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ABSTRACT

The discovery of large-scale discrete latent structures is crucial for understanding
the fundamental generative processes of language. In this work, we use struc-
tured latent variables to study the representation space of contextualized embed-
dings and gain insight into the hidden topology of pretrained language models.
However, existing methods are severely limited by issues of scalability and ef-
ficiency as working with large combinatorial spaces requires expensive memory
consumption. We address this challenge by proposing a Randomized Dynamic
Programming (RDP) algorithm for the approximate inference of structured mod-
els with DP-style exact computation (e.g., Forward-Backward). Our technique
samples a subset of DP paths reducing memory complexity to as small as one
percent. We use RDP to analyze the representation space of pretrained language
models, discovering a large-scale latent network in a fully unsupervised way. The
induced latent states not only serve as anchors marking the topology of the space
(neighbors and connectivity), but also reveal linguistic properties related to syn-
tax, morphology, and semantics. We also show that traversing this latent network
yields unsupervised paraphrase generation.

1 INTRODUCTION

The discovery of large-scale discrete latent structures is crucial for understanding the fundamen-
tal generative processes of language, and has been shown useful to various NLP tasks ranging
from data-to-text generation (Li & Rush, 2020), summarization (Angelidis et al., 2021), syntac-
tic parsing (Kim et al., 2019), and knowledge graph reasoning (Qu et al., 2020). In this work, we
use latent structures to analyze geometric properties of representation space of pretrained language
models (PLMs). Despite the large volume of recent work analyzing PLMs and proposing various
improvements (Rogers et al., 2020), little is known about the topological structure of their represen-
tation manifold. Since such structure cannot be easily observed, it is only natural to resort to latent
variables. Yet scaling discrete combinatorial structures is extremely difficult with multiple modeling
and computational challenges (Wainwright & Jordan, 2008).

In this work, we address the computational challenges arising from working with combinatorial
structures. We consider linear-chain CRFs, a popular structured model family (Ma & Hovy, 2016;
Sutton & McCallum, 2006) that uses dynamic programming for exact inference. Specifically, we
focus on the forward algorithm (Rabiner, 1989), which is widely used to compute the partition
function. Space complexity for this algorithm is O(TN2) where N is the number of latent states
and T the length of the sequence. It is precisely the N2 term that becomes problematic when we
construct the adjacent gradient graph with automatic differentiation. DP-based inference algorithms
are not optimized for modern computational devices like GPUs and typically work under small-data
regimes, with N in the range [10, 100] (Ma & Hovy, 2016; Wiseman et al., 2018). With larger N ,
inference becomes intractable since gradients do not easily fit into GPU memory (Sun et al., 2019).

Our algorithmic contribution is a randomization technique for dynamic programming which allows
us to scale N to thousands (possibly more) latent states. Specifically, to approximate the partition
function, instead of summing over all possible combinations of latent states, we only sum over paths
with most probable states, and sample a subset of less likely paths to correct the bias according

1



Under review as a conference paper at ICLR 2021

to a reasonable proposal. Since we only calculate the sampled path, memory consumption can
be reduced to a small controllable budget which is scale invariant. With a larger memory budget,
our method becomes more accurate, and our estimation error smaller. We thus recast the memory
complexity challenge into a tradeoff between memory budget, proposal accuracy, and estimation
error. When applied to linear-chain CRFs, we show that RDP scales the model by two orders of
magnitude with memory complexity as small as one percent of the full DP. Beyond linear-chains,
RDP is applicable to any structured model with DP-style exact inference such as trees (Kim et al.,
2019) and semi-Markov models (Li & Rush, 2020), and could also be extended to more general
message passing algorithms (Wainwright & Jordan, 2008).

Our analytical contribution is a geometric study of the representation manifold of PLMs, using the
proposed RDP algorithm. We hypothesize that there exist latent anchor embeddings (or landmarks)
that describe the manifold topology. We also expect these anchor states to be informative enough
to generate sentences, and their connections to be linguistically meaningful. We induce latent struc-
tures using a VAE with an inference model parameterized by a scaled CRF where state-word rela-
tions are modeled by the emission potential and state-state transitions are modeled by the transition
matrix. The connections of words and states together form a latent network. We use the vector
product between contextualized embeddings and state embeddings to parameterize the CRF poten-
tials, bringing together the geometry of the representation space with graphical model inference.
We further show that it is possible to generate paraphrases by traversing the induced network.

Our approach is fully unsupervised and the discovered latent network is intrinsic to the representa-
tion manifold, rather than imposed by external supervision, eschewing the criticism of much pre-
vious work on supervised probes (Hewitt & Liang, 2019; Chen et al., 2021). In experiments, we
first verify the basic properties of RDP (bias-variance) and show its effectiveness for training latent
variable models. We then visualize the discovered network based on BERT Devlin et al. (2019),
demonstrating how states encode information pertaining to syntax, morphology, and semantics. Fi-
nally, we perform unsupervised paraphrase generation by latent network traversal.

2 RANDOMIZED DYNAMIC PROGRAMMING

Preliminaries: Speeding Summation by Randomization To motivate our randomized DP, we
start with a simple setting, namely estimating the sum of a sorted list. Given a sorted list of positive
numbers a, naive summation S = a1 + ...,+aN requires N − 1 addition operations, which is
expensive whenN is large. Suppose we wish to reduce the number of addition operations toK1 <<
N , and we already know that the list is long-tailed (similar to how words in language follow a Zipfian
distribution such that there are few very high-frequency words that account for most of the tokens in
text and many low-frequency words). Then, we only need to sum over the top K1 values to get an
efficient estimate:

Ŝ1 = a1 + ...+ aK1 where {ai}Ni=1 sorted, large to small (1)

Clearly, Ŝ1 underestimates S. When the summands are “dense”, i.e., not very different from each
other, the bias is large because the top K1 terms do not contribute much to the sum (Fig. 1A). To
correct this bias, we add samples aδ1 , ..., aδK2

from the remaining summands whose indices δi are
sampled from proposal δi ∼ q = [qK1+1, ..., qN ]:

Ŝ2 = a1 + ...+ aK1
+

1

K2
(

1

qδ1
aδ1 + ...+

1

qδK2

aδK2
) δi ∈ {K1 + 1, ..., N} (2)

where K1 + K2 = K. Note that this is an unbiased estimator as E[Ŝ2] = S, irrespective of how
we choose q. Without any knowledge about a, the simplest proposal would be uniform, no matter
what variance it induces. The more qi correlates with ai, the less variance Ŝ2 has. The oracle qi is
proportional to ai, under which Ŝ2 becomes exact Ŝ2 ≡ S as qδi = aδi/(aK+1 + ...+ aN ) for all i.
So, the strategy is to exploit our knowledge about a to construct a correlated proposal q. Given
this estimator, we can also adjust the computation budget in order to reduce variance. When the
distribution is long-tailed, we may increase K1 as an instance of Rao-Blackwellization (Liu et al.,
2019). When the distribution is not long-tailed (enough), and top K1 summation underestimates
significantly, we may increase K2 to reduce variance, provided we have a fairly accurate q, as
an instance of importance sampling. This procedure is also discussed in Kool et al. (2020) for
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Figure 1: (A): Sampled summation of an array; in the dense case the proposal is important for variance reduc-
tion, while in the long-tailed case, topK summands are important; (B): core recursion step of the Randomized
Forward algorithm. We get topK and sample from the proposal (black and grey bars); Errors stem from the
difference (green bars) between the oracle proposal ã and constructed proposal q̃; (C): Inferring latent states
within the BERT representation space. We parametrize the CRF factors with vector products; the relations
between states and contextualized embeddings together form a latent network (Fig. 3 and 4); (D): Experimental
protocol; we first study the basic properties of RDP (steps 1, 2) and then integrate RDP into a LVM for inferring
the structure of the representation space (steps 3, 4). Best viewed in color.

gradient estimation. In fact, it is the underlying basis of many Monte Carlo estimators in various
settings (Mohamed et al., 2020).

The Sampled Forward Algorithm Now we will show how estimator Ŝ2 can be used to
scale summation in DP. Consider a linear chain CRF which defines a discrete state sequence
z = [z1, ..., zT ], zt ∈ {1, ..., N} over an input sentence x = [x1, ..., xT ]. Later we will use this
CRF to construct an inference model to discover latent network structures within contextualized
representations. We are interested in the partition function Z which is commonly computed with the
Forward algorithm, a dynamic programming algorithm that sums over the potentials of all possible
state sequences. The core recursion steps are:

αt+1(i) =

N∑
j=1

ãt+1(i, j) =

N∑
j=1

αt(j)Φ(j, i)φ(xt+1, i) Z =

N∑
j=1

αT (j) (3)

where αt(i) is the sum of all possible sequences up to step t and at state i, Φ(·, ·) is an N × N
transition matrix, and φ(xt, i) is the emission potential that models how word xt generates state i.
We assume all potentials are positive for simplicity. When implemented on GPUs, space complexity
is O(TN2) (see number of edges in the DP graph in Figure 1B) and it is the squared term N2 that
causes memory overflows under automatic differentiation (see Appendix B for engineering details).

Our key insight is to recursively use the memory-efficient randomization of Eq. 2 to estimate Eq. 3
at every step. Given a proposal q̃t for each step t that correlates with summands ãt (we discuss how
to construct q̃t in the next section), we obtain its top K1 index and sample K2 from the rest:

[σt,1, ..., σt,K1
, ..., σt,N ] = arg sorti{q̃t(i)}Ni=1 (4)

[δt,1, ..., δt,K2
] ∼ Categorical{q̃t(σt,K1+1), ..., q̃t(σt,N )} (5)

where q̃t(·) are normalized to construct the categorical. Compared to Eq. 3, the key recursion of our
Sampled Forward uses the top K1 index σt and sampled K2 index δt to substitute the full index:

α̂t+1(i) =

K1∑
j=1

α̂t(σt,j)Φ(σt,j , i)φ(xt+1, i) +
1

K2

K2∑
j=1

Z̃t
q̃t(δt,j)

α̂t(δt,j)Φ(δt,j , i)φ(xt+1, i) (6)

Z̃t =

N∑
j=K1+1

q̃t(σt,j) Ẑ =

K1∑
j=1

α̂T (σT,j) +
1

K2

K2∑
j=1

Z̃T
q̃T (δT,j)

α̂T (δT,j) (7)

where the oracle proposal q∗t is proportional to the actual summand ãt (Eq. 3, a little bit algebra
will show this is actually the backward sampling probability p(zt = i|zt+1 = j)) , which is only
accessible with the full Forward. So, we use the proposal weight q̃t (Eq. 4) to move the computation
outside the DP. In Fig. 1B, the top K1 summed terms correspond to black nodes. The proposal q̃t
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corresponds to black and grey bars, and its distance from the oracle proposal ãt (which is the major
source of variance) is highlighted in green. Sampled indices are shown as blue nodes. Essentially,
our Sampled Forward algorithm restricts the DP computation from the full graph to subgraphs with
top and sampled edges, reducing complexity to O(TK2) where K = K1 + K2. By varying K,
memory complexity becomes a tradeoff between memory budget and estimation error. By induction,
we can show that Ẑ (Eq. 7) is an unbiased estimator of Z since ∀t,E[α̂t] = αt. When implemented
in log space, the expected log Ẑ is a lower bound of the exact logZ due to Jensen’s inequality, and
the variance is (trivially) reduced by log(·). See Appendix for details on implementation (Section C),
theoretical analysis (Section A), and extensions to general sum-product structures (Section D).

3 LATENT NETWORK TOPOLOGY IN PRETRAINED LANGUAGE MODELS

Latent States within Representation Space We now use the above technique to uncover hidden
geometric structures in contextualized representations. In experiments we work with BERT (Devlin
et al., 2019) and GPT2 (Radford et al., 2019), however, our method can be easily applied to other
pretrained language models. Given sentence x = [x1, ..., xT ], we denote its contextualized repre-
sentations as [r1, ..., rT ] = PLM(x). Representations r for all sentences lie in one manifold M,
namely, the representation space of the language model. We hypothesize there exists a set of latent
states s1, ..., sM that function as anchors and outline the space topology. We emphasize that all
parameters of the PLM are fixed (i.e., no fine-tuning takes place), so all learned states are intrinsic
toM. We focus on two topological relations: (a) state-word relations, which represent how word
embeddings may be summarized by their states and how states can be explained by their correspond-
ing words; and (b) state-state relations, which capture how states interact with each other and how
their transitions denote meaningful word combinations. Taken together, these two relations form a
latent network withinM (visualized in Fig. 3 and 4).

We adopt a minimal parametrization of the inference network so as to respect the intrinsic struc-
ture of the representation manifold without imposing strong assumptions (e.g., via regularization).
Specifically, for state-word relations, we associate each word embedding rt with a latent state in-
dexed by zt ∈ {1, ..., N} (the corresponding embedding of zt is szt ). For state-state relations, we
assume a transition weight Φ(i, j). Together we have a linear-chain CRF:

log φ(xt, zt) = rᵀt szt log Φ(zt−1, zt) = sᵀzt−1
szt (8)

where the dot product follows the common practice of fine-tuning contextualized representations.
We use log space for numerical stability. The probability of a state sequence given a sentence is:

qψ(z|x) =

T∏
t=1

Φ(zt−1, zt)φ(xt, zt)/Z (9)

Here, the only learnable parameters are state embeddings: ψ = [s1, ..., sN ] as we try to be faith-
ful to the representation manifold. Note how this parametrization reconciles space geometry with
graphical models. As N is large, we estimate Z with the proposed Sampled Forward (Eq. 7).

