
GRAND: Graph Neural Diffusion

Benjamin P. Chamberlain∗
Twitter Inc.

bchamberlain@twitter.com

James Rowbottom∗
Twitter Inc.

Maria Gorinova
Twitter Inc.

Stefan Webb
Facebook Inc.

Emanuele Rossi
Twitter Inc. and Imperial College London

Michael M. Bronstein
Twitter Inc. and Imperial College London

Abstract

We present Graph Neural Diffusion (GRAND), a model that approaches deep learn-
ing on graphs as a continuous diffusion process and treats Graph Neural Networks
(GNNs) as discretisations of an underlying PDE. In our model, the layer structure
and topology correspond to the discretisation choices of temporal and spatial opera-
tors. Our approach allows a principled development of a broad new class of GNNs
that are able to address the common plights of graph learning models such as depth,
oversmoothing, and bottlenecks. Key to the success of our models are stability
with respect to perturbations in the data and this is addressed for both implicit
and explicit discretisation schemes. We develop linear and nonlinear versions of
GRAND, achieving competitive results on many standard graph benchmarks.

1 Introduction

Graph Neural Networks (GNNs) are intimately connected to differential equations. The seminal work
of [12] was concerned with finding the fixed points of differential equations using the Almeida-Pineda
algorithm [1, 11]. The currently predominant message passing paradigm [6] can be modelled as a
differential equation. More recently, diffusion processes have been shown to be an effective prepro-
cessing step for graph learning [7]. PDEs are among the most studied mathematical constructions,
and historically, PDE-based methods have been used extensively in signal and image processing [10],
computer graphics [13], and machine learning [5, 4].

Our goal is to show that the tools of PDEs can be used to understand existing GNN architectures
and as a principled way to develop a broad class of new methods. We focus on architectures that
can be interpreted as information diffusion on graphs, modelled by the diffusion equation. In doing
so, we show that many popular GNNs can be derived from a single mathematical framework by
different choices of the form of diffusion equation and discretisation schemes. Standard GNNs are
equivalent to the explicit single-step Euler scheme that is inefficient and requires small step sizes. We
show that more advanced, adaptive multi-step schemes such as Runge-Kutta perform significantly
better and using implicit schemes, which are unconditionally stable, amounts to larger multi-hop
diffusion operators. Choosing different spatial discretisation amounts to graph rewiring, a technique
recently used to improve the performance of GNNs [7, 2]. We show that appropriate choices within
our framework allow the design of deep GNN architectures with tens of layers. This is a feat hard
to achieve otherwise due to feature oversmoothing [8, 9] and bottlenecks [2] – phenomena that are
recognised as a common plight of most graph learning architectures.

2 Background

Diffusion equation Let x(t) denote a family of scalar-valued functions on Ω× [0,∞) representing
the distribution of some property (which we will assume to be temperature for simplicity) on a domain

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

Ω at some time, and let x(u, t) be its value at point u ∈ Ω at time t. According to Fourier’s law of
heat conduction, the heat flux h = −g∇x, is proportional to the temperature gradient∇x, where g is
the diffusivity describing the thermal conductance properties of Ω. An idealized homogeneous setting
assumes that g is a constant scalar throughout Ω. More generally, the diffusivity is a inhomogeneous
(position-dependent) function that can be scalar-valued (in which case it simply scales the temperature
gradient and is isotropic) or matrix-valued (in which case the diffusion is said to be anisotropic, or
direction-dependent). The continuity condition xt = −div(h) (roughly meaning that the only change
in the temperature is due to the heat flux, as measured by the divergence operator, i.e., heat is not
created or destroyed), leads to a PDE referred to as the (heat) diffusion equation,

∂x(u, t)

∂t
= div[g(u, x(u, t), t)∇x(u, t)],

with the initial condition x(u, 0) = x0(t); for simplicity, we assume no boundary conditions. The
choice of the diffusivity function determines if the diffusion is homogeneous (g = c), inhomogeneous
(g(u, t)), or anisotropic (A(u, t)). In the isotropic case, the diffusion equation can be expressed as

∂x(u, t)

∂t
= div(c∇x) = c∆x, (1)

where ∆x = div(∇x) is the Laplacian operator.

