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Abstract
Logical reasoning is central to human cogni-001
tion and intelligence. Past research of logical002
reasoning within AI uses formal language as003
knowledge representation (and symbolic rea-004
soners). However, reasoning with formal lan-005
guage has proved challenging (e.g., brittleness006
and knowledge-acquisition bottleneck). This007
paper provides a comprehensive overview on008
a new paradigm of logical reasoning, which009
uses natural language as knowledge represen-010
tation (and pretrained language models as rea-011
soners), including philosophical definition and012
categorization of logical reasoning, advantages013
of the new paradigm, benchmarks and meth-014
ods, challenges of the new paradigm, possible015
future directions, and relation to related NLP016
fields. This new paradigm is promising since017
it not only alleviates many challenges of for-018
mal representation but also has advantages over019
end-to-end neural methods.020

1 Introduction021

An argument consists of premise(s) and a conclu-022

sion. Logical reasoning is a form of thinking in023

which premises and relations between premises are024

used in a rigorous manner to infer conclusions that025

are entailed (or implied) by the premises and the re-026

lations (Nunes, 2012). It consists of three reasoning027

types, namely deductive reasoning, inductive rea-028

soning, and abductive reasoning (Flach and Kakas,029

2000) (more illustration on the categorization can030

be found in §2). It is important since the ability to031

reach logical conclusions on the basis of prior infor-032

mation is recognized as central to human cognition033

and intelligence (Goel et al., 2017).034

The past research of logical reasoning within035

AI uses formal language (e.g., first-order logic)036

as knowledge representation and symbolic reason-037

ers (Muggleton and Raedt, 1994). This paradigm038

has resulted in impressive applications such as039

expert systems (Metaxiotis et al., 2002). How-040

ever, building and reasoning over formal language041

Figure 1: Comparison between the previous paradigm
which uses formal representation and symbolic reasoner,
and the new paradigm which uses natural language as
knowledge representation and PLM as reasoner.

have proved challenging (Musen and Van der Lei, 042

1988), with representative disadvantages of brittle- 043

ness ( (an expert system fails as long as its knowl- 044

edge base does not contain complete knowledge 045

for a problem))and knowledge-acquisition bottle- 046

neck (human experts are needed to encode their 047

knowledge with formal representation). 048

Since the rapid development in language mod- 049

els, natural language has been explored as a new 050

knowledge representation, and pretrained language 051

model (PLM) has been used as a new correspond- 052

ing reasoner for deductive reasoning (Clark et al., 053

2020), abductive reasoning (Bhagavatula et al., 054

2020), and inductive reasoning (Yang et al., 2022b). 055

Therefore, all three reasoning types of logical rea- 056

soning have been investigated with natural lan- 057

guage as knowledge representation. These research 058

also shows that PLMs can be finetuned or prompted 059

to perform well for each of the reasoning types. 060

In this paper, we summarize the three previously 061

separately investigated logical reasoning types to- 062

gether, referred as logical reasoning from the per- 063

spectives of deductive, inductive, and abductive 064

reasoning over natural language as knowledge rep- 065

resentation (LRNL), and provide an in-depth and 066

up-to-date survey of LRNL. 067
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Illustrated in Figure 1, LRNL means a new068

paradigm for logical reasoning that uses new knowl-069

edge representation (natural language) and new070

reasoner (PLM). Recent methods in this area are071

generally modular-based: multiple PLMs each as072

one module playing a different function, combined073

together to perform complex tasks. They make one074

step of reasoning with one inference of PLM. For075

complex problems, they usually have access to a076

knowledge base that stores relevant textual knowl-077

edge to be retrieved as premises to support the rea-078

soning process to reach a conclusion, which might079

be used as a new premise for the next step’s reason-080

ing. By iteratively repeating this process, a final081

conclusion may be made. Although looks similar to082

expert systems, we discuss how LRNL is possible083

to overcome many main challenges of the previ-084

ous paradigm such as brittleness and knowledge-085

acquisition bottleneck in §3.1.086

In addition to the comparison with formal lan-087

guage, in §3.2 we discuss that LRNL could be088

viewed as a new type of neural-symbolic (NeSy)089

method, which has unique advantages over existing090

NeSy methods. We also discuss how LRNL, as a091

NeSy method, has advantages over existing end-to-092

end neural methods (e.g., explainability, controlla-093

bility, less catastrophic forgetting) in §3.3. These094

advantages make an LRNL system possible to deal095

with many challenging problems today.096

In the remaining sections of this survey, we re-097

view papers on LRNL (including deductive reason-098

ing §4, inductive reasoning §5, and abductive rea-099

soning §6), and list challenges (§7 and §A.9). Our100

main focus is to understand the language model’s101

logical reasoning ability through the three sub-102

types of logical reasoning to provide finer analysis103

and avoid ambiguity. Therefore we focus on pa-104

pers that specialize on one (or more) of the three105

sub-types of logical reasoning (instead of only “rea-106

soning”). In §A.1 we discuss the relation of LRNL107

to related NLP fields (e.g., commonsense reason-108

ing), which could help to form a clear shape of109

LRNL in NLP. For each reasoning sub-type, we110

summarize existing task formulations, datasets, and111

methods under each task.112

2 Definition and Categorization of113

Logical Reasoning114

There are many subjects related to logical reason-115

ing, including philosophy, logic, and AI. Among116

them, the definition and categorization aspects of117

logical reasoning are handled by philosophy re- 118

search. However, debate exists in philosophy re- 119

search on the categorization of logical reasoning. 120

We leave a detailed description of the debate in 121

philosophy research in § A.2 and only leave the 122

conclusions here according to philosophy research. 123

In general, logical reasoning consists of deduc- 124

tive, inductive, and abductive reasoning (Console 125

and Saitta, 2000). Given an argument consisting of 126

premises and a conclusion, we define the sub-type 127

of logical reasoning it involves below: 128

Definition for deductive reasoning: the premises 129

can conclusively provide support for the conclu- 130

sion, i.e. if the premises are all true, it would be 131

impossible for the conclusion to be false. 132

Definition for inductive reasoning: the premises 133

cannot conclusively provide support for the con- 134

clusion, since the conclusion generalizes existing 135

information in premises to new knowledge, which 136

has a wider applicable scope than those in premises. 137

Definition for abductive reasoning: the premises 138

cannot conclusively provide support for the conclu- 139

sion, since the conclusion contains more specific 140

information over the premises (most commonly 141

used as generating most probable explanations). 142

Please note that according to Console and Saitta 143

(2000), inductive reasoning and abductive reason- 144

ing are not exclusive to each other. 145

3 Advantages of LRNL 146

3.1 Advantages over Formal Language 147

Building and reasoning over formal language have 148

proved challenging (Musen and Van der Lei, 1988; 149

Cropper et al., 2022), with disadvantages such as 150

(1) brittleness (expert system fails when its knowl- 151

edge base does not contain complete knowledge 152

for a problem), (2) knowledge-acquisition bottle- 153

neck (human experts are needed to encode their 154

knowledge with formal representation), (3) inabil- 155

ity to handle raw data such as natural language, (4) 156

sensitivity to label errors, and (5) failure to recog- 157

nize different symbols with similar meanings. 158

Nevertheless, the new paradigm of logical rea- 159

soning, LRNL, has systematic strengths over these 160

challenges. Specifically, PLMs contain knowl- 161

edge themselves (Davison et al., 2019), which 162

makes it possible for them to provide good answers 163

even when some required explicit knowledge is 164

not present in a knowledge base (Talmor et al., 165

2020) (less brittle), and be less affected by input 166

errors (Meng et al., 2021); with natural language as 167
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Dataset Human
written Realistic Multi-

