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ABSTRACT

The average reward criterion is relatively less explored as most existing works in
the Reinforcement Learning literature consider the discounted reward criterion.
There are few recent works that present on-policy average reward actor-critic
algorithms, but average reward off-policy actor-critic is relatively less explored. In
this paper, we present both on-policy and off-policy deterministic policy gradient
theorems for the average reward performance criterion. Using these theorems, we
also present an Average Reward Off-Policy Deep Deterministic Policy Gradient
(ARO-DDPG) Algorithm. We show a finite time analysis of the resulting three-
timescale stochastic approximation scheme with linear function approximator and
obtain an ϵ-optimal stationary policy with a sample complexity of Ω(ϵ−2.5). We
compare the average reward performance of our proposed algorithm and observe
better empirical performance compared to state-of-the-art on-policy average reward
actor-critic algorithms over MuJoCo based environments.

1 INTRODUCTION

The reinforcement learning (RL) paradigm has shown significant promise for finding solutions to
decision making problems that rely on a reward-based feedback from the environment. Here one
is mostly concerned with the long-term reward acquired by the algorithm. In the case of infinite
horizon problems, the discounted reward criterion has largely been studied because of its simplicity.
Major recent development in the context of RL in continuous state-action spaces has considered the
discounted reward criterion (Schulman et al., 2015; 2017; Lillicrap et al., 2016; Haarnoja et al., 2018).
However, there are very few works which focus on the average reward performance criterion in the
continuous state-action setting (Zhang & Ross, 2021; Ma et al., 2021).

The average reward criterion has started receiving attention in recent times and there are papers that
discuss the benefits of using this criterion over the discounted reward (Dewanto & Gallagher, 2021;
Naik et al., 2019). One of the reasons being, average reward criteria only considers recurrent states
and it happens to be the most selective optimization criterion in recurrent Markov Decision Processes
(MDPs) according to n-discount optimality criterion. Please refer Mahadevan (1996) for more details
on n-discount optimality criterion. Further, optimization in average reward setting is not dependent
on the initial state distribution. Moreover, the discrepancy between the objective function and the
evaluation metric, that exists for discounted reward setting, is resolved by opting for the average
reward criterion. We encourage the readers to go through Dewanto & Gallagher (2021); Naik et al.
(2019) for better understanding of the benefits mentioned.

There are very few algorithms in literature that optimize the average reward and all of them happen
to be on-policy algorithms (Zhang & Ross, 2021; Ma et al., 2021). It has been demonstrated several
times that on-policy algorithms are less sample efficient than off-policy algorithms Lillicrap et al.
(2016); Haarnoja et al. (2018); Fujimoto et al. (2018) for the discounted reward criterion. In this
paper we try to find whether the same is true for the average reward criterion. We try to overcome
the research gap in development of off-policy average reward algorithms for continuous state and
action spaces by proposing an Average Reward Off-Policy Deep Deterministic Policy Gradient
(ARO-DDPG) Algorithm.

The policy evaluation step in the case of the average reward algorithm is equivalent to finding the
solution to the Poisson equation (i.e., the Bellman equation for a given policy). Poisson equation,
because of its form, does not admit a unique solution but only solutions that are unique up to a constant
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term. Further, the policy evaluation step in this case consists of finding not just the Differential
Q-value function but also the average reward. Thus, because of the required estimation of two
quantities instead of one, the role of the optimization algorithm and the target network increases
here. Therefore we implement the proposed ARO-DDPG algorithm by using target network and by
carefully selecting the optimization algorithm.

The following are the broad contributions of our paper:

• We provide both on-policy and off-policy deterministic policy gradient theorems for the
average reward performance metric.

• We present our Average Reward Off-Policy Deep Deterministic Policy Gradient (ARO-
DDPG) algorithm.

• We perform non-asymptotic convergence analysis and provide a finite time analysis of our
three timescale stochastic approximation based actor-critic algorithm using a linear function
approximator.

• We show the results of implementations using our algorithm with other state-of-the-art
algorithms in the literature.

The rest of the paper is structured as follows: In Section 2, we present the preliminaries on the
MDP framework, the basic setting as well as the policy gradient algorithm. Section 3 presents the
deterministic policy gradient theorem and our algorithm. Section 4 then presents the main theoretical
results related to the finite time analysis. Section 5 presents the experimental results. In Section 6, we
discuss other related work and Section 7 presents the conclusions. The detailed proofs for the finite
time analysis are available in the Appendix.

2 PRELIMINARIES

Consider a Markov Decision Process (MDP) M = {S,A,R, P, π} where S ⊂ Rn is the (continuous)
state space, A ⊂ Rm is the (continuous) action space, R : S ×A 7→ R denotes the reward function
with R(s, a) being the reward obtained under state s and action a. Further, P (·|s, a) denotes the
state transition function defined as P : S × A 7→ µ(·), where µ : B(S) 7→ [0, 1] is a probability
measure. Deterministic policy π is defined as π : S 7→ A.In the above, B(S) represents the Borel
sigma algebra on S. Stochastic policy πr is defined as πr : S 7→ µ′(·), where µ′ : B(A) 7→ [0, 1] and
B(A) is the Borel sigma algebra on A.
Assumption 1. The Markov process obtained under any policy π is ergodic.

Assumption 1 is necessary to ensure existence of steady state distribution of Markov process.

2.1 DISCOUNTED REWARD MDPS

In discounted reward MDPs, discounting is controlled by γ ∈ (0, 1). The following performance
metric is optimized with respect to the policy:

η(π) = Eπ[

∞∑
t=0

γtR(st, at)] =

∫
S

ρ0(s)V
π(s) ds. (1)

Here, ρ0 is the initial state distribution and V π is the value function. Vπ(s) denotes the long term
reward acquired when starting in the state s.

V π(st) = Eπ[R(st, at) + γV π(st+1)|st]. (2)

2.2 AVERAGE REWARD MDPS

The performance metric in the case of average reward MDPs is the long-run average reward ρ(π)
defined as follows:

ρ(π) = lim
N→∞

1

N
Eπ[

N−1∑
t=0

R(st, at)] =

∫
S

dπ(s)Rπ(s) ds, (3)
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where Rπ(s)
△
= R(s, π(s)). The limit in the first equality in equation 3 exists because of Assumption

1. The quantity dπ(s) in the second equality in equation 3 corresponds to the steady state probability
of the Markov process being in state s ∈ S and it exists and is unique given π from Assumption 1 as
well.

V π
diff is the differential value function corresponding to the policy π and is defined in (4). Further,

the differential Q-value or action-value function Qπ
diff is defined in (5).

V π
diff (st) = Eπ[

∞∑
k=t

R(sk, ak)− ρ(π)|st]. (4)

Qπ
diff (st, at) = Eπ[

∞∑
k=t

R(sk, ak)− ρ(π)|st, at]. (5)

Lemma 1. There exists a unique constant k(= ρ(π)) which satisfies the following equation for
differential value function Vdiff :

V π
diff (st) = Eπ[R(st, at)− k + V π

diff (st+1)|st] (6)

Proof. See appendix for the proof.

2.3 POLICY GRADIENT THEOREM

Unlike in Q-learning where we try to find the optimal Q-value function and then infer the policy from
it, the policy gradient theorem (Sutton et al., 1999; Silver et al., 2014; Degris et al., 2012) allows us
to directly optimize the performance metric via its gradient with respect to the policy parameters.
Q-learning can be visualized to be a value iteration scheme while an algorithm based on the policy
gradient theorem can be seen as mimicking policy iteration. Sutton et al. (1999) provided the policy
gradient theorem for on-policy optimization of both the discounted reward and the average reward
algorithms, see (7)-(8), respectively.

∇θη(π) =

∫
S

ωπ(s)

∫
A

∇θπr(a|s, θ)Qπ(s, a) da ds. (7)

∇θρ(π) =

∫
S

dπ(s)

∫
A

∇θπr(a|s, θ)Qπ
diff (s, a) da ds. (8)

In (7) ωπ denotes the long term discounted state visitation probability density which is defined
in equation 9 while dπ(s) = limt→∞ Pπ

t (s) is the steady state probability density on states. Pπ

denotes the transition probability kernel for the Markov chain induced by policy π and Pπ
t is the state

distribution at instant t given by (10).

ωπ(s) = (1− γ)

∞∑
t=0

γtPπ
t (s). (9)

Pπ
t (s) =

∫
S×S...

ρ0(s0)

t−1∏
k=0

Pπ(sk+1|sk) ds0 . . . dst−1. (10)

The policy gradient theorem in Sutton et al. (1999) is only valid for on-policy algorithms. Degris
et al. (2012) proposed an approximate off-policy policy gradient theorem for stochastic policies, see
(11), where dµ stands for the steady state density function corresponding to the policy µ.

∇θη(π) ≈
∫
S

dµ(s)

∫
A

∇θπr(a|s, θ)Qπ(s, a) da ds. (11)

Silver et al. (2014) came up with the deterministic policy gradient theorem, see (12), which eventually
led to the development of very successful Deep Deterministic Policy Gradient (DDPG) (Lillicrap
et al., 2016) algorithm and Twin Delayed DDPG (TD3) algorithm (Fujimoto et al., 2018).

∇θη(π) =

∫
S

ωπ(s)∇aQ
π(s, a)|a=π(s)∇θπ(s, θ) ds. (12)
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3 PROPOSED AVERAGE REWARD ALGORITHM

We now propose the deterministic policy gradient theorem for the average reward criterion. The
policy gradient estimator has to be derived separately for both the on-policy and off-policy settings.
Obtaining the on-policy deterministic policy gradient estimator is straight forward but dealing with
the off-policy gradient estimates involves an approximate gradient (Degris et al., 2012).

3.1 ON-POLICY POLICY GRADIENT THEOREM

We cannot directly use the second equality of (3) to derive the policy gradient theorem because of
the inability to take the derivative of steady state density function. Therefore one needs to use (6) to
obtain the average reward deterministic policy gradient theorem.

Theorem 1. The gradient of ρ(π) with respect to policy parameter θ is given as follows:

∇θρ(π) =

∫
S

dπ(s)∇aQ
π
diff (s, a)|a=π(s)∇θπ(s, θ) ds. (13)

Proof. See appendix for the proof.

3.2 COMPATIBLE FUNCTION APPROXIMATION

The result in this section is mostly inspired from Silver et al. (2014). Recall that Qπ
diff (s, a) is

the ‘true’ differential Q-value of the state-action tuple (s, a) under the parameterized policy π.
Now let Qw

diff (s, a) denote the approximate differential Q-value of the (s, a)-tuple when function
approximation with parameter w is used. Lemma 2 says that when the function approximator satisfies
a compatibility condition (cf. (14,15)), then the gradient expression in (13,) is also satisfied by Qw

diff

in place of Qπ
diff .

Lemma 2. Assume that the differential Q-value function (5) satisfies the following:

1.∇w∇aQ
w
diff (s, a) = ∇θπ(s, θ). (14)

2. Differential Q-value function parameter w = w∗
ϵ optimizes the following error function:

ζ(θ, w) =
1

2

∫
S

dπ(s)∥∇aQ
π
diff (s, a)|a=π(s) −∇aQ

w
diff (s, a)|a=π(s)∥2 ds. (15)

Then,∫
S

dπ(s)∇aQ
π
diff (s, a)|a=π(s)∇θπ(s, θ) ds =

∫
S

dπ(s)∇aQ
w
diff (s, a)|a=π(s)∇θπ(s, θ) ds. (16)

Further, in the case when a linear function approximator is used, we obtain

∇aQ
w
diff (s, a) = ∇θπ(s, θ)

⊺w. (17)

Proof. See the appendix for a proof.