Diffusion on manifolds In our discussion so far we assumed some abstract domain Ω. The structure
of the domain is manifested in the definition of the spatial differential operators in the diffusion PDE.
In a general setting, we model Ω as a Riemannian manifold, and let X (Ω) and X (TΩ) denote the
spaces of scalar and (tangent) vector fields on it, respectively. We denote by 〈x, y〉 and 〈〈X ,Y 〉〉 the
respective inner products on X (Ω) and X (TΩ). Furthermore, we denote by ∇ : X (Ω)→ X (TΩ)
and div = ∇∗ : X (TΩ) → X (Ω) the gradient and divergence operators, which are adjoint w.r.t.
the above inner products: 〈〈∇x,X 〉〉 = 〈x, div(X)〉. Informally, the gradient ∇x of a scalar field
x is a vector field providing at each point u ∈ Ω the direction ∇x(u) of the steepest change of x.
The divergence div(X) of a vector field X is a scalar field providing, at each point, the flow of
X through an infinitesimal volume. The Laplacian ∆x can be interpreted as the local difference
between the value of a scalar field x at a point and its infinitesimal neighbourhood.

3 Diffusion equations on graphs

We now define diffusion equations on graphs, analogous to Section 2 and argue that formalizing
GNNs under the diffusion equation framework provides a principled and rigorous way to develop
new architectures for graph learning.

3.1 Graph diffusion equation

Let G = (V, E) be an undirected graph with |V| = n nodes and |E| = e edges, and let x and X
denote features defined on nodes and edges respectively.1 The node and edge fields can be represented
as n- and e-dimensional vectors assuming some arbitrary ordering of nodes. We adopt the same
notation for the respective inner products:

〈x,y〉 =
∑
i∈V

xiyi 〈〈X ,Y 〉〉 =
∑
i>j

wijXijYij

Here, wij denotes the adjacency of G: wij = wji = 1 iff (i, j) ∈ E . We tacitly assume edge fields to
be alternating, so Xji = −Xij , and no self-edges, so (i, i) /∈ E . The gradient (∇x)ij = xj − xi
assigns the edge (i, j) ∈ E the difference of its endpoint features and is alternating by definition.
Similarly, the divergence (div(X))i assigns the node i the sum of the features of all edges it shares:

(div(X))i =
∑

j:(i,j)∈E

Xij =

n∑
j=1

wijXij

1For simplicity, we assume these features to be scalar-valued and refer to them as node and edge fields, by
analogy to scalar and vector fields on manifolds. In the rest of the paper, we assume vector-valued node features,
a straightforward extension.

2

The two operators are adjoint, 〈〈∇x,X 〉〉 = 〈x,div(X)〉. We consider the following diffusion
equation on the graph

∂x(t)

∂t
= div[G(x(t), t)∇x(t)] (2)

with an initial condition x(0). Here we denote by G = diag(a(xi(t), xj(t), t)) an e × e diagonal
matrix and a is some function determining the similarity between nodes i and j. While in general
a(xi, xj , t) can be time-dependent, we will assume a = a(xi, xj) for the sake of simplicity. Plugging
in the expressions of∇ and div, we get

∂

∂t
x(t) = (A(x(t))− I)x(t) = Ā(x(t))x(t) (3)

where A(x) = (a(xi, xj)) is the n× n attention matrix with the same structure as the adjacency of
the graph (we assume aij = 0 if (i, j) /∈ E). Note that in the setting when A(x(t)) = A we get a
linear diffusion equation that can be solved analytically as x(t) = eĀtx(0).

3.2 Properties of the graph diffusion equation

Differential equation stability is closely related to the concept of robustness in machine learning;
changes in model outputs should be small under small changes in inputs. Formally, a solution x(t)
of the PDE is said to be stable, if given any ε > 0 there exists δ > 0 such that for any solution x̂(t),
such that |x(0)− x̂(0)| ≤ δ, it is also the case that |x(t)− x̂(t)| ≤ ε for all t ≥ 0.

In the linear case, it is sufficient to show that the eigenvalues of Ā are non-positive (see the Supple-
mentary Materials for proof). For the general nonlinear case, we show

max
i
xi(0) ≥ xi(t) ≥ min

i
xi(0) ∀t ≥ 0, (4)

which follows from (i) the function Ā(x)x being continuous in x, (ii) the largest component of x(t)
not increasing in time, and (iii) the smallest component is not decreasing in time.