step
Theory

included
Theory

sufficient
Proof

generation Size

D* ✗ ✗ ✓ ✓ ✓ ✗ 500k
ParaRules ✓ ✗ ✓ ✓ ✓ ✗ 40k

Birds-electricity ✓ ✓ ✓ ✓ ✓ ✗ 5k
Leap-of-thought ✗ ✓ ✗ ✓ ✗ ✗ 33k

PARARULE-Plus ✗ ✗ ✓ ✓ ✓ ✗ 400k
FOLIO ✓ ✓ ✓ ✓ ✓ ✗ 1,435

D*(CWA) ✗ ✗ ✓ ✓ ✓ ✓ 500k
D*(OWA) ✗ ✗ ✓ ✓ ✗ ✓ 500k

EntailmentBank ✓ ✓ ✓ ✓ ✓ ✓ 1,840
ENWN ✓ ✓ ✓ ✓ ✓ ✓ 100

Table 1: Summary of deductive reasoning datasets: D*,
ParaRules, and birds-electricity (Clark et al., 2020);leap-
of-thought (Talmor et al., 2020); PARARULE-Plus (Bao
et al., 2022);FOLIO (Han et al., 2022);D*(CWA) and
D*(OWA) (Tafjord et al., 2021);EntailmentBank (Dalvi
et al., 2021);ENWN (Sprague et al., 2022).

knowledge representation, such a system can natu-168

rally handle raw input, and is possible to utilize the169

enormous web corpora to automatically construct170

a rule base using information extraction (Ji, 2018)171

or inductive reasoning (Yang et al., 2022b) (less af-172

fected by knowledge-acquisition bottleneck); using173

embeddings for concepts (Mikolov et al., 2013), it174

semantically “understands” the meaning of sym-175

bols and therefore robust for paraphrasing.176

3.2 Advantages over Existing NeSy Systems177

LRNL could be seen as a new type of NeSy in addi-178

tion to the existing 6 types summarized by Kautz179

(2022), as its goal and design of methodology are180

typically symbolic (logical reasoning with knowl-181

edge bases), while avoiding any symbolic repre-182

sentation, using (currently pure) neural methods.183

Therefore LRNL can avoid many bottlenecks of184

the other NeSy methods caused by symbolic repre-185

sentation, such as symbolic knowledge acquisition186

and scalability (Wang and Yang, 2022).187

3.3 Advantages over E2E Neural Methods188

As a NeSy method, LRNL systematically has some189

advantages over end-to-end neural methods, such190

as interpretability (Cambria et al., 2023) (since191

its stepwise reasoning nature), more controllabil-192

ity (LRNL reasons following a given knowledge193

base), and less catastrophic forgetting (LRNL uses194

an explicit knowledge base to store knowledge).195

4 Deductive Reasoning196

4.1 Existing Task Formulations197

Existing tasks for deductive reasoning can be sum-198

marized as hypothesis classification, proof genera-199

tion, proof generation with incomplete information,200

and implication enumeration. Datasets for tasks 201

are summarized in Table 1. “Proof generation” tab 202

with ✗ means it is for hypothesis classification task. 203

Hypothesis Classification Each data exam- 204

ple for hypothesis classification task is a tu- 205

ple (theory, hypothesis, correctness), where 206

theory typically has the form (fact∗, rule∗), 207

hypothesis is a question, and correctness can be 208

True or False (or Unknown). This task requires 209

to predict the correctness for the hypothesis 210

given the theory. 211

Proof Generation The proof generation task 212

has the same setting as the hypothesis classifica- 213

tion task, except that in addition to predicting a 214

correctness, the proof generation task also re- 215

quires providing a proof given theory to explain 216

the correctness. The proof is a directed tree 217

(N , E) with nodes n ∈ N and edges e ∈ E . Each 218

node is an item of knowledge in theory (usually 219

a fact or a rule), or a generated intermediate rea- 220

soning conclusion, or the hypothesis itself; Each 221

edge points from a premise node to a conclusion 222

node to form a deductive argument, which typically 223

needs one-step inference (not multi-step). 224

Proof Generation with Incomplete Information 225

This task is the same as the proof generation task, 226

except that theory lacks one node to form a com- 227

plete proof . Specifically, given theory, it requires 228

to predict the correctness of hypothesis with a 229

proof , as well as recovering the missing node. 230

Implication Enumeration Given a theory, this 231

task requires to enumerate implications of the 232

theory, using deductive reasoning. 233

4.2 Methods 234

4.2.1 Hypothesis Classification 235

There are mainly three categories of methods 236

for the hypothesis classification task regarding 237

a multi-task aspect. The first category of meth- 238

ods only conducts the classification task itself; 239

Methods from the second category can predict 240

correctness as well as generate a proof . How- 241

ever, the correctness is not necessarily consistent 242

with the predicted proof . The third category is sim- 243

ilar to the second, except that correctness always 244

follows proof . 245

Until now, methods from the first category 246

directly use transformer-based PLMs (Vaswani 247

et al., 2017), with the target of analyzing and 248
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Method Generation
based

Inference w/
hypothesis Stepwise Proof

direction
Heuristic

search Verifier Human-authored
realistic proof Stage

PRover (Saha et al., 2020) ✗ ✓ ✗ N/A N/A ✗ ✗ 1
multiPRover (Saha et al., 2021) ✗ ✓ ✗ N/A N/A ✗ ✗ 1

EntailmentWriter (Dalvi et al., 2021) ✓ ✓ ✗ N/A N/A ✗ ✓ 1

ProofWriter (Tafjord et al., 2021) ✓ ✗ ✓ → ✗ ✗ ✗ 2
EVR (Liang et al., 2021) ✓ ✗ ✓ ← ✗ ✗ ✗ 2

IBR (Qu et al., 2022) ✗ ✓ ✓ ← ✓ ✗ ✗ 2
IRGR (Ribeiro et al., 2022) ✓ ✓ ✓ → ✓ ✗ ✓ 2
SI (Creswell et al., 2022) ✓ ✗ ✓ → ✓ ✗ ✗ 2

FaiRR (Sanyal et al., 2022b) ✓ ✗ ✓ → ✓ ✗ ✗ 2
MetGen (Hong et al., 2022) ✓ ✗ ✓ Both ✓ ✗ ✓ 2

SCSearch (Bostrom et al., 2022) ✓ ✗ ✓ → ✓ ✗ ✓ 2

ADGV (Sprague et al., 2022) ✓ ✗ ✓ Both ✓ ✓ ✓ 3
NLProofS (Yang et al., 2022a) ✓ ✓ ✓ → ✓ ✓ ✓ 3
Entailer (Tafjord et al., 2022) ✓ ✓ ✓ ← ✓ ✓ ✓ 3
Teachme (Dalvi et al., 2022) ✓ ✓ ✓ ← ✓ ✓ ✗ 3

Table 2: Methods for Proof Generation task. “Generation based” means whether proof is created by generative
inference model, otherwise is by utilizing embeddings to classify nodes and edges of proof . “Inference w/
hypothesis” means whether hypothesis is provided during inference. → and ← denote forward/backward
stepwise proof generation. “Heuristic seach” with ✗ means exhaustive search. “Human-authored realistic proof”
means whether the dataset adopted uses human-authored proof , whose contents are consistent with the real world.

