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Abstract

Software has been developed for knowledge discovery, prediction and management1

for over 30 years. However, there are still unresolved pain points when using2

existing project development and artifact management methodologies. Historically,3

there has been a lack of applicable methodologies. Further, methodologies that4

have been applied, such as Agile, have several limitations including scientific5

unfalsifiability that reduce their applicability. Evident, a development methodology6

rooted in the philosophy of logical reasoning and EKB, a knowledge base topology,7

are proposed. Many pain points in data mining, machine learning and general8

knowledge management are alleviated conceptually. Evident can be extended9

potentially to accelerate philosophical exploration, science discovery, education as10

well as knowledge sharing & retention across the globe. EKB offers one solution11

of storing information as knowledge, a granular level above data. Related topics in12

computer history, software engineering, database, sensing hardware, philosophy,13

and project & organization & military managements are also discussed.14

1 Introduction15

Necessity is the mother of invention, claimed Plato [1]. Deficient in rigorous scientific scrutinization16

as the statement is, major methodology evolutions in software development did not emerge until the17

emergence of major computer innovations and thereafter elevated effort orchestration needs.18

In the 1940s, digital programmable electronic computers revolutionized scientific calculation done19

previously with mechanical and analog computing machines [2]. Assembly (1947) [3, 4] and high20

level (1953) [5, 6] programming languages rose to harness the unprecedented and ever-increasing21

computing power, Eventually the term software was coined (1953) [7]. Two Software Development22

Methodologies (SDMs) were proposed: 1. a project breakdown of sequential phases, the essence of23

Waterfall (see Fig 1a), first presented no later than 1956 [8] and 2. iterative and incremental SDM,24

the essence of Agile (see Fib 1b), first executed no later than 1957 [9].25

In the 1960s, operating systems (1962) emerged to orchestrate multiple computation tasks[10]. This26

signified the shift of computer development from single-task specialized machines for military and27

academia to machines accessible to the general public. The shift was exemplified by The Mother of28

All Demos (1968) which demonstrated many fundamental elements of personal computing for the29

first time [11] and showed how software had evolved in both diversity and complexity. Meanwhile,30

the first formal detailed diagram of the Waterfall methodology appeared in literature (See Fig 1a)31

(1970) [12] and the name of Waterfall was ultimately coined (1976) [13]. Agile variants such as32

evolutionary project management [14] and adaptive SDM [15] appeared in the early 1970s, although33

no clear preference between Waterfall and Agile variants was found in the literature.34
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Table 1: Major Software Usage Evolutions and Methodology Developments
Period Technology Software Usage Major Methodology Development

1940s Programing
Language

Scientific
Calculation

First Waterfall variant presentation (1956) [8]; first
Agile variant execution (1957)[9].

1960s Operating
System

Shifting to
Applications

First detailed diagram of Waterfall idea(1970)[12],
Waterfall name (1976)[13]; Agile variants: evolu-
tionary project management [14] & adaptive SDM
[15](early 1970s).

1980s GUI &
Internet

PC & Internet
Applications

Waterfall standardized in military (1985)[20]; The
Manifesto signed (2001)[24]. Agile significantly
more popular than Waterfall.

Around
1990

Data
Storage

Knowledge Dis-
covery, Prediction
and Management

NA

35

36

In the 1980s, personal computers entered households[16] followed by graphic user interface (GUI)37

(1983) [16]. The Internet Protocol Suite (TCP/IP) was standardized (1982)[17] and commercial38

Internet service providers emerged (1989) [18, 19] Unprecedented user-computer interactions and39

user-user communications created tremendous software needs, while Waterfall was still widely40

deployed in software development. United States Department of Defense issued a military standard41

describing Waterfall as the required military software development process (1985) [20]. However,42

software user needs grew so fast that, the heavy Waterfall SDM failed to deliver in pace. Consequently,43

a number of light weight SDMs were proposed and practiced (1990s) [4, 21, 22, 23]. Eventually The44

Manifesto for Agile Software Development (The Manifesto) [24] was signed by 17 practitioners of45

light-weight SDM (2001) and became the de facto SDM.46

Around 1990, data storage capacities grew significantly and software usages in Data Mining (DM,47

defined as knowledge discovery from data) reached the tipping point. While data and software’s48

storage manners differ between Von Neumann and Harvard architectures, data storage capacity growth49

empowered software to discover knowledge supported by scientific evidence (defined as Knowledge)50

that people never had access to. Corporations started to analyze customers’ behavior and make51

business decisions based on Knowledge (1990s) [25]. The first DM methodology, Cross-Industry52