An important implication of lemma 2 also is that the dimension of the matrix on the left hand side
and the right hand side of (14) should be the same. Hence the dimensions of the parameters θ (used
in the parameterized policy) and w (used to approximate the differential Q-value function) are the
same. Lemma 2 shows that the compatible function approximation theorem has the same form in the
average reward setting as the discounted reward setting.

3.3 OFF-POLICY POLICY GRADIENT THEOREM

In order to derive off-policy policy gradient theorem it is not possible to use the direction adopted
by Degris et al. (2012) for off-policy stochastic policy gradient theorem for the discounted reward
setting. We first mention our proposed approximate off-policy deterministic policy gradient theorem
and then explain why some alternatives would not have worked.
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Assumption 2. For the Markov chain obtained from the policy π, let K(·|·) be the transition kernel
and Sπ the steady state measure. Then there exists a > 0 and κ ∈ (0, 1) such that

DTV (K
t(·|s), Sπ(·)) ≤ aκt,∀t,∀s ∈ S.

Assumption 2 states that Markov chain generated by a policy π follows uniform ergodicity property.
This assumption is necessary to get an upper bound on the total variation norm of steady state
probability distribution of two policies. This assumption is used in Lemma 12, which in turn is used
for Theorem 2.

Theorem 2. The approximate gradient of the average reward ρ(π) with respect to the policy
parameter θ is given by the following expression:

∇̂θρ(π) =

∫
S

dµ(s)∇aQ
π
diff (s, a)|a=π(s)∇θπ(s, θ) ds. (18)

Further, the approximation error is E(π, µ) = ∥∇θρ(π)−∇̂θρ(π)∥, where µ represents the behaviour
policy. E satisfies

E(π, µ) ≤ Z∥θπ − θµ∥. (19)

Here, Z = 2m+1C(⌈logκ a−1⌉ + 1/κ)Lt with Lt being the Lipchitz constant for the transition
probability density function (Assumption 9). Constants a and κ are from Assumption 2, m is the
dimension of action space, and C = maxs ∥∇aQ

π
diff (s, a)|a=π(s)∇θπ(s, θ)∥.

Proof. See the appendix for a proof.

Theorem 2 suggests that the approximation error in the gradient increases as the difference between
the target policy π and the behaviour policy µ increases.

3.4 OFF-POLICY ALTERNATIVES

In this section we will talk about what alternatives could be thought of in place of what is suggested
in section 3.3 and why those alternatives would not work.

1. One can possibly take inspiration from Degris et al. (2012) and define an objective function,
ρ̄(π), as in (20), which is a naive off-policy version of (3).

ρnew(π) =

∫
S

dµ(s)Rπ(s) ds. (20)

If, however, we take the derivative of ρnew(π) defined above, we get the policy update rule
as in (21).

∇θρnew(π) =

∫
S

dµ(s)∇aR(s, a)|a=π(s)∇θπ(s, θ) ds. (21)

The update rule (21) only considers the reward function and not the transition dynamics of
the MDP. In (18), the derivative of the objective function includes the differential Q-value
function which encapsulates both the information of the reward function and the transition
dynamics of the MDP and hence is valid derivative.

2. A lot of work in the off-policy setting relies on importance sampling ratios. Recently a few
works devised a method to estimate the steady state probability density ratio of the target
and behavior policies (Zhang et al., 2020a;b; Liu et al., 2018; Nachum et al., 2019). The
ratio of steady state densities could be used for deterministic policy optimization but there
are certain issues which prohibit its usage, see (22).

∇θρ(π) =

∫
S

dµ(s)τ(s)∇aQ
π
diff (s, a)|a=π(s)∇θπ(s, θ) ds. (22)

Here, τ(s) is the steady state probability density ratio defined as dπ(s)/dµ(s). In order to
calculate τ(s) we need information about (π(a|s), µ(a|s) and P (s′|s, a)). We need the ratio
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π(a|s)/µ(a|s) and for deterministic policies the ratio would be δ(a − π(s)/δ(a − µ(s)),
where δ(·) is the Dirac-Delta function:

δ(a− π(s))

δ(a− µ(s))
=


0 if a = µ(s)

∞ if a = π(s)
0
0 otherwise.

(23)

From (23), it is clear that the ratio δ(a− π(s)/δ(a− µ(s)) will be undefined for almost all
actions a ∈ A. Thus, we cannot use this ratio for deterministic policies. Otherwise, we need
P (s′|s, π(a)) and P (s′|s, µ(a)). It is possible to get the information about P (s′|s, µ(a)) by
sampling from the Markov process generated by the policy µ but obtaining this information
about P (s′|s, π(a)) is impossible as in the off-policy setting data from π is assumed to be
simply unavailable.

3.5 ACTOR-CRITIC UPDATE RULE

Assumption 3. αt, βt, and γt are the step sizes for critic, target estimator, and actor parameter
updates respectively.

αt =
Cα

(1 + t)σ
βt =

Cβ

(1 + t)u
γt =

Cγ

(1 + t)v

Here, Cα, Cβ , Cγ > 0 and 0 < σ < u < v < 1. αt is at the fastest timescale, βt is at slower
timescale and γt is at the slowest timescale.

The critic and average reward parameters are estimated using the TD(0) update rule but use target
estimators. We are using target estimators to ensure stability of the iterates of the algorithm. Let
{si, ai, s′i}

n−1
i=0 denote the batch of sampled data from the replay buffer.

ξjt =
1

2

n−1∑
i=0

(
R(si, ai)− ρt −Qwi

diff (si, ai) + min(Qw1

diff , Q
w2

diff )(s
′
i, π(s

′
i, θt))

)2

j ∈ {1, 2}

(24)

ξ3t =
1

2

n−1∑
i=0

(
R(si, ai)− ρt −min(Qw1

diff , Q
w2

diff )(si, ai)
)
+min(Qw1

diff , Q
w2

diff )(s
′
i, π(s

′
i, θt))

)2

(25)
Equation 24 and 25 are the bellman error for differential Q-value function approximator and average
reward estimator respectively. Note here we are using double Q-value function approximator.

wi
t+1 = wi

t − αt∇wiξ
i
t i ∈ {1, 2} (26)

ρt+1 = ρt − αt∇pξ
3
t (27)

The bellman errors 24 is used to update Q-value function approximator parameters wi
t using 26 and

the bellman average in 25 is used to update average reward estimator ρt using 27.

νi = ∇amin(Qw1

diff , Q
w2

diff )(si, a)|a=π(si)∇θπ(si, θt) (28)

θt+1 = θt + γt

(n−1∑
i=0

νi

)
(29)

Actor update is performed using theorem 2. Actor parameter, θt, is updated using empirical estimate
(28) of the gradient in 18.

wi
t+1 = wi

t + βt(w
i
t+1 − wi

t) i ∈ {1, 2} (30)

ρt+1 = ρt + βt(ρt+1 − ρt) (31)

θt+1 = θt + βt(θt+1 − θt) (32)

Equation 30-32 are used to update the target Q-value function approximator wi
t, target average reward

estimator ρt and target actor parameter θt.
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4 FINITE TIME ANALYSIS

In this section we present the finite time analysis of the on-policy and off-policy average reward
actor critic algorithm with linear function approximators. First we mention the assumptions taken to
perform the finite time analysis followed by the main results.
Assumption 4. ϕπ(s)

(
= ϕ(s, π(s)

)
denotes the feature vector of state s and satisfies ∥ϕπ(s)∥ ≤ 1.

The assumption above is just taken for the sake of convenience.
Assumption 5. The reward function is uniformly bounded, viz., |Rπ(s)| ≤ Cr < ∞.

Assumption 5 is required to make sure that the average reward objective function is bounded from
above.
Assumption 6. Qw

diff (s, a) is Lipchitz continuous w.r.t to a. Thus, ∀w ∥Qw
diff (s, a1) −

Qw
diff (s, a2)∥ ≤ La∥a1 − a2∥.

Continuity of approximate Q-value function w.r.t action is enforced using Assumption 6. Without the
continuity property approximate differential Q-values will not generalize for unseen action values.
Assumption 7. Parameterised policy π(s, θ) is Lipchitz continuous w.r.t θ. Thus, ∥π(s, θ1) −
π(s, θ2)∥ ≤ Lπ∥θ1 − θ2∥.

Assumption 7 is a common regularity assumption for convergence of actor. It can be found in Wu
et al. (2020), Xiong et al. (2022) and Zou et al. (2019).
Assumption 8. The state feature mapping (ϕπ(s) = ϕ(s, π(s)) defined for a policy π with parameter
θ is Lipschitz continuous w.r.t θ. Thus, maxs ∥ϕπ1(s)− ϕπ2(s)∥ ≤ Lϕ∥θ1 − θ2∥.

Continuity of state action feature w.r.t action is required to ensure generalisation of Q-values to
unseen action values. Using this continuity of state action feature with Assumption 7 we can satisfy
Assumption 8.

4.1 ON-POLICY ANALYSIS

In this section we present the theorem for finite time analysis of the on-policy version of the algorithm
with linear function approximator and target estimator for the critic and average reward.
Theorem 3. The on-policy average reward actor critic algorithm (Algorithm 2) obtains an ϵ-accurate
optimal point with sample complexity of Ω(ϵ−2.5). We obtain

min
0≤t≤T−1

E||∇θρ(θt)||2 = O
(

1

T 0.4

)
+O(1),

≤ ϵ+O(1).

Proof. See the appendix for a proof.

We want to reach as close as possible to a value of θ such that ∥∇θρ(θ)∥ = 0, which indicates we
have found a local maxima. O(1) term is present in the bound because of using linear function
approximation and will not reduce as time increases. However, if the O(1) term is small enough, the
bound in Theorem 3 shows that as T is increases, the algorithm will get close to the local maxima of
the objective function(3). A similar O(1) term is present in (Xiong et al., 2022). Xiong et al. claims
the term will be small upon using neural network for critic.

4.2 OFF-POLICY ANALYSIS

In this section we present the theorem for finite time analysis of off-policy version of the algorithm
with linear function approximator and target estimator for the critic and average reward.
Theorem 4. The off-policy average reward actor critic algorithm (Algorithm 3) with behavior policy
µ obtains an ϵ-accurate optimal point with sample complexity of Ω(ϵ−2.5). Here θµ refers to the
behavior policy parameter and θt refers to the target or current policy parameter. We obtain
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min
0≤t≤T−1

E∥∇̂θρ(θt)∥2 = O
(

1

T 0.4

)
+O(1) +O(W 2

θ )

≤ ϵ+O(1) +O(W 2
θ )

where Wθ := max
t

∥θµ − θt∥.

Proof. See the appendix for a proof.

The significance of finding a bound on ∥∇̂θρ(θt)∥ is same as explained above for Theorem 3. The
error bound in the off-policy algorithm has an extra term O(W 2

θ ). The extra term denotes the error
induced because of not using the samples from the current policy for performing updates. W 2

θ will
be small when replay buffer is used because replay buffer contains data from policies similar to the
current policy. This explains why Theorem 2 can be used with replay buffer.