benchmarking their performance in different set-249

tings (datasets). Specifically, Clark et al. (2020)250

find that finetuned RoBERTa-large (Liu et al., 2019)251

can achieve 95%+ accuracy on the test set of D*252

and ParaRules datasets; Talmor et al. (2020) further253

demonstrate that LMs can be trained to reliably per-254

form deductive reasoning using both implicit, pre-255

trained knowledge and explicit natural language256

statements (theory) to make predictions; Han et al.257

(2022) evaluate finetuned medium-sized language258

models and few-shot prompting on LLMs on the259

FOLIO dataset. However, they find that LLM with260

few-shot prompting only performs slightly better261

than random results.262

The second category methods typically infer263

PLMs only once, and then utilize the final layer em-264

beddings or generations to obtain correctness and265

proof . Specifically, PRover (Saha et al., 2020) and266

multiPRover (Saha et al., 2021) use the [CLS] to-267

ken to predict correctness, and leverage the final268

layer embeddings of knowledge items in theory to269

generate proof ; All-At-Once ProofWriter (Tafjord270

et al., 2021) and EntailmentWriter (Dalvi et al.,271

2021) generate correctness and linearized proof272

at the same time.273

The third category methods create a proof first,274

and then predict correctness from the proof .275

§4.2.2 illustrates these methods in detail.276

4.2.2 Proof Generation277

Current methods for the proof generation task278

roughly consist of three stages. In each stage, one279

key new technique is considered and developed. In 280

stage 1, PLMs are used for forming proof in one 281

inference step. In stage 2, modular-based, stepwise 282

frameworks are developed to create proof (each 283

module is usually implemented with a single PLM). 284

In stage 3, a verifier is added as a new module to 285

make sure that each reasoning step reflects the be- 286

lief of PLMs. We will introduce the motivation and 287

typical method for each stage. 288

Methods for stage 1 typically utilize the last layer 289

embeddings (Saha et al., 2020, 2021) or genera- 290

tions (Tafjord et al., 2021; Dalvi et al., 2021) to cre- 291

ate proof . Methods utilizing embedding typically 292

(1) obtain an averaged embedding for each knowl- 293

edge item in theory, and (2) pass each embedding 294

to a node classifier, and each embedding pairs to 295

an edge classifier to predict nodes and edges for 296

proof . Constraints are usually used to enforce the 297

structure of proof . Generation methods directly 298

generate linearized correctness and full proof 299

given linearized theory and hypothesis. 300

The motivations of stage 2 methods are gener- 301

ally concerned with end-to-end methods, which 302

is considered to lack interpretability (Liang et al., 303

2021; Qu et al., 2022; Sanyal et al., 2022b; Bostrom 304

et al., 2022), suffer from compositional generaliza- 305

tion problems (Liang et al., 2021; Creswell et al., 306

2022), have limited input size (Ribeiro et al., 2022), 307

are not casual (Creswell et al., 2022), and lack con- 308

straints on the validity of each inference step (Hong 309

et al., 2022). 310

4



Methods in stage 2 can be summarized as hav-311

ing two components, an inference module and312

a reasoning controller. The inference module313

can be a deduction module (Tafjord et al., 2021;314

Ribeiro et al., 2022; Creswell et al., 2022; Sanyal315

et al., 2022b; Bostrom et al., 2022), an abduction316

module (Liang et al., 2021; Qu et al., 2022), or317

both (Hong et al., 2022; Sprague et al., 2022). The318

deduction module performs deductive reasoning,319

and reasons forwardly from theory to hypothesis320

to construct proof ; the abduction module performs321

abductive reasoning, and reasons backwardly from322

hypothesis to theory to construct proof . The rea-323

soning controller in general performs a search pro-324

cess that each step it searches through the theory325

and generated intermediate conclusions space to326

select (retrieve) premises for the next step infer-327

ence. The search processes include exhaustive328

search (Tafjord et al., 2021; Liang et al., 2021)329

or heuristic search (Qu et al., 2022; Ribeiro et al.,330

2022; Creswell et al., 2022; Sanyal et al., 2022b;331

Bostrom et al., 2022; Hong et al., 2022; Sprague332

et al., 2022). The reasoning controller usually can333

also stop the search process if it detects the goal.334

Motivation of stage 3 methods is similar, basi-335

cally that stage 2 methods lack explicit verifiers336

to avoid hallucinating invalid steps (Yang et al.,337

2022a), and to ensure that the inference processes338

reflect PLM’s own beliefs (Tafjord et al., 2022).339

Methods in stage 3 can be summarized as utiliz-340

ing explicit verifier(s) (implemented with a PLM)341

to check the validity of each inference step. One342

way is to add a new module (additional to the infer-343

ence module and reasoning controller in stage 2),344

working as a “fact checker” to verify the generated345

inference step (Yang et al., 2022a; Tafjord et al.,346

2022); The other one, called round-trip consistency,347

is only suitable for methods that use both deduc-348

tion and abduction modules, where deduction and349

abduction modules work as the verifier for each350

other (Sprague et al., 2022).351

In addition to the general 3 stages, a new aspect352

is attended to, which is whether teachable by hu-353

mans. Build based on Entailer (Tafjord et al., 2022),354

TeachMe (Dalvi et al., 2022) shows that user cor-355

rections can help override erroneous model beliefs,356

and that a system can gradually improve by accu-357

mulating user corrections. Compared to Entailer, it358

adds an interaction module and a dynamic memory359

module to obtain and store human corrections.360

We summarize and analyze the experiment re-361

sults of proof generation task in §A.7.362

4.2.3 Proof with Incomplete Information 363

ADGV (Sprague et al., 2022) is the only method 364

focusing on this task. It uses both deduction and 365

abduction modules, and the reasoning controller 366

performs heuristic search. The abduction module 367

is used to recover the missing premise. 368

4.2.4 Implication Enumeration 369

Tafjord et al. (2021) is the only paper mentioned 370

this task. They compare the performance of “All- 371

At-Once” and “Iterative” ProofWriter on this task. 372

They find that “All-At-Once” performs worse, 373

mainly because it struggles with problems that are 374

more complex than training examples. 375

4.3 Robustness of PLM as Reasoner 376

The previously introduced methods only focus on 377

solving the deductive reasoning tasks, while it is 378

unclear whether PLMs can be used as robust deduc- 379

tive reasoners. To investigate the problem, Gaskell 380

et al. (2022) create a more challenging synthetic 381

dataset on hypothesis classification task in terms 382

of complexity, and test PLM’s performance on 383

it. They find that with large and complex enough 384

training examples, transformers can perform well 385

on the dataset. In addition, they find that trans- 386

formers exhibit some degree of generalization and 387

scale-invariance ability; Richardson and Sabharwal 388

(2022) propose an adversarial attack method for 389

synthetic datasets on the hypothesis classification 390

task. They find that transformers are often fooled if 391

the query literally appears within the body of a rule, 392

and transformers struggle to correctly bind vari- 393

ables on either side of a rule; Sanyal et al. (2022a) 394

proposed a synthetic deductive reasoning dataset to 395

evaluate the robustness of language models to min- 396

imal logical edits in the inputs and different logical 397

equivalence conditions, and find that PLMs are not 398

robust to their proposed logical perturbations. 399

5 Inductive Reasoning 400

5.1 Existing Task Formulations 401

Existing tasks for inductive reasoning can be sum- 402

marized as rule verification and rule generation 403

tasks. Datasets for the tasks are summarized in 404

Table 3. “Generation” tab with ✗ means it is for 405

the rule verification task. 406

Rule Verification Given a generated rule and 407

facts where the rule is generated from, the task is 408

to classify whether the rule can be accepted. The 409
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Dataset Human
written

