levi, 1942) by adding two nodes for each labeled edge. One
node denotes the forward direction of the relation and one represents the reverse. By adding reverse
nodes, we encourage more information flow from the reverse direction, in the same way RNN-based
encoders benefit from right-to-left propagation. Furthermore, we explicitly add self-loop edges to
each node in the Levi graph. The symbolic Levi graph is depicted in Figure 2 (b).

3.1.2 COMMONSENSE BASED KNOWLEDGE GRAPH

In order to generate plots in students’ life scenarios and provide the personalized flexibility, we
utilize implicit knowledge from an external CSKG. With the help of CSKG, students or teachers are
able to set their own preferences when generating MWPs. Such preferences are referred to as topics,
such as zoo, transportation, school life, etc. Moreover, the CSKG improves the generation quality
by alleviating ill-informed wordings or sentences. For instance, in spite of no grammatical errors, it
makes no sense to have “rabbits are in the ocean”. Figure 2 (c) illustrates a sample of a CSKG with
a topic of poultry. Similar to the Levi graph construction procedure in Section 3.1.1, we introduce
additional nodes for relations in CSKG and add reverse and self-loop edges. The CSKG Levi graph
is shown in Figure 2 (d).

3.2 GATED GRAPH NEURAL NETWORKS ENCODING

Following the success of GGNN models (Li et al., 2015; Beck et al., 2018; Ruiz et al., 2019), we use
GGNNs to capture both the mathematical relations among variables and quantities and the real-life
associations among entities in the MWPs. Specifically, let G = {V, E} be an edge-enhanced Levi
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Figure 2: (a) a sample symbolic graph of equation “ax+by = m”; (b) the edge-enhanced Levi graph of
the same equation; (c) an illustrative sample of the CSKG under topic poultry; (d) the corresponding
edge-enhanced Levi graph of CSKG. The red dash arrows represent the reverse edges and the blue
dot arrows represent the self-loop edges. Mul and Add denote the multiply and addition operations.
The subscript “ r” denotes the artificially added reverse nodes.The blue node in Figure 2(c) denotes
the given topic.
graph where V and E are the sets of nodes and edges. Let av,u be the similarity between node v
and node u from its row-wise normalized adjacent matrix. Given an input Levi graph G that may
represent either the equations or the CSKG, the basic recurrence of the GGNN model is defined as
follows:

gv
0 = ev0; �v

t =
X

u2N(v)

av,ugu
t�1; zvt = �(Wz�v

t +Uzgv
t�1); rvt = �(Wr�v

t +Urgv
t�1)

fgv
t = tanh(Wh�v

t +Uh(rvt � gv
t�1)); gv

t = (1� zvt )� gv
t�1 + zvt � fgv

t

where ev0 denotes the initial embedding of node v. N(v) is the set of neighbor nodes for v and �
is the sigmoid function. � is the component-wise multiplication function and zvt and rvt are gating
vectors.

Let G0 = [g1
0;g

2
0; · · · ;g

|V|
0 ] be the initial word embedding matrix of all the nodes and Gn be the

matrix of representation of node embeddings from the above GGNN model after n iterations, i.e.,
Gn = [g1

n;g
2
n; · · · ,g

|V|
n ]. Similar to He et al. (2016), we ease the downstream learning tasks with

embedding augmentation. We apply a linear transformation on the concatenation of G0 and Gn, i.e.,
G⇤ = W⇤[G0;Gn]. Such augmented node representations contain abstract context information,
which are used in our language generator in Section 3.3. Let Ge

⇤ and Gk
⇤ be the augmented GGNN

embeddings of the equations and the CSKG. Meanwhile we apply a mean pooling operation over
Ge

⇤ and Gk
⇤ to get the graph-level equation representation (ge

⇤) and CSKG representation (gk
⇤).

3.3 CONDITIONAL VARIATIONAL AUTOENCODER WITH SELF-PLANNING MODULE

In this section, we introduce our VAE architecture with the self-planning module for the MWP gen-
eration. Our self-planning module makes dynamic fusion on the learned representations of equations
and CSKG to generate the MWPs.