Constructing the Proposal We now return to proposal q̃t (Eq. 4) which we construct based on a
common observation that linguistic phenomena are long-tailed:

q̃t(i) ∝ Φ(i)φ(xt, i) Φ(i) = ||si||1 (10)

where φ(xt, i) states that only a few states are likely to generate observation xt, which is often the
case in NLP (e.g., there are only a few possible POS tags for each word); and Φ(i) models the
prior probability of state i. This choice stems from the empirical observation that larger L1 norm
correlates with larger dot product, and is thus more likely to be inferred. Essentially, our proposal
combines local emissions φ and global prior Φ to approximate the ãt variables (Eq. 3) and bypass
their expensive computation.

Inference and Learning We use amortized variational inference to learn s. We simply reuse the
architecture from previous work Fu et al. (2020); Li & Rush (2020) and build a generative model:

pθ(x, z) =
∏
t

p(xt|z1:t, x1:t−1) · p(zt|z1:t−1, x1:t−1) ht = Dec([szt−1
;xt−1],ht−1) (11)

p(xt|z1:t, x1:t−1) = softmax(FF(ht)) p(zt|z1:t−1, x1:t−1) = softmax(FF([szt ;ht])) (12)
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where θ denotes the decoder parameters, Dec(·) denotes the decoder (we use an LSTM), ht denotes
decoder states, and FF(·) denotes a feed-forward network. This autoregressive formulation essen-
tially encourages states to be “generative”, i.e., to generate sentences and themselves. We will show
in experiments how this formulation lends itself to paraphrasing. We use qψ directly from Eq. 9 as
our variational posterior, and optimize the following β-ELBO objective:

LELBO = Eqψ(z|x)[log pθ(x, z)]− βH(qψ(z|x)) (13)

where the β parameter modulates the topology of the latent structure and prevents posterior collapse.
We follow Fu et al. (2020) and use their Gumbel reparameterization to optimize qψ , which is more
stable than the REINFORCE gradient estimator (Li & Rush, 2020).

When integrating RDP with the Gumbel reparameterization, we noticed that the gradient will only
pass through the top K1 and sampled K2 states, in other words, not all states receive gradients. In
this case, trading K1 against K2 amounts to exploration versus exploitation. A large K1 means we
give gradients to high-confidence states, i.e., we exploit large local emission and global transition
potentials. While increasing K2 means we explore low-confidence states. So, by splitting the com-
putation budget between top K1 and sampled K2 states, we not only reduce variance for estimating
the partition, but also effectively introduce different strategies for searching over the latent space.

4 RELATED WORK

Efficient Inference for Structured Latent Variables There has been substantial interest recently
in the application of deep latent variable models (LVMs) to various language related tasks (Wise-
man et al., 2018; Li & Rush, 2020), which has also exposed scalability limitations. Earlier attempts
to render CRF models efficient (Sokolovska et al., 2010; Lavergne et al., 2010) either make many
stringent assumptions (e.g., sparsity), rely on handcrafted heuristics for bias correction (Jeong et al.,
2009), or cannot be easily adapted to modern GPUs with tensorization and parallelization. Sun et al.
(2019) are closest to our work, however they only consider topK summation and consistently under-
estimate the partition. Chiu & Rush (2020) scale HMMs but assume words are clustered beforehand.
Our approach systematically trades computation with proposal accuracy and estimation error (rather
than over-compromising for efficiency). Moreover, we do not impose any hard restrictions like spar-
sity (Correia et al., 2020), and can accommodate dense and long-tailed distributions. Our method
is inspired by randomized automatic differentiation (RAD, Oktay et al., 2020), and can be viewed
as RAD applied to the DP computation graph. Advantageously, our proposal is compatible with
existing efficient implementations (like Rush, 2020) since it does not change the computation graph.

Interpretability of Contextualized Representations There has been a good deal of interest re-
cently in analyzing contextualized representations and the information they encode. This line of re-
search, collectively known as “Bertology” (Rogers et al., 2020; Hewitt & Manning, 2019), focuses
mainly on supervised probing of linguistic properties (Tenney et al., 2019), while the geometric
properties of the representations have been less studied (Cai et al., 2021). A major dilemma facing
this work is whether supervised linguistic probes reveal properties intrinsic to the embeddings or
imposed by the supervision signal itself (Hewitt & Liang, 2019; Hall Maudslay et al., 2020; Chen
et al., 2021). In this work, we do not use any supervision to ensure that the discovered network is
intrinsic to the representation space.

5 EXPERIMENTS

In this section, we present our experimental results aimed at analyzing RDP and showcasing its
practical utility (see Fig. 1). Specifically, we (1) verify the basic properties of RDP by estimating the
partition function and (2) using it to train the structured latent variable model introduced in Section 3;
(3) we then turn our attention to pretrained language models and examine the network induced with
our approach and whether it is meaningful; and (4) we generate sentence paraphrases by traversing
this network. For experiments (1, 2, 4), we use (a). pretrained GPT2 as the encoder since they are
more about autoregressive language modeling and generation; (b). the MSCOCO dataset, a common
benchmark for paraphrasing (Fu et al., 2019). For experiment (2), we use (a). BERT since it has
been the main focus of most previous analytical work (Rogers et al., 2020); (b). the 20News dataset,
a popular benchmark for training latent variable models (Grisel et al.). Across all experiments, we
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Dense Distribution. Entropy = 34.66 Intermediate. Entropy = 18.08 Long-tail Distribution. Entropy = 6.49

A B C

Figure 2: Sampled Forward vs. TopK summation (Sun et al., 2019) in different unit cases during training. Red
line: target log partition. Grey line: estimates from TopK. Our method effectively corrects the bias in TopK
summation with significantly less memory, and is consistent with dense and long-tailed distributions.

Model-#States Dev NLL Dev PPL Test NLL Test PPL

FULL-100 (Fu et al., 2020) 39.64±0.06 22.07±0.12 39.71±0.07 22.32±0.12
TOPK-100 (Sun et al., 2019) 39.72±0.13 22.22±0.23 39.76±0.11 22.41±0.20
RDP-100 (ours) 39.59±0.10 21.99±0.18 39.59±0.08 22.12±0.13

TOPK-2K (Sun et al., 2019) 39.81±0.30 22.43±0.44 39.84±0.31 22.52±0.59
RDP-2K (ours) 39.47±0.11 21.94±0.46 39.48±0.14 21.93±0.24

Table 1: Results on training LVMs on MSCOCO dataset. Models are run 6 times with different random seeds.

use an LSTM decoder with states identical to the encoder (762 for BERT base and GPT2 as in Wolf
et al., 2020). More details on experiments and model settings can be found in Appendix E.

5.1 BASIC PROPERTIES

We examine the estimation of the partition function for three unit cases, namely dense, intermediate,
and long-tailed distributions. Instead of simulating these unit cases, to make our experiments more
realistic, we extract CRFs on-the-fly from different LVM training stages. We also study the effects
of memory budget by setting K to 20, 200, and 400 (corresponding to 1, 10, and 20 percent of the
full memory). We use TopK summation (Sun et al., 2019) as our main baseline. This method can be
viewed as setting K1 = K and K2 = 0 in our framework, i.e., it does not use the random sample.
For training LVMs, We consider 100 and 2,000 latent states. With 100 states we are able to perform
the summation exhaustively which is the same as Fu et al. (2020). Full summation with 2,000 states
is intractable, so we only compare with TopK summation and use K = 100.

Estimating the Partition Function As shown in Figure 2, TopK summation always underes-
timates the partition. The gap is quite large in the dense case (large entropy), which happens at
the initial stages of training when the model is not confident enough. The long-tailed case repre-
sents later training epochs when the model has converged and is more concentrated. Our method
effectively corrects the bias, and works well in all unit cases with significantly less memory.

Training Latent Variable Models We compare different LVMs in Table 1. Following common
practice, we report negative log likelihood (NLL) and perplexity (PPL). We perform an extensive
search over multiple hyperparameters (e.g., β, learning rate, word dropout) across multiple random
seeds (3–6) and report the average performance of the best configuration for each method. Our
model performs best in both 100 and 2,000 state settings. The advantage is modest (as there are no
architecture changes, only different training methods) but consistent. RDP trades off exploitation
(i.e., increasing K1) and exploration (i.e., increasing K2) while TopK summation always focuses
on the local solutions by passing gradients through top states. Intuitively, we have the chance of
discovering better latent states (i.e., larger likelihood) by randomly searching the unexplored space.

5.2 DISCOVERING LATENT NETWORKS FROM PRETRAINED EMBEDDINGS

We now discuss how latent structures induced with RDP reveal linguistic properties of contextual-
ized representations. We focus on BERT Devlin et al. (2019) and set the number of latent states to
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State id Interpretation Corresponding Words - Occurrence

M
orphology / Syntax

Sem
antics

Month1634 april 169 | may 75 | apr 53 | march 40 | august 33 | june 28 | version 26 | february 22 | september 18
Religion865 faith 383 | religion 377 | atheist 205 | islam 159 | religious 145 | morality 137 |  christianity 87 | muslim 40
Country214 germany 31 | turkish 26 | qur 26 | american 25 | greek 21 | turkey 20 | muslim 19 | london 17 | islam 16

1291 Literature lines 1848 | read 701 | writes 502 | line 376 | book 319 | books 244 | write 203 | written 177 | text 171
Computer1874 apple 405 | chip 386 | disk 373 | fbi 289 | encryption 197 | ##eg 171 | hardware 166 | nsa 154
Aerospace1214 space 182 | nasa 170 | orbit 169 | motif 136 | moon 103 | planet 95 | prism 94 | lunar 92 | venus 86
Medicine371 drug 212  | food 145 | health 130 | medical 121 | disease 117 | diet 115 | cancer 113 | aids 98 | sex 83

Log frequency

Word distribution colored by 
number of corresponding states

Word distribution colored by type 
of corresponding states

State distribution colored by type 
of corresponding words

[er]-suffix - comparative1417 better 784 | less 530 | faster 149 | higher 126 | greater 120 | worse 105 | larger 93 | ##er 88 | longer 80
[er]-suffix - role127 ##er 473 | everyone 390 | user 270 | host 180 | server 136 | manager 103 | player 93 | doctor 82
Past tense476 ##ed 609 | ##d 437 | ##ted 156 | based 144 | caused 95 | ##ized 75 | made 61 | lost 61 | built 60
Present continuous1556 ##ing 1282 | running 188 | ##ting 149 | ##ng 104 | ##ling 92 | processing 87 | killing 83 | calling 70

[s]-suffix 3rd singular665 ##s 35 | isn 11 | comes 7 | runs 6 | remains 6 | ##ly 5 | exists 5 | contains 3 | includes 3 | becomes 3
[s]-suffix plural1972 ##s 649 | turks 222 | armenians 206 | jews 186 | keys 171 | muslims 151 | arabs 123 | christians 93
[ly]-suffix adverb243 ##ly 929 | probably 311 | clearly 254 | completely 231 | obviously 229 | certainly 222 | directly 186

“Give”890 give 854 | given 445 | provide 224 | gives 217 | gave 193 | giving 162 | show 128 | offer 89 | cause 88
see 1721 | look 858 | seen 618 | read 302 | saw 274 | display 205 | image 199 | looks 197 | looking 196“See”1756

A1 A2 A3

B1 B2

C

Example States
Corresponding words

Figure 3: (A1): Frequent words partake in more latent states than rare words (presumably because they are
polysemous); (A2 and A3): The distribution of states is also Zipfian, as most frequent states generate most
words (the orange portion in A2 is almost indistinguishable); (B): t-SNE (Van der Maaten & Hinton, 2008)
visualization of latent network induced from BERT; (B1): Words and their corresponding latent states. For
states, the size of circle indicates frequency (≈ aggregated posterior probability) and color thickness means
level of contextualization; a state with deeper blue color tends to generate content words (whose meaning is
less dependent on context); lighter blue corresponds to stopwords (which are more contextualized); words are
also colored by number of states (≈ number of linguistic roles); red color densities mean a word is generated
by several states; (B2) and (C): sample from p∗(x)qφ(z|x). Our method discovers a spectrum of meaningful
states which exhibit both morpholigical, syntactic and semantic functionalities.

2,000. As BERT’s vocabulary size is 32K, one state would approximately handle 15 words in the
uniform case, functioning as a type of “meta” word. After convergence, we use qψ to sample z for
each x in the training set (recall we use the 20News dataset). These z can be viewed as samples
from the aggregated posterior

∑
x qψ(z|x)p?(x) where p?(x) denotes the empirical data distribu-

tion. To get a descriptive summary of BERT’s latent topology, we compute the following statistics
on z samples: state frequency (Fig. 3, A3); number words corresponding to each state (Fig. 3, A2);
number of states corresponding to each word (Fig. 3, A1); and state bigrams (Fig. 4). We further
differentiate stopwords (e.g., in, of, am, is) from content words.