Human
labeled Realistic Rule

provided
Not restricted

rule types Generation Novel scientific
hypotheses Size

property-norm ✗ ✗ ✓ ✗ ✗ ✗ ✗ 23k
DEERLET ✗ ✓ ✓ ✓ ✓ ✗ ✗ 846

DEER ✓ ✓ ✓ ✓ ✓ ✓ ✗ 1.2k
ARC ✗ ✗ - ✗ ✗ - ✗ 1k

OpenD5 ✓ ✓ ✓ ✓ ✓ ✓ - 675
C-LBD ✓ ✗ ✓ ✓ ✓ ✓ ✓ 67k

TOMATO ✓ ✓ ✓ ✓ ✓ ✓ ✓ 50

Table 3: Summary of inductive reasoning datasets:
property-norm (Misra et al., 2022), DEERLET and
DEER (Yang et al., 2022b), ARC (Chollet, 2019),
OpenD5 (Zhong et al., 2023), C-LBD (Wang et al.,
2023a), and TOMATO (Yang et al., 2023b). “Not re-
stricted rule types” means whether the data is not re-
stricted in a specific topic (e.g., taxonomic).

current evaluation aspects are from requirements410

of both inductive reasoning and natural language.411

Rule Generation Given multiple manually se-412

lected facts with similar patterns, the task is to413

induce a rule that (1) can entail the facts, and (2)414

is more general than all of the facts. Here “more415

general” means larger information coverage scope.416

More detailed illustrations can be found in §A.8.417

Scientific Hypotheses Generation This task is418

similar to Rule Generation task but is more chal-419

lenging in that the generated rule should not be420

commonsense knowledge but scientific hypotheses421

that are even new to humanity.422

5.2 Methods423

Rule Generation methods almost always have a424

Rule Verification step after the initial generation of425

rules. To have a clearer overview, we separately426

introduce the framing or methods of the two tasks.427

5.2.1 Rule Verification428

Yang et al. (2022b) propose three requirements of429

rule verification on inductive reasoning from phi-430

losophy literature (rule and facts should not be431

in conflict; rule should reflect reality; rule should432

generalize over facts) and one requirement of rule433

verification from NLP requirement (rule should434

not be trivial or incomplete). They focus on in-435

ducing rule of many disciplines (e.g., zoology and436

history) from facts as textual observations (e.g.437

Wikipedia). They implement the verification by438

LLMs (framing as classification problems).439

Another group of works’ (Zhu et al., 2023; Wang440

et al., 2023b; Qiu and Jiang, 2023) adopted rule ver-441

ification criteria is compliant with one of the key re-442

quirements proposed by Yang et al. (2022b), which443

is that rule and facts should not be in conflict.444

They focus on inducing (executable) rule from445

synthetic facts such as a sequence of number (ex- 446

ample rule: find the smallest number), arithmetic 447

calculation (example rule: “6+4=10”), or changes 448

of 2D grid images (example rule: executable code 449

for moving the grids). They verify rules by check- 450

ing the consistency of the labels of annotated ex- 451

amples (facts) and the results of rules. 452

5.2.2 Rule Generation 453

Yang et al. (2022b) assume that the inductive rea- 454

soning task is so difficult that a proper system 455

should contain a rule populator and (multiple) 456

rule verifiers that filter bad rules from different 457

aspects. Accordingly, they propose a framework 458

named chain-of-language-models (CoLM), where 459

one LLM generates rules given facts, the other 460

four LLMs filter generated rules mainly based on 461

philosophical requirements of inductive reasoning. 462

Besides the rule generation and filtering pro- 463

cess, Zhu et al. (2023) further propose to generate 464

rules based on chain-of-thought prompting, and 465

verify rules based on whether the rules can be used 466

to deduce the annotated answer correctly; Wang 467

et al. (2023b) further propose that under synthetic 468

datasets, executable code can be generated for the 469

textual rules and verify the rules by executing the 470

code and comparing the results with groundtruth 471

annotation; Qiu and Jiang (2023) further propose a 472

third stage of “rule refinement”, and that iteratively 473

repeating the three stages can obtain better rules. 474

5.2.3 Scientific Hypotheses Generation 475

Zhong et al. (2023) focuses on proposing hypothe- 476

ses (from a wide range of disciplines) from a re- 477

search goal and two comparable corpora. Their 478

method also follows a generate-filter process, 479

where LLMs are used for the filtering stage. Wang 480

et al. (2023a) focus on proposing NLP hypotheses 481

from a seed term and background context. Before 482

hypotheses generation module, they build knowl- 483

edge graphs to associate academic terms, and re- 484

trieve some of the terms as inspirations. Yang et al. 485

(2023b) focuses on proposing social science and 486

business hypotheses only from a pile of raw web 487

corpora. To utilize raw web corpora, they expand 488

generate-filter modules with a background finder 489

module and an inspiration finder module. They 490

also propose three feedback mechanisms named 491

past feedback, present feedback, and future feed- 492

back to help the inter-communications between 493

modules to induce more novel, valid, and helpful 494

hypotheses. 495
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Dataset Human
written Realistic Multi-step Theory

included Generation Size

αNLI ✓ ✓ ✗ ✗ ✗ 22k

αNLG ✓ ✓ ✗ ✗ ✓ 76k

AbductionRules ✗ ✗ ✗ ✓ ✓ 114k
D*-Ab ✗ ✗ ✓ ✓ ✓ 14k

Table 4: Summary of abductive reasoning datasets:
αNLI and αNLG (Bhagavatula et al., 2020), Abduc-
tionRules (Young et al., 2022), and D*-Ab (Tafjord
et al., 2021). “Realistic” means whether the data is con-
sistent with the real world. “Multi-step” means whether
multiple reasoning steps are needed to get the result.