Standard Process for Data Mining (CRISP-DM) was conceived (1996) [26, 27]. However, CRISP-53

DM and its variants appear more of a theoretical framework, offer little meaningful or actionable54

guidance, and therefore have not gotten much traction. In addition, CRISP-DM is concerned only55

with DM, not Machine Learning (ML, defined as to deliver an algorithm (Algo) for Knowledge56

prediction) or Knowledge Management (KM) in general for science, medicine, military and so on.57

Due to the absence of alternative methodologies(see Table 1), Agile is still being offered up for DM,58

ML, and KM [28, 29] with questions being asked about its appropriateness [30, 31].59

This paper discusses limitations in Agile as a scientific claim and why it may not address the current60

pain points of DM, ML and KM, which are later summarized. Evident along with Evident Knowledge61

Base (EKB) is proposed as a project development and artifact management methodology. Evident’s62

potential in alleviating many current pain points is demonstrated conceptually. Unalleviated pain63
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points and future work to fulfill the potential are also discussed. Beyond software development,64

Evident is illustrated to be applicable in many aspects of society. EKB is demonstrated as one potential65

infrastructure to store information as Knowledge, a granular level above data.66

2 Agile ambiguity and unfasifiability67

Most people regard Agile as iterative, evolutionary and incremental software development [9] (see68

Fig 1b) and many claim to be Agile practitioners. However, Agile empirical evidence is mixed and69

hard to find [32, 30] while no measurable scientific evidence has been found at all. Although control70

experiment challenges or absence of quantitative project Agility measurements may explain no71

measurable scientific evidence, concerns remain with the ambiguity with which Agile’s approaches72

and scope are defined in The Manifesto.73

2.1 Agile approaches are vaguely defined in The Manifesto74

The Manifesto includes 4 values and 12 principles [24]. The goal is crystal clear: to rapidly deliver75

quality software that meets user needs, but not so much can be found for how to get there. Most of76

the Values and Principles appear to be goals but not approaches (see Appendix); some are concerned77

with approaches but vaguely defined; only four principles are actionable, which turn out to have no78

relevance in how to implement iterative, evolutionary or incremental development. Agile Alliance,79

co-founded by some original signers of The Manifesto, defines Agile as “an umbrella term for a set80

of frameworks and practices” from which Agile practitioners “figure out the right things to do given81

your particular context.” [33] Unfortunately, no actionable approaches are defined.82

Therefore although there are numerous frameworks under the Agile umbrella [34, 35], it’s impossible83

to determine if a development practice is Agile and the claim of Agile practice becomes unfalsifiable.84

Because falsifiability is the standard evaluating scientific against non-scientific claims introduced by85

Karl Popper [36], Agile is not a scientific claim. Consequently, no observable scientific evidence can86

prove or disprove Agile, because technically no one can determine if a project is Agile or not in the87

first place. If an Agile rollout “fails”, Agile proponents can always argue that the Agile rollout was88

not implemented correctly.89

Meanwhile Agile practitioners cannot determine if they practice Agile correctly either. Projects90

employing Agile frameworks such as Test Driven Development or Feature Driven Development91

may not even realize that the projects may not be adaptive to new user needs. People who are92

essentially practicing Waterfall may believe they are practicing Agile only because they implement93

each sequential Waterfall phase incrementally or simply use Scrum or Kanban.94

In defense, some proponents claim Agile as a philosophy [37, 38]. Granted Agile’s goal may fit into95

Axiology, one of Philosophy’s four domains (the rest as Metaphysics, Epistemology and Logic) [39],96

concerned with what is good, it appears to be a common understanding and offers little value when97

Agile’s approaches are vaguely defined.98

2.2 No scopes are defined in The Manifesto99

“The right things to do given your particular context” by Agile Alliance [33] are expected to be found100

within Agile’s frameworks, otherwise Agile is not practiced right. With no scope defined, Agile101

seems to cover the scope of all softwares. However, some softwares have non-incremental needs or102

simply only one need, e.g. to solve one specific partial differential equation numerically. Their needs103

are either met or not at all. No iteration or evolutionary Agile design cycles exist.104