State-word Relations Figure 3 gives a first impression of how latent states spread over the repre-
sentation space. Overall, we observe that the joint space is Zipfian, and this property characterizes
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Joint Visualization of All States

Top 500 States, Connected by Transition Matrix Top 500 States, Connected by Aggregated Posterior
Transition Interpretation Corresponding Bigrams - Occurrence

W
/o. Stopw

ords
W

. Stopw
ords

In prepositional phrase904-296 in-fact 155 | in-reality 6 | in-particular 5 | in-short 5 | in-itself 4 | in-essence 4 | in-general 4

698-145 to-believe 30 | to-prove 10 | to-assume 7 | to-check 6 | to-test 5 | to-claim 4 | to-argue 4To + verb, infinitive
1712-698 want-to 126 | like-to 24 | wanted-to 18 | wants-to 17 | wish-to 10 | wishes-to 9 | designed-to 6Verb + to

Passive voice (is + v.ed)665-476 is-defined 3 | is-supported 3 | is-produced 3 | is-created 2 | is-available 2 | is-caused 2
Passive voice: by476-1654 written-by 13 | ##d-by 11 | caused-by 8 | ##ed-by 8 | produced-by 6 | followed-by 6 | defined-by 4

In somewhere1895-1966 in-bosnia 14 | in-soviet 9 | in-seattle 9 | in-texas 8 | in-washington 6 | in-los 6 | in-azerbaijan 5

Verb (past) + in476-904 built-in 3 | washed-in 3 | represented-in 2 | ##led-in 2 | resulted-in 2 | involved-in 2 | sealed-in 2
476-243 reacted-badly 1 | organized-electronically 1 | implemented-slightly 1 | tied-directly 1Verb (past) + adverb

243-476 intentionally-started 3 | possibly-followed 2 | basically-threw 2 | self-proclaimed 2 | heavily-armed 2Adverb + verb (past)
192-1417 much-less 14 | much-better 14 | much-greater 5 | much-worse 4 | much-bigger 3 | lot-better 3Adverb + comparative
1417-1683 greater-risk 2 | less-money 2 | less-costly 2 | less-expensive 2 | bigger-budgets 1 | lower-costs 1Comparative + noun
1064-476 people-married 2 | revolutionaries-armed 1 | people-burned 1 | people-got 1 | people-showed 1People did
1572-476 jordan-implemented 1 | taylor-visited 1 | bullock-received 1 | ryan-walked 1 | cooper-ripped 1Person did

Highlighted Transitions

a young man riding on the skate board at top of a park
a young man riding a skate board at the top of a park
young man riding on top of skate board in a park

Input: a young man riding a skate board on top of a park

a young ridingman
1755 0 117 0

1755
a

0 969
on the

103
skate board

0 1061 1061 1061
at top of

103 959
a park

at the
1061 959 0

top

1755
in

0
top

1061
of

A1 A2

A3 A4

B

C

Figure 4: (A1): Geometrical differences between top and tail states; most lexical variations are encoded by the
top 500 states while remaining states represent the long tail; (A3 and A4): Network topology within top 500
states; in (A3) nodes are connected to their top 1 neighbor according to the transition matrix Φ (as a proxy of the
empirical prior) and in (A4) according to the most frequent bigram (as a proxy of the aggregated posterior), note
how the two are correlated; (A2 and B): Highlighted bigrams and their linguistic interpretation; transitions with
stopwords are more about syntax (e.g., to with infinitives or transitive verbs); transitions without stopwords are
more about specific meanings. (C): paraphrasing as latent network traversal.

the distribution of words (A1), states (A3), and word occurrence within each state (C). We also see
that the top 500 states account for most word occurrence (A2) while the remaining states model tail
phenomena (A3). We conjecture this number is related to the intrinsic dimension of the data mani-
fold (see Aghajanyan et al. 2021). The induced states encode multiple linguistic properties (Fig. 3,
C). Some states are similar to a lexicon entry encoding specific words and their morphological vari-
ants; other states exhibit clustering based on morphological features (-s, -er, -ly suffix). We believe
this is closely related to the fact that BERT learns embeddings over subwords. Note that the past
tense cluster contains words exhibiting both regular (-ed suffix) and irregular morphology (e.g., lost
and built). Finally, we also see that some states are largely semantic, similar to a conventional topic
model (e.g., Computer and Medicine clusters). See Appendix E.6 for more state-word examples.

State-State Relations As shown in Fig. 4, we observe a clear geometric difference between top
and tail states. Most linguistic constructions seem to be captured by the top 500 states (A1). The
connections of top states are visualized in (A2–A4). From a statistical perspective, the similarity of
(A3) and (A4) clearly shows how the empirical prior (encoded by the transition matrix Φ) matches

8
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Model iB4↑ B4↑ sB4↓
CGMH (Miao et al., 2018) 7.84 11.45 -
UPSA (Liu et al., 2020) 9.26 14.16 -
GUMBEL-CRF (Fu et al., 2020) 10.20 15.75 -

GPTNET-50 FULL 8.81±0.03 13.54±0.43 33.78±3.78
GPTNET-50 TOPK (Sun et al., 2019) 8.88±0.04 13.84±0.50 35.75±4.26
GPTNET-50 RDP (ours) 9.14±0.18 14.33±0.30 37.49±4.22

GPTNET-2K TOPK (Sun et al., 2019) 8.80±0.18 14.26±0.30 40.21±1.00
GPTNET-2K RDP (ours) 9.04±0.34 13.49±0.55 30.97±5.18

Table 2: Paraphrase generation on the MSCOCO dataset (Fu et al., 2019). Numbers in first block taken
from Fu et al. (2020). We report model performance using BLEU 4gram (B4), self BLEU 4gram (sB4), and
iBLUE (iB4). Performance is averaged over 3 random seeds.

the aggregated posterior (encoded in the bigram sample from qψ), which is an important desidera-
tum of generative modeling (Mathieu et al., 2019). Note that the number of edges linked to each
node, again, follows a Zipfian distribution as top nodes have most of the connections. From a lin-
guistic perspective, we see how the combination of states leads to meaningful syntactic and semantic
constructions. Again, BERT encodes various syntactic configurations such as to infinitives, passive
voice, and even manages to distinguish adverbials (e.g., in fact) from prepositional phrases (e.g., in
Bosnia). In general, the latent network seems to have some grasp of syntax, semantic roles, and col-
locations. In the following section, we examine whether this inherent knowledge can be harvested
for generation. See Appendix E.7 for more state transition examples.

5.3 PARAPHRASING THROUGH NETWORK TRAVERSAL

We now study how the latent network can be usefully employed to generate paraphrases without
access to parallel training instances. Given a sentence, we generate its paraphrase by conditioning
on the input which we represent as a bag-of-words Fu et al. (2020) and by sampling from latent
states. This amounts to traversing the latent network then fill in the traversal path to assemble a
sentence, as visualized in Fig. 4 C. We instantiate our approach with a latent network learned from
GPT2 representations (Radford et al., 2019) and refer to our model collectively as GPTNET.

We compare against three previous unsupervised models (first block in Table 2), including CGMH
(Miao et al., 2019), a general-purpose MCMC method for controllable generation; UPSA (Liu et al.,
2020), a strong paraphrasing model with simulated annealing, and GUMBEL-CRF (Fu et al., 2020),
a template induction model based on a continuous relaxation of the CRF sampling algorithm. We
present GPTNET variants with 50 and 2,000 states, and show results with RDP and topK, and the
full summation for 50 states. Following previous work, we use iBLEU (Sun & Zhou, 2012) as
our main metric, which trades off fidelity to the references (BLEU) and variation from the input
(self-BLEU). Table 2 shows that RDP is superior to TopK and full summation in terms of iBLUE.
GPTNet models do not outperform GUMBEL-CRF or UPSA. This is expected as these methods are
highly tailored to the task and more flexible (e.g., they do not fix the encoder), while we restrict the
modeling within the GPT2 representation space (to infer its structure). So, our results should be
viewed as a sanity check demonstrating the latent network is indeed meaningful for generation (see
Appendix E.8 for more generation examples).

6 CONCLUSION

In this paper, we have developed a general method for scaling the inference of structured latent
variable models with randomized dynamic programming. It is a useful tool for the visualization
and inspection of the intrinsic structure of contextualized representations. Experiments with BERT
reveal the topological structure of its latent space: state-word connections encapsulate syntactic and
semantic roles while state-state connections correspond to phrase constructions. Moreover, traversal
over a sequence of states represents underlying sentence structure.

9
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Ethics Statement As this paper inspects the internal structure of pretrained language models, it is
likely that it will reveal frequent linguistic patterns encoded in the language model. Specifically, the
frequent words, phrases, and sentences associated with different gender, ethnic groups, nationality,
interest groups, social status, and all other factors, are likely to be revealed by our model. When
calling the generative part of our model for paraphrasing, these differences are likely to exist in the
generated sentences (depending on the dataset). These facts should be considered when using this
model.

Reproducibility Statement A step-by-step implementation guide for our randomized forward al-
gorithm is provided in Appendix section C. The comparison of RDP versus other possible solutions
for scaling the structured models is provided in Appendix section B. A detailed description of the
model architecture is provided in the Appendix section E.1. A detailed description of data processing
is provided in the Appendix section E.2. A detailed description of training strategy, hyperparameter
search strategy, and model selection, is provided in Appendix section E.3. A detailed description
of visualization procedure is provided in Appendix section E.5. We will release code after the
anonymity period.
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Gonçalo Correia, Vlad Niculae, Wilker Aziz, and André Martins. Efficient marginalization of dis-
crete and structured latent variables via sparsity. Advances in Neural Information Processing
Systems, 33, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423.

Yao Fu, Yansong Feng, and John P. Cunningham. Paraphrase generation with latent bag of words.
In NeurIPS, 2019.

Yao Fu, Chuanqi Tan, Bin Bi, Mosha Chen, Yansong Feng, and Alexander M. Rush. Latent template
induction with gumbel-crf. In NeurIPS, 2020.

Yao Fu, Chuanqi Tan, Mosha Chen, Songfang Huang, and Fei Huang. Nested named entity recog-
nition with partially-observed treecrfs. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 35, pp. 12839–12847, 2021.

10

https://aclanthology.org/2021.acl-long.568
https://aclanthology.org/2021.acl-long.568
https://openreview.net/forum?id=xYGNO86OWDH
https://openreview.net/forum?id=17VnwXYZyhH
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423


Under review as a conference paper at ICLR 2021

Olivier Grisel, Lars Buitinck, and Chyi-Kwei Yau. Topic extraction with non-negative matrix fac-
torization and latent dirichlet allocation. URL https://scikit-learn.org/stable/
auto_examples/applications/plot_topics_extraction_with_nmf_lda.
html.

Rowan Hall Maudslay, Josef Valvoda, Tiago Pimentel, Adina Williams, and Ryan Cotterell. A
tale of a probe and a parser. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 7389–7395, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.659. URL https://aclanthology.org/
2020.acl-main.659.

John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2733–2743,
2019.

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word representa-
tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers), pp. 4129–4138, Minneapolis, Minnesota, June 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-1419. URL https://aclanthology.org/N19-1419.

Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational infer-
ence. Journal of Machine Learning Research, 14(5), 2013.

Minwoo Jeong, Chin-Yew Lin, and Gary Geunbae Lee. Efficient inference of crfs for large-scale
natural language data. In Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pp.
281–284, 2009.

Yoon Kim, Alexander M Rush, Lei Yu, Adhiguna Kuncoro, Chris Dyer, and Gábor Melis. Un-
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• Section A. Theoretical analysis of the Sampled Forward algorithm. Bias and variance.
• Section B. Challenges of full DP inference under Automatic Differentiation.
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• Section D. Extensions of randomized dynamic programming.
• Section E. Experimental details.
• Section F. Additional experimentsl results.

A THEORETICAL ANALYSIS OF SAMPLED FORWARD ALGORITHM

A.1 BIAS ANALYSIS

In this section, we discuss the unbiasedness and variance of the Randomized Forward algorithm. We
first show that Randomized Forward gives an unbiased estimator of the partition function.
Theorem A.1 (Unbiasedness). For all t ∈ [1, 2, ..., T ], the sampled sum α̂t (Eq. 6) is an unbiased
estimator of the forward variable αt (Eq. 3). The final sampled sum Ẑ (Eq. 7) is an unbiased
estimator of the partition function Z (Eq. 3).

Proof. By the Second Principle of Mathematical Induction. Assume initialization α1(i) = φ(x1, i).
Firstly at t = 2, for all i, we have:

Eq1 [α̂2(i)] =

K1∑
j=1

α1(σ1,j)Φ(σ1,j , i)φ(x2, i) +
1

K2

K2∑
j=1

Eq1
[

Z̃1

q̃1(δ1,j)
α1(δ1,j)Φ(δ1,j)φ(x2, i)︸ ︷︷ ︸

=A

]

(14)

where the second term can be expanded as a masked summation with the index rearranged from
σ2,K1+1 to σ2,N :

A =

K2∑
j=1

Eq1
[

Z̃1

q̃1(δ1,j)
α1(δ1,j)Φ(δ1,j)φ(x2, i)

]
(15)

=

K2∑
k=1

N∑
j=K1+1

Eq1
[

1

q1(δ1,k)
1(δ1,k = j)α1(σ1,j)Φ(σ1,j)φ(x2, i)

]
(16)

=

K2∑
k=1

N∑
j=K1+1

Eq1
[

1

q1(δ1,k)
1(δ1,k = j)

]
︸ ︷︷ ︸

=1

α1(σ1,j)Φ(σ1,j)φ(x2, i) (17)

= K2

N∑
j=K1+1

α1(σ1,j)Φ(σ1,j)φ(x2, i) (18)

Notice how we re-index the sum. Now put it back to Eq. 14 to get:

Eq1 [α̂2(i)] =

K1∑
j=1

α1(σ1,j)Φ(σ1,j , i)φ(x2, i) +
1

K2
·K2

N∑
j=K1+1

α1(σ1,j)Φ(σ1,j)φ(x2, i) (19)

=
N∑
j=1

α1(σ1,j)Φ(σ,j , i)φ(x2, i) (20)

=

N∑
j=1

α1(j)Φ(j, i)φ(x2, i) (21)

= α2(i) (22)

14
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This verifies the induction foundation that Eq1 [α̂2(i)] = α2(i) for all i.