5 EXPERIMENTAL RESULTS

We conducted experiments on six different environments using the DeepMind control suite (Tassa
et al., 2018) and found the performance of ARO-DDPG to be superior than the other algorithms. All
the environments selected are infinite horizon tasks. Maximum reward per time step is 1.None of
the tasks have a goal reaching nature. We performed all the experiments using 10 different seeds.
We show here performance comparisons with two state-of-the-art algorithms: the Average Reward
TRPO (ATRPO) (Zhang & Ross, 2021) and the Average Policy Optimization (APO) (Ma et al., 2021)
respectively. In general for the average reward performance, not many algorithms are available in
the literature. We implemented the ATRPO algorithm using the instructions available in the original
paper. We used the original hyper-parameters suggested by the author for ATRPO.

Figure 1: Comparison of performance of different average reward algorithms

For our proposed algorithm we trained the agent for 1 million time steps and evaluated the agent after
every 5,000 time steps in the concerned environment. The length of each episode for the training
phase was taken to be 1,000 and for the evaluation phase it was taken to be 10,000. The reason
for taking longer episode length for evaluation phase was to compare the long term average reward
performance of the algorithms. We also tried using episode length of 10,000 for training phase and
found that to be giving poor average reward performance. We do not reset the agent if it lands in a
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state before completing 10,000 steps from where it is unable to escape of its own, while continuing
to give a penalty for the remaining length of the episode. That way the cost of failure is very high.
While training we updated the actor after performing a fixed number of environment steps. We
updated the critic neural network with more frequency as compared to the actor neural network. We
used target actor and critic networks along with target estimator of the average reward parameter for
stability while using bootstrapping updates. We updated the target network using polyak averaging.
We tried to enforce multiple timescales in our algorithm by using different update frequency for actor,
critic and polyak averaging for target networks. We also borrowed the double Q-network trick from
Fujimoto et al. (2018). Complete information regarding the set of hyper-parameters used is provided
in the appendix.

6 RELATED WORK

Actor-Critic algorithms for average reward performance criterion is much less studied compared to
discounted reward performance criterion. One of the earliest works on the average reward criterion is
Mahadevan (1996). In this paper, Mahadevan compares the performance of R-learning with that of
Q-learning and concludes that fine tuning is required to get better results from R-learning. R-learning
is the average reward version of Q-learning. Later in 1999, Sutton et al. derived the policy gradient
theorem for both discounted and average reward criteria (Sutton et al., 1999), which formed the
bedrock for development of the average reward actor-critic algorithms. The first proof of asymptotic
convergence of average reward actor-critic algorithms with function approximation appeared in
Konda & Tsitsiklis (2003). In 2007, Bhatnagar et al. proposed incremental natural policy gradient
algorithms for the average reward setting and provided the asymptotic convergence proof of these.

Recently, Wan et al. presented a Differential Q-learning algorithm and claimed that their algorithm is
able to find the exact differential value function without an offset. Further, Wan et al. provided an
extension of the options framework from the discounted setting to the average reward setting and
demonstrated the performance of the algorithm in the Four-Room domain task. One of the major
contributions in off-policy policy evaluation is made by Zhang et al. (2021a). Here Zhang et al. gave
a convergent off-policy evaluation scheme inspired from the gradient temporal difference learning
algorithms but involving a primal-dual formulation making the policy evaluation step feasible for
a neural network implementation. Zhang et al. (2021b) provided another convergent off-policy
evaluation algorithm using target network and l2-regularisation. In our work we use the same policy
evaluation update.

Our work in this paper is actually an extension of the work of Silver et al. (2014) from the discounted
to the average reward setting. In Xiong et al. (2022), a finite time analysis for deterministic policy
gradient algorithm was done for the discounted reward setting. We performed the finite time analysis
for the average reward deterministic policy gradient algorithm and in particular obtain the same
sample complexity for our algorithm as reported by Wu et al. (2020) for stochastic policies.

7 CONCLUSION AND FUTURE WORK

In this paper we presented a deterministic policy gradient theorem for both on-policy and off-policy
settings. We then proposed the Average Reward Off-policy Deep Deterministic Policy Gradient(ARO-
DDPG) algorithm using neural network and replay buffer for high dimensional MuJoCo based
environments. We observed superior performance of ARO-DDPG over existing average reward
algorithms (ATRPO and PPO). At the end we provided a finite time analysis for the on-policy and
off-policy algorithms obtained from the proposed policy gradient theorem and obtained a sample
complexity of Ω(ϵ−2.5). Lastly to extend the current line of work, one could try using natural gradient
descent based update rule for deterministic policy. Further in the current work we tried optimizing
the average reward performance (gain optimality). In the literature, optimizing the differential value
function for all the states is mentioned as part of achieving Blackwell optimality. Hence actor-critic
algorithms could be designed that not only optimize average reward performance but also differential
value function (bias optimality).
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A APPENDIX

A.1 ADDITIONAL ASSUMPTIONS, PROOFS OF LEMMAS AND THEOREMS

We make the following additional assumptions.
Assumption 9. The transition probability density function for a policy π with parameter θ is Lipschitz
continuous w.r.t θ. Thus, maxs′,s|Pπ1(s′|s)− Pπ2(s′|s)| ≤ Lt∥θ1 − θ2∥.

The above assumption is a standard assumption in theoretical studies in literature. Reference for
those assumptions can be found in Xiong et al. (2022); Bertsekas (1975); Chow & Tsitsiklis (1991)
and Dufour & Prieto-Rumeau (2015).
Assumption 10. The reward function for a policy π with parameter θ is Lipschitz continuous w.r.t θ.
Thus, maxs|Rπ1(s)−Rπ2(s)| ≤ Lr∥θ1 − θ2∥.

The above assumption can be satified by using a well defined reward function to ensure Lipchitz
continuity of reward function w.r.t action and then evoking Assumption 7.
Assumption 11. The initial value of target estimators is bounded. Thus, ∥w̄0∥ ≤ Cw and ∥ρ̄0∥ ≤
(Cr + 2Cw).
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Assumption 11 is used to enforce the stability of the iterates of target estimators.
Assumption 12. Let A(θ) =

∫
dπ(s)(ϕπ(s)(

∫
Pπ(s′|s)ϕπ(s′) ds′ − ϕπ(s))⊺ − ηI) ds. λmin is the

lower bound on the minimum eigenvalue of A(θ) for all values of θ.

The assumption above is used in Lemma 6 to prove the Lipchitz continuity of optimal critic parameter
w∗ for a particular value of policy parameter θ with respect to θ.
Assumption 13. Let A′(θ) =

∫
dπ(s)(ϕπ(s)(

∫
Pπ(s′|s)ϕπ(s′) ds′ − ϕπ(s))⊺) ds. λall

max is the
upper bound on maximum eigenvalue of (A′(θ) +A′(θ)⊺)/2 for all values of θ.

Assumption 13 is used to prove the negative definiteness of the matrix Aθ (defined in Assumption 12)
in Lemma 11.
Assumption 14. Let Hθ =

∫
S
dπ(s)∇θπ(s, θ)∇θπ(s, θ)

⊺ ds. λϵ
min > 0 is the lower bound on the

minimum eigenvalues of Hθ for all values of θ.

The above assumption is used in Lemma 13 to make sure Hθ is invertible and optimal critic parameter
w∗

ϵ according to compatible function approximation lemma (Lemma 2) can be obtained. Similar
assumption is present in (Xiong et al., 2022).
Assumption 15. Let Aµ

off
′(θ) =

∫
dµ(s)(ϕπ(s)(

∫
Pπ(s′|s)ϕπ(s′) ds′ − ϕπ(s))⊺) ds. χall

max is the
upper bound on maximum eigenvalue of (Aµ

off
′(θ) +Aµ

off
′(θ)⊺)/2 for behaviour policy µ and all

values of θ.

Assumption 15 is used to prove the negative definiteness of the matrix Aθ (defined in Lemma 15) in
Lemma 16.

Lemma 1. There exists a unique constant k(= ρ(π)) which satisfies the following equation for
differential value function Vdiff :

V π
diff (st) = Eπ[R(st, at)− k + V π

diff (st+1)|st].

Proof.

V π
diff (st) = R(st, π(st))− k +

∫
S

Pπ(st+1|st)V π
diff (st+1) dst+1

=⇒ V π
diff (st)−

∫
S

Pπ(st+1|st)V π
diff (st+1) dst+1 = R(st, π(st))− k

=⇒
T−1∑
t=0

(
V π
diff (st)−

∫
S

Pπ(st+1|st)V π
diff (st+1) dst+1

)
=

T−1∑
t=0

R(st, π(st))− kT

Integrating w.r.t the stationary distribution dπ of policy π :

T−1∑
t=0

∫
S

dπ(st)
(
V π
diff (st)−

∫
S

Pπ(st+1|st)V π
diff (st+1) dst+1

)
dst

=

T−1∑
t=0

∫
S

dπ(st)R(st, π(st)) ds− kT

T−1∑
t=0

(∫
S

dπ(st)V
π
diff (st) dst −

∫
S

dπ(st+1)V
π
diff (st+1) dst+1

)
=

T−1∑
t=0

∫
S

dπ(st)R(st, π(st)) dst − kT

Note:
(∫

S
dπ(st)V

π
diff (st) dst −

∫
S
dπ(st+1)V

π
diff (st+1) dst+1

)
= 0.
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=⇒ k =
1

T

T−1∑
t=0

∫
S

dπ(st)R(st, π(st)) dst

=⇒ k = lim
T→∞

1

T

T−1∑
t=0

∫
S

dπ(st)R(st, π(st)) dst

=⇒ k = ρ(π) (using (3)).

Theorem 1. The gradient of ρ(π) with respect to the policy parameter θ is given as follows:

∇θρ(π) =

∫
S

dπ(s)∇aQ
π
diff (s, a)|a=π(s)∇θπ(s, θ) ds.

Proof. Using Lemma 1:

V π
diff (st) = R(st, π(st))− ρ(π) +

∫
S

Pπ(st+1|st)V π
diff (st+1) dst+1

=⇒ Qπ
diff (st, π(st)) = R(st, π(st))− ρ(π) +

∫
S

Pπ(st+1|st)Qπ
diff (st+1, π(st+1)) dst+1

Differentiating w.r.t θ, we obtain

∇θQ
π
diff (st, π(st)) = ∇θR(st, π(st))−∇θρ(π)

+∇θ

(∫
S

Pπ(st+1|st)Qπ
diff (st+1, π(st+1)) dst+1

)
= ∇aR(st, a)|a=π(st)∇θπ(st)−∇θρ(π)

+

∫
S

∇aP
π(st+1|st, a)|a=π(st)∇θπ(st)Q

π
diff (st+1, π(st+1)) dst+1

+

∫
S

Pπ(st+1|st)∇θQ
π
diff (st+1, π(st+1)) dst+1.

Note: ∇aρ(π) = ∇a

(∫
S
dπ(s)Rπ(s) ds

)
= 0.

=⇒ ∇θQ
π
diff (st, π(st)) = ∇aQ

π
diff (st, a)|a=π(st)∇θπ(st)−∇θρ(π)

+

∫
S

Pπ(st+1|st)∇θQ
π
diff (st+1, π(st+1)) dst+1.