Condition (i) holds as Ā is a composition of Lipschitz-continuous functions (cf. equation (6)).
Defining indices k = arg maxi xi and l = arg mini xi we have

∂xk
∂t

=
∑
j

ākj(x)xj ≤ xk
∑
j

ākj = 0,
∂xl
∂t

=
∑
j

ālj(x)xj ≥ xl
∑
j

ālj = 0 (5)

since A is right stochastic, which proves (ii) and (iii). Furthermore, the derivative ∂
∂xA(x) is

Lipschitz-continuous (from the definition of the attention function we use). Taken together with
continuity in time, the requirements of Picard-Lindelöf are satisfied and the PDE is also well posed.

4 Graph Neural Diffusion

We now describe Graph Neural Diffusion (GRAND), a new class of GNN architectures derived from
the graph diffusion formalism. We assume a given graph G = (V, E) with n nodes and d-dimensional
node-wise features represented as a matrix Xin. GRAND architectures implement the learnable
encoder/decoder functions φ, ψ and a learnable graph diffusion process, to produce node embeddings
Y = ψ(X(T)),

X(T) = X(0) +

∫ T

0

∂X(t)

∂t
dt, X(0) = φ(Xin)

∂X(t)
∂t is given by the graph diffusion equation (2). Different GRAND architectures amount to the

choice of the learnable diffusivity function G and spatial/temporal discretisations of equation (2).

The diffusivity is modelled with an attention function a(., .). Empirically, scaled dot product atten-
tion [14] outperforms the Bahdanau [3] attention used in GAT [15]. The scaled dot product attention
is given by

a(Xi,Xj) = softmax

(
(WKXi)

>WQXj

dk

)
, (6)

3

where WK and WQ are learned matrices, and dk is a hyperparameter determining the dimension
of Wk. We use multi-head attention which is useful to stabilise the learning [15, 14] by taking
the expectation, A(X) = 1

h

∑
h A

h(X). The attention weight matrix A = (a(Xi,Xj)) is right-
stochastic, allowing equation (8) to be written as

∂

∂t
X = (A(X)− I)X = Ā(X)X (7)

A broad range of discretisations are possible. Temporal discretisations amount to the choice of
numerical scheme, which can use either fixed or adaptive step sizes and be either explicit or implicit.
Time forms a continuous analogy to the layer index, where each layer corresponds to an iteration
of the solver. When using adaptive time step solvers, the number of layers is not specified a-priori.
Explicit schemes invoke residual structures that are usually more complex than those employed
in standard resnets and which follow directly from rigorous numerical stability results. Implicit
numerical schemes offer a natural way of trading off depth and width (spatial support of the diffusion
kernel).

Spatial discretisation amounts to modifying the given graph, or building one in settings where no
graph is given and the data can be assumed to lie in some feature space or on a continuous manifold.
When the input graph is given, we can rewire the given graph and use a different edge set in the
diffusion equation.

While in general equation (7) is nonlinear due to the dependence of A on X, it becomes linear if
the attention weights are fixed inside the integral, Ā(X(t)) = Ā (note that A is still parametric and
learnable, but does not change throughout the diffusion process). In this case, equation (7) can be
solved analytically as X(t) = eĀtX(0). As Ā is a form of normalised Laplacian, all eigenvalues are
non-positive and the steady state solution is given by the dominating eigenvector, which is the degree
vector. However, as Ā is learned, this limitation is not severe as the system can be (and in practice is)
degenerate; the graph becomes (approximately) disconnected, with connected components permitted
to have unique steady state solutions. We call this model GRAND-l for linear to distinguish it from
the more general GRAND-nl for non-linear. The final variant is GRAND-nl-rw (non-linear with
rewiring), where rewiring is performed via a two step process: as a preprocessing step, the graph is
densified using diffusion weights as in [7], and then at runtime the subset of edges to use is learned
based on attention weights. With explicit Euler, Equation (2) becomes:

X
(k+1)
i −X

(k)
i

τ
=

∑
j:(i,j)∈E′

a (Xi(t),Xj(t)) (Xj(t)−Xi(t)) (8)

where E ′ = {(i, j) : (i, j) ∈ E and aij > ρ} with some threshold value ρ, is the ‘rewired’ edge set,
which may now contain self-loops. While a changes throughout the diffusion process, rewiring is
only performed at the start of the epoch based on features at t = 0.