Now assume for time index t we have ∀i,Eq1:t−1
[α̂t(i)] = α2(i). Consider t+ 1, we have:

E1:qt [α̂t+1(i)] =

K1∑
j=1

Eq1:t−1

[
α̂t(σt,j)

]
Φ(σt,j , i)φ(xt+1, i) (23)

+
1

K2

K2∑
j=1

Eq1:t−1

[
α̂t(δt,j)

]
· Eqt

[ Z̃t
q̃t(δt,j)

Φ(δt,j)φ(xt+1, i)]
]

(24)

=

K1∑
j=1

αt(σt,j)Φ(σt,j , i)φ(xt+1, i) (25)

+
1

K2

K2∑
j=1

αt(σt,j) · Eqt
[ Z̃t
q̃t(δt,j)

Φ(δt,j)φ(xt+1, i)]
]

︸ ︷︷ ︸
=A′

(26)

Note how we decompose the expectation by using the independence: q1:t = q1:t−1 ·qt With a similar
masked summation trick as A, we have:

A′ = K2

N∑
j=K1+1

αt(σt,j)Φ(σt,j , i)φ(xt+1, i) (27)

This gives us:

E1:qt [α̂t+1(i)] =

K1∑
j=1

αt(σt,j)Φ(σt,j , i)φ(xt+1, i) +
1

K2
·K2

N∑
j=K1+1

αt(σt,j)Φ(σt,j , i)φ(xt+1, i)

(28)

=

N∑
j=1

αt(σt,j)Φ(σt,j , i)φ(xt+1, i) (29)

=

N∑
j=1

αt(j)Φ(j, i)φ(xt+1, i) (30)

= αt+1(i) (31)

Thus showing α̂t is an unbiased estimator for αt at each step t. Setting t = T , the last step, gives us
E[Ẑ] = Z (details similar to the above).

Corollary A.1.1. When we change the (sum, product) semiring to the (log-sum-exp, sum) semiring,
the expectation of the estimator will become a lower bound of logαt and logZ.

Proof. Denote lt(i) = logαt(i) and Ω the set of sampled indices where |Ω| = K2. For simplicity,
we omit the top K1 summation and only show the summation of the sample. Cases where t > 2 can
be derived similarly as following:

l̂2(i) = log
∑
j∈Ω

exp(l1(j) + log Φ(j, i) + log φ(xt, i))− logK2 (32)

E[l̂2(i)] = E
[

log
∑
j∈Ω

exp(l1(j) + log Φ(j, i) + log φ(xt, i))

]
− logK2 (33)

≤ logE
[∑
j∈Ω

exp(l1(j) + log Φ(j, i) + log φ(xt, i))

]
− logK2 (34)

= logK2 − logK2 + log
∑
j∈Ω

exp(l1(j) + log Φ(j, i) + log φ(xt, i)) (35)

= l2(i) (36)
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where Eq. 34 comes from Jensen’s inequality. Then by induction one can show at everystep, we
have E[l̂t(i)] ≤ lt(i).

Although implementation in the log space makes the estimate biased, it reduces the variance expo-
nentially in a rather trivial way. It also provides numerical stability. So, in practice we use it for
training.

A.2 VARIANCE ANALYSIS

Now we analyze variance. We start with the estimator aδ/qδ , δ ∼ Categorical{qK1+1, ...qKN } in
Eq. 2. Firstly, this is an unbiased estimator of the tail sum:

E[aδ/qδ] =

N∑
i=K1+1

ai (37)

We have the folling variance arguments:
Theorem A.2 (Variance of the tail estimator).

V[aδ/qδ] =

N∑
i=K1+1

a2
i /qi − (

N∑
i=K1+1

ai)
2 (38)

= S2
K1

(

N∑
i=K1+1

ε2i /qi + 2εi) (39)

where

SK1 =

N∑
i=K1+1

ai εi = ai/SK1 − qi (40)

which says the variance is:

• quadratic to the tail sum SK1
, which will can be reduced by increasing K1 as the effect of

Rao-Blackwellization.

• approximately quadratic to the gap εi, as the differences between the proposal qi and the
oracle ai/SK1

, which can be reduced by choosing a correlated proposal as the effect of
importance sampling.

Optimal zero variance is achieved on

q∗i = ai/SK1 (41)

Proof. The variance is then:

V[aδ/qδ] = E[(aδ/qδ)
2]− E[aδ/qδ]

2 (42)

where the first term is the second moment:

(aδ/qδ)
2 = (

N∑
i=K1+1

ai1[δ = i]/qi)
2 (43)

=

N∑
i=K1+1

a2
i1[δ = i]/q2

i + 2

N∑
i=K1+1

N∑
j=K1+1

aiaj1[δ = i]1[δ = j]

qiqj︸ ︷︷ ︸
=0

(44)

=

N∑
i=K1+1

a2
i1[δ = i]/q2

i (45)
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taking the expection of it we get:

E[(aδ/qδ)
2] = E[

N∑
i=K1+1

a2
i1[δ = i]/q2

i ] (46)

=

N∑
i=K1+1

a2
i /qi (47)

Plug this back, variance is:

V[aδ/qδ] =

N∑
i=K1+1

a2
i /qi − (

N∑
i=K1+1

ai)
2 (48)

To get the optimal proposal, we solve the constrained optimization problem:

min
qi

N∑
i=K1+1

a2
i /qi − (

N∑
i=K1+1

ai)
2 (49)

s.t.

N∑
i=K1+1

qi = 1 (50)

By solving the corresponding Lagrangian equation system (omitted here), we get the optimal value
achieved at:

q∗i =
ai∑N

i=K1+1 ai

N∑
i=K1+1

a2
i /q
∗
i − (

N∑
i=K1+1

ai)
2 = 0 (51)

This says zero variance is achieved by a proposal equal to the normalized summands.

Then define the gap between the proposal and the normalized summands as:

εi =
ai
SK1

− qi (52)

Plug this to the variance expression we get:

V[aδ/qδ] = S2
K1

(

N∑
i=K1+1

ε2i /qi + 2εi) (53)

Corollary A.2.1. When increasing the sample size to K2, the variance will reduce to

V[
1

K2

N∑
j=1

aδj
qδj

] =
1

K2
S2
K1

(

N∑
i=K1+1

ε2i /qi + 2εi) (54)

Now we consider the variance of the Sampled Forward algorithm. An exact computation would
give complicated results. For simplification, we give an asymptotic argument with regard to Rao-
Blackwellization and importance sampling:
Theorem A.3 (Single Step Asymptotic Variance of Sampled Forward). At each step, the alpha
varible estimator has the following asymptotic variance:

V[α̂t(i)] = O
( 1

K2
α2
t,K1

(i) · ε2t (i)
)

(55)

where:

• αt+1,K1(i) =
∑N
j=K1+1 α̃t(j, i) =

∑N
j=K1+1

√
Eq1:t−1 [α̂2

t (j)]Φ(j, i)φ(xt, i) is a tail sum
after the topK1 summands. This term will reduce if we increaseK1, as an instance of Rao-
Blackwellization.
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• ε2t (i) =
∑N
j=K1+1 ε

2
t−1(j, i)/qt−1(j) and εt−1(j, i) is the difference between the proposal

qt−1(j) and the oracle proposal in Eq. 3. This term will reduce if the proposal is more
correlated to the oracle, as an instance of Importance Sampling.

Proof. We start with a simple setting where K2 = 1. At step t + 1 we have the following variance
recursion:

Eq1:t [α̂2
t+1(i)] =

N∑
j=K1+1

Φ2(j, i)φ2(xt+1, i)

qt(j)
· Eq1:t−1

[α̂2
t (j)] (56)

This is derived by plugging estimator 6 to the variance Eq. 38 we have just derived. Denote:

αt+1,K1(i) =

N∑
j=K1+1

α̃t(j, i) =

N∑
j=K1+1

√
Eq1:t−1 [α̂2

t (j)]Φ(j, i)φ(xt+1, i) (57)

Then we have

Vq1:t [α̂t+1(i)] = α2
t+1,K1

(i)
( N∑
j=K1+1

ε2t (j, i)

qt(i)
+ 2εt(j, i)

)
(58)

where εt(j, i) is the differences between the proposal and the normalized exact summands at step t
state i:

εt(j, i) =
α̃t(j, i)∑N

j=K1=1 α̃t(j, i)
− qt(j) (59)

Dropping out the first order errors and increasing the number of sample to K2, we have the asymp-
totics:

V[α̂t(i)] = O
( 1

K2
α2
t,K1

(i) · ε2t (i)
)

(60)

Theorem A.4 (Asymptotic Variance of Sampled Forward Partition Estimation). The alpha variable
estimators has the following asymptotic variance recurrsion:

V[α̂t+1(i)] = O(
1

K2
· φ2

t,K1
· ε2t,K1

· V[α̂t]) (61)

Compared with Eq. 55, this expression:

• Uses the product of the factors φt,K1
(a function of the sum-prod of the factor at step t) and

the previous step variance V[α̂t] to substitute the αt,K1
in equation 55. Again, this term

will decrease with a larger K1 (Rao-Blackwellization).

• ε2t,K1
(i) =

∑N
j=K1+1 ε

2
t−1(j, i)/qt−1(j) and εt−1(j, i) is the difference between the pro-

posal qt−1(j) and the oracle proposal in Eq. 3. This term will reduce if the proposal is
more correlated to the oracle, as an instance of Importance Sampling (same as Eq. 55).

Consequently, the partition function has the following asymptotic variance:

V[Ẑ] = O(

T∏
t=1

1

K2
· φ2

t,K1
· ε2t,K1

) (62)

When implemented in the log space, the variance is trivially reduced exponentially:

V[log Ẑ] = O(

T∑
t=1

log
1

K2
+ 2 log φt,K1 + 2 log εt,K1) (63)
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Proof. Firstly for simplcity we assume K1 = 0 and K2 = 1. The the estimator variance is:

V[α̂t+1(i)] = Eq1:t [α̂2
t+1(i)]− α2

t+1(i) (64)

= Eq1:t−1

[ N∑
j=1

α̂2
t (j)Φ

2(j, i)φ2(xt, i)

qt(j)
· α

2
t (j)

α2
t (j)

]
− α2

t+1(i) (65)

Recall:

αt+1(i) =

N∑
j=1

αt(j)φ(j, i)φ(xt, i) (66)

Let:

εt(j, i) =
αt(j)φ(j, i)φ(xt, i)

αt+1(i)︸ ︷︷ ︸
=q(zt=j|zt+1=i)

−qt(j) (67)

Then:

V[α̂t+1(i)] = Eq1:t−1

[ N∑
j=1

α2
t+1(i)

(ε2t (j, i)
qt(j)

+ 2εt(j, i) + qt(j)
) α̂2

t (j)

α2
t (j)

]
− α2

t+1(i) (68)

= α2
t+1(i)

( N∑
j=1

(Eq1:t−1 [α̂2
t (j)]

α2
t (j)

qt(j)
)

+

N∑
j=1

(ε2t (j, i)
qt(j)

+ 2εt(j, i)
)Eq1:t−1 [α̂2

t (j)]

α2
t (j)

)
(69)

− α2
t+1(i) (70)

Note that there exist Jt such that:
Eq1:t−1 [α̂2

t (j)]

α2
t (j)

<= Jt (71)

This is because of the bounded gap of the Jensen’s inequality. Also recall:
N∑
j=1

qt(j) = 1 (72)

So we get:

V[α̂t+1(i)] <= α2
t+1(i)

(
Jt − 1 +

N∑
j=1

(ε2t (j, i)
qt(j)

+ 2εt(j, i)
)
·
(V[α̂t(j)]

α2
t (j)

− 1
))

(73)

= α2
t+1(i)

(
Jt − 1−

N∑
j=1

(ε2t (j, i)
qt(j)

+ 2εt(j, i)
))

(74)

+ α2
t+1(i)

( N∑
j=1

(ε2t (j, i)
qt(j)

+ 2εt(j, i)
)
·
(V[α̂t(j)]

α2
t (j)

))
(75)

empirically Jt is not the dominate source of variance (but could be in the worst case, depending on
the tightness of Jensen’s inequality). We focus on the second term:

V[α̂t+1(i)] = O

(
α2
t+1(i)

( N∑
j=1

(ε2t (j, i)
qt(j)

+ 2εt(j, i)
)
·
(V[α̂t(j)]

α2
t (j)

))
(76)

= O

(( N∑
j=1

αt(j) Φ(j, i)φ(xt, j)︸ ︷︷ ︸
O(φ2

t )

)2

·
( N∑
j=1

(ε2t (j, i)
qt(j)

+ 2εt(j, i)
)

︸ ︷︷ ︸
O(ε2t )

· 1

α2
t (j)

· V[α̂t(j)]︸ ︷︷ ︸
O(V[αt])

))

(77)

= O(φ2
t · ε2t · V[αt]) (78)
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Note that a lot of higher-order sum-products are simplified here. Adding top K1 summation and
increasing the sample size to K2 leads to variance reduction as:

V[α̂t+1(i)] = O(
1

K2
· φ2

t,K1
· ε2t,K1

· V[αt]) (79)

Recursively expand this equation we get:

V[Ẑ] = O(

T∏
t=1

1

K2
· φ2

t,K1
· ε2t,K1

) (80)

Chaning the implementation to the log space we reduce the variance exponentially:

V[log Ẑ] = O(

T∑
t=1

log
1

K2
+ 2 log φt,K1 + 2 log εt,K1) (81)

B CHALLENGES OF FULL DP UNDER AUTOMATIC DIFFERENTIATION

Now we analyze in detail why direct full summation causes memory overflow. Firstly, we note that
in a bachified stochastic gradient descent setting, memory complexity for the forward algorithm is

O(BTN2) (82)

Where B is the batch size, T is the maximum sequence length after padding, and N is the number
of states. Consider a typical setting where B = 100, T = 100, N = 1000, then the complexity is:

C = c× 100× 100× 1000× 1000 = c× 1010 (83)

where c is a constant depending on specific hardware and libraries. At first sight this may seem
reasonable with a large GPU memory (e.g., 16G). Also, one can come up with improvements, such as
not storing the intermediate αt variables. If we only need one single forward pass, such engineering
tricks are indeed effective. In our experiments, when setting B = 50, T = 15, and N = 2000, the
actual memory consumption for the forward computation, together with other model components,
is about 4G when implemented with PyTorch 1.8.0.