Agile is also not applicable for Knowledge discovery tasks such as DM. In a typical Agile development105

cycle (Fig 1b), Review phase is to discover Knowledge about user needs, which can be done through106

DM. Therefore Agile should not be applicable to DM, one phase of its own design cycle.107

Table 2: Pain Points of DM, ML and KM.
Pain Points for DM

Overall

Struggles to deliver fast with technical debt abc
Project Progress not easily measurable b
Uncertainty in project timeline b
Activities not easily trackable or reproducible bc
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Not scalable in terms of both collaborator number and project maintenance ab
Few general project design patterns abc
Anti-patterns not uncommon abc

Collabor-
ation

No methodologies to orchestrate team of size commonly seen in software
development

b

Few intuitive manners to divide task among team members ab
Deficient common awareness in needs for process improvement a
Tasks completed or ideas explored by team members cannot be easily found
and reproduced causing duplicated work.

bc

Data

Data compromised in availability, accuracy and consistency during acquisition x
Data preprocessing process not standardized such as data labeling, object
detection (e.g. identify object pixels in images) causing unstable data depen-
dency, cascade correction and uncertainty in project progress

b

Underutilized data may take unnecessary resource b
Data may be presented in different data type such as integer, float or string,
causing unnecessary data dependency for Algo and experiments

b

Knowledge
Discovery /
ML Algo
Research

Off-the-shelf models are available for DM automation. However, DM au-
tomation has not become a common practice.

abc

Inefficient in-house model code implementation not uncommon b
No appropriate version control tools. Current version control tools such as git
are designed to only keep the best version Algo/experiment available, while
DM and ML need multiple versions available concurrently for reference

abc

No easy solution to request flexible data storage, memory and computation
capacity as needed. Hard drive, RAM, CPU and GPU are difficult to allocate
even on the cloud.

x

The use of other Algos’ output as input results in correction cascades b
Algo is a sequential computation process different from typical software
applications with a number of independent features. Difficult to assign one
Algo development into multiple team members

x

Algo user may have no clear understanding about the Algo and deploys it
outside its scope.

b

Multiple programing language smell x
Pain Points for ML

Algo
Production

Significant efforts of research Algo migration into production bc
Even more significant efforts if production Algo is written in a different
language than the language used in research, e.g. in embedded system

x

For Algo analyzing sensor data such as cameras or bio-sensors, product grade
data won’t be available for Algo research until sensor hardware designs are
complete. Algo becomes the product release bottleneck, resulting in either
sub-optimal production Algo or delayed product release.

x

Production data source is inconsistent with research data source x
Algo production is often done by team members, most likely software engi-
neers, who did not produce the Algo, causing misuse

abc

Algo needs to load data in real time during production but most often not in
real time during research, causing unnecessary Algo code re-factoring

b

Prototype Algo may be accidentally run in production causing damages x
No straightforward way to organize codes repository for research and produc-
tion team members work in the same repository

abc

Dead code path b

Feedback
Loop

Algo update workflow not straight forward b
Few clear pattern designs for monitoring Algo performance in production b
Actions based on unseen data predicted by Algo may alter observed data x

Pain Points for KM

Manage-
ment Tool

Few tools or resource help people check if Knowledge formed is well sup-
ported by evidence, especially when evidence appears long after presumed
Knowledge has been formed.

abc

Knowledge dissemination among community has always been a challenge. abc
Knowledges formed by different organizations are not easy to combine abc
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Knowledge formed within organizations is not easy to share and retain. abc
Standardi-
zation

Knowledge has been recorded in sentences or articles. Few standardized ways
to represent general Knowledge.

abc

a/b/c: Pain points that can be alleviated by Evident’s character a, b or c. x: Pain points that cannot
be alleviated by Evident.