GRAND shares parameters across layer/iteration and is thus more data-efficient than conventional
GNNs.

Random splits CORA CiteSeer PubMed Coathor CS Computer Photo ogb-arxiv∗
GCN 81.5 ± 1.3 71.9± 1.9 77.8 ± 2.9 91.1 ± 0.5 82.6 ± 2.4 91.2 ± 1.2 72.17± 0.33
GAT 81.8 ± 1.3 71.4 ± 1.9 78.7± 2.3 90.5 ± 0.6 78.0 ± 19.0 85.7 ± 20.3 73.65± 0.11†

GAT-ppr 81.6± 0.3 68.5± 0.2 76.7± 0.3 91.3± 0.1 85.4± 0.3 90.9± 0.3 N/A
MoNet 81.3 ± 1.3 71.2 ± 2.0 78.6± 2.3 90.8 ± 0.6 83.5 ± 2.2 91.2 ± 2.3 N/A
GS-mean 79.2 ± 7.7 71.6 ± 1.9 77.4 ± 2.2 91.3 ± 2.8 82.4 ± 1.8 91.4 ± 1.3 71.39 ± 0.16
GS-maxpool 76.6 ± 1.9 67.5 ± 2.3 76.1 ± 2.3 85.0 ± 1.1 N/A 90.4 ± 1.3 N/A
CGNN 81.4± 1.6 66.9± 1.8 66.6 ± 4.4 92.3± 0.2 80.29 ±2.0 91.39 ± 1.5 58.70 ± 2.5
GDE 78.7 ± 2.2 71.8 ± 1.1 73.9 ± 3.7 91.6 ± 0.1 82.9 ± 0.6 92.4± 2.0 56.66 ± 10.9
GRAND-l (ours) 83.6± 1.0 73.4± 0.5 78.8± 1.7 92.9± 0.4 83.7± 1.2 92.3± 0.9 71.87 ± 0.17
GRAND-nl (ours) 82.3± 1.6 70.9± 1.0 77.5± 1.8 92.4± 0.3 82.4± 2.1 92.4± 0.8 71.2 ± 0.2
GRAND-nl-rw (ours) 83.3± 1.3 74.1± 1.7 78.1± 2.1 91.3± 0.7 85.8± 1.5 92.5± 1.0 72.23± 0.20

Table 1: Test accuracy and std for 20 random initializations and 100 random train-val-test splits.
*Using labels. †using 1.5M parameters.

4

References
[1] Luis B. Almeida. A learning rule for asynchronous perceptrons with feedback in a combinatorial

environment. In Proc Neural Networks, 1987.

[2] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. In ICLR, 2021.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In ICLR.

[4] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations. In NeurIPS, pages 6571–6583, 2018.

[5] Ronald R Coifman, Stephane Lafon, Ann B Lee, Mauro Maggioni, Boaz Nadler, Frederick
Warner, and Steven W Zucker. Geometric diffusions as a tool for harmonic analysis and
structure definition of data: Diffusion maps. Proceedings of the national academy of sciences,
102(21):7426–7431, 2005.

[6] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In ICML, 2017.

[7] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. In NeurIPS, volume 32, 2019.

[8] Hoang NT and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass
filters. 2019.

[9] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. In ICLR, 2020.

[10] Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropic diffusion.
PAMI, 12(7):629–639, 1990.

[11] Fernando J Pineda. Generalization of back-propagation to recurrent neural networks. Physical
Review Letters, 59(19):2229, 1987.

[12] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Trans. Neural Networks, 27(8):61–80, 2009.

[13] Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise and provably informative multi-
scale signature based on heat diffusion. Computer Graphics Forum, 28(5):1383–1392, 2009.

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Akob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, pages 5998–6008,
2017.

[15] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

5

	Introduction
	Background
	Diffusion equations on graphs
	Graph diffusion equation
	Properties of the graph diffusion equation

	Graph Neural Diffusion