Integrating w.r.t stationary distribution dπ(·) of policy π:

∫
S

dπ(st)∇θQ
π
diff (st, π(st))dst =

∫
S

dπ(st)∇aQ
π
diff (st, a)|a=π(st)∇θπ(st)dst −∇θρ(π)

+

∫
S

dπ(st)

∫
S

Pπ(st+1|st)∇θQ
π
diff (st+1, π(st+1)) dst+1 dst.

Note:
∫
S
dπ(s)Pπ(s′|s) ds = dπ(s′). Thus,

∇θρ(π) =

∫
S

dπ(st)∇aQ
π
diff (st, a)|a=π(st)∇θπ(st)dst

+

∫
S

dπ(st+1)∇θQ
π
diff (st+1, π(st+1)) dst+1

−
∫
S

dπ(st)∇θQ
π
diff (st, π(st))dst.
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∇θρ(π) =

∫
S

dπ(s)∇aQ
π
diff (s, a)|a=π(s)∇θπ(s) ds.

Lemma 2. Assume that the differential Q-value function (5) satisfies the following:

1.
∇w∇aQ

w
diff (s, a) = ∇θπ(s, θ).

2. The differential Q-value function parameter w = w∗
ϵ optimizes the following error function:

ζ(θ, w) =
1

2

∫
S

dπ(s)∥∇aQ
π
diff (s, a)|a=π(s) −∇aQ

w
diff (s, a)|a=π(s)∥2 ds.

Then,∫
S

dπ(s)∇aQ
π
diff (s, a)|a=π(s)∇θπ(s, θ) ds =

∫
S

dπ(s)∇aQ
w
diff (s, a)|a=π(s)∇θπ(s, θ) ds.

Further,
∇aQ

w
diff (s, a) = ∇θπ(s, θ)

⊺w (for linear function approximator).

Proof. Let E(θ, w, s) = ∇aQ
π
diff (s, a)|a=π(s) −∇aQ

w
diff (s, a)|a=π(s),

ζ(θ, w) =
1

2

∫
S

dπ(s)E(θ, w, s)⊺E(θ, w, s) ds.

Differentiating w.r.t the critic parameter w, we obtain:

∇wζ(θ, w) =

∫
S

dπ(s)∇wE(θ, w, s)E(θ, w, s) ds

= −
∫
S

dπ(s)∇w∇aQ
w
diff (s, a)|a=π(s)

(
∇aQ

π
diff (s, a)|a=π(s)

−∇aQ
w
diff (s, a)|a=π(s)

)
ds = 0.

Letting ∇w∇aQ
w
diff (s, a)|a=π(s) = ∇θπ(s), we obtain

∫
S

dπ(s)∇aQ
π
diff (s, a)|a=π(s)∇θπ(s, θ) ds =

∫
S

dπ(s)∇aQ
w
diff (s, a)|a=π(s)∇θπ(s, θ) ds.

Let us consider the case of linear function approximator with parameter w, i.e., Qw
diff (s, π(s)) =

ϕπ(s, π(s))⊺w.

We know from above,

∇w∇aQ
w
diff (s, a)|a=π(s) = ∇θπ(s)

=⇒ ∇aϕ
π(s, a)|a=π(s) = ∇θπ(s).

(A.1)

Thus,

Qw
diff (s, π(s)) = ϕπ(s, π(s))⊺w

=⇒ ∇aQ
w
diff (s, a)|a=π(s) = ∇aϕ

π(s, a)|⊺a=π(s)w

=⇒ ∇aQ
w
diff (s, a)|a=π(s) = ∇θπ(s)

⊺w (using (A.1)).
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Theorem 2. The approximate gradient of the average reward ρ(π) with respect to the policy
parameter θ is given by the following expression:

∇̂θρ(π) =

∫
S

dµ(s)∇aQ
π
diff (s, a)|a=π(s)∇θπ(s, θ) ds.

Further, the approximation error is E(π, µ) = ∥∇θρ(π)−∇̂θρ(π)∥, where µ represents the behaviour
policy. E satisfies

E(π, µ) ≤ Z∥θπ − θµ∥.
Here, Z = 2m+1C(⌈logκ a−1⌉ + 1/κ)Lt with Lt being the Lipchitz constant for the transition
probability density function (Assumption 9). Constants a and κ are from Assumption 2, m is the
dimension of action space, and C = maxs ∥∇aQ

π
diff (s, a)|a=π(s)∇θπ(s, θ)∥.

Proof.

E(π, µ) = ∥∇θρ(π)− ∇̂θρ(π)∥

= ∥
∫
S

dπ(s)∇aQ
π
diff (s, a)|a=π(s)∇θπ(s, θ) ds

−
∫
S

dµ(s)∇aQ
π
diff (s, a)|a=π(s)∇θπ(s, θ) ds∥

≤
∫
S

|dπ(s)− dµ(s)|∥∇aQ
π
diff (s, a)|a=π(s)∇θπ(s, θ)∥ ds

≤ C

∫
S

|dπ(s)− dµ(s)| ds.

Here, C = maxs ∥∇aQ
π
diff (s, a)|a=π(s)∇θπ(s, θ)∥. Thus,

E(π, µ) ≤ CLd∥θπ − θµ∥ = Z∥θπ − θµ∥ (using Lemma12).

Here, Z = 2m+1C(⌈logκ a−1⌉+ 1/κ)Lt.

Lemma 3. Let the cumulative error of on-policy actor be
∑T−1

t=0 E||∇θρ(θt)||2 and cumulative error
of critic be

∑T−1
t=0 E||∆wt||2. θt and wt are the actor and linear critic parameter at time t.Bound on

the cumulative error of on-policy actor is proven using cumulative error of critic as follows:

1

T

T−1∑
t=0

E||∇θρ(θt)||2 ≤ 2
Cr

Cγ
T v−1 + 3C4

π(
1

T

T−1∑
t=0

E||∆wt||2) + 3C4
π(τ

2 +
4

M
C2

w∗
ϵ
),

+
CγLJG

2
θ

1− v
T−v

Here, Cr is the upper bound on rewards (Assumption 5) , Cγ , v are constants used for step size γt
(Assumption 3, ∥∇θπ(s)∥ ≤ Cπ (Assumption 7), ∆wt = wt − w∗

t , τ = maxt ∥w∗
t − w∗

ϵ,t∥, w∗
ϵ is

the optimal critic parameter according to Lemma 2. w∗
t is the optimal parameters given by TD(0)

algorithm corresponding to policy parameter θt. Constant Cw∗
ϵ

is defined in Lemma 13. LJ is the
coefficient used in smoothness condition of the non convex function ρ(θ). Constant Gθ is defined in
Lemma 7. M is the size of batch of samples used to update parameters.

Proof. By [−LJ , LJ ]-smoothness of non-convex function we have:

E[ρ(θt+1)] ≥ E[ρ(θt)] + E⟨∇θρ(θt), θt+1 − θt⟩ −
LJ

2
E∥θt+1 − θt∥2. (A.2)
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Now,

h(Bt, wt, θt) =
1

M

∑
i

∇aQ
π(st,i, a)|a=π(st,i)∇θπ(st,i).

E⟨∇θρ(θt), θt+1 − θt⟩ = γtE⟨∇θρ(θt), h(Bt, wt, θt)⟩
= γtE⟨∇θρ(θt), h(Bt, wt, θt)−∇θρ(θt)⟩+ γtE∥∇θρ(θt)∥2.

(A.3)

From (A.3), we have

E⟨∇θρ(θt), h(Bt, wt, θt)−∇θρ(θt)⟩ ≥ −1

2
E∥∇θρ(θt)∥2 −

1

2
E∥h(Bt, wt, θt)−∇θρ(θt)∥2

(∵ x⊺y ≥ −∥x∥2/2− ∥y∥2/2).
(A.4)

From (A.4):

E∥h(Bt, wt, θt)−∇θρ(θt)∥2

= E∥h(Bt, wt, θt)− h(Bt, w
∗
t , θt) + h(Bt, w

∗
t , θt)− h(Bt, w

∗
ϵ,t, θt) + h(Bt, w

∗
ϵ,t, θt)−∇θρ(θt)∥2

≤ 3(E∥h(Bt, wt, θt)− h(Bt, w
∗
t , θt)∥2 1⃝

+ E∥h(Bt, w
∗
t , θt)− h(Bt, w

∗
ϵ,t, θt)∥2 2⃝

+ E∥h(Bt, w
∗
ϵ,t, θt)−∇θρ(θt)∥2 3⃝

(A.5)

From (A.5):

1⃝:

E||h(Bt, wt, θt)− h(Bt, w
∗
t , θt)||2

=
1

M
||
∑
i=0

∇aQ
wt(st,i, a)|a=π(st,i)∇θπ(st,i)−

∑
i=0

∇aQ
w∗

t (st,i, a)|a=π(st,i)∇θπ(st,i)||2.

Here, by compatible function approximation lemma 2: ∇aQ
w∗

t (si, a)|a=π(si) = ∇θπ(s)
⊺w.

E||h(Bt, wt, θt)− h(Bt, w
∗
t , θt)||2 = E|| 1

M

∑
i=0

∇θπ(st,i)∇θπ(st,i)
⊺(wt − w∗

t )||2

≤ C4
πE||wt − w∗

t ||2.

2⃝ is similar as 1⃝:

E||h(Bt, w
∗
t , θt)− h(Bt, w

∗
ϵ,t, θt)||2 ≤ C4

πE||w∗
t − w∗

ϵ,t||2

≤ C4
πτ

2.

3⃝ :

• By compatible function approximation lemma 2: ∇θρ(θt) =∫
S
d(s, π(θt))∇θπ(s)∇θπ(s)

⊺w∗
ϵ,t ds = E[h(Bt, w

∗
ϵ,t, θt)]

• By lemma 4 (Xiong et al., 2022), if E[Ŷ ] = Ȳ , ||Ŷ ||, ||Ȳ || ≤ CY then,

E|| 1
M

M−1∑
i=0

Ŷi − Ȳ || ≤ 4
C2

Y

M
.
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Using above two bullet points:

E||h(Bt, w
∗
ϵ,t, θt)−∇θρ(θt)||2 ≤ 4

M
||∇θπ(s)∇θπ(s)

⊺w∗
ϵ,t||2

≤
4C4

πC
2
wϵ

M
.

Combining 1⃝, 2⃝ and 3⃝ and using in (A.5):

E||h(Bt, wt, θt)−∇θρ(θt)||2 ≤ 3C4
π(E||wt − w∗

t ||2 + τ2 +
4C2

wϵ

M
). (A.6)

Using (A.6) in (A.4):

E⟨∇θρ(θt), h(Bt, wt, θt)−∇θρ(θt)⟩ ≥ −1

2
E||∇θρ(θt)||2

− 3

2
C4

π(E||wt − w∗
t ||2 + τ2 +

4C2
wϵ

M
).

(A.7)

Using (A.7) in (A.3):

E⟨∇θρ(θt), θt+1 − θt⟩ ≥
γt
2
E||∇θρ(θt)||2

− 3γt
2

C4
π(E||wt − w∗

t ||2 + τ2 +
4C2

wϵ

M
).