6 Abductive Reasoning496

6.1 Existing Task Formulations497

Existing tasks for abductive reasoning can be sum-498

marized as explanation classification, and explana-499

tion generation w/o and w/ theory. Datasets for the500

tasks are summarized in Table 4. In the table, the501

“generation” tab and “theory included” tab can be502

used to determine the task it is used for.503

Explanation Classification Given observation504

O1 at time t1, observation O2 at time t2 (t2 >505

t1), a plausible hypothesis h+ and a implausible506

hypothesis h− that explain O1 and O2, this task is507

to select the most plausible hypothesis from h+ and508

h−. O1 and O2 each contains a single sentence.509

Explanation Generation without Theory510

Given observation O1 at time t1, observation O2 at511

time t2 (t2 > t1), this task is to generate a valid512

hypothesis h+ given O1 and O2. O1 and O2 each513

is described in a single sentence.514

Explanation Generation with Theory Given a515

theory C and a possible observation O not provable516

from C, the task is to generate a new hypothetical517

fact h such that C ∪ {h} |= O. Here C contains518

multiple facts and rules, where each fact or rule519

contains a single sentence. O is in single sentence.520

6.2 Methods521

6.2.1 Explanation Classification522

Methods for this task generally introduce knowl-523

edge in various ways to improve performance.524

Specifically, Mitra et al. (2019) explore ways to525

incorporate additional unstructured textual knowl-526

edge retrieved from a story corpus through prompt;527

Paul and Frank (2020) encode and incorporate528

knowledge from COMET’s generation (Bosselut529

et al., 2019) directly into transformer’s internal at-530

tention; Lourie et al. (2021) and Paul and Frank531

(2021) incorporate knowledge by multi-task train- 532

ing; Du et al. (2021) incorporate knowledge with 533

an additional pre-training stage using ARI inde- 534

pendent story corpora; 535

In addition to knowledge integration, many dif- 536

ferent aspects of explanation classification tasks 537

are also investigated. Specifically, Bhagavatula 538

et al. (2020) rewrite the objective using Bayes Rule 539

and formulate a set of probabilistic models that 540

make various independence assumptions on the 541

new objective. They find that the most sophisti- 542

cated probabilistic model works the best; Zhu et al. 543

(2020) frame this task as a ranking task to also 544

measure the plausibility of hypothesis in addition 545

to discriminating it; Paul and Frank (2021) conduct 546

this task in an unsupervised setting by pretrain- 547

ing on a counterfactual reasoning dataset, which 548

is related to abductive reasoning. Kadikis et al. 549

(2022) propose a method to select suitable PLMs 550

for this task. It is based on the cosine similarity 551

of embed(O1, O2) and embed(hi) for each PLM 552

without finetuning. Zhao et al. (2023) assume that 553

different h are mutually exclusive, and improve 554

performance by incorporating an additional loss 555

item as regularization to enforce an unbalanced 556

probability prediction over different h. 557

6.2.2 Explanation Generation without Theory 558

In general, methods for this task either incorporate 559

knowledge or improve the decoding method to be 560

more suitable for this task. 561

For knowledge integration, Bhagavatula et al. 562

(2020) utilize textual knowledge generated from 563

COMET and investigate two ways of knowledge 564

integration — via texts or via embeddings, and find 565

that the embedding-based method is more effective; 566

Ji et al. (2020) leverage structural knowledge from 567

ConceptNet (Speer et al., 2017) for this task. 568

For improving decoding method, Qin et al. 569

(2020) are motivated by the fact that the target h+ 570

to generate happens before O2. They accordingly 571

propose an unsupervised decoding algorithm that 572

can incorporate both past and future contexts. 573

6.2.3 Explanation Generation with Theory 574

Tafjord et al. (2021) explore the ability of a fine- 575

tuned T5-11B (Raffel et al., 2020) on P (h|C,O). 576

Their results indicate that finetuned T5-11B can 577

reach a high test accuracy of 93% on D*-Ab. 578
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7 Challenges of LRNL579

Due to the page limit, we list some main challenges580

in this section, and leave other challenges in §A.9.581

Computationally Efficient Reasoner Many582

tasks in logical reasoning over formal language583

have very high algorithmic complexity (Muggle-584

ton et al., 2012). Thanks to the low computational585

cost of each deduction step over formal language,586

such complex tasks could be possible. However,587

each deduction step in LRNL typically costs one588

inference of an LLM, which makes tasks with high589

algorithmic complexity nearly prohibitive.590

Robust Reasoner and Reliable Verifier Most591

methods implement reasoner and verifier with592

LLMs. It is questionable whether LLMs can ro-593

bustly reason over any given knowledge. Addition-594

ally, the current verifiers only reflect the internal595

beliefs of LLMs. It is doubtful whether LLMs have596

obtained the knowledge for verification.597

Better Automatic Evaluation Metrics It is gen-598

erally difficult to automatically evaluate generative599

reasoning implications, especially with realistic600

and not synthetic datasets. The difficulty mainly601

lies in that the same semantic meaning can be ex-602

pressed with diversified forms, and that different603

conclusions might be all acceptable (especially in604

abductive and inductive reasoning). This may lead605

to biased evaluation when using automatic metrics.606

More Impacts on (NLP) Applications As il-607

lustrated in §3, overall LRNL can be seen as a608

new type of neuro-symbolic method, which takes609

the advantages from both the symbolic and sub-610

symbolic aspects, and can systematically alleviate611

many main challenges of both symbolic and sub-612

symbolic methods. These characteristics make an613

LRNL system possible (but might still be challeng-614

ing) to deal with many (NLP) applications such615

as medical diagnosis and legal NLP tasks, since616

many medical and legal problems could be seen617

as pure logical reasoning problems with very large618

rule bases (e.g., medical knowledge and laws).619

Probabilistic Inference In reality, pure deduc-620

tive reasoning has not always been used. When621

people include “likely” in their expressions, uncer-622

tainty is introduced, which makes the reasoning623

process probabilistic; In addition, inductive reason-624

ing and abductive reasoning are by default non-625

monotonic reasoning. This uncertainty aspect has626

not been focused in current research. It is probably 627

beneficial to learn from how symbolic reasoning 628

handles uncertainty (Halpern, 2017). 629

Reasoning with Incomplete Information The 630

current proof generation task requires all necessary 631

premises provided to create a proof tree. Only 632

one work (Sprague et al., 2022) focuses on proof 633

generation with the incomplete information task. 634

However, the task they adopt only overlooks one 635

premise, while in reality more might be missing. 636

Inductive Reasoning on Web Corpora Cur- 637

rently, the dataset for rule generation tasks in 638

inductive reasoning provides manually selected 639

facts (Yang et al., 2022b). However, to best lever- 640

age a system’s ability to handle natural language, 641

it should be able to work on raw web corpora to 642

induce rules, which leads to a more challenging 643

task of inductive reasoning on web corpora. 644

Abductive Reasoning with (Long) Theory 645

Many tasks such as medical diagnosis conduct ab- 646

ductive reasoning with a long theory (e.g., medical 647

knowledge). However, current abductive reason- 648

ing research only covers abductive commonsense 649

reasoning (Bhagavatula et al., 2020) without given 650

theory, or only given short, synthetic, not realistic 651

knowledge as theory (Tafjord et al., 2021). 652

Interactions between Reasoning Types Multi- 653

ple reasoning types can be used together for com- 654

plex tasks. Existing works only utilize deduc- 655

tive reasoning with abductive reasoning to create 656

a proof tree (Hong et al., 2022; Sprague et al., 657

2022). However, many other collaborations are 658

possible, such as using inductive reasoning to col- 659

lect a (large) rule base, which is to be used as the 660

theory base for deductive reasoning. 661

8 Conclusion 662

In this paper, we summarize the three previously 663

separately investigated logical reasoning types to- 664

gether, referred as logical reasoning from the per- 665

spectives of deductive, inductive, and abductive 666

reasoning over natural language as knowledge rep- 667

resentation (LRNL), and provide an in-depth and 668

up-to-date survey of LRNL. Specifically, we have 669

introduced the philosophical foundations, advan- 670

tages of LRNL, benchmarks and methods, chal- 671

lenges of LRNL, possible future directions, and the 672

relation of LRNL to related NLP fields (§A.1). 673
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9 Limitations674

In consideration of space constraints, this paper fo-675

cuses more on (1) providing a high-level overview676

and prospect of the LRNL field (e.g., advantages677

and challenges of the field), and (2) delineating678

the broader evolutionary trajectories of pertinent679

methodologies. It might not include all the details680

of the surveyed papers.681

10 Ethics Statement682

This article follows the ACL Code of Ethics. To683

our knowledge, there are no foreseeable potential684

risks to use the datasets and methods in this paper.685
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A Appendix 1199