3 Pain points for DM, ML and KM108

Owing to the absence of applicable methodologies, pain points have been continuously reported for109

DM, ML and KM [40, 41, 42, 43] (see Table 2) in the current big data era with explosive growth in110

data volume, variety and velocity.111

DM & ML’s Algo typically comprises a data computation flow (defined as a Model, supervised112

or unsupervised), such as logistic regression, and its configuration, such as logistic regression113

coefficients. DM employs off-the-shelf or in-house Models to discover Knowledge from data. ML114

compares Knowledges discovered by DM by candidate models and deploys the one that performs best115

with its configuration, as the production Algo, for Knowledge prediction in production. Therefore,116

DM’s pain points still apply to ML. Meanwhile because DM and ML are special forms of KM, their117

pain points are also applicable for KM (see Fig 2).118

Generally speaking, DM has not been regarded highly collaborative and scalable activities to deliver119

high throughput Knowledge. It’s rare to see hundreds of contributors in a DM project, unlike for120

example some complicated open source software projects that, deliver promptly, efficiently and121

continuously for years or even decades [44, 45]. It is also rare of mass Knowledge production122

in a organized and standardized manner with high production yield for a unit period, commonly123

seen in consumer products such as automobiles or toothpastes. DM often struggles to deliver124

Knowledge rapidly with technical debts in reproducibility, measurability, trackability. DM needs125

to not only handle artifacts of different modalities such as documents, codes and data, but also126

address computation and data storage resource requests potentially across multiple platforms. Raw or127

preprocessed data can be compromised in availability, accuracy and consistency. Data dependency128

and entangled models often cause cascaded correction and uncertainty in project planning. In addition,129

routine tasks such as quarterly or annual finance analysis mostly have not be automated. Tools and130

project management methodologies are highly in demand to fulfill DM’s potential and deliver values.131

In ML, the team members, usually software engineers or product managers, that deploy an Algo in132

production to predict future data may not have produced the Algo and may misuse it. The Algo codes133

are often refactored sometimes in different programming languages, operating systems or even in134

fixed point instead of float point. If the Algo is to be deployed on a data acquisition product such135

as cameras or bio-sensors, no product grade data are available for Algo research until the sensor136

hardware design is finalized to enable data collection. Algo research therefore becomes the bottleneck137

for product release. Frequently sub-optimal Algo is deployed to meet the deadline or projects become138

delayed. What’s more, production data may come from different sources compared to research data139

potentially caused by, e.g. sensor upgrade or downgrade, resulting in the under performance of140

production Algo. After Algo deployment, no straightforward way exists to monitor Algo performance141

or thereafter update Algo. Future Knowledge predicated by the deployed Algo may encourage142

Algo users to alter decisions, which leads to the formation of future data with unanticipated hidden143

feedback loops. In addition, prototype Algo or dead codes may be accidentally run in production144

potentially causing catastrophic consequences.145

Although scientific methods have guided people to discover Knowledge and improve practices such146

as evidence-based medicine [46] and experiment based military development [47], people still form147

Knowledge that lacks in supporting evidence [48]. One possible reason is the unavailability of tools148

or resources to check if the Knowledge formed is well supported by evidence, especially when there149

is a significant time gap between the Knowledge formed and the appearance of supporting evidence,150

e.g. for long-term investments or corporation strategies. Knowledge dissemination and retention151

are also huge challenges among the community and organization [49]. Furthermore, Knowledge is152

mostly recorded in the form of articles. However, because articles writing has not been and probably153

will never be standardized, Knowledge has not been able to be represented in a standardized manner154

for definition, reference and storage. The same Knowledge recorded in different sentences or even155

languages may be interpreted differently.156
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4 Evident: a project development and artifact management methodology157

4.1 Definition and scope158

Evident is a methodology of project, including but not limited to software, development and artifact159

management for DM, ML and KM, characterized by160

a. project development mimicking a continuous process of logical reasoning in philosophy;161

b. project activities or artifacts are broken into containers of Observations, Hypotheses and162

Tests (collectively defined as Containers);163

c. directional association constructions towards and only towards Test Containers to represent164

Knowledge.165

Observation is a collection of facts. A Hypothesis is Knowledge to be formed out of Observation. A166

Test is a Hypothesis evaluation process using Observation to prove or disprove the Hypothesis with167

or without confidence levels. Containers indicate Observations, Hypotheses and Tests can only be168

added or removed as a block.169

170

4.2 Knowledge representation171

Loosely speaking, a Test associated with a Hypothesis and an Observation represents induction172

Knowledge (see Fig 3a); a Test associated with a Hypothesis set and an Observation represents173

abduction Knowledge (see Fig 3b), a Hypothesis associated Test that is also associated with an174

induction or abduction Knowledge Test represents deduction Knowledge or prediction (see Fig 3a&b).175

Deduction Knowledge becomes induction Knowledge once Observation proving or disproving176

deduction Knowledge is associated with Test, while stay deducted Knowledge if the associated177