(A.8)

Using (A.8) in (A.2):

E[ρ(θt+1)]− E[ρ(θt)] ≥
γt
2
E||∇θρ(θt)||2 −

LJ

2
E||θt+1 − θt||2

− 3γt
2

C4
π(E||wt − w∗

t ||2 + τ2 +
4C2

wϵ

M
)

=⇒ E||∇θρ(θt)||2 ≥ 2

γt
E[ρ(θt+1)]− E[ρ(θt)] + 3C4

π(E||wt − w∗
t ||2)

+ 3C4
π(τ

2 +
4C2

wϵ

M
) + LJγtG

2
θ (using lemma 7)

=⇒
T−1∑
t=0

E||∇θρ(θt)||2 ≥
T−1∑
t=0

2

γt
E[ρ(θt+1)]− E[ρ(θt)] 1⃝

+

T−1∑
t=0

3C4
π(E||wt − w∗

t ||2) 2⃝

+

T−1∑
t=0

3C4
π(τ

2 +
4C2

wϵ

M
) 3⃝

+

T−1∑
t=0

LJγtG
2
θ 4⃝ (using lemma 7)

(A.9)

From equation A.9
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1⃝:

T−1∑
t=0

2

γt
E[ρ(θt+1)]− E[ρ(θt)] = 2

(T−1∑
t=0

( 1

γt
− 1

γt−1

)
E[ρ(θt)] +

E[ρ(θ0)]

γ0
− E[ρ(θT )]

γT−1

)

≤ 2

(T−1∑
t=0

( 1

γt
− 1

γt−1

)
E[ρ(θt)] +

E[ρ(θ0)]

γ0

)

≤ 2

(T−1∑
t=0

( 1

γt
− 1

γt−1

)
+ γ0

)
Cr

≤ 2Cr

γT−1
=

2CrT
v

Cγ

2⃝:

T−1∑
t=0

3C4
π(E||wt − w∗

t ||2) =
T−1∑
t=0

3C4
π(E||∆wt||2)

4⃝:

T−1∑
t=0

LJγtG
2
θ ≤ LJG

2
θCγ

T 1−v

1− v

(
∵

T−1∑
t=0

1

1 + tv
≤
∫ T

0

1

tv
dt =

T 1−v

1− v

)
Using 1⃝- 4⃝ and dividing equation A.9 by T:

1

T

T−1∑
t=0

E||∇θρ(θt)||2 ≤ 2
Cr

Cγ
T v−1 + 3C4

π(
1

T

T−1∑
t=0

E||∆wt||2) + 3C4
π(τ

2 +
4

M
C2

wϵ
)

+
CγLJG

2
θ

1− v
T−v

Lemma 4. Let the cumulative error of linear critic be
∑T−1

t=0 E||∆wt||2 and cumulative error of
average reward estimator be

∑T−1
t=0 E||∆ρt||2. wt and ρt are linear critic parameter and average

reward estimator at time t respectively. Bound on the cumulative error of critic is proven using
cumulative error of average reward estimator as follows:

1

T

T−1∑
t=0

E||∆wt||2 ≤ 2

(√
2C2

w

λCα
Tσ−1 +

CgCα

1− σ
T−σ+

LwGθ

λ

(
1

T

∑( γt
αt

)2)1/2

+
2(Cr + 3Cw)

λ

)2

+
2

λ2

1

T

T−1∑
t=0

E||∆ρt||2

Here, ∆wt = wt − w∗
t , ∆ρt = ρt − ρ∗t . w∗

t and ρ∗t are the optimal parameters given by TD(0)
algorithm corresponding to policy parameter θt. Cα, σ are constants and γt, αt are step-sizes defined
in Assumption 3, ∥wt∥ ≤ Cw (Algorithm 2, step 8), Cr is the upper bound on rewards (Assumption
5), Constant Gθ is defined in Lemma 7, Cg =

L2
w

λ maxt
γ2
t

α2
t
G2

θ +
C2

δ

λ , Cδ = 2Cr + (4 + η)Cw. η is

the l2-regularisation coefficient from Algorithm 2 and η > λall
max, where λall

max is defined in Lemma
11. λ is defined in Lemma 11. Lw is defined in Lemma 6.
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Proof.

wt+1 = wt + αt
1

M

M−1∑
i=0

(
Rπ(st,i)− ρ̄t + ϕπ(s′t,i)

⊺w̄t − ϕπ(st,i)
⊺wt

)
ϕπ(st,i)− αtηwt

=⇒ wt+1 − w∗
t+1 = wt − w∗

t + w∗
t − w∗

t+1 1⃝

+ αt
1

M

M−1∑
i=0

(
Rπ(st,i)− ρ∗t + ϕπ(s′t,i)

⊺w̄t − ϕπ(st,i)
⊺wt

)
ϕπ(st,i)− αtηwt 2⃝

+ αt
1

M

M−1∑
i=0

(
ρ∗t − ρt

)
ϕπ(st,i) 3⃝

+ αt
1

M

M−1∑
i=0

(
ρt − ρ̄t

)
ϕπ(st,i) 4⃝

(A.10)

From equation A.10:
2⃝:

1

M

M−1∑
i=0

(
Rπ(st,i)− ρ∗t + ϕπ(s′t,i)

⊺w̄t − ϕπ(st,i)
⊺wt

)
ϕπ(st,i)− ηwt

=
1

M

M−1∑
i=0

(
Rπ(st,i)− ρ∗t + ϕπ(s′t,i)

⊺wt − ϕπ(st,i)
⊺wt

)
ϕπ(st,i)− ηwt

+
1

M

M−1∑
i=0

ϕπ(st,i)ϕ
π(s′t,i)

⊺(w̄t − wt)

=
1

M

M−1∑
i=0

ϕπ(st,i)ϕ
π(s′t,i)

⊺(w̄t − wt) + g(Bt, wt, θt)− ḡ(wt, θt)

+ ḡ(wt, θt)− ḡ(w∗
t , θt)

(A.11)

Let g(Bt, wt, θt) :=
1

M

∑M−1
i=0

(
Rπ(st,i) − ρ∗t

)
ϕπ(st,i) +

1

M

∑M−1
i=0

(
ϕπ(st,i)(ϕ

π(s′t,i) −

ϕπ(st,i))
⊺ − ηI

)
wt

Let ḡ(wt, θt) :=
∫
d(s, π(θt))ϕ

π(s)
(
rπ(s)− ρ∗t +

∫
ρπ(s′|s)ϕπ(s′)⊺wt ds

′ − ϕπ(s)⊺wt

)
ds

Using equation A.11 in equation A.10:

wt+1 − w∗
t+1 =wt − w∗

t + w∗
t − w∗

t+1+

+ αt
1

M

M−1∑
i=0

(ρ∗t − ρt)ϕ
π(st,i)

+ αt
1

M

M−1∑
i=0

(ρt − ρ̄t)ϕ
π(st,i)

+ αt
1

M

M−1∑
i=0

ϕπ(st,i)ϕ
π(s′t,i)

⊺(w̄t − wt)

+ αt(g(Bt, wt, θt)− ḡ(wt, θt))

+ αt(ḡ(wt, θt)− ḡ(w∗
t , θt))
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Let, f(Bt, wt, θt) :=
1

M

M−1∑
i=0

(ρ∗t − ρt)ϕ
π(st,i)

+
1

M

M−1∑
i=0

(ρt − ρ̄t)ϕ
π(st,i)

+
1

M

M−1∑
i=0

ϕπ(st,i)ϕ
π(s′t,i)

⊺(w̄t − wt)

+ g(Bt, wt, θt)− ḡ(wt, θt)

+ ḡ(wt, θt)− ḡ(w∗
t , θt)

||wt+1 − w∗
t+1||2 = ||(wt − w∗

t ) + (w∗
t − w∗

t+1) + αtf(Bt, wt, θt)||2

= ||wt − w∗
t ||2 + ||w∗

t − w∗
t+1||2

+ α2
t ||f(Bt, wt, θt)||2

+ 2⟨∆wt, w
∗
t − w∗

t+1⟩+ 2αt⟨∆wt, f(Bt, wt, θt)⟩
+ 2αt⟨w∗

t − w∗
t+1, f(Bt, wt, θt)⟩

E||wt+1 − w∗
t+1||2 ≤ E||∆wt||2 + 2E||w∗

t − w∗
t+1||2

+ 2α2
tE||f(Bt, wt, θt)||2

+ 2E⟨∆wt, w
∗
t − w∗

t+1⟩
+ 2αtE⟨∆wt, f(Bt, wt, θt)⟩

= E||∆wt||2 + 2E||w∗
t − w∗

t+1||2 1⃝
+ 2α2

tE||f(Bt, wt, θt)||2 2⃝
+ 2E⟨∆wt, w

∗
t − w∗

t+1⟩ 3⃝

+ 2αtE⟨∆wt,
1

M

M−1∑
i=0

(ρ∗t − ρt)ϕ
π(st,i)⟩ 4⃝

+ 2αtE⟨∆wt,
1

M

M−1∑
i=0

(ρt − ρ̄t)ϕ
π(st,i)⟩ 5⃝

+ 2αtE⟨∆wt,
1

M

M−1∑
i=0

ϕπ(st,i)ϕ
π(s′t,i)

⊺(w̄t − wt)⟩ 6⃝

+ 2αtE⟨∆wt, g(Bt, wt, θt)− ḡ(wt, θt)⟩ 7⃝
+ 2αtE⟨∆wt, ḡ(wt, θt)− ḡ(w∗

t , θt)⟩ 8⃝

(A.12)

From equation A.12:
1⃝:

E||w∗
t − w∗

t+1||2 ≤ L2
wE||θt+1 − θt||2 (using lemma 6)

≤ L2
wγ

2
tG

2
θ (using lemma 7)

2⃝:

E||f(Bt, wt, θt)||2

= E|| 1
M

M−1∑
i=0

(Rπ(st,i)− ρ̄t + ϕπ(s′t,i)
⊺w̄t − ϕπ(st,i)

⊺wt)ϕ
π(st,i)− ηwt||2

≤ E
(
|| 1
M

M−1∑
i=0

(Rπ(st,i)− ρ̄t + ϕπ(s′t,i)
⊺w̄t − ϕπ(st,i)

⊺wt)ϕ
π(st,i)||+ η||wt||

)2
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Here,
||ϕπ(s)|| < 1 (Assumption 4)
|Rπ(s)| ≤ Cr (Assumption 5)
||wt|| ≤ Cw (Algorithm 2, step 8)
|ρt| ≤ Cr + 2Cw (lemma 8)

||w̄t|| ≤ Cw (lemma 9)
||ρ̄t|| ≤ Cr + 2Cw (lemma 10)

≤ E
( 1

M

M−1∑
i=0

||(Rπ(st,i)− ρ̄t + ϕπ(s′t,i)
⊺w̄t − ϕπ(st,i)

⊺wt)ϕ
π(st,i)||+ η||wt||

)2
≤ E(Cr + Cr + 2Cw + 2Cw + ηCw)

2

≤ E(Cδ)
2 (Cδ = 2Cr + (4 + η)Cw)

≤ C2
δ

3⃝:

E⟨∆wt, w
∗
t − w∗

t+1⟩ ≤ E||∆wt|| ||w∗
t − w∗

t+1||
≤ LwE||∆wt|| ||θt+1 − θt|| (using Lemma 6)

4⃝:

E[⟨∆wt,
1

M

M−1∑
i=0

(ρ∗t − ρt)ϕ
π(st,i)⟩] = E[

1

M

M−1∑
i=0

⟨∆wt, ϕ
π(st,i)⟩(ρ∗t − ρt)]