However, this is not the case when working under an automatic differentiation (AD) setting. If
we want to compute the gradients of the partition function (e.g., to optimize the likelihood), we
inevitably need to store all the intermediate steps to keep the full computation graph. Then, the
adjacent graph, in principle, has the same complexity as the forward graph. But in practice, it
will be more complicated due to the actual implementation of AD engines. Following the above
example where B = 50, T = 15, N = 2000, we get a memory overflow on a 16G memory GPU
when calling the PyTorch backward function. This situation also immediately invalidates many
engineering tricks (e.g., we cannot drop the intermediate αt variables anymore), and substantially
increases the difficulty of coming up with new ones, since we would also be working with the
internal mechanism of automatic differentiation engines. Note that the internal mechanism of these
engines is complicated and opaque to general practitioners (e.g., they may change the underlying
computation graph for better speed), and many of these engines (like PyTorch) are not optimized for
dynamic programming.

In fact, it would be unwise to overwrite the backward computation, even if the AD engine allowed
us to do so, as it would significantly increase engineering difficulty, as we not only need to overwrite
the first order gradients (like the gradients for the likelihood), but the second order gradients too
(e.g., gradients for marginals or reparameterized samples). In fact, a brute force implementation
would not only forego all the advantages of AD engines (like operator-level optimization), but would
also require separate implementations for every graph (e.g., chains, trees, semi-Markovs, and Ising-
Potts), every inference algorithm (e.g., partition, marginal, sampling, reparameterization, entropy),
and higher order gradients. In summary, this is an extremely difficult path that requires clever tricks
to efficiently improve a large table of already complicated DP algorithms.

This is why we do not interfere with the AD framework and work on more general and efficient algo-
rithms, rather than tailored implementation tricks. With the randomized DP, we do not re-implement
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anything. We only choose the index by the pre-computed proposal, and introduce the re-indexed
potentials to existing efficient libraries (like Torch-struct in Rush, 2020). This is least difficult from
an implementation perspective and best exploits the power of efficient structured prediction libraries
and AD engines.

C IMPLEMENTATION OF SAMPLED FORWARD ALGORITHM

Now we discuss how to implement the sample forward in detail. Our implementation aims to set all
computation outside the actual DP, and reuse existing optimized DP libraries. Specifically, we:

1. normalize the log potentials;
2. construct the proposal according to the local potential and a global prior;
3. obtain the top K1 index and sample K2 from the rest, retrieve the potentials according to

these indices;
4. correct the bias before the DP, then insert the corrected potentials to an existing DP imple-

mentation.

Now we explain each step in detail.

Potential Normalization is a technique useful for numerical stability (see Fu et al., 2021). Specif-
ically, in practice, the log-sum-exp function will saturate (it returns the max input value)
when the maximum difference between inputs is larger than 10. So, we normalize all log
potentials to be within range [1,m],m < 10. Given the emission potential φ and transition
potential Φ from Eq. 8, we normalize as:

φ̃(xt, i) = m ∗ log φ(xt, i)−mini log φ(xt, i)

maxi log φ(xt, i)−mini log φ(xt, i)
(84)

Φ̃(i, j) = m ∗ log Φ(i, j)−mini,j log Φ(i, j)

maxi,j log Φ(i, j)−mini log Φ(i, j)
(85)

Then the actual CRF is constructed based on the normalized potentials.
Proposal Construction Our proposal is constructed based on the normalized local emission and a

prior distribution. Specifically:

qt(i) =
1

2
· ( exp φ̃(xt, i)∑N

i=1 exp φ̃(xt, i)
+

exp ||si||1∑N
i=1 exp ||si||1

) (86)

Index Retrieval For each step t, we retrieve the top K1 index and get a K2 sized sample from the
rest, as is discussed in the main paper:

[σt,1, ..., σt,K1 , ..., σt,N ] = arg sorti{qt(i)}Ni=1 (87)
[δt,1, ..., δt,K2

] ∼ Categorical{qt(σt,K1
+ 1), ..., qt(σt,N )} (88)

Note that for simplicity, we use sampling with replacement. For sampling without replace-
ment, see the procedure in Kool et al. 2020

Conventional Forward Before calling an existing implementation of Forward, we need to correct
the bias of sampled terms. We do this by multiplying the probability of the sample to its
emission potential (which becomes addition in log space). Note that this will be equivalent
to multiplying them inside the DP:

φ̃′(σt,i) = φ̃(σt,i) (89)

φ̃′(δt,i) = φ̃(δt, i) + log qt(δt,i) (90)

We treat any duplicate indices as if they are different, and view the resulting potentials as
if they are a new CRF. We also retrieve the transition potentials at each step according to
the chosen index. So the new CRF has different transitions across steps. Finally, we run
an existing efficient implementation of the Forward algorithm on the new CRF to get the
estimated α̂ and Ẑ.
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D EXTENSION OF RDP

In this section, we extend the RDP to more graph structures and more inference operations. We
fisrt discuss a randomized inside algorithm for the partition function estimation for tree-structured
hypergraphs, which includes dependency trees and PCFGs. Then we discuss a randomized entropy
DP estimation on chain-structured graphs. This estimation will call the randomized forward as its
subroutine. Finally we discuss howto generalize RDP to the general sum-product algorithm for any
graph structure.

D.1 EXTENSIONS TO TREE-STRUCTURED HYPERGRAPHS: RANDOMIZED INSIDE

This section discusses how to extend RDP to Tree-structured hypergraphs, including Dependency
TreeCRFs and PCFGs. We focus on randomizing the Inside algorithm for partition function estima-
tion. Specifically, the core recursion of the inside is:

β[i, j, k] = sijk

j−1∑
l=i

∑
k1∈Ω,k2∈Ω

β[i, l, k1]β[l, j, k2] (91)

where β[i, j, k] is the summation of all subtrees spanning from location i to location j with label k
and sjik is the local score and Ω is the full state space. Suppose Ω is large so we want to sample its
subset Ωij to reduce the summation computation. Suppose the proposal is qijk where

∑
k∈Ω qijk =

1. Then a randomized inside recursion with K2 sample is (we omit the top K1 summation for
simplicity):

β[i, j, k] = sijk

j−1∑
l=i

∑
δ1∈Ωil,δ2∈Ωlj

1

K2qilδ1
β[i, l, δ1] · 1

K2qljδ2
β[l, j, δ2] (92)

The analysis about bias and variance is similar to the previous analysis (Sec. A) on the linear-chain
case.

D.2 EXTENSIONS TO RANDOMIZED ENTROPY DP ESTIMATION

This section describes a randomized DP for estimating the entropy of a chain-structured model
(HMMs and linear-chain CRFs). Recall that the core recursion of conventional entropy DP is:

p(zt = i|zt+1 = j) =
Φ(i, j)φ(xt+1, j)αt(i)

αt+1(j)
(93)

Ht+1(j) =

N∑
i=1

p(zt = i|zt+1 = j)[Ht(i)− log p(zt = i|zt+1 = j)] (94)

where Ht(i) is the intermediate conditional entropy end at state i step t. In our sampled DP, we first
call the sampled forward to estimate the alpha variables. Then we re-use the sampled indices for the
entropy DP graph, and the core recursion becomes:

p̂(zt = i|zt+1 = j) =
Φ(i, j)φ(xt+1, j)α̂t(i)

α̂t+1(j)
(95)

Ht+1(j) =

K2∑
δt=1

1

K2 · qt(δt)
p̂(zt = δt|zt+1 = j)[Ht(i)− log p̂(zt = δt|zt+1 = j)]

(96)

where qt is the proposal at step t. Note how we re-use the estimated alpha variables α̂ for our entropy
DP and correct the bias of each step.

D.3 EXTENSIONS TO GENERAL SUM-PRODUCT

This section discusses the extension of sampled DP to general graph structures and message-passing
algorithms, following the Bethe variational principle (Wainwright & Jordan, 2008). Recall the gen-
eral message-passing algorithm computes pseudo marginals by recursively updating the message at
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each edge:

Mts(xs)← κ
∑
x′t

{
φst(xs, x

′
t)φt(x

′
t)

∏
u∈N(t)/s

Mut(x
′
t)

}
(97)

where Mts(xs) denotes the message from node t to node s evaluated at Xs = xs, φst is the edge
potential, φt is the node potential, N(t)/s denotes the set of neighbor nodes of t except s, and κ the
normalization constant. At convergence, we have the pseudo marginals

µs(xs) = κφs(xs)
∏

t∈N(s)

M∗ts(xs) (98)

and the Bethe approximation of the log partition function is given by the evaluation of the Bethe
variational problem:

logZBethe = φᵀµ+
∑
s

Hs(µs)−
∑
s,t

Ist(µst) (99)

where H denotes marginal entropy and I denotes marginal mutual information.

We consider the application of randomization to the computation of pseudo marginals and the Bethe
log partition. Note that the Bethe approximation will be exact if the underlying graph is a tree. We
consider a local proposal q̃ combined with a global prior τ :

q(xs) =
1

2
(q̃(xs) + τ(xs)) (100)

where the prior τ depends on our knowledge of specific problem structures. As one can always
retreat to uniform proposals, we can explore more advanced choices. For q̃, one may consider: (a)
local normalization as (̃q)(xs) = φ(xs)/

∑
s φ(xs) and (b) pre-computed mean-field approxima-

tions from algorithms like SVI (Hoffman et al., 2013). For τ , one can further use a frequency-based
empirical prior estimated from the data. To determine which nodes to perform DP on, one may
consider the following principles:

• Special nodes of interest depending on their actual meaning. For example, one may be
interested in some xs = 0 (e.g., if a user is under a bank fraud threat).

• Nodes with large local weight φ(xs).
• Nodes with large global weight τ(xs).
• Loop elimination. If two nodes have similarly small local and global weight, we could

drop those which eliminate loops in the resulting graph. Also note that we would prefer
removing small-weighted nodes for loop elimination.

With the above principles, one may construct three subsets to perform the sum-product:

• Ω1 including nodes of special interest, where we perform exact computation.
• Ω2 from the top items of the proposal, where we also perform exact computation.
• Ω3 by sampling from the remaining items of the proposal (optionally with loop-reduction).

For this set of nodes, one needs to correct the estimation by dividing the proposal proba-
bilty: φ(xs)← φ(xs)/q(xs).

After these steps, we treat nodes in Ω1

⋃
Ω2

⋃
Ω3 as if they are a new model, then feed them to an

existing sum-product implementation.

E EXPERIMENT DETAILS

E.1 MODEL ARCHITECTURE DETAILS

For training LVMs, partition function estimation, and paraphrasing, we use the Huggingface check-
point of GPT2 model1 since these experimental variables are more about autoregressive language

1https://huggingface.co/transformers/model_doc/gpt2.html
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modeling and generation. For analyzing latent network topologies, we use Huggingface checkpoint
of BERT base model2 since it has been the main focus of most previous analytical work. The decoder
LSTM is a one-layer LSTM with hidden state size 762, the same as the size of the contextualized
embeddings. It shares the embeddings of the inferred states with the encoder, and uses its own
input word embeddings, whose size is also 762. This architecture suffices for training LVMs and
inferring latent networks. For paraphrase generation, we change the decoder to be conditional by:
(a) using the average word embeddings of content words of the input sentence as its initial hidden
state (rather than zero hidden states); (b) letting it attend to the embeddings of content words of the
input sentence, and copy from them. This effectively makes this decoder conditional on the BOW
of the content words of the input sentence. Then decoding a paraphrase becomes a neural version of
slot filling: a sequence of latent states by traversing the network becomes a template of the sentence
which we fill with words.

E.2 DATASET PREPROCESSING

For the MSCOCO dataset, we use the GPT2 tokenizer to process sentences. As the official website 3

does not release a test split (only a training and a development split), we use the official development
split as our test split, and re-split the official training split to be a new training and a development
split. For training LVMs, we only use 1/10 of the training set for quicker experiments (the full
dataset takes over more than 20 hours to converge). For paraphrasing, we use the full dataset.

For the 20News dataset, we use the data from the sklearn website4. We follow its official split and
process the sentences with the BERT tokenizer.

E.3 HYPERPARAMETERS AND TRAINING STRATEGIES

To get meaningful convergence of the latent space without posterior collapse, the following tech-
niques are important: (a). set β in the correct range. A large β force the posterior to collapse to
a uniform prior, while a small β encourages the posterior to collapse to a Dirac distribution. (b).
use word dropout in initial training epochs, otherwise the decoder may ignore the latent code. (c).
use potential normalization, otherwise the logsumexp function used in the forward algorithm may
saturate and only return the max of the input, this would consequently lead the posterior to collapse
to few “activated” states and other states will never be inferred.