Let Y be the random variable representing the texts of MWPs and Z be the diversity promoting
latent variable of the distribution of the MWPs. Let C be the random variable representing the
conditions of both the explicit equations and the implicit CSKG learned from GGNNs. We model
the MWP generation by the conditional distribution as follows: p(Y |C) =

R
p(Y |C,Z)p(Z|C)dZ

where p(Y |C,Z) is the MWP generator and p(Z|C) is the prior net. Since the integration of Z is
intractable, we apply variational inference and optimize the evidence lower bound as follows:

log p(Y |C) � Eq(Z|C,Y )

h
log p(Y |C,Z)

i
�DKL

⇣
q(Z|C, Y )||p(Z|C)

⌘
(1)

where DKL(·||·) denotes the KL-divergence.

Following conventions, we assume both the prior net and posterior net of Z following the isotropic
Gaussian distributions, i.e., p(Z|C) ⇠ N (µp,�pI) and q(Z|C, Y ) ⇠ N (µq,�qI). The prior net
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only encodes the given conditions of both the explicit equations and the implicit CSKG while the
posterior net encodes both given conditions and the texts of MWPs. Both the prior net and the
posterior net are built upon the GGNNs shown in Figure 1 as follows:

[µp; log�p] = MLP
�
[ge

⇤;g
k
⇤ ]
�
; [µq; log�q] = Wq

�
[ge

⇤;g
k
⇤ ;GRU(y)]

�
+ bq

Since there may exist more than one expression logic which cover the same input but in different
order, we capture such diversity of reasonable presentations with both latent variable Z and input
graphs C. Different samples of Z will lead to different self-planning results. In this work, we realize
the self-planning mechanism in our attention-based GRU decoder to capture different portions of
input information from the equations and the CSKG. To start the decoding process, we initialize
the hidden state (h0) as h0 = [z;ge

⇤;g
k
⇤ ] where z is sampled from the posterior net q(Z|C, Y ) ⇠

N (µq,�qI) and the prior net p(Z|C) ⇠ N (µp,�pI) during the training and inference procedures
respectively.

At each decoding time step t, we use the attention mechanism to conduct the self-planning between
explicit symbolic equations and implicit CSKG. The self-planning module takes the decoder’s cur-
rent hidden state (ht), node representations of equations (Ge

⇤) and CSKG (Gk
⇤) as input and outputs

the context-aware planning state (ct) of the current time step. Specifically, we compute ct as follows:

ct = �t ⇤ cet + (1� �t) ⇤ ckt ; �t = softmax(ht); cet =
X

v2Ve

↵e
t,vg

e
v; ckt =

X
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↵k
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k
v

↵e
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t,v)/
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t,v0); ↵k
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v02Vk

exp(ok
t,v0)

oe
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v); ok
t,v = vk> tanh(Wkht +Ukgk

v)

where �t represents the self-planning distribution at time step t.

The final context vector is the fusion of the symbolic and commonsense knowledge graphs.
The next-step hidden state (ht+1) is the combination of current hidden state (ht), self-planning
context state (ct) and the representation of currently generated word (wt), i.e, ht+1 =
GRU(ht,Wd[ct;wt] + bd) where Wd and bd are the linear transformation matrix and the bias
term. We further generate the next word by feeding hidden state ht+1 to linear transformation and
softmax layer to get the next-token probability distribution.

Our model is trained end-to-end by optimizing eq.(1). It consists (1) maximizing the probability
of ground-truth sequence texts, which promotes the predictions generated by the posterior net and
the MWP generator closer to the distribution of the gold-standard data; and (2) minimizing the
KL-divergence between posterior distribution (p(Z|C, Y )) and prior distribution (p(Z|C)).

4 EXPERIMENTS

In this work, we crawled 1,275 MWPs of linear equations from a third-party website. It covers
47 topics and the average length of a MWP is 48 words. We randomly select 196 of them as our
gold-standard test (GT) set. We make our code publicly available at https://tinyurl.com/
y3teywts.

We use following evaluation metrics: (1) BLEU-4: the 4-gram overlap score against gold-standard
sentences (Papineni et al., 2002); (2) ROUGE-L: the overlap of longest common subsequence be-
tween candidate and gold-standard sentences (Lin, 2004); (3) Self-BLEU: the diversity measurement
of averaging BLEU scores of four generated MWP pairs given the same input (Zhu et al., 2018).