A.1 Relation to Related (NLP) Fields 1200

In this section, we first introduce related NLP fields 1201

to general logical reasoning, then introduce fields 1202

that are only related to deductive reasoning, induc- 1203

tive reasoning, or abductive reasoning. We hope 1204

that this section could be helpful to form a clear 1205

shape of LRNL in NLP. 1206

A.1.1 Logical Reasoning 1207

There are some previous works involve the term 1208

“logical reasoning”, but do not provide a specifica- 1209

tion on which sub-type of logical reasoning they in- 1210

volve. In many cases these works are more close to 1211

“natural language inference”, which adopts datasets 1212

where the data involve a mixture of multiple sub- 1213

types of logical reasoning, making it hard to an- 1214

alyze from each sub-type. Therefore we do not 1215

include these works in this survey. 1216

Neuro-Symbolic Computing Neural-symbolic 1217

computing (NeSy) is a hybrid of symbolism and 1218

connectionism to exploit advantages from both 1219

sides (Wang and Yang, 2022; Cambria et al., 2022). 1220

The knowledge representation of its symbolic part 1221
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basically is a knowledge graph or propositional1222

logic or first-order logic (Wang and Yang, 2022).1223

LRNL could be seen as a new type of NeSy in addi-1224

tion to the existing 6 types summarized by Kautz1225

(2022), as its goal and design of methodology are1226

typically symbolic (logical reasoning with knowl-1227

edge bases), while avoiding any symbolic represen-1228

tation, using (currently pure) neural methods.1229

Natural Language Inference Natural language1230

inference (NLI) is generally considered as the1231

semantic concepts of entailment and contradic-1232

tion (Bowman et al., 2015). Here logical reasoning1233

tasks can be viewed as special types of NLI focus-1234

ing on particular reasoning aspects.1235

Question Answering The form of LRNL looks1236

similar to question answering (QA), however, QA1237

is conducting one-step logical reasoning only when1238

the context provides enough information to answer1239

the question (deductive reasoning), or the answer1240

is a generalization of an argument in context or1241

question (inductive reasoning), or the answer is1242

to provide explanations to the question (abductive1243

reasoning).1244

Commonsense Reasoning Commonsense rea-1245

soning (CR) and logical reasoning (LR) are similar1246

in that they both involve “knowledge” and “rea-1247

soning”. Compared to LR, CR focuses more on1248

the “knowledge” aspect. Some typical tasks in-1249

clude whether a system has commonsense knowl-1250

edge (Bosselut et al., 2019; Yang et al., 2020),1251

and whether a system’s answer is commonsense-1252

knowledge-aware (Bisk et al., 2020); LR focuses1253

more on the “reasoning” aspect, e.g., whether a1254

system’s i/o behaviors follow reasoning require-1255

ments (Clark et al., 2020).1256

Chain of Thoughts Chain of1257

thoughts (COT) (Wei et al., 2022) is a prompting1258

technique that can elicit the step-by-step reasoning1259

ability of LLMs without finetuning.1260

COT can potentially be used for each of the three1261

sub-reasoning types of logical reasoning. In fact,1262

for a given (commonsense reasoning) question,1263

some reasoning steps of COT could be deductive,1264

and others can be inductive or abductive. Since the1265

purpose of this paper is to provide a finer analysis1266

on logical reasoning, we do not intentionally cover1267

prompting techniques such as COT.1268

It is also argued by several modular-based de-1269

ductive reasoning methods that COT’s reasoning is1270

not casual (Creswell et al., 2022), limited by input1271

size (Ribeiro et al., 2022), and contains unrelated 1272

or incorrect steps (Hong et al., 2022; Tafjord et al., 1273

2022). 1274

Overall, it could be interesting to use COT- 1275

related methods specifically for deductive, induc- 1276

tive, or abductive reasoning (as opposed to modular- 1277

based methods), and it is a less-explored research 1278

direction. 1279

A.1.2 Deductive Reasoning 1280

Multi-hop Reasoning Compared to proof gen- 1281

eration, many multi-hop reasoning tasks (Yang 1282

et al., 2018; Jiang et al., 2020; Min et al., 2019; 1283

Sinha et al., 2019) are much simpler, often being 1284

single-branched (Qu et al., 2022), consisting of 1285

only 2-3 supporting facts, and are more coarse- 1286

grained, involving large chunks of texts such as 1287

passages instead of simple, short sentences (Yang 1288

et al., 2022a). 1289

Nevertheless, some multi-hop reasoning datasets 1290

can be considerd as conducting deductive reason- 1291

ing. For instance, for each data in CLUTRR (Sinha 1292

et al., 2019) dataset, a set of facts that can make 1293

conclusive support to the target kinship relation is 1294

included in background information as input for 1295

each target relation, hence from the philosophical 1296

definition (Salmon, 1989), it requires to perform 1297

deductive reasoning. 1298

Mathematical Reasoning In many mathemati- 1299

cal reasoning tasks such as math word problem 1300

solving (Koncel-Kedziorski et al., 2015) and geom- 1301

etry problem solving (Seo et al., 2015), the conclu- 1302

sion can be conclusively entailed by the premise. 1303

Therefore these tasks belong to deductive reason- 1304

ing. We do not review math-related papers because 1305

we want to focus solely on the challenge of de- 1306

ductive reasoning while mathematical reasoning 1307

involves numbers in the text, which introduces ad- 1308

ditional challenges. 1309

A.1.3 Inductive Reasoning 1310

Information Extraction Information Extrac- 1311

tion (IE) is a task of extracting pre-specified types 1312

of facts from written texts or speech transcripts, and 1313

converting them into structured representations (Ji, 1314

2018). The rule generation task here also extracts 1315

rules from facts represented in written texts. The 1316

difference is that IE pursues extracting the exact 1317

information from existing texts, while inductive rea- 1318

soning aspires to induce more general rules from 1319

existing texts, where the information in rules goes 1320

beyond what is exactly stated in the texts. 1321
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Case-based Reasoning Case-based Reason-1322