We further note that a full DP based entropy calculation will cause memory overflow with automatic
differentiation. So we approximate it with local emission entropy, i.e., the sum of the entropy of
the normalized local emission factors. Compared with the full entropy, this approximation does not
directly influence the transition matrix, but encourages more activated states and mitigates the pos-
terior collapse problem. To get a full entropy regularization, one can further regularize the transition
matrix towards an all-one matrix, or extend our randomized DP to entropy computation. As the cur-
rent local entropy regularization is already effective for inducing a meaningful posterior, we leave
the full entropy computation to future work.

Our reported numbers are averaged over “good enough” runs. Specifically, for all hyperparameter
configurations, we first run three random seeds and get the mean and standard deviation of the
performance metrics. If the standard deviation is small enough, we report mean performance metrics
(NLL, PPL, and iBLEU) and the standard deviation. If the standard deviation is large, we run extra
five seeds. Then we drop runs with bad performance (usually 2-3), and compute the mean and
standard deviation of the performance metrics again. In total, we experiment more than 100 runs
over more than 7 hyperparameters: (a). learning rate 10−3, 10−4, 5 × 10−4; (b). optimizer: SGD,
Adam, AdamW; (c). dropout: 0.2, 0.3, 0.4; (d). β variable: 10−4, 5 × 10−4, 10−3, 10−2; (e).
Gumbel CRF v.s. Gumbel CRF straight-through (f). K1 v.s. K2; (g). word dropout schedule;
and their combinations. Note that different models may achieve best performance with different
hyperparameter combinations. We make sure that all models are searched over the same set of

2https://huggingface.co/transformers/model_doc/bert.html
3https://cocodataset.org/#home
4https://scikit-learn.org/stable/modules/generated/sklearn.datasets.

fetch_20newsgroups.html
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Table 3: Efficiency comparison with 100/ 500/ 2K states (Forward pass only).

#States 100 500 2000
Method Mem Time Mem Time Mem Time

FULL (Fu et al., 2020) 3.9G 0.24s 7.9G 1.07s - -
TOPK (Sun et al., 2019) 4.1G* 0.23s 4.1G 0.22s 5.2G 0.27s
RDP (ours) 4.1G* 0.24s 4.1G 0.22s 5.2G 0.27s

hyperparameter combinations, and report average performance metrics over multiple seeds of the
best hyperparameter configuration for each model.

E.4 TIME COMPLEXITY ANALYSIS

Table 3 shows the actual efficiency comparison of our method. Time is measured by seconds per
batch. For experiments with 500 and 2,000 states, we set K = 100. *When the number of states
is small, our method underperforms due to the overhead of constructing the proposal. However, its
advantage becomes clear as the number of states becomes large.

E.5 VISUALIZATION PROCEDURE

This section describes how we produce Fig. 3(B1-2) and Fig. 4(A1-4). We use the sklearn implemen-
tation 5 of tsne (Van der Maaten & Hinton, 2008). For Fig. 3(B1-2), the word embeddings are ob-
tained by sampling 8,000 contextualized embeddings from the full word occurrences in the 20News
training set. Then we put the sampled word embeddings and the 2,000 states into the tsne function.
The perplexity is set to be 30. An important operation we use, for better seperating the states from
each other, it to manually set the distances between states to be large, otherwise the states would be
concentrated in a sub-region, rather than spread over words. Fig. 4 is produced similarly, except we
do not use word embeddings as background, and change the perplexity to be 5. For Fig. 4(A3), we
connect the states if their transition potential is larger than a threshold. For Fig. 4(A4), we connect
the states if their bigram frequency is larger than a threshold. All our decisions of hyperparame-
ters are for the purpose of clear visualization which includes reducing overlapping, overcrowding,
and other issues. We further note that no single visualization method can reveal the full structure
of high-dimensional data, and any projection to 2-D plain inevitably induces information loss. We
leave the investigation of better visualization methods to future work.

E.6 STATE-WORD PAIR EXAMPLES

See Tables 8 and 9 for more sample.

E.7 STATE-STATE TRANSITION EXAMPLES

See Table 10 for transitions involving stopwords and Table 11 for transitions without stopwords.
Also note their differences as transitions involving stopwords are more about syntactic constructions
and transitions without stopwords are more about specific meaning.

E.8 STATE TRAVERSAL EXAMPLES

See Table 12 for more sample.
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Table 4: Randomized Forward v.s. TopK Forward. Comparison of MSE.

Method Dense Intermediate Long-tail

TOPK 20% MEM (Sun et al., 2019) 3.8749 1.0159 0.1629
TOPK 50% MEM (Sun et al., 2019) 0.99 0.2511 0.0315
RDP 1% MEM (ours) 0.1461 0.0669 0.0766
RDP 10% MEM (ours) 0.0672 0.0333 0.0552
RDP 20% MEM (ours) 0.0469 0.0200 0.0264
RDP 50% MEM (ours) 0.0078 0.0041 0.0046

Table 5: Randomized Forward, comparison of different proposal. Same base distribution as Figure 2,
all proposals use 10% memeory).

Method Dense Intermediate Long-tail

UNIFORM (baseline) 0.6558 11.0500 0.1600
LOCAL ONLY (ours) 2.908 9.1711 0.4817
GLOBAL ONLY (ours) 0.4531 0.0961 0.1003
LOCAL + GLOBAL (ours) 0.0284 0.0173 0.0222

F ADDITIONAL EXPERIMENT RESULTS

F.1 RDP V.S. TOPK MSE COMPARISON

Table 4 shows the mean square error (MSE) comparison between RDP and TopK on dense, inter-
mediate and long-tail distributions. Again, MSE for RDP is significantly smaller with less memory
consumption.

F.2 MSE COMPARISON OVER PROPOSALS

Table 5 shows the mean square error (MSE) comparison between different proposals. Our pro-
posed local and global proposal outperforms a baseline uniform proposal on all distributions (dense,
intermediate and long-tail).

F.3 CONTROLLING NUMBER OF STATES

Figure 5 shows state frequency with different N. The long-tail behavior becomes clearer only when
N is large enough (larger than 500 in our case).

F.4 CONTROLLING K1 V.S. K2 RATIO

Figure 6 show state frequency with different K1/K2 ratios at different N. We highlight that when
K2 = 0, a pure topK summation approach would lead to posterior collapse where there exist inactive
states that do not have any density. We also notice that an increasing K2 consistently increases the
frequency of tail states. This observation can be explained by the exploitation-exploration tradeoff,
where increasing K1 would encourage the exploitation of states already confident enough during
training (consequently leading to high-frequency head states after convergence) while increasing
K2 would encourage exploring states that are not confident enough during training, leading to a
larger tail frequency after convergence.

F.5 COMPARISON TO RANDOMLY INITIALIZED BERT

Figure 7 shows the comparison of reconstruction NLL (− log p(xt|zt, ·)) between a randomly ini-
tialized BERT and a pretrained BERT. States induced from pretrained BERT are more meaningful
than random, making it easier to reconstruct words based on their corresponding states.

5https://scikit-learn.org/stable/modules/generated/sklearn.manifold.
TSNE.html
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A. 50 States B. 500 States

C. 1000 States D. 10000 States

Figure 5: State frequency with different N (number of states). When N = 50, the long-tail behavior is not
visible. The long-tail behavior emerges only when N is large enough (larger than 500 in our case).

Table 6: Randomized Inside algorithm for Tree-structured Hypergraphs. Comparison of MSE.

Method Dense Intermediate Long-tail

TOPK INSIDE 20% MEM 36.1275 27.4351 21.7788
TOPK INSIDE 50% MEM 2.8422 2.4043 2.0479
RANDOMIZED INSIDE 1% MEM (ours) 26.3312 37.6698 48.8638
RANDOMIZED INSIDE 10% MEM (ours) 1.1937 1.5307 1.3843
RANDOMIZED INSIDE 20% MEM (ours) 0.4455 0.5449 0.5997

F.6 RANDOMIZED INSIDE ALGORITHM FOR TREE-STRUCTURED HYPERGRAPH

We simulate three unit cases of treecrfs (dense, intermediate and long-tail) by controlling the entropy.
We set the number of latent states to 2000. We use a uniform proposal for comparison, and set K1

(top K sum size) = K2 = 50. We use RDP with 20, 200, 400 states, which correspond to 1%,
10%, and 20% of the full number of states. We use topK summation as our baseline with 500 and
1000 states (25% and 50% of the full number of states). Figure 8 shows performance of RDP to tree
structured hypergraph. Our method still outperforms topK summation (grey lines) with less memory
(as our estimates are visually closer to the red line, i.e., the true partition). Table 6 shows the MSE
of our method compared to topK summation, and the results are consistent with Figure 8.

F.7 RANDOMIZED ENTROPY DP ALGORITHM

Figure 9 shows the application of RDP to entropy estimation of linear-chain CRFs. Our method
consistently outperforms topK summation (grey lines) with less memory (as our estimates are visu-
ally closer to the red line, i.e., the true partition). Table 7 shows the MSE of our method compared
to topK summation, and the results are consistent with Figure 9.
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A. N = 500, K1 = 100, K2 = 0 B. N = 500, K1 = 99, K2 = 1

C. N = 2000, K1 = 100, K2 = 0 D. N = 2000, K1 = 99, K2 = 1

E. N = 2000, K1 = 50, K2 = 50 F. N = 2000, K1 = 10, K2 = 90

Figure 6: State frequency by controlling K1 (sum size) and K2 (sample size). We highlight that when K2 = 0,
a pure topK summation approach would lead to posterior collapse where there exist inactive states that do not
have any density. We also notice that an increasing K2 consistently increases the frequency of tail states.

Table 7: Randomized entropy DP v.s. TopK entropy DP on linear-chain CRFs. Comparison of MSE.

Method Dense Intermediate Long-tail

ENTROPY TOPK 20% MEM 443.7 84.35 8.0115
ENTROPY TOPK 50% MEM 131.8 22.1 1.8162
ENTROPY RDP 1% MEM (ours) 5.9256 1.9895 0.6914
ENTROPY RDP 10% MEM (ours) 2.1168 1.2989 0.3167
ENTROPY RDP 20% MEM (ours) 1.3267 0.7305 0.2071
ENTROPY RDP 50% MEM (ours) 0.3017 0.1461 0.0631
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Figure 7: Comparison of reconstruction likelihood (log p(xt|zt, ·)) between a randomly initialized BERT and
a pretrained BERT. States induced from pretrained BERT are more meaningful than random, making it easier
to reconstruct the words based on their corresponding states.

A. Dense Tree Distribution B. Tree Distribution, Intermediate C. Long-tail Tree Distribution

Figure 8: Application of RDP to tree structured hypergraph. Our method consistently outperforms topK
summantion (grey lines) with less memory (as our estimates are visually closer to the red line, i.e., the true
partition).

A. Dense distribution, entropy = 34.66 B. Intermediate, entropy = 18.08 C. Long-tail distribution, entropy = 6.49

Figure 9: Application of RDP to entropy estimation of linear-chain CRFs. Our method consistently outper-
forms topK summantion (grey lines) with less memory (as our estimates are visually closer to the red line, i.e.,
the true entropy).
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State id Word - Occurrence

1724 ##s 5092 ; ##es 239 ; ##os 153 ; ##is 140 ; ##as 76 ; ##z 70 ; ##rs 54 ; ##gs 48 ; states 46 ; ##t 46 ; ##p
46 ; ##ps 43 ; ##ms 40 ; ##ns 35 ; ##e 34 ; ##r 31 ; ##i 29 ; ##ss 27

476 ##ed 609 ; ##d 437 ; ##ted 156 ; based 144 ; caused 95 ; ##ized 75 ; made 61 ; lost 61 ; built 60 ; ##able
58 ; supported 57 ; expressed 56 ; occupied 54 ; defined 54 ; created 54

254 david 521 ; john 404 ; mike 249 ; steve 245 ; dave 234 ; michael 223 ; robert 214 ; jim 204 ; mark 194 ;
bob 173 ; paul 143 ; james 142 ; bill 133 ; tom 127 ; andrew 122 ; peter 121

710 problem 599 ; killed 278 ; death 243 ; kill 235 ; problems 211 ; error 187 ; crime 181 ; murder 176 ; sin
175 ; genocide 172 ; evil 140 ; bad 129 ; hate 112 ; pain 110 ; massacre 97

1972 ##s 649 ; turks 222 ; armenians 206 ; jews 186 ; keys 171 ; muslims 151 ; arabs 123 ; ##ms 122 ;
christians 93 ; ##es 73 ; countries 71 ; villages 63 ; children 61 ; colors 61 ; guns 61

403 god 1917 ; ##a 751 ; world 730 ; ca 347 ; country 292 ; usa 289 ; ##o 284 ; group 280 ; ##u 277 ; uk
244 ; groups 133 ; ##ga 126 ; ##g 125 ; europe 124 ; heaven 120 ; hell 119

1494 problem 257 ; problems 87 ; agree 67 ; discussion 41 ; issue 39 ; argument 34 ; deal 34 ; issues 31 ;
disagree 20 ; conflict 16 ; arguments 16 ; case 15 ; relationship 14 ; agreement 14

1419 real 512 ; general 231 ; major 203 ; specific 157 ; main 156 ; actual 133 ; important 116 ; full 109 ; total
106 ; serious 99 ; absolute 88 ; basic 87 ; great 84 ; personal 83 ; true 76

305 ##s 1336 ; opinions 340 ; problems 154 ; rules 140 ; views 113 ; things 104 ; laws 99 ; events 97 ;
actions 94 ; issues 94 ; values 93 ; arguments 90 ; cases 82 ; rates 78 ; comments 78

555 subject 2349 ; key 596 ; name 551 ; number 472 ; address 300 ; size 242 ; numbers 167 ; value 149 ;
color 141 ; important 134 ; speed 122 ; names 110 ; level 106 ; count 84