≤ E[
1

M

M−1∑
i=0

||∆wt||||ϕπ(st,i)|||(ρ∗t − ρt)|]

≤ E||∆wt|||ρ∗t − ρt|
= E||∆wt|||∆ρt|

5⃝:

E[⟨∆wt,
1

M

M−1∑
i=0

(ρt − ρ̄t)ϕ
π(st,i)⟩] = E[

1

M

M−1∑
i=0

⟨∆wt, ϕ
π(st,i)⟩(ρt − ρ̄t)]

≤ E[
1

M

M−1∑
i=0

||∆wt|| ||ϕπ(st,i)|||ρt − ρ̄t|]

≤ E[||∆wt|||ρt − ρ̄t|]
≤ E[||∆wt||(|ρt|+ |ρ̄t|)]
≤ E[||∆wt||]2(Cr + 2Cw) (using Lemma 8, 10)

6⃝:

E⟨∆wt,
1

M

M−1∑
i=0

ϕπ(st,i)ϕ
π(s′t,i)

⊺(w̄t − wt)⟩ ≤ E||∆wt|| ||
1

M

M−1∑
i=0

ϕπ(st,i)ϕ
π(s′t,i)

⊺(w̄t − wt)||

≤ E||∆wt|| ||w̄t − wt||
≤ 2CwE||∆wt|| (using algorithm 2)

7⃝:

E[⟨∆wt, g(Bt, wt, θt)− ḡ(wt, θt)⟩] = E[⟨∆wt,E[g(Bt, wt, θt)− ḡ(wt, θt)|∆wt]⟩]
Note: E[g(Bt, wt, θt)− ḡ(wt, θt)] = 0

Hence, E[⟨∆wt, g(Bt, wt, θt)− ḡ(wt, θt)⟩] = 0
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8⃝:

E[⟨∆wt, ḡ(wt, θt)− ḡ(w∗
t , θt)⟩]

A(θt) =

∫
S

dπ(s, θt)(ϕ
π(s)(E[ϕπ(s′)]− ϕπ(s)⊺ − ηI)ds

b(θt) =

∫
S

dπ(s, θt)r
π(s)ϕπ(s)ds

ḡ(wt, θt)− ḡ(w∗
t , θt) = b(θt) +A(θt)wt − b(θt)−A(θt)w

∗
t

= A(θt)(wt − w∗
t )

Now, E[⟨∆wt, ḡ(wt, θt)− ḡ(w∗
t , θt)⟩] = E[⟨∆wt, A(θt)∆wt⟩]

= E[∆w⊺
t A(θt)∆wt]

≤ −λE||∆wt||2 (Lemma 11)

Combining 1⃝ - 8⃝ into equation A.12:

E||wt+1 − w∗
t+1||2 ≤ (1− 2λαt)E||∆wt||2 + 2L2

wγ
2
tG

2
θ + 2α2

tC
2
δ

+ 2LwE||∆wt||||θt+1 − θt||+ 2αtE||∆wt|||∆ρt|
+ 4αtE||∆wt||(2Cw + Cr) + 4αtCwE||∆wt||

=⇒ 2λαtE||∆wt||2 ≤ E[||∆wt||2]− E||∆wt+1||2 + 2L2
wγ

2
tG

2
θ + 2α2

tC
2
δ

+ 2LwγtGθE||∆wt||+ 2αtE||∆wt|||∆ρt|
+ 4αt(Cr + 3Cw)E||∆wt||

=⇒ E||∆wt||2 ≤ 1

2λαt
(E||∆wt||2 − E||wt+1||2)

+
(L2

wγ
2
t

λαt
G2

θ +
αt

λ
C2

δ

)
+

Lw

λ

γt
αt

GθE||∆wt||

+
E||∆wt|||∆ρt|

λ

+
2

λ
(Cr + 3Cw)E||∆wt||

=⇒
T−1∑
t=0

E||∆wt||2 ≤
T−1∑
t=0

1

2λαt
(E||∆wt||2 − E||∆wt+1||2) 1⃝

+

T−1∑
t=0

(Lw

λ

γ2
t

αt
G2

θ +
αt

λ
C2

δ

)
2⃝

+

T−1∑
t=0

Lw

λ

γt
αt

GθE||∆wt|| 3⃝

+

T−1∑
t=0

E||∆wt|||∆ρt|
λ

4⃝

+

T−1∑
t=0

2

λ
(Cr + 3Cw)E||∆wt|| 5⃝

(A.13)
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From equation A.13:
1⃝:

1

2λ

T−1∑
t=0

(E||∆wt||2 − E||∆wt+1||2)
1

αt
=

1

2λ

( T−1∑
t=1

( 1

αt
− 1

αt−1

)
E||∆wt||2 +

1

α0
E||∆w0||2 −

1

αT−1
E||∆wT ||2

)
≤ 1

2λ

(
T−1∑
t=1

( 1

αt
− 1

αt−1

)
+

1

α0

)
4C2

w

≤ 4C2
w

2λαT−1
=

C2
w

λCα
Tσ (∵ αt =

Cα

(1 + t)α
)

2⃝:

T−1∑
t=0

(L2
w

λ

γ2
t

αt
G2

θ +
αt

λ
C2

δ

)
=

T−1∑
t=0

(L2
w

λ

γ2
t

α2
t

G2
θ +

C2
δ

λ

)
αt

≤
T−1∑
t=0

(L2
w

λ
max

t

γ2
t

α2
t

G2
θ +

C2
δ

λ

)
αt

=

T−1∑
t=0

Cgαt =
CgCα

1− σ
T 1−σ

(
Cg =

L2
w

λ
max

t

γ2
t

α2
t

G2
θ +

C2
δ

λ

)

3⃝:

T−1∑
t=0

Lw

λ

γt
αt

GθE||∆wt|| =
Lw

λ
Gθ

T−1∑
t=0

γt
αt

E||∆wt||

≤ Lw

λ
Gθ

(
T−1∑
t=0

( γt
αt

)2) 1
2( T−1∑

t=0

(E||∆wt||)2
) 1

2

(Using Cauchy Schwartz inequality)

≤ Lw

λ
Gθ

(
T−1∑
t=0

( γt
αt

2
) 1

2( T−1∑
t=0

E||∆wt||2
) 1

2

(Using Jensen’s inequality)

4⃝:

1

λ

T−1∑
t=0

E||∆wt|||∆ρt| ≤
1

λ

( T−1∑
t=0

(E||∆wt||)2
) 1

2
( T−1∑

t=0

(E|∆ρt|)2
) 1

2

≤ 1

λ

( T−1∑
t=0

E||∆wt||2
) 1

2
( T−1∑

t=0

E|∆ρt|2
) 1

2

5⃝:

T−1∑
t=0

2(Cr + 3Cw)

λ
E||∆wt|| ≤

2(Cr + 3Cw)

λ

( T−1∑
t=0

E||∆wt||2
) 1

2
( T−1∑

t=0

1
) 1

2

≤ 2(Cr + 3Cw)

λ
T

1
2

( T−1∑
t=0

E||∆wt||2
) 1

2
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Combining 1⃝ - 5⃝ into equation A.13:

1

T

T−1∑
t=0

E||∆wt||2 ≤ 2C2
w

λCα
Tσ−1 +

CgC
α

1− σ
T−σ

+
LwGθ

λ

(
1

T

T−1∑
t=0

( γt
αt

)2) 1
2( 1

T

T−1∑
t=0

E||∆wt||2
) 1

2

+
1

λ

( 1

T

T−1∑
t=0

E||∆wt||2
) 1

2
( 1

T

T−1∑
t=0

E||∆ρt||2
) 1

2

+
2(Cr + 3Cw)

λ

( 1

T

T−1∑
t=0

E||∆wt||2
) 1

2

Let,

M(T ) =
1

T

T−1∑
t=0

E||∆wt||2

N(T ) =
1

T

T−1∑
t=0

E|∆ρt|2

M(T ) ≤ K1 +K2

√
M(T ) +K3

√
M(T )

√
N(T )

K1 :=
2C2

w

λCα
Tσ−1 +

CgCα

1− σ
T−σ

K2 :=
LwGθ

λ

(
1

T

T−1∑
t=0

( γt
αt

)2) 1
2

+
2(Cr + 3Cw)

λ

K3 :=
1

λ

M(T )− 2
K2

2

√
M(T )− 2

K3

2

√
M(T )

√
N(T ) + 2

K2

2

K3

2

√
N(T )

+
(K2

2

)2
+
(K3

2

√
N(T )

)2
≤ K1 +

(K2

2

)2
+
(K3

2

√
N(T )

)2
+ 2

K2

2

K3

2

√
N(T )

=⇒
(√

M(T )− K2

2
− K3

2

√
N(T )

)2
≤ K1 +

(K2

2
+

K3

2

√
N(T )

)2
=⇒

√
M(T )− K2

2
− K3

2

√
N(T ) ≤

√
K1 +

K2

2
+

K3

2

√
N(T )

=⇒
√

M(T ) ≤
√

K1 +K2 +K3

√
N(T )

=⇒ M(T ) ≤ 2(
√
K1 +K2)

2 + 2K2
3N(T )

1

T

T−1∑
t=0

E||∆wt||2 ≤ 2

(√
2C2

w

λCα
Tσ−1 +

CgCα

1− σ
T−σ +

LwGθ

λ

(
1

T

T−1∑
t=0

( γt
αt

)2) 1
2

+
2(Cr + 3Cw)

λ

)2

+
2

λ2

1

T

T−1∑
t=0

E||∆ρt||2
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Lemma 5. Let the cumulative error of linear critic be
∑T−1

t=0 E||∆wt||2 and cumulative error of
average reward estimator be

∑T−1
t=0 E||∆ρt||2. wt and ρt are linear critic parameter and average

reward estimator at time t respectively. Bound on the cumulative error of average reward estimator is
proven using cumulative error of critic as follows:

1

T

T−1∑
t=0

E|∆ρt|2 ≤ 2

(√
2(Cr + 2Cw)2Tσ−1

Cα
+

CsCαT−σ

1− σ

+ LpGθ

( 1

T

T−1∑
t=0

( γt
αt

)2) 1
2

+ 4Cw

)2

+
8

T

T−1∑
t=0

E||∆wt||2

Here, ∆ρt = ρt − ρ∗t , ∆wt = wt − w∗
t . w∗

t and ρ∗t are the optimal parameters given by TD(0)
algorithm corresponding to policy parameter θt. Cα, σ are constants and γt, αt are step-sizes defined
in Assumption 3, ∥wt∥ ≤ Cw (Algorithm 2, step 8), Cr is the upper bound on rewards (Assumption 5),
Constant Gθ is defined in Lemma 7. Cs = L2

pG
2
θ maxt

γ2
t

α2
t
+ 4(Cr + 2Cw)

2. Lp is Lipchitz constant
defined in Lemma 14.

Proof.