ing (CBR) is a classic AI subject, whose meth-1323

ods share a general methodology of four steps: re-1324

trieve, reuse, revise, and retain (Aamodt and Plaza,1325

1994). Recently there has been research works de-1326

voting to bridging the research of CBR and NLP, by1327

using NLP techniques for CBR challenges (Yang1328

et al., 2023a) and improving NLP tasks with CBR1329

methodologies (Das et al., 2021, 2022; Yang et al.,1330

2023a; Thai et al., 2023). CBR could be seen as a1331

type of analogical reasoning (Kolodner, 1997), and1332

analogical reasoning belongs to inductive reason-1333

ing (Salmon, 1989). However, CBR is a different1334

inductive reasoning type than the “generalization”1335

process (from facts to rules) described in Flach1336

and Kakas (2000), but more on the general descrip-1337

tion on inductive reasoning (Salmon, 1989) that1338

premises cannot conclusively provide support to1339

the conclusion.1340

A.1.4 Abductive Reasoning1341

Casual Reasoning In logic research, causal rea-1342

soning aims at an epistemological problem of estab-1343

lishing precise causal relationships between causes1344

and effects. It is generally considered a form of1345

inductive reasoning (Goertzel et al., 2011), since1346

inductive reasoning is to derive rules that lead from1347

one to another. When the focus is to derive pos-1348

sible causes from effects, the problem belongs to1349

abductive reasoning (Goertzel et al., 2011).1350

A.2 More Details About the Definition and1351

Categorization of Logical Reasoning1352

There are many subjects related to logical reason-1353

ing, including philosophy, logic, and AI. Among1354

them, the definition and categorization aspects of1355

logical reasoning are handled by philosophy re-1356

search. However, debate exists in philosophy re-1357

search on the categorization of logical reasoning.1358

One group believes that every argument can be1359

classified as either deduction argument, inductive1360

argument, or fallacy (Salmon, 1989). Without con-1361

sidering fallacy, given that an argument consists1362

of premises and a conclusion, when the premises1363

can conclusively provide support to the conclu-1364

sion (which means that if the premises of the argu-1365

ment were all true, it would be impossible for the1366

conclusion of the argument to be false), this argu-1367

ment is a deductive argument. Conversely, when1368

the premises can not conclusively provide support1369

to the conclusion, the argument is inductive.1370

The other group has the same definition of de-1371

ductive reasoning, but they believe that further cat- 1372

egorization of non-deductive reasoning is neces- 1373

sary. Without considering fallacy, they believe in 1374

a trichotomy of deductive, inductive, and abduc- 1375

tive reasoning (Peirce, 1974). However, even for 1376

the second group, the definition and difference be- 1377

tween inductive and abductive reasoning are also 1378

controversy (Flach and Kakas, 2000). 1379

Nevertheless, Console and Saitta (2000) argue 1380

that from the utility perspective of AI, a distinc- 1381

tion between inductive and abductive reasoning is 1382

possible: both inductive and abductive reasoning 1383

provide explanations about the world but their ex- 1384

planations differ in the degree of generality. For 1385

instance, an inductive hypothesis allows the validity 1386

of properties, observed on a set of individuals, to be 1387

generalized to other individuals not in the observa- 1388

tions, whereas an abductive one allows unobserved 1389

properties to be applied to observed individuals. 1390

More details about the difference and an example 1391

can be found in §A.2. 1392

Considering that inductive and abductive rea- 1393

soning can be distinctive enough when formulated 1394

in NLP, in this paper, we adopt the second group, 1395

particularly Console and Saitta (2000)’s view of 1396

definition and categorization of logical reasoning. 1397

Specifically, the difference between inductive 1398

and abductive reasoning is that, both inductive and 1399

abductive reasoning provide explanations about the 1400

world but their explanations differ in the degree of 1401

generality. 1402

For instance, an inductive hypothesis allows the 1403

validity of properties, observed on a set of individ- 1404

uals, to be generalized to other individuals not in 1405

the observations, whereas an abductive one allows 1406

unobserved properties to be applied to observed 1407

individuals. 1408

The distinction between inductive and abduc- 1409

tive hypotheses strictly parallels the dichotomy ex- 1410

tension vs. intension, or generality vs. informa- 1411

tiveness. In other words, an inductive hypothesis 1412

extends or generalizes to unobserved individuals, 1413

while an abductive one provides more specific infor- 1414

mation (e.g., unobserved properties) about existing 1415

specific individuals. 1416

For example, if a white ball is found in a bag, 1417

inductive reasoning might lead to the conclusion 1418

that “all balls in this bag are white”, while abduc- 1419

tive reasoning might lead to the conclusion that 1420

“someone put the white ball into this bag”. 1421

In this example, the inductive hypothesis gen- 1422

eralizes the property of the existing individual (a 1423
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found white ball) to unobserved individuals (other1424

not-seen balls in the bag), while the abductive hy-1425

pothesis provides more specific information about1426

the current individual (who brought this ball to the1427

bag).1428

To summarize in simple words, in common sit-1429

uations, pure inductive reasoning is to only pro-1430

vide (usually sample to population) generalizations,1431

while pure abductive reasoning is to only provide1432

specific explanations.1433

Overall, even in the philosophical literature1434

(which takes charge of the research on the defini-1435

tion of logical reasoning), a clear definition for all1436

three types of logical reasoning is rare, but more on1437

the description of the difference between types of1438

logical reasoning (since a clear definition is still un-1439

der debate). The difference can be illustrated does1440

not mean a precise definition can be given. Never-1441

theless, considering the above-discussed philosoph-1442

ical literature, we try our best to give a definition1443

below for a more straightforward understanding:1444

Given an argument consisting of premises and1445

a conclusion, we define the sub-type of logical1446

reasoning it involves below:1447

Definition for deductive reasoning: the premises1448

can conclusively provide support for the conclu-1449

sion, i.e. if the premises are all true, it would be1450

impossible for the conclusion to be false.1451

Definition for inductive reasoning: the premises1452

cannot conclusively provide support for the con-1453

clusion, since the conclusion generalizes existing1454

information in premises to new knowledge, which1455

has a wider applicable scope than those in premises.1456

Definition for abductive reasoning: the premises1457

cannot conclusively provide support for the conclu-1458

sion, since the conclusion contains more specific1459

information over the premises (most commonly1460

used as generating most probable explanations).1461

Please note that according to Console and Saitta1462

(2000), inductive reasoning and abductive reason-1463

ing are not exclusive to each other, i.e., inductive1464

reasoning and abductive reasoning overlap with1465

each other.1466

A.3 Related Surveys on Reasoning1467

Huang and Chang (2022); Qiao et al. (2022) mainly1468

reviews the prompting techniques for LLMs, but1469

do not focus on papers that specialized on logical1470

reasoning (the coverage of the two fields are quite1471

different).1472

Yu et al. (2023) is a concurrent work of ours and1473

reviews papers related to reasoning. However, it1474

does not focus on logical reasoning, particularly 1475

the three sub-types of logical reasoning. The advan- 1476

tage of our survey is that we provide a finer analysis 1477

of logical reasoning (including a more detailed def- 1478

inition and categorization of logical reasoning from 1479

philosophy literature, comparison with the classic 1480

AI paradigm on logical reasoning, and organizing 1481

the survey based on the three sub-types of logical 1482

reasoning). 1483

Xu et al. (2023) provides a comprehensive eval- 1484

uation of the logical reasoning ability of LLMs. 1485

A.4 Other Related Logical Reasoning Papers 1486

A.4.1 Rule Verification 1487

Misra et al. (2022) analyze language model’s abil- 1488

ity to generalize novel property knowledge (has 1489

sesamoid bones) from concept(s) (robins) to oth- 1490

ers (sparrows, canaries). As illustrated in §A.8, 1491

they analyze the language models’ ability to clas- 1492

sify a new fact (but not a rule) as correct or not, 1493

given facts. It could be seen that the correctness 1494

of a rule is implicitly predicted by testing multiple 1495

facts entailed by the rule. 1496

A.5 Research Trend in the Three Sub-Types 1497

of Logical Reasoning 1498

Out of the three reasoning types, deductive reason- 1499

ing has drawn the most research attention, and has 1500

the most abundant of works, especially in 2022. 1501

Abductive reasoning has drawn much attention in 1502

2020 and 2021 but has few works in 2022 and 2023. 1503

Inductive reasoning is only proposed at the end of 1504

2022, having the least number of works. However, 1505

inductive reasoning has attracted much attention 1506

since the second half year of 2023. 1507

Two main reasons for the abundance of works 1508

in the deductive reasoning domain could be that 1509

(1) more challenging benchmarks have been con- 1510

structed during the last few years, and (2) deductive 1511

reasoning could be one of the most commonly used 1512

reasoning types in common life. We think the main 1513

reason for the little attention drawn to abductive 1514

reasoning in recent years is that the benchmarks for 1515

abductive reasoning are relatively old and less chal- 1516

lenging for LLMs. Inductive reasoning could be a 1517

promising research topic since there have been few 1518

works in the domain, and it involves very challeng- 1519

ing tasks such as proposing new scientific findings. 1520

In general, there has been no framework which 1521

is proposed to address all three reasoning domains. 1522

However, LLMs generally can exhibit all three rea- 1523

soning abilities to some extent. It would be inter- 1524
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esting for future works to analyze the effect of the1525