1556 ##ing 1282 ; running 188 ; ##ting 149 ; ##ng 104 ; ##ling 92 ; processing 87 ; killing 83 ; ##ding 71 ;
calling 70 ; ##ring 69 ; getting 66 ; reading 61 ; ##izing 61 ; ##ping 60

472 re 3084 ; com 2685 ; e 1034 ; ##e 892 ; internet 271 ; ##o 185 ; ##te 140 ; de 117 ; ##re 101 ; ##com
98 ; ##ne 71 ; ##r 71 ; ##er 70 ; org 70 ; ##me 70 ; net 68 ; se 62

1488 human 344 ; turkish 255 ; political 246 ; moral 217 ; religious 186 ; legal 161 ; jewish 159 ; israeli 143
; sexual 128 ; social 121 ; physical 119 ; personal 114 ; civil 104 ; international 103

1410 simple 292 ; standard 213 ; normal 210 ; reasonable 208 ; fine 192 ; nice 191 ; interesting 138 ; good
128 ; correct 127 ; perfect 121 ; stupid 117 ; ##able 106 ; proper 105 ; true 91

243 ##ly 929 ; probably 311 ; clearly 254 ; completely 231 ; obviously 229 ; certainly 222 ; directly 186 ;
easily 179 ; apparently 176 ; generally 162 ; simply 154 ; necessarily 153 ; unfortunately 143

1418 never 919 ; little 48 ; cannot 46 ; none 37 ; nobody 35 ; ever 31 ; nothing 27 ; without 25 ; neither 19 ;
didn 14 ; ve 11 ; hardly 9 ; always 8 ; zero 8 ; m 7 ; non 6 ; doesn 6

1246 ##t 1242 ; ##p 853 ; net 568 ; phone 395 ; call 381 ; bit 348 ; ##net 323 ; ##l 225 ; bat 135 ; line 123 ;
##g 111 ; ##d 101 ; network 94 ; ##it 93 ; tel 87 ; telephone 83 ; ##m 79

935 long 682 ; hard 600 ; big 570 ; bad 518 ; good 483 ; great 404 ; fast 216 ; large 185 ; ##y 160 ; short
158 ; quick 154 ; little 150 ; strong 145 ; high 114 ; nice 113 ; hot 107

659 cs 474 ; jp 468 ; cc 315 ; ms 291 ; cd 217 ; cm 194 ; dc 181 ; ##eg 158 ; bt 142 ; ps 125 ; ds 123 ; mc
120 ; pc 110 ; nc 110 ; gt 107 ; gs 107 ; rs 103 ; ss 103 ; bc 83 ; cb 81

1214 space 182 ; nasa 170 ; orbit 169 ; motif 136 ; moon 103 ; planet 95 ; prism 94 ; lunar 92 ; venus 86 ;
saturn 85 ; spacecraft 85 ; earth 80 ; shuttle 76 ; satellite 73 ; mars 70

654 around 351 ; within 234 ; behind 137 ; across 102 ; regarding 81 ; among 73 ; throughout 70 ; beyond
57 ; near 53 ; along 53 ; inside 47 ; outside 44 ; past 40 ; concerning 38 ; following 37

127 ##er 473 ; everyone 390 ; ##r 319 ; user 270 ; anyone 259 ; host 180 ; friend 161 ; one 150 ; server 136
; everybody 109 ; fan 104 ; manager 103 ; nobody 101 ; player 93 ; guy 84

145 believe 798 ; hope 421 ; evidence 379 ; claim 308 ; test 219 ; assume 201 ; proof 148 ; argument 145 ;
prove 133 ; check 127 ; claims 106 ; suspect 104 ; doubt 95 ; guess 93 ; assuming 85

Table 8: More state-word examples
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State id Word - Occurrence

1572 president 378 ; clinton 293 ; ##resh 268 ; myers 165 ; attorney 84 ; general 79 ; morris 78 ; smith 76 ;
paul 75 ; bush 74 ; manager 64 ; hitler 56 ; ##ey 52 ; ##i 48 ; ##man 45

964 cut 132 ; plug 121 ; break 73 ; thread 73 ; cable 63 ; hole 59 ; holes 54 ; chip 49 ; fix 48 ; clutch 48 ;
stick 46 ; connector 42 ; blow 42 ; box 41 ; screw 40 ; pin 40 ; hit 40

1756 see 1721 ; look 858 ; seen 618 ; read 302 ; saw 274 ; display 205 ; image 199 ; looks 197 ; looking 196
; looked 188 ; screen 177 ; watch 161 ; view 153 ; monitor 149 ; images 132

585 day 779 ; sun 686 ; ##n 556 ; today 310 ; night 276 ; week 269 ; days 264 ; city 161 ; morning 145 ;
sunday 125 ; ##en 117 ; year 105 ; ##net 96 ; n 92 ; ##on 89 ; weeks 87 ; month 73

66 power 433 ; control 399 ; state 347 ; virginia 202 ; mode 182 ; process 162 ; effect 139 ; period 118 ;
action 117 ; authority 91 ; function 87 ; position 84 ; ##v 82 ; force 78

1240 first 1443 ; always 602 ; ever 559 ; never 361 ; ago 321 ; often 319 ; sometimes 284 ; usually 203 ; early
195 ; last 192 ; every 175 ; later 171 ; soon 155 ; recently 146 ; past 145

865 faith 383 ; religion 377 ; believe 211 ; atheist 205 ; ##ism 164 ; islam 159 ; ##sm 158 ; religious 145 ;
morality 137 ; belief 126 ; font 115 ; language 114 ; truth 92 ; logic 90

467 ##u 1203 ; point 784 ; happen 234 ; place 201 ; happened 183 ; colorado 141 ; happens 139 ; points
132 ; wait 126 ; ground 94 ; site 94 ; center 86 ; position 78 ; situation 78 ; 1993 76

203 ca 273 ; pub 177 ; ##u 143 ; dod 143 ; au 141 ; mit 138 ; ma 132 ; ##si 129 ; sera 121 ; des 113 ; fi 75 ;
isa 70 ; il 58 ; ny 58 ; po 56 ; la 53 ; tar 48 ; lee 47 ; ti 47

371 drug 212 ; drugs 177 ; food 145 ; health 130 ; medical 121 ; disease 117 ; diet 115 ; cancer 113 ; aids
98 ; homosexuality 96 ; sex 83 ; homosexual 82 ; medicine 82 ; hiv 78 ; treatment 77

1683 money 479 ; cost 307 ; pay 274 ; issue 212 ; problem 186 ; matter 175 ; worth 175 ; care 153 ; costs
146 ; tax 108 ; expensive 102 ; responsible 96 ; risk 96 ; spend 95 ; insurance 94

1856 whole 379 ; entire 196 ; full 58 ; every 49 ; everything 42 ; together 37 ; everyone 25 ; ##u 17 ; rest 14
; ##up 13 ; ##ed 13 ; away 10 ; always 10 ; top 10 ; open 10 ; ##s 9

1584 university 1064 ; government 886 ; law 769 ; science 482 ; ##u 412 ; research 312 ; history 290 ; laws
165 ; study 125 ; policy 105 ; court 103 ; scientific 98 ; physics 97 ; constitution 93

1514 life 663 ; live 363 ; security 192 ; exist 188 ; peace 180 ; dead 175 ; living 164 ; existence 157 ; body
157 ; lives 153 ; exists 137 ; privacy 128 ; death 126 ; die 121 ; safety 112

1208 atheist 165 ; font 144 ; bio 119 ; bb 111 ; homosexual 109 ; ##group 99 ; sy 94 ; mormon 75 ; fed 72 ;
manual 56 ; posting 52 ; spec 52 ; ##s 50 ; ##eri 49 ; auto 42 ; pointer 41 ; handgun 37

837 another 974 ; last 774 ; next 581 ; else 578 ; second 498 ; others 472 ; third 124 ; first 82 ; final 69 ;
later 60 ; rest 49 ; future 47 ; 2nd 44 ; latter 41 ; previous 40 ; elsewhere 33

1291 lines 1848 ; read 701 ; writes 502 ; line 376 ; book 319 ; books 244 ; write 203 ; written 177 ; text 171 ;
reading 157 ; wrote 144 ; article 107 ; quote 92 ; writing 86 ; paper 84

1656 agree 182 ; solution 165 ; advice 128 ; opinion 110 ; interface 104 ; response 88 ; suggestions 80 ;
recommend 75 ; alternative 75 ; discussion 71 ; offer 71 ; argument 70 ; application 69

1874 apple 405 ; chip 386 ; disk 373 ; fbi 289 ; encryption 197 ; ##eg 171 ; hardware 166 ; nsa 154 ; ram 154
; algorithm 134 ; tape 129 ; nasa 119 ; chips 111 ; ibm 100 ; floppy 98

1966 stanford 269 ; washington 177 ; russian 156 ; cleveland 141 ; berkeley 137 ; california 131 ; chicago
105 ; ##co 96 ; turkey 95 ; york 83 ; boston 74 ; bosnia 73 ; soviet 71 ; russia 71

603 file 682 ; list 526 ; article 501 ; card 424 ; bill 237 ; board 196 ; book 191 ; box 180 ; package 140 ;
page 139 ; directory 119 ; section 118 ; group 114 ; library 90 ; files 83

1401 done 644 ; didn 41 ; perform 35 ; performed 32 ; accomplish 25 ; accomplished 16 ; could 14 ; ##d 11
; conduct 10 ; happen 10 ; say 10 ; committed 9 ; finish 9 ; completed 9 ; conducted 8

460 clip 186 ; ##op 175 ; com 162 ; news 162 ; posts 109 ; works 106 ; micro 68 ; sim 66 ; share 66 ; ##yp
58 ; net 58 ; wire 54 ; ##os 48 ; power 43 ; es 40 ; flop 39 ; mac 39 ; tool 39

Table 9: More state-word examples, continued.
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Transition Bigram - Occurrence

1843-990 is-that 68 ; fact-that 51 ; so-that 50 ; think-that 46 ; note-that 41 ; say-that 39 ; sure-that 38 ; believe-that
35 ; out-that 33 ; know-that 32 ; seems-that 28 ; mean-that 26

1010-1016 instead-of 40 ; amount-of 33 ; lot-of 26 ; form-of 23 ; lack-of 19 ; institute-of 16 ; case-of 15 ; capable-of
14 ; amounts-of 13 ; out-of 12 ; years-of 12 ; department-of 11 ; terms-of 11

960-458 up-to 56 ; down-to 29 ; access-to 25 ; according-to 24 ; due-to 22 ; go-to 17 ; response-to 14 ; subject-to
13 ; related-to 13 ; reference-to 13 ; as-to 12 ; lead-to 12 ; reply-to 12

441-698 have-to 139 ; going-to 116 ; seem-to 114 ; seems-to 68 ; supposed-to 40 ; need-to 30 ; had-to 26 ;
used-to 22 ; want-to 20 ; seemed-to 15 ; tend-to 14 ; appears-to 13 ; likely-to 13 ; appear-to 12

1712-698 trying-to 67 ; try-to 46 ; able-to 43 ; like-to 41 ; hard-to 32 ; seem-to 22 ; seems-to 22 ; want-to 21 ;
tend-to 21 ; willing-to 18 ; tried-to 16 ; enough-to 14 ; attempt-to 13 ; continue-to 12

1814-1666 about-it 91 ; of-it 71 ; with-it 42 ; to-it 29 ; for-it 27 ; do-it 26 ; on-it 24 ; have-it 12 ; understand-it 11 ;
doing-it 9 ; know-it 9 ; see-it 8 ; call-it 8 ; believe-it 8 ; ##ing-it 7 ; fix-it 6

1295-523 problem-with 32 ; deal-with 32 ; do-with 28 ; up-with 16 ; problems-with 15 ; came-with 13 ; comes-
with 13 ; along-with 12 ; work-with 12 ; contact-with 11 ; wrong-with 10 ; agree-with 10 ; disagree-with
9

628-150 based-on 65 ; depending-on 23 ; is-on 13 ; ##s-on 11 ; down-on 9 ; effect-on 9 ; are-on 8 ; working-on
8 ; effects-on 7 ; activities-on 7 ; depend-on 7 ; be-on 6 ; run-on 6 ; depends-on 6

477-1414 have-to 117 ; going-to 45 ; is-to 37 ; had-to 32 ; decided-to 12 ; need-to 11 ; has-to 11 ; having-to 9 ;
required-to 9 ; willing-to 8 ; how-to 8 ; ,-to 7 ; reason-to 7 ; forced-to 7

477-1277 is-to 74 ; have-to 43 ; had-to 20 ; used-to 17 ; required-to 14 ; going-to 14 ; ,-to 13 ; need-to 13 ; as-to
12 ; order-to 11 ; needed-to 11 ; ##s-to 10 ; be-to 10 ; decided-to 10

145-461 believe-that 70 ; claim-that 24 ; evidence-that 18 ; assume-that 17 ; hope-that 15 ; belief-that 11 ;
sure-that 9 ; prove-that 9 ; assuming-that 8 ; argue-that 8 ; likely-that 7 ; claims-that 7

278-217 know-of 22 ; end-of 16 ; out-of 14 ; think-of 13 ; ##s-of 10 ; accuracy-of 8 ; top-of 7 ; friend-of 6 ;
copy-of 6 ; heard-of 6 ; one-of 4 ; middle-of 4 ; version-of 4 ; beginning-of 4 ; aware-of 4