Observation overlooks (fails to either prove or disprove), the deduction Knowledge. Multiple178

Tests associated with the same pair of Hypothesis(es) and Observation represent multiple different179

Knowledges based on different evaluation metrics (e.g. profit maximization or cost minimization) or180

Observation usage strategies (e.g. cross-validation grouping) (see Fig 3c).181

DM may be regarded as Knowledge induction with data as Observation, model as Hypothesis to182

be evaluated and data analysis experiment as model test on data to form induction Knowledge with183

statistical confidence (see Fig 4a). Similarly, ML is Knowledge abduction. An example is a data184

analysis experiment that picks the best off-the-shelf or in-house model that best explains the data185

to form the Algo for production (see Fig 4b). Experiments employing different cost functions (e.g.186
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RMSE, AUC or correlation coefficients), statistical confidence levels or data allocation strategies for187

training and testing may result in different Knowledges or Algos.188

4.3 Project development189

Evident project developments are intuitively broken down into two granular levels: Knowledges190

and Containers. Mimicking logical reasoning in philosophy, each project period develops a batch191

of independent Knowledges or Containers assigned to teams of various sizes to maximize unit time192

throughput (see Fig 5). The next batches of Knowledge or Containers can be adaptively planned193

after period reviews or retrieved from backlogs. Evident is compatible with Kanban, Scrum or other194

development tools or frameworks for project planning and development of a single Knowledge or195

Container.Any tools or frameworks that do not compromise the project breakdown into Knowledge196

and Containers are applicable.197

198

4.4 Artifact management: EKB199

Evident artifact management may build on a topology of a relational Knowledge base, named200

EKB, composed of Evident Containers and directional associations (see Fig 6). Knowledges can201

be reproduced by Containers stored in EKB. Oversimplified as a table, EKB columns represent202

Observations; rows represent Hypotheses; values represent Tests or Test to be done (TBD). A Test203

can only be associated with one Observation, even if the associated Observation overlooks the204

Hypothesis(es) associated with the Test. Any new Observation proving, disproving or overlooking205

the same Hypothesis(es) occupies a column in EKB.206

4.4.1 EKB stores containers and Knowledges continuously207

When new Hypotheses, Observations or deduction Knowledge Tests are developed, new rows or208

columns of TBDs are inserted. A Test associated with Hypothesis(es) and a Observation can be209

stored in the designated row and column to represent different Knowledges.210

An induction Knowledge Test is placed in the row of its associated Hypothesis and the column of its211

associated Observation (see Fig 3a&c & Fig 6). An abduction Knowledge Test is placed in the row212

of the Hypothesis best explaining the Observation (see Fig 3b & Fig 6). A deduction Knowledge213

is placed in the row of its associated Hypothesis and the column of the pending Observation (see214

Fig 3a&b & Fig 6). Once an Observation becomes available proving or disproving the Hypothesis,215

a deduction Knowledge becomes an induction Knowledge. Multiple Tests representing different216

Knowledges can be placed in the same slot (see Fig 3c & Fig 6).217

4.4.2 EKB supports relational database operations of Permutation And Join218

EKB is similar to a relational database [50] with Observations as columns, Hypotheses as rows and219

Tests as values, but with potential associations among values for deduction Knowledges. Relational220

database operations independent of values associations, such as Permutation (switching rows and221

columns) and Join (merging EKBs) can be implemented without compromise in EKB; operations222

dependent on values associations such as Restriction (select rows), Projection (select columns) and223

Compositions (merge selected columns&rows from multiple EKBs) can only be implemented for224

EKBs storing only induction or abduction Knowledge and have no associations among Tests.225
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EKBs are highly flexible for team collaboration and maintenance. Different team members working226

on different Containers can share one EKB as the common work space to improve efficiency. Multiple227

EKBs can be joined together without information loss so that Knowledges produced by different228

teams or team members can be accumulated into one EKB. For EKBs storing only induction and229

abduction Knowledge, all relational database operations are applicable, so that team members can230

compose their own EKBs without keeping a potentially large team EKB on the local machines.231