ρt+1 = ρt + αt
1

M

M−1∑
i=0

(
Rπ(st,i)− ρt + ϕπ(s′t,i)

⊺w̄t − ϕπ(st,i)
⊺w̄t

)
ρt+1 − ρ∗t+1 = ρt − ρ∗t + ρ∗t − ρ∗t+1

+ αt
1

M

M−1∑
i=0

(
Rπ(st,i)− ρt + ϕπ(s′t,i)

⊺w̄t − ϕπ(st,i)
⊺w̄t

)
= ρt − ρ∗t + ρ∗t − ρ∗t+1

+ αt
1

M

M−1∑
i=0

(
Rπ(st,i)− ρ∗t + ϕπ(s′t,i)

⊺w̄t − ϕπ(st,i)
⊺w̄t

)
+ αt(ρ

∗
t − ρt)

ρt+1 − ρ∗t+1 = ρt − ρ∗t + ρ∗t − ρ∗t+1

+ αt(ρ
∗
t − ρt)

+ αt

( 1

M

M−1∑
i=0

(ϕπ(s′t,i)− ϕπ(st,i))
⊺(w̄t − wt)

)
+ αt

( 1

M

M−1∑
i=0

(Rπ(st,i)− ρ∗t + ϕπ(s′t,i)
⊺wt − ϕπ(st,i)

⊺wt)
)

= ρt − ρ∗t + ρ∗t − ρ∗t+1

+ αt(ρ
∗
t − ρt)

+ αt

( 1

M

M−1∑
i=0

(ϕπ(s′t,i)− ϕπ(st,i))
⊺(w̄t − wt)

)
+ αt

(
l(Bt, wt, θt)− l̄(wt, θt)

)
+ αt

(
l̄(wt, θt)− l̄(w∗

t , θt)
)
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Here,

l(Bt, wt, θt) :=
( 1

M

M−1∑
i=0

(Rπ(st,i)− ρ∗t + ϕπ(s′t,i)
⊺wt − ϕπ(st,i)

⊺wt)
)

l̄(wt, θt) :=

∫
S

dπ
(
s, π(θt)

)(
Rπ(s)− ρ(π(θt)) + ϕπ(s′)⊺wt − ϕπ(s)⊺wt

)
ds

l̄(Bt, ρt, wt, θt) := (ρ∗t − ρt)

+
( 1

M

M−1∑
i=0

(ϕπ(s′t,i)− ϕπ(st,i))
⊺(w̄t − wt)

)
+
(
l(Bt, wt, θt)− l̄(wt, θt)

)
+
(
l̄(wt, θt)− l̄(w∗

t , θt)
)

||∆ρt+1||2 = ||∆ρt + ρ∗t + αtl(Bt, wt, ρt, θt)||2

= ||∆ρt||2 + ||ρ∗t − ρ∗t+1||2 + α2
t ||l(Bt, w̄t, ρt, θt)||2

+ 2⟨∆ρt, ρ
∗
t − ρ∗t+1⟩

+ 2αt⟨∆ρt, l(Bt, w̄t, ρt, θt)⟩
+ 2αt⟨ρ∗t − ρ∗t+1, l(Bt, ρt, w̄t, θt)⟩

≤ ||∆ρt||2 + 2||ρ∗t − ρ∗t+1||2 + 2α2
t ||l(Bt, w̄t, ρt, θt)||2

+ 2⟨∆ρt, ρ
∗
t − ρ∗t+1⟩

+ 2αt⟨∆ρt, l(Bt, w̄t, ρt, θt)⟩

E||∆ρt+1||2 ≤ E||∆ρt||2 + 2E||ρ∗t − ρ∗t+1||2 1⃝
+ 2α2

tE||l(Bt, w̄t, ρt, θt)||2 2⃝
+ 2E⟨∆ρt, ρ

∗
t − ρ∗t+1⟩ 3⃝

+ 2αtE⟨∆ρt1 −∆ρt⟩ 4⃝

+ 2αtE⟨∆ρt,
1

M

M−1∑
i=0

(ϕπ(s′t,i)− ϕπ(st,i))
⊺(w̄t − wt)⟩ 5⃝

+ 2αtE⟨∆ρt, l(Bt, wt, θt)− l̄(wt, θt)⟩ 6⃝
+ 2αtE⟨∆ρt, l̄(wt, θt)− l̄(w∗

t , θt)⟩ 7⃝

(A.14)

From equation A.14:
1⃝:

E||ρ∗t − ρ∗t+1||2 ≤ L2
pE||θt+1 − θt||2(Lemma 14)

2⃝:

E||l(Bt, ρt, w̄t, θt)||2 = E|| 1
M

M−1∑
i=0

(
Rπ(st,i)− ρt +

(
ϕπ(s′t,i)− ϕπ(st,i)

)⊺
w̄t

)
||2

≤ E
( 1

M

M−1∑
i=0

(Cr + Cr + 2Cw + 2Cw)
)2

= 4(Cr + 2C2)
2

3⃝:

E⟨∆ρt, ρ
∗
t − ρ∗t+1⟩ ≤ E||∆ρt|| |ρ∗t − ρ∗t+1|

≤ LpE|∆ρt| ||θt+1 − θt||
4⃝:

E⟨∆ρt,−∆ρt⟩ = −E|∆ρt|2
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5⃝:

E⟨∆ρt,
1

M

M−1∑
i=0

(
ϕπ(s′t,i)

⊺ − ϕπ(st,i)
⊺
)
(w̄t − wt)⟩

≤ E
[ 1

M

M−1∑
i=0

||ϕπ(s′t,i)− ϕπ(st,i)|| ||w̄t − wt|| |∆ρt|
]

≤ 4CwE|∆ρt|

6⃝:

E⟨∆ρt, l(Bt, wt, θt)− l̄(wt, θt)⟩ = E⟨∆ρt,E[l(Bt, wt, θt)− l̄(wt, θt)|∆ρt]⟩
Note: E[l(Bt, wt, θt)− l̄(wt, θt)|∆ρt]

E⟨∆ρt, l(Bt, wt, θt)− l̄(wt, θt)⟩ = 0

7⃝:

E[⟨∆ρt, l̄(wt, θt)− l̄(w∗
t , θt)⟩] = E[⟨∆ρt,

(
E[ϕπ(s′)]− ϕπ(s)

)⊺
(wt − w∗

t )⟩]
≤ E[⟨ϕπ(s′)− ϕπ(s),∆wt⟩|∆ρt|]
≤ E[||ϕπ(s′)− ϕπ(s)|| ||∆wt|| |∆ρt|]
≤ 2E(||∆wt|| |∆ρt|)

Combining 1⃝- 7⃝ into equation A.14:

E||∆ρt+1||2 ≤ (1− 2αt)E||∆ρt||2 + 2L2
pE||θt+1 − θt||2

+ 8α2
t (Cr + 2Cw)

2 + 2LpE|∆ρt| ||θt+1 − θt||
+ 8αtCwE|∆ρt|+ 4αtE||∆wt|| |∆ρt|

=⇒
T−1∑
t=0

E||∆ρt||2 ≤
T−1∑
t=0

1

2αt

(
E||∆ρt||2 − E||∆ρt+1||2

)
1⃝

+

T−1∑
t=0

(L2
pγ

2
t

αt
G2

θ + 4αt(Cr + 2Cw)
2
)

2⃝

+

T−1∑
t=0

(
Lp

γt
αt

Gθ + 4Cw

)
E|∆ρt| 3⃝

+

T−1∑
t=0

2E||∆wt|| |∆ρt| 4⃝

(A.15)

From equation A.15:
1⃝:

1

2

T−1∑
t=0

1

αt
(E||∆ρt||2 − E||∆ρt+1||2) =

1

2

(
T−1∑
t=0

( 1

αt
− 1

αt−1

)
E|∆ρt|2 +

1

α0
E|∆ρ0|2 −

1

αT−1
E|∆ρt|2

)

≤ 1

2

(
T−1∑
t=0

( 1

αt
− 1

αt−1

)
+

1

α0

)
4(Cr + 2Cw)

2

≤ 2(Cr + 2C2)
2

Cα
Tσ
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2⃝:

T−1∑
t=0

(
L2
pG

2
θ

γ2
t

αt
+ 4αt(Cr + 2Cw)

2
)
≤

T−1∑
t=0

(
L2
pG

2
θ max

t

γ2
t

α2
t

+ 4(Cr + 2Cw)
2
)
αt

≤
T−1∑
t=0

Csαt (Cs = L2
pG

2
θ max

t

γ2
t

α2
t

+ 4(Cr + 2Cw)
2)

≤ CsCα

1− σ
T 1−σ

3⃝:

T−1∑
t=0

(
LpGθ

γt
αt

+ 4Cw

)
E||∆ρt|| =

T−1∑
t=0

LpGθ
γt
αt

E||∆ρt||+ 4Cw

T−1∑
t=0

E||∆ρt||

≤ LpGθ

(
T−1∑
t=0

( γt
αt

)2) 1
2( T−1∑

t=0

E|∆ρt|2
) 1

2

+ 4Cw

( T−1∑
t=0

E|∆ρt|2
) 1

2

T
1
2

(using cauchy schwarz inequality)

4⃝:

2

T−1∑
t−0

E||∆wt|| |∆ρt| ≤ 2(

T−1∑
t=0

E||∆wt||2)
1
2 (

T−1∑
t=0

E|∆ρt|2)
1
2

(using cauchy schwarz inequality)

Combining 1⃝- 4⃝ into equation A.15

1

T

T−1∑
t=0

E||∆ρt||2 ≤ 2(Cr + 2Cw)
2Tσ−1

Cα
+

CsCαT
−σ

1− σ

+ LpGθ

(
1

T

T−1∑
t=0

( γt
αt

)2) 1
2
(

1

T

T−1∑
t=0

E|∆ρt|2
) 1

2

+ 4Cw

( 1

T

∑
t=0

T − 1E|∆ρt|2
) 1

2

+ 2

(
1

T

T−1∑
t=0

E||∆wt||2
) 1

2
(

1

T

T−1∑
t=0

E|∆ρt|2
) 1

2

M(T ) =
1

T

T−1∑
t=0

E||∆ρt||2

N(T ) =
1

T

T−1∑
t=0

E||∆wt||2

M(T ) ≤ K1 +K2

√
M(T ) +K3

√
M(T )

√
N(T )

Here,

K1 =
2(Cr + 2C2)

2Tσ−1

Cα
+

CsCαT
−σ

1− σ

K2 = LpGθ

(
1

T

T−1∑
t=0

( γt
αt

)2) 1
2

+ 4Cw

K3 = 2
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From Lemma 4, we know that

M(T ) ≤ 2(
√

K1 +K2)
2 + 2K2

3N(T )

Hence,

1

T

T−1∑
t=0

E|∆ρt|2 ≤ 2
(√2(Cr + 2Cw)2

Cα
Tσ−1 +

CsCα

1− σ
T−σ

+ LpGθ

(
1

T

T−1∑
t=0

( γt
αt

)2) 1
2

+ 4Cw

)2
+ 8

1

T

T−1∑
t=0

E||∆wt||2

Theorem 3. The on-policy average reward actor critic algorithm obtain ϵ-accurate optimal point
with sample complexity of Ω(ϵ−2.5).

min
0≤t≤T−1

E||∇θρ(θt)||2 = O
(

1

T 0.4

)
+O(1)

min
0≤t≤T−1

E||∇θρ(θt)||2 ≤ ϵ+O(1)

Proof. Using lemma 4 and lemma 5 we obtain,

1

T

T−1∑
t=0

E||∆wt||2 ≤ 2

(√
2C2

w

λCα
Tσ−1 +

CgCα

1− σ
T−σ +

LwGθ

λ

( 1

T

T−1∑
t=0

(
γt
αt

)2
)1/2

+
2(Cr + 3Cw)