Meanwhile, we conduct two human evaluation studies to comprehensively evaluate the quality of
the generated MWPs. First, we ask evaluators to rate from the following aspects ranging from 1
to 3 (Chen et al., 2019; Wang & Wan, 2019): (1) Equation Relevance: how relevant between the
MWP and the input equations? (2) Topic Relevance: how relevant between the MWP and the given
topic? and (3) Language Coherence: whether the MWP is coherent and well-organized. We use the
average scores from three human evaluators as our final results.

During training, we use linear KL annealing technique following Fu et al. (2019) to alleviate the
KL collapse problem and apply scheduled sampling to alleviate the exposure bias problem in GRU
training (Bengio et al., 2015). Implementation details are listed in Appendices A.1 - A.2.
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Our approach of Mathematical word problem generation from commonsense Knowledge and
Equations is referred to as “MaKE”. We compare against the following baselines: (1) the template
based method, i.e., Template; (2) conditional VAE that captures the diversity in the encoder and uses
latent variables to learn a distribution over potential intents, i.e., CVAE (Zhao et al., 2017); (3) the
state-of-the-art pre-trained language model with a shared Transformer network and self-attention
masks, i.e., UniLM (Dong et al., 2019); and (4) a standard Transformer-based seq2seq model, i.e.,
Transformer (Vaswani et al., 2017). More details are provided in Appendix A.3.

4.1 RESULTS AND ANALYSIS

Evaluation Results on GT Set. Results on the GT set are listed in Table 2, which shows that
our MaKe outperforms all other methods in terms of both automatic and human evaluation metrics.
Specifically, from Table 2, we find: (1) comparing MaKE and Template, Template doesn’t perform
well in language coherence and topic relevance. This is because the MWP templates are stereo-
typed. Mismatches between the template context and the re-filled words lead to incoherent texts. (2)
with rich representations of equations and CSKG, MaKE is able to better capture the mathematical
relations and improve MWP quality with real-life plots under the given topic.

Turing Test Results on GT Set. For each existing MWP in the GT set, we generate a new MWP
of the same equations but with a different topic. We show such pairs to the human evaluators and
ask them to distinguish which one is the generated MWP. We measure the results of this artificial
“Turing Test” via Fool Ratio, i.e., the fraction of instances in which a model is capable of fooling the
evaluators. Ideally, perfect MWP generation will lead to random guesses and the ideal Fool Ratio
would be 50%. Finally, we get an averaged Fool Ratio of 38.93% (39.8%, 41.3% and 35.7% from
three annotators respectively). This demonstrates that the generation quality is 77.86% (38.93/50)
as good as the quality from human teachers.

Ablation Study
Table 2 shows the results of ablation study. Without the self-planning module, the performance
of our model drops by 2.1% in BLEU-4 and 3.3% in ROUGE-L, which indicates its effectiveness.
These scores also drop when CSKG is removed, which indicates that the representations of CSKG
not only improve the coherence but help form valid MWPs in real-life scenarios. The MaKE w/o
CSKG approach achieves the best Self-BLEU score but the worst human evaluation scores, which
means that none of the diverse sentences are valid enough for MWPs.

Table 2: Evaluation results on GT set and ablation study. Rel. and Coh. are short for relevance and
coherence.

Method BLEU-4 ROUGE-L Self-BLEU Equation Rel. Topic Rel. Language Coh.