5 Advantages and pain points alleviated232

Inspired by the philosophy of logical reasoning, Evident is intuitive to understand and follow. Project233

activity and artifact containerization supports incremental as well as adaptive project planning and234

artifact pattern abstraction. Disentangling Hypotheses and Observations reduces unnecessary de-235

pendency, cascade correction and uncertainty in project planning. Knowledge representation in236

associations among artifacts can not only track Knowledge development, but also Knowledge devel-237

opment status (prove, disproved or overlooked), which improves project measurability, trackability238

and reproducibility. Overall Evident may help applicable projects deliver fast and at scale with many239

pain points alleviated in DM, ML and KM (see Table 2).240

5.1 DM241

Containerized Data and Models in Evident prevents unstable data dependency, model entanglement242

and cascade correction. Dead data and codes can be easily identified and removed. Standardized243

Models and Experiments encourage reuse of computationally efficient containers, support automatic244

DM. Different experiments may use different optimization target function on the same Model and245

Data to deliver different Knowledges for different users, e.g. Marketing vs Engineering managers.246

Containerization is an alternative to the state of the art artifact version control, such as git, which247

keeps only the one version of the code or data in the workspace with historic versions saved as248

commits. Evident keeps all applicable versions available in the workspace for easy access. This may249

appear to use more storage space. However current version control tools all save version commits as250

snapshots [51], demanding comparable storage space of Evident if a Evident equivalent number of251

versions are stored.252

Evident granulates project activities into independent standardized Knowledge and Container levels,253

supports adaptive development, facilitates project planning among collaborators in teams of various254

sizes and reduces planning overhead. Artifacts are continuously stored in EKB, making project255

development measurable, trackable, reproducible and scalable. Meanwhile once Containers are256

produced, Knowledge or documentation reports can be generated automatically instead of manually.257

Evident accelerates DM delivery in both short-term and long-term.258

5.2 ML259

A deployed Algo can be evaluated easily by re-applying the original Research Experiment on the260

production data. Different users involved in the deployment can understand the Algo’s scope and261

origins easily by examining the research Experiment (see Fig 4b). Research Experiments can load262

data in real time as Production Experiment, so that both Experiments can inherit the same design263

patterns with statistical analysis and evaluation metrics. The Production Experiment can report and264

examine the prediction performance at regular time intervals to detect production data pattern drift265

for either model reconfiguration or model replacement. Once a model with its configuration is retired266

from production, the production data is containerized and associated with the Production Experiment,267

transforming the Production Experiment into Research Experiment and a deduction Knowledge for268

prediction into an induction Knowledge that is also preserved in EKB.269

Because both research and production can operate on the same EKB, research and production team270

members can share the same workspace the way software engineers work on the same code repository,271

facilitating the model migration from research to production and efficient team collaborations.272
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5.3 KM273

Knowledge formatting into design patterns of Containers provides a meaningful progress towards274

Knowledge standardization for improved definition, reference and storage compared to state of art275

sentences or articles. EKB with standardized Container templates may offer potential tools for people276

to examine the Hypotheses formed against evidence or Observations, facilitating evidence-based277

decision making and Knowledge development. EKB can not only facilitate Knowledge dissemination,278

accumulation and retention, but also label the development status of each Hypothesis as proved,279

disproved or overlooked, a desirable design pattern for projects and Knowledge Management.280

6 Discussions281

6.1 Significance282

Evident may advance many society domains such as software, philosophy, science, business as well283

as Knowledge sharing and retention across the globe, thanks to its applicability to general KM.284

EKB may make no smaller impacts than relational data base [50], the invention of which created a285

data base industry, as one solution to store information as Knowledge, a granular level above data.286

6.2 Work to do287

Work needs to be done regarding Evident ergodicity over logical reasoning in philosophy. If proved,288

Evident can support all logical reasoning in philosophy. No evidence has existed to prove or disprove289

the claim. Evident ergodicity is overlooked, stated in Evident language, especially considering logical290

reasoning in philosophy may evolve.291

Control studies need to be done to show Evident can truly provide value. No tools tailored to support292

Evident project development planning and EKB are available, although some existing tools are293

applicable for use. Particularly the tools that allow unexpected alteration proof, easy access and294

visualization of Containers are in demand. More detailed discussions need to be done about how295

Evident help applicable projects with examples.296

6.3 Pain points not alleviated297

Evident offers no detailed guidance in development below Container level. For example, a Model or298

computation flow cannot be broken down further into smaller modules by Evident for incremental and299

adaptive development. Multiple languages smells and accidents running prototype Algo in production300

cannot be avoided by Evident either. In addition, Evident cannot control future observation alteration301

caused by decisions made by people based on Evident produced Knowledge.302

Evident can only manage project artifacts of data or codes but not sensors or hardwares. Pain points303

caused in data acquisition such as availability, inaccuracy and inconsistency are out of Evident’s304

scope. Evident is incapable of improving computation hardware resources allocation either.305