pretraining method and scale of PLM on the three1526

reasoning abilities.1527

A.6 Relation Between LRNL and NeSy1528

A large proportion of recent papers on deductive1529

reasoning and abductive reasoning leverage a nat-1530

ural language-based knowledge base, and reason1531

over retrieved knowledge from the knowledge base1532

to reach a certain goal (Tafjord et al., 2021; Liang1533

et al., 2021; Qu et al., 2022; Ribeiro et al., 2022;1534

Creswell et al., 2022; Sanyal et al., 2022b; Hong1535

et al., 2022; Bostrom et al., 2022; Yang et al.,1536

2022a; Tafjord et al., 2022; Dalvi et al., 2022). This1537

pattern is very similar to the methodology design1538

of NeSy, which is to retrieve symbolic knowledge1539

and reason over the retrieved symbolic knowledge.1540

The main difference is that LRNL adopts natural1541

language as knowledge representation but not sym-1542

bolic knowledge. Because of the similarity in the1543

methodology design, we consider that LRNL could1544

be seen as a type of NeSy but without many disad-1545

vantages of symbolic representation such as sym-1546

bolic knowledge acquisition and scalability.1547

In addition, due to the high similarity in the1548

methodology design to NeSy, LRNL also shares1549

some advantages with NeSy such as explainabil-1550

ity. The reason is that the iterative retrieving and1551

reasoning will make the decision-making process1552

more interpretable on the intermediate reasoning1553

steps, and which knowledge is used for each rea-1554

soning step.1555

A.7 Experiments Summarization1556

In this section, we summarize the experiment re-1557

sults of an important and literature-abundant task.1558

Until now there has been only one or two pa-1559

pers working on inductive reasoning. Methods for1560

abductive reasoning generally leverage different re-1561

sources (such as multi-task, additional knowledge1562

resources, and ancillary loss) and lack a progressive1563

relationship between each other, therefore are less1564

comparable. Currently, the ProofGeneration1565

task in deductive reasoning is the most literature-1566

abundant, and methods for this task have progres-1567

sive relationships with each other. Therefore here1568

we mainly summarize results and analyze for the1569

ProofGeneration task.1570

Table 5 shows the summarized experiment re-1571

sults. We select the most widely used tasks to1572

display their performance. Among the task, the1573

setting of ParaRules is trained on D3 (D* dataset1574

with depth 3) and tested on the ParaRules test set; 1575

the setting of Birds-Electricity is trained on D5 (D* 1576

dataset with depth 5) and tested on bird-electricity 1577

set; setting for EntailmentBank is the task 3 which 1578

uses full corpus as input (so that many distractors 1579

exist in input); setting for OBQA and QuaRTz are 1580

zero-shot setting while model pre-trained on an- 1581

other dataset (EntailmentBank). 1582

Among the methods, Creswell et al. (2022) 1583

and Bostrom et al. (2022) design unique metrics 1584

using EntailmentBank dataset, and Sprague et al. 1585

(2022) focus on a unique task (proof generation 1586

task with incomplete information), therefore we do 1587

not list their experiments results in the table. 1588

Overall methods for proof generation tasks tend 1589

to use different datasets for evaluation, making 1590

them less comparable. 1591

A.8 Meaning of “More General” Required by 1592

Inductive Reasoning 1593

This section is collected from Yang et al. (2022b)’s 1594

appendix, to help illustrate inductive reasoning. 1595

Given an argument consisting of a premise and 1596

a conclusion, if the conclusion involves new infor- 1597

mation that is not covered by the premise and can 1598

not be conclusively entailed by the premise, the 1599

argument is an inductive argument (Salmon, 1989). 1600

When the conclusion has a larger scope of infor- 1601

mation coverage than the premise, and can entail 1602

the premise, it can be said that the conclusion is 1603

“more general” to the premise (Yang et al., 2022b). 1604

In this case, we termed the premise as a “fact”, and 1605

the conclusion as a “rule”; When the conclusion 1606

contains new pieces of information and cannot en- 1607

tail the premise, as defined by Salmon (1989), the 1608

argument is still an inductive argument. But in this 1609

case, we termed the premise as a “fact”, and the 1610

conclusion as another “fact”. 1611

For instance, if facts that are about cats and dogs 1612

are good accompaniment of humans, then some 1613

examples of a “more general” rule can be (1) mam- 1614

mals are good accompaniment of humans, or (2) 1615

domesticated animals are good accompaniment of 1616

humans, or (3) animals with four legs are good 1617

accompaniment of human. 1618

In these examples, the rules cover a larger scope 1619

than the facts (e.g., mammals compared to cats; 1620

domesticated animals compared to cats), and there- 1621

fore the rules are “more general” than the facts. 1622

“More general” means not only about finding 1623

higher taxonomic rank, but can be in unlimited 1624

forms. For instance, if the fact is about the Sun 1625

17



Methods
ParaRules Birds-Electricity EntailmentBank (Task 3) OBQA QuaRTz

Full Accuracy (FA) Full Accuracy (FA) Leaves F1 Leaves All-Cor. Steps F1 Steps All-Cor. Intermediates F1 Intermediates All-Cor. Overall All-Correct Accuracy Accuracy

PRover 95.1 80.5 - - - - - - - - -
multiPRover 94.5 81.8 - - - - - - - - -
EntailmentWriter - - 39.7 3.8 7.8 2.9 36.4 13.2 2.9 - -
ProofWriter 98.5 97.0 - - - - - - - - -
EVR - 63.1 - - - - - - - - -
IBR 95.7 93.5 - - - - - - - - -
IRGR - - 45.6 12.1 16.3 11.8 38.8 36.5 11.8 - -
Selection-Inference - - - - - - - - - - -
FaiRR 98.6 - - - - - - - - - -
MetGen - - 34.8 8.7 9.8 8.6 36.7 20.4 8.6 - -
SCSearch - - - - - - - - - - -
ADGV - - - - - - - - - - -
NLProofS - - 43.2 8.2 11.2 6.9 42.9 17.3 6.9 - -
Entailer - - - - - - - - - 76.8 74.3
Teachme - - - - - - - - - 77.0 75.9

Table 5: Proof Generation Task Results.

rises and falls every day, then some examples of a1626

“more general” rule can be (1) the Earth is the king1627

of the universe or (2) the Earth is rotating itself.1628

Both rule examples are “more general” than the1629

given fact, since the rule can entail not only the1630

given fact, but also other not mentioned facts such1631

as the observable movements of the other stars in1632

the Milky Way.1633

A.9 Other Challenges and Possible Future1634

Directions1635

Robust Deductive Reasoner Symbolic deduc-1636

tive reasoners are not restricted to train data distri-1637

butions, while neural deductive reasoners are re-1638

stricted to their training data (Gontier et al., 2020;1639

Richardson and Sabharwal, 2022); In addition, neu-1640

ral deductive reasoners are also vulnerable to adver-1641

sarial attacks (Gaskell et al., 2022), while symbolic1642

reasoners are robust to the attacks. The lack of ro-1643

bustness can lead to restricted application domains1644

and incorrect deductive inferences.1645

Reliable Rule Generation Currently, the rule1646

generation method in inductive reasoning relies on1647

out-of-box LLMs, since a finetuned rule genera-1648

tion model could be restricted in a domain. The1649

annotation of an inductive reasoning dataset should1650

only be done by experts and is very time consum-1651

ing (Yang et al., 2022b). Given the two restrictions,1652

how to improve the quality of generated rules given1653

related facts could be a challenging open problem.1654

Reliable Explanation Generation Abduction is1655

a form of non-monotonic reasoning (Paul, 1993),1656

and potentially has a large search space of conclu-1657

sions given premises. Therefore, how to generate1658

more (all) reasonable explanations can be challeng-1659

ing (Bhagavatula et al., 2020).1660

Building Larger Benchmarks For complicated1661

reasoning tasks especially in realistic and natu-1662

ral language settings, usually experts are needed1663

for annotation, and the process is very time- 1664

consuming (Dalvi et al., 2021; Sprague et al., 2022; 1665

Yang et al., 2022b). Therefore it can be challenging 1666

to construct significantly larger benchmarks. 1667

Understanding the Internal Mechanism of 1668

PLMs for Reasoning Until now research works 1669

only focused on investigating whether the in- 1670

put/output behaviors of PLMs can be used to sim- 1671

ulate a reasoner (Clark et al., 2020) or complete 1672

reasoning tasks. However, it is still a challenging 1673

open research question to understand the internal 1674

mechanism of PLMs for reasoning. 1675
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