Template 33.1 50.8 68.2 2.881 2.864 2.694
CVAE 30.6 48.6 68.6 2.781 2.821 2.532
UniLM 26.0 44.4 76.3 2.325 2.646 2.051
Transformer 30.9 49.9 77.9 2.859 2.869 2.721

MaKE w/o planning 31.4 48.0 73.5 2.821 2.878 2.709
MaKE w/o CSKG 20.3 40.5 62.9 2.721 2.241 2.190
MaKE 33.5 51.3 68.1 2.886 2.912 2.743

Qualitative Case Study
Because of the GGNN encodings of equations, our MaKE model is able to handle a wide range of
mathematical relations, including both addition and subtraction, i.e., a, b, m, c, d and n may be
either positive or negative in ax+ by = m; cx+ dy = n. We quantitatively compare the generation
quality of MaKE with other baselines and the results are shown in Table 3. Furthermore, we show
the diverse generation results of MaKE qualitatively in Table 4. Additional examples can be found
in Appendices A.4 - A.5. As we can see, (1) CVAE and Transformer cannot interpret the equations
correctly and fail to generate desired MWPs; (2) our MaKE approach is able to generate diverse
enough MWPs in real-life scenarios.
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Table 3: Illustrative examples of the MWP generation comparison with unsee equations. () rep-
resents the question that the student needs to solve. There is no results from Template because it
doesn’t work on unseen equations. The incorrect part is highlighted in red color.

Equations: x-y=6; 2x-4y=35; Topic: Rowing boat

CVAE The water park has 6 more small boats and 6 more big boats, for a total of 35 people. If there
are 2 more people in a big boat and 4 more in a small boat, and 35 more people in a small boat
than in a big boat, then there are () big boats and () small boats.

UniLM Two teachers lead 35 participants number of participants is 35?

Transformer There are 6 boats in the water park, each small boat can accommodate 2 people and each big
boat can accommodate 4 people. Six boats can accommodate total of 35 people. There are ()
big boats and () small boats.

MaKE Teacher Mr.Huang and his 35 students come to row the boat. They find 6 more small boats than
big ones. There are 35 more students in the small boat than in the big boat. How many big boats
are there?

Table 4: An illustrative example of the diverse MWP generation made by MaKE. () represents the
question that the student needs to solve.

Equations: x=y; 2x+4y=48; Topic: Poultry

1. Rabbits and chicken are in one cage. The number of rabbits is 0 less than that of chickens, they have 48 legs
in total, how many rabbits and chickens in cage?

2. Rabbit and chicken, we know that the number of two kinds of animals are the same, the total number of legs
is 48, so how many rabbits and chickens are in the farm?

3. Chicken and rabbits are in the same cage, chicken heads are 0 more than rabbit heads, and there are 48 legs.
May I ask there are () chickens and () rabbits?

4. Monkey King showed the magic to the monkeys. A group of chickens and a group of rabbits emerged. After
counting, they found that there were 48 legs. If we know that the number of chickens is 0 more than that of
rabbits. Then how many chickens and rabbits for each?

Human Evaluation Results on Large-scale Generated MWPs. Besides evaluations on the GT
set, which is usually limited in educational scenarios (Xu et al., 2019), we conduct evaluations on
the large-scale generated results.

Table 5: Results on the large-scale generated MWP data.
There is no results from Template because it doesn’t work
on unseen equations.

Method Equation Rel. Topic Rel. Language Coh.

CVAE 1.478 2.444 1.878
UniLM 1.200 1.894 1.394
Transformer 1.983 2.544 2.589

MaKE 2.289 2.654 2.672

We randomly create 100 valid linear
equations and ensure that none of them
appears in our training set. Meanwhile,
we select top 30 common real-life top-
ics. For each pair of equation and topic,
we generate 5 MWPs accordingly and
therefore, we obtain 15,000 MWPs. We
conduct a human evaluation to assess
the quality of these generated MWPs
and the results are shown in Table 5.
We can see that our method achieves
the best results and outperforms base-
line models with a large margin.

5 CONCLUSION

In this paper, we presented a neural encoding-decoding architecture for MWP generation. Com-
paring with the existing NQG algorithms, the advantages of our MaKE are: (1) it extracts intrinsic
representations of both the equation based symbolic graph and the commonsense based knowledge
graph; (2) it automatically selects and incorporates informations from equations and knowledge
graphs during the decoding process; and (3) it is able to generate relevant, coherent and personal-
ized MWPs in students’ real-life scenarios. Experimental results on real-world educational MWP
data sets demonstrated that MaKE outperforms other state-of-the-art NQG approaches in terms of
both automatic evaluation metrics and human evaluation metrics. In the future, we plan to explore
the MWP generation problems for more mathematical variables with high-order operations.
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