1820-276 come-out 30 ; came-out 17 ; coming-out 14 ; put-out 12 ; get-out 11 ; find-out 10 ; check-out 9 ;
turns-out 7 ; found-out 7 ; turn-out 7 ; turned-out 7 ; comes-out 7 ; go-out 6 ; ##ed-out 6

1142-461 is-that 17 ; fact-that 15 ; understand-that 12 ; see-that 11 ; realize-that 11 ; noted-that 8 ; says-that 8 ;
note-that 7 ; read-that 7 ; forget-that 6 ; out-that 6 ; shows-that 6

1010-1998 lot-of 34 ; set-of 26 ; bunch-of 24 ; lots-of 22 ; series-of 13 ; number-of 10 ; thousands-of 10 ; hundreds-
of 10 ; plenty-of 10 ; full-of 7 ; pack-of 7 ; list-of 6 ; think-of 5

1125-843 of-a 124 ; is-a 86 ; for-a 84 ; to-a 50 ; s-a 16 ; be-a 14 ; ,-a 11 ; as-a 7 ; was-a 5 ; on-a 5 ; with-a 4 ; am-a
3 ; about-a 3 ; in-a 2 ; into-a 2 ; were-a 2 ; its-a 1 ; surrounding-a 1

476-1654 written-by 13 ; ##d-by 11 ; caused-by 8 ; ##ed-by 8 ; produced-by 6 ; followed-by 6 ; defined-by 4 ;
committed-by 4 ; hit-by 4 ; supported-by 4 ; led-by 4 ; explained-by 4 ; run-by 4

1812-837 the-other 86 ; the-next 77 ; the-last 62 ; the-second 48 ; the-first 14 ; the-latter 10 ; the-third 9 ; the-latest
7 ; the-rest 6 ; the-previous 6 ; the-final 5 ; the-fourth 3 ; the-nearest 3

1938-145 i-believe 128 ; i-hope 66 ; i-suspect 28 ; i-assume 24 ; i-doubt 18 ; i-suppose 11 ; i-guess 11 ; i-expect
8 ; i-think 7 ; i-imagine 6 ; i-feel 5 ; i-trust 4 ; i-gather 3 ; i-bet 2

1820-1856 pick-up 14 ; come-up 12 ; came-up 11 ; stand-up 11 ; set-up 11 ; bring-up 8 ; show-up 8 ; comes-up 7 ;
screwed-up 7 ; give-up 6 ; wake-up 6 ; speak-up 5 ; look-up 5 ; back-up 5

1417-979 more-than 163 ; better-than 33 ; less-than 13 ; faster-than 12 ; greater-than 11 ; longer-than 8 ; ##er-than
7 ; larger-than 6 ; worse-than 6 ; higher-than 6 ; slower-than 6 ; easier-than 4

111-111 of-the 75 ; to-the 34 ; for-the 23 ; on-the 14 ; with-the 12 ; about-the 7 ; part-of 7 ; in-the 5 ; into-the 5 ;
like-the 4 ; out-of 4 ; at-the 4 ; by-the 3 ; ’-s 3 ; as-the 2

1579-654 talking-about 45 ; talk-about 25 ; concerned-about 14 ; worried-about 9 ; know-about 8 ; stories-about
7 ; worry-about 7 ; talked-about 6 ; rumours-about 5 ; news-about 5 ; feel-about 5 ; care-about 4

Table 10: State transition examples, with stopwords
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Transition Bigram - Occurrence

371-371 health-care 14 ; side-effects 8 ; im-##mun 4 ; infectious-diseases 4 ; yeast-infections 4 ; ##thic-medicine
3 ; treat-cancer 3 ; health-insurance 3 ; barbecue-##d 3 ; hiv-infection 3 ; yeast-syndrome 3

1214-1214 orbit-##er 14 ; astro-##physics 7 ; lunar-orbit 7 ; space-shuttle 7 ; earth-orbit 5 ; pioneer-venus 5 ;
space-station 5 ; space-##lab 4 ; lunar-colony 4 ; orbit-around 3 ; space-tug 3 ; space-##flight 3

716-1556 mail-##ing 15 ; fra-##ering 12 ; ##mina-##tion 9 ; bash-##ing 7 ; ##dal-##izing 6 ; ##ras-##ing 5 ;
##band-##ing 4 ; ##ress-##ing 4 ; cab-##ling 4 ; adapt-##er 4 ; cluster-##ing 4 ; sha-##ding 4

931-931 gamma-ray 17 ; lead-acid 9 ; wild-corn 4 ; mile-long 3 ; smoke-##less 3 ; drip-##py 2 ; diamond-stealth
2 ; cold-fusion 2 ; 3d-wire 2 ; acid-batteries 2 ; schneider-stealth 2 ; quantum-black 2

1488-1488 law-enforcement 17 ; national-security 5 ; cold-blooded 4 ; health-care 4 ; human-rights 4 ; im-##moral
4 ; prophet-##ic 4 ; social-science 3 ; ethnic-##al 3 ; turkish-historical 3

1246-1246 bit-##net 35 ; tel-##net 12 ; use-##net 7 ; phone-number 7 ; dial-##og 6 ; ##p-site 5 ; phone-calls 5 ;
bit-block 5 ; net-##com 4 ; bat-##f 4 ; ##t-##net 4 ; phone-call 4 ; arc-##net 3

1556-1556 abu-##sing 5 ; ##dal-##izing 4 ; obey-##ing 4 ; robb-##ing 3 ; ##ov-##ing 3 ; dial-##ing 3 ; contend-
##ing 3 ; ##upt-##ing 3 ; rough-##ing 3 ; contact-##ing 3 ; bash-##ing 3 ; favor-##ing 2

202-202 western-reserve 21 ; case-western 20 ; ohio-state 19 ; united-states 10 ; penn-state 5 ; african-american
5 ; north-american 5 ; middle-eastern 5 ; polytechnic-state 4 ; north-carolina 4

1912-1912 world-series 9 ; home-plate 7 ; division-winner 4 ; runs-scored 4 ; batting-average 4 ; game-winner 3 ;
sports-##channel 3 ; plate-umpire 3 ; baseball-players 3 ; league-baseball 3

1461-1461 ##l-bus 5 ; bit-color 5 ; 3d-graphics 4 ; ##p-posting 3 ; computer-graphics 3 ; wire-##frame 3 ; bit-
graphics 2 ; ##eg-file 2 ; access-encryption 2 ; ##frame-graphics 2 ; file-format 2

123-123 health-care 10 ; high-school 6 ; es-##crow 6 ; key-es 5 ; high-power 4 ; local-bus 4 ; low-level 4 ;
high-speed 3 ; minor-league 2 ; health-service 2 ; regular-season 2 ; mother-##board 2

1702-1702 mile-##age 8 ; engine-compartment 5 ; semi-auto 5 ; manual-transmission 5 ; drive-power 4 ; door-car
3 ; passenger-cars 3 ; sports-car 3 ; shaft-drive 3 ; mini-##van 3 ; speed-manual 3

1874-1874 floppy-disk 11 ; jp-##eg 11 ; encryption-algorithm 8 ; ##per-chip 7 ; ##mb-ram 7 ; ##ga-card 6 ;
encryption-devices 5 ; silicon-graphics 4 ; disk-drive 4 ; floppy-drive 4

1208-1064 atheist-##s 43 ; homosexual-##s 12 ; fed-##s 9 ; libertarian-##s 8 ; ##eri-##s 7 ; ##tile-##s 7 ;
azerbaijani-##s 6 ; ##tar-##s 6 ; mormon-##s 5 ; sniper-##s 5 ; physicist-##s 4

1710-1710 power-supply 5 ; atomic-energy 4 ; water-ice 4 ; power-cord 4 ; ##com-telecom 3 ; light-pollution 3 ;
light-bulb 3 ; radio-station 3 ; radio-##us 3 ; air-conditioning 3 ; light-##wave 2

1080-1080 public-access 19 ; via-anonymous 5 ; private-sector 5 ; available-via 4 ; general-public 4 ; community-
outreach 4 ; public-domain 3 ; personal-freedom 3 ; private-property 3 ; private-activities 3

254-1572 jimmy-carter 9 ; george-bush 9 ; bill-clinton 8 ; bryan-murray 4 ; joe-carter 4 ; henry-spencer 4 ;
bill-james 4 ; janet-reno 4 ; craig-holland 4 ; clayton-cramer 4 ; ##zie-smith 4

1571-1571 ms-windows 24 ; windows-nt 12 ; ibm-pc 10 ; ms-##dos 7 ; unix-machine 6 ; microsoft-windows 5 ;
windows-applications 4 ; run-windows 3 ; apple-monitor 3 ; mac-##s 3 ; desktop-machine 3

66-66 ##ian-1919 3 ; energy-signature 2 ; charlotte-##sville 2 ; environment-variables 2 ; duty-cycle 2 ;
second-period 2 ; spin-state 2 ; power-consumption 2 ; inter-##mission 2 ; power-play 2

1683-1683 worth-##while 4 ; nominal-fee 4 ; get-paid 3 ; risk-factors 3 ; scholarship-fund 2 ; cost-$ 2 ; tax-dollars
2 ; beneficial-item 2 ; bank-account 2 ; take-responsibility 2

1579-1579 m-sorry 5 ; news-reports 4 ; heard-anything 4 ; ran-##ting 3 ; short-story 3 ; news-reporters 3 ; press-
conference 3 ; heard-something 3 ; tv-coverage 2 ; horror-stories 2 ; heard-horror 2

1656-1656 urbana-champaign 3 ; peace-talks 3 ; acceptable-solutions 2 ; marriage-partner 2 ; intercontinental-
meetings 2 ; interested-parties 2 ; conference-calls 2 ; handle-conference 2 ; cooperative-behaviour
2

Table 11: State transition examples, without stopwords
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State Sequences Sentence

1755 0 117 1755 1755 0 117 1138 1755 103 117
1138 1755 117

a white bathroom with a yellow toilet and a bath tub and
a sink

1755 0 117 1755 1755 959 117 117 1138 0 103
117

a white bathroom with a yellow toilet sink and painted
bath tub

1755 117 1755 1755 0 117 1138 0 117 1138 103
117

a bathroom with a yellow toilet and white sink and bath
tub

1755 117 0 1755 117 441 959 0 1061 1755 117 a man reading a newspaper on the side of a road
1755 117 0 1755 1755 441 959 117 1061 1755
117

a man reading a newspaper on the side of a road

1755 117 441 959 117 1061 1755 117 0 959 103
959
a man on the side of a road reading the newspaper

1755 117 0 1061 1755 117 1138 0 0 117 a man posing for a camera while holding filthy bananas
1755 117 0 1061 959 103 0 117 a man posing for the camera holding bananas
1755 117 0 0 1755 117 1138 0 959 103 103 959 a man posing for a camera while holding his filthy ba-

nanas

1755 0 103 117 1061 1755 0 117 1061 1755 103 a silver clock tower under a black intersection near a
tree

1755 0 103 117 441 1755 0 117 1061 1755 103 a silver clock tower on a black intersection near a tree
103 117 1755 959 103 1061 0 103 103 103 clock tower in the intersection of black near silver tree

1755 103 103 117 1755 1755 117 1755 1755 0
117 1061 1755 117

a motor cycl ist in a photograph with a blur motion of a
freeway

1755 117 1061 1755 0 103 103 117 959 1755 1755
1755 1755 1061 117 117

a photograph of a motor cycl ist motion , with a blur in
the freeway

103 103 103 1755 0 0 959 117 1061 103 103 117 motor cycl ist in motion blur the freeway at motor cycl
ist

1755 117 1061 103 103 103 1755 117 0 1061 1755
117 1755 0 117

a piece of chocolate bread on a cart spread to a plate
with dark bananas

1755 117 1061 0 103 103 1755 117 1138 1017
103 103 0 527 1755 1755 117

a piece of dark chocolate bread with bananas and a on
cart spread in a plate

103 103 1755 117 117 441 0 117 441 117 chocolate cart with bananas spread on dark cart on plate

1755 117 0 1755 117 1061 117 1755 1755 0 117 a lot filled with lots of flowers in a v ases
1755 117 0 1755 117 1061 117 959 1138 903 117
1061 1687

a lot filled with lots of flowers , and v ases of it

1755 117 1061 1082 117 0 1755 1138 1061 1595
959

a lot of v ases filled with lots of flowers

0 117 0 1755 117 1755 959 103 441 1755 103
1755 117 1755 959 117

two people walking with dogs in the ocean on a beach
with people in the background

0 117 441 103 1755 117 1755 117 959 two people on beach with dogs in background
0 117 117 1755 117 441 959 1755 1755 959 117 two people walking with dogs on the beach in the back-

ground

1755 117 1061 117 0 1952 0 1061 1755 0 103 a couple of women kneeling down next to a blow cat
1755 103 0 1952 1061 1061 1755 0 0 117 1755
1755 0 103

a cat kneeling down next to a couple blow women in a
dry er

1755 117 1061 117 0 1952 0 1061 1755 103 0 103 a couple of women kneeling down next to a blow dry er

1755 117 0 1755 0 103 441 1755 117 a hand holds a hot dog on a table
1755 117 117 1755 0 103 103 959 103 a hand holds a hot dog in the table
1755 117 0 1755 0 103 1061 1755 117 959 a hand holds a hot dog at a table

1755 117 0 1755 103 1755 1755 117 1061 117
117

a woman eating a pastry in a piece of market area

1755 117 1017 150 1113 0 1061 103 1061 1755
117 117

a woman is eating a piece of pastry at a market area

117 0 1755 103 1061 1755 0 1061 117 117 woman eating a pastry at a piece of market area

Table 12: Paraphrase Examples.
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