6.4 More words about Agile306

Due to Agile’s ambiguity and unfalsifiability as a scientific claim, it might be a better practice to drop307

the term Agile and instead quote each framework currently under Agile on its own. Frameworks308

such as iterative and evolutionary development as well as Kanban are valuable although need to be309

employed discretionally. Practitioners should have better understood what exactly they were doing310

without being fuzzed by the buzzword Agile.311

7 Conclusions312

The paper proposes Evident as a project development and artifact management methodology for DM,313

ML and KM as well as EKB as a Knowledge base topology. Evident and EKB have been shown314

of great value to alleviate many unresolved pain points. Evident has the potential to facilitate the315

advancement of many aspects of society due to its utility in general Knowledge management. EKB316

may serve as the infrastructure for storing information as Knowledge, a granular level above data.317
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A Appendix318

A.1 The following among the four Values and twelve Principles of The Manifesto [24] appear319

to be goals:320

Value 4: Responding to change over following a plan;321

Principle 1: Customer satisfaction by early and continuous delivery of valuable software.322

Principle 2: Welcome changing requirements, even in late development.323

Principle 3: Deliver working software frequently (weeks rather than months)324

Principle 7: Working software is the primary measure of progress325

Principle 8: Sustainable development, able to maintain a constant pace326

Principle 9: Continuous attention to technical excellence and good design327

Principle 10 : Simplicity—the art of maximizing the amount of work not done—is essential328

A.2 The following in The Manifesto appear to be approaches but vaguely defined:329

Value 1: Individuals and interactions over processes and tools330

Value 2: Working software over comprehensive documentation331

Value 3: Customer collaboration over contract negotiation332

Principle 5: Projects are built around motivated individuals, who should be trusted333

Principle 11: Best architectures, requirements, and designs emerge from self-organizing teams334

A.3 The following in The Manifesto appear to be actionable approaches but irrelevant of335

iterative, evolutionary or incremental development regarded as Agile by most people [9]:336

Principle 4: Close, daily cooperation between business people and developers337

Principle 6: Face-to-face conversation is the best form of communication (co-location)338

Principle 12: Regularly, the team reflects on how to become more effective, and adjusts accordingly339
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Checklist442

The checklist follows the references. Please read the checklist guidelines carefully for information on443

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or444

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing445

the appropriate section of your paper or providing a brief inline description. For example:446

• Did you include the license to the code and datasets? [Yes] See Section ??.447

• Did you include the license to the code and datasets? [No] The code and the data are448

proprietary.449

• Did you include the license to the code and datasets? [N/A]450

Please do not modify the questions and only use the provided macros for your answers. Note that the451

Checklist section does not count towards the page limit. In your paper, please delete this instructions452

block and only keep the Checklist section heading above along with the questions/answers below.453

1. For all authors...454

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s455

contributions and scope? [Yes]456

(b) Did you describe the limitations of your work? [Yes]457

(c) Did you discuss any potential negative societal impacts of your work? [Yes]458

(d) Have you read the ethics review guidelines and ensured that your paper conforms to459

them? [Yes]460

2. If you are including theoretical results...461

(a) Did you state the full set of assumptions of all theoretical results? [Yes]462

(b) Did you include complete proofs of all theoretical results? [Yes]463

3. If you ran experiments...464

(a) Did you include the code, data, and instructions needed to reproduce the main experi-465

mental results (either in the supplemental material or as a URL)? [N/A]466

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they467

were chosen)? [N/A]468
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ments multiple times)? [N/A]470
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(a) If your work uses existing assets, did you cite the creators? [N/A]474

(b) Did you mention the license of the assets? [N/A]475

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]476

477

(d) Did you discuss whether and how consent was obtained from people whose data you’re478

using/curating? [N/A]479

(e) Did you discuss whether the data you are using/curating contains personally identifiable480

information or offensive content? [N/A]481

5. If you used crowdsourcing or conducted research with human subjects...482

(a) Did you include the full text of instructions given to participants and screenshots, if483

applicable? [N/A]484

(b) Did you describe any potential participant risks, with links to Institutional Review485
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