λ

)2

+
4

λ2

(√
2(Cr + 2Cw)2

Cα
Tσ−1 +

CsCα

1− σ
T−σ + LpGθ

( 1

T

T−1∑
t=0

(
γt
αt

)2
)1/2

+ 4Cw

)2

+
16

λ2T

T−1∑
t=0

E||∆wt||2

=⇒ 1

T

T−1∑
t=0

E||∆wt||2 ≤ 2λ2

λ2 − 16

(√
2C2

w

λCα
Tσ−1 +

CgCα

1− σ
T−σ

+
LwGθ

λ

( 1

T

T−1∑
t=0

(
γt
αt

)2
)1/2

+
2(Cr + 3Cw)

λ

)2

1⃝

+
4

λ2 − 16

(√
2(Cr + 2Cw)2

Cα
Tσ−1 +

CsCα

1− σ
T−σ

+ LpGθ

( 1

T

T−1∑
t=0

(
γt
αt

)2
)1/2

+ 4Cw

)2

2⃝

(A.16)

From equation A.16

1⃝:

1

T

T−1∑
t=0

(
γt
αt

)2 ≤ 1

T

T−1∑
t=0

(
Cγ

Cα
)2

1

(1 + t)2(v−σ)
≤ T−2(v−σ)

1− 2(v − σ)(
∵

T−1∑
t=0

1

1 + tv
≤
∫ T

0

1

tv
dt =

T 1−v

1− v

)
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(√
2C2

w

λCα
Tσ−1 +

CgCα

1− σ
T−σ +

LwGθ

λ

( 1

T

T−1∑
t=0

(
γt
αt

)2
)1/2

+
2(Cr + 3Cw)

λ

)2

≤
(√

2C2
w

λCα
Tσ−1 +

CgCα

1− σ
T−σ +

LwGθ

λ

( T−2(v−σ)

1− 2(v − σ)

)1/2
+

2(Cr + 3Cw)

λ

)2

≤ 3

(
2C2

w

λCα
Tσ−1 +

CgCα

1− σ
T−σ +

(LwGθ

λ

)2( T−2(v−σ)

1− 2(v − σ)

)
+
(2(Cr + 3Cw)

λ

)2)
(∵ (a+ b+ c)2 ≤ 3(a2 + b2 + c2))

= O
(

1

T 1−σ

)
+O

(
1

Tσ

)
+O

(
1

T 2(v−σ)

)
+O(1)

2⃝ (similar to 1⃝):

(√
2(Cr + 2Cw)2

Cα
Tσ−1 +

CsCα

1− σ
T−σ + LpGθ

( 1

T

T−1∑
t=0

(
γt
αt

)2
)1/2

+ 4Cw

)2

= O
(

1

T 1−σ

)
+O

(
1

Tσ

)
+O

(
1

T 2(v−σ)

)
+O(1)

Combining 1⃝ and 2⃝:

1

T

T−1∑
t=0

E||∆wt)||2 = O
(

1

T 1−σ

)
+O

(
1

Tσ

)
+O

(
1

T 2(v−σ)

)
+O(1) (A.17)

Using lemma 3 and equation A.17

1

T

T−1∑
t=0

E||∇θρ(θt)||2 = O
(

1

T 1−v

)
+O

(
1

T v

)
+O

(
1

T 1−σ

)
+O

(
1

Tσ

)
+O

(
1

T 2(v−σ)

)
+O(1)

=⇒ min
0≤t≤T−1

E||∇θρ(θt)||2 = O
(

1

T 1−v

)
+O

(
1

T v

)
+O

(
1

T 1−σ

)
+O

(
1

Tσ

)
+O

(
1

T 2(v−σ)

)
+O(1)

(
∵ min

t
E||∇θρ(θt)||2 ≤ 1

T

T−1∑
t=0

E||∇θρ(θt)||2
)

By setting v = 3/5 and σ = 2/5, we obtain:

min
0≤t≤T−1

E||∇θρ(θt)||2 = O
(

1

T 0.4

)
+O(1)

O
(

1

T 0.4

)
≤ ϵ

Hence, the sample complexity of on-policy average reward actor-critic algorithm is Ω(ϵ−2.5).
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Lemma 6. The optimal critic parameter w(θt)
∗ as a function of actor parameter θt is Lipchitz

continuous with constant Lw. Note: w∗
t := w(θt)

∗.

||w∗
t − w∗

t+1|| ≤ Lw||θt+1 − θt||

Proof. η is the l2-regularisation coefficient from Algorithm 2 and η > λall
max, where λall

max is defined
in Lemma 11. Because of carefully setting the value of η, A(θt) is negative definite. Thus, for
on-policy TD(0) with l2-regularization and target estimators, the following condition holds true for
optimal critic parameter w∗

t :

E[(Rπ(s)− ρ∗t )ϕ
π(s) + (ϕπ(s)(E[ϕπ(s′)]− ϕπ(s))⊺ − ηI)w∗

t ] = 0

b(θt) := E[(Rπ(s)− ρ∗t )ϕ
π(s)]

A(θt) := E[(ϕπ(s)(E[ϕπ(s′)]− ϕπ(s))⊺ − ηI)]

∴ b(θt) +A(θt)w
∗
t = 0 =⇒ w∗

t = −A(θt)
−1b(θt)

||w∗
t − w∗

t+1|| = ||A(θt)
−1b(θt)−A(θt+1)

−1b(θt+1)||
≤ ||A(θt)

−1b(θt)−A(θt+1)
−1b(θt) +A(θt+1)

−1b(θt)−A(θt+1)
−1b(θt+1)||

≤ ||A(θt)
−1 −A(θt+1)

−1|| ||b(θt)|| 1⃝
+ ||A(θt+1)

−1|| ||b(θt)− b(θt+1)|| 2⃝
(A.18)

From equation A.18:

1⃝:

||A(θt)
−1 −A(θt+1)

−1|| = ||A(θt)
−1A(θt+1)A(θt+1)

−1 −A(θt)
−1A(θt)

A(θt+1)
−1||

≤ ||A(θt)
−1|| ||A(θt)−A(θt+1)|| ||A(θt+1)

−1||
(A.19)

From equation A.19:

Here, π′ and π represents the policy with parameter θt+1 and θt respectively.

||A(θt)−A(θt+1)|| ≤ ||
∫

dπ
′
(s)(ϕπ′

(s)(

∫
Pπ′

(s′|s)ϕπ′
(s′) ds′ − ϕπ′

(s))⊺ − ηI) ds

−
∫

dπ(s)(ϕπ(s)(

∫
Pπ(s′|s)ϕπ(s′) ds′ − ϕπ(s))⊺ − ηI) ds||

≤ ||
∫

dπ
′
(s)(ϕπ′

(s)(

∫
Pπ′

(s′|s)ϕπ′
(s′) ds′)⊺) ds

−
∫

dπ(s)(ϕπ(s)(

∫
Pπ(s′|s)ϕπ(s′) ds′)⊺) ds|| 1⃝

≤ ||
∫

dπ(s)(ϕπ(s)(ϕπ(s))⊺) ds−
∫

dπ
′
(s)(ϕπ′

(s)(ϕπ′
(s))⊺) ds|| 2⃝

(A.20)

From equation A.20:
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1⃝:

||
∫

dπ
′
(s)(ϕπ′

(s)(

∫
Pπ′

(s′|s)ϕπ′
(s′) ds′)⊺) ds−

∫
dπ(s)(ϕπ(s)(

∫
Pπ(s′|s)ϕπ(s′) ds′)⊺) ds||

≤ ||
∫
(dπ

′
(s)− dπ(s))ϕπ′

(s)(

∫
Pπ′

(s′|s)ϕπ′
(s′) ds′)⊺ ds||

+ ||
∫

dπ(s)(ϕπ′
(s)− ϕπ(s))(

∫
Pπ′

(s′|s)ϕπ′
(s′) ds′)⊺ ds||

+ ||
∫

dπ(s)ϕπ(s)(

∫
(Pπ′

(s′|s)− Pπ(s′|s))ϕπ′
(s′) ds′)⊺ ds||

+ ||
∫

dπ(s)ϕπ(s)(

∫
Pπ(s′|s)(ϕπ′

(s′)− ϕπ(s′)) ds′⊺) ds

≤ Ld||θt+1 − θt|| (lemma 12)
+ Lϕ||θt+1 − θt|| (assumption 8)
+ Lt||θt+1 − θt|| (assumption 9)
+ Lϕ||θt+1 − θt|| (assumption 8)

||
∫

dπ
′
(s)(ϕπ′

(s)(

∫
Pπ′

(s′|s)ϕπ′
(s′) ds′)⊺) ds−

∫
dπ(s)(ϕπ(s)(

∫
Pπ(s′|s)ϕπ(s′) ds′)⊺) ds||

≤ (Ld + Lt + 2Lϕ)||θt+1 − θt||
(A.21)

From equation A.20:

2⃝:

||
∫

dπ(s)(ϕπ(s)(ϕπ(s))⊺) ds−
∫

dπ
′
(s)(ϕπ′

(s)(ϕπ′
(s))⊺) ds||

≤ ||
∫
(dπ(s)− dπ

′
(s))ϕπ(s)(ϕπ(s))⊺ ds||

+ ||
∫

dπ
′
(s)(ϕπ(s)− ϕπ′

(s))(ϕπ(s))⊺ ds||

+ ||
∫

dπ
′
(s)ϕπ′

(s)(ϕπ(s)− ϕπ′
(s))⊺ ds||

≤ (Ld + 2Lϕ)||θt+1 − θt||

(A.22)

Using equation A.21 and equation A.22 in equation A.20

||A(θt)−A(θt+1)|| ≤ (2Ld + 4Lϕ + Lt)||θt+1 − θt|| (A.23)

From equation A.18:
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2⃝:

||b(θt)− b(θt+1)|| = ||
∫

dπ
′
(s)((Rπ′

(s)− ρ∗t+1)ϕ
π′
(s) ds−

∫
dπ(s)(Rπ(s)− ρ∗t )ϕ

π(s) ds||

≤ ||
∫

dπ
′
(s)(Rπ′

(s)ϕπ′
(s) ds−

∫
dπ(s)Rπ(s)ϕπ(s) ds||

+ ||
∫

dπ
′
(s)ρ∗t+1ϕ

π′
(s) ds−

∫
dπ(s)ρ∗tϕ

π(s) ds||

≤ ||
∫
(dπ

′
(s)− dπ(s))Rπ′

(s)ϕπ′
(s) ds||

+ ||
∫

dπ(s)(Rπ′
(s)−Rπ(s))ϕπ′

(s) ds||

+ ||
∫

dπ(s)Rπ(s)(ϕπ′
(s)− ϕπ(s) ds||

+ ||
∫
(dπ

′
(s)− dπ(s))ρ∗t+1ϕ

π′
(s) ds||

+ ||
∫

dπ(s)(ρ∗t+1 − ρ∗t )ϕ
π′
(s) ds||

+ ||
∫

dπ(s)ρ∗t (ϕ
π′
(s)− ϕπ(s) ds||

≤ CrLd||θt+1 − θt|| ( Assumption 5, Lemma 12)
+ Lr||θt+1 − θt|| ( Assumption 10)
+ CrLϕ||θt+1 − θt|| (Assumption 5,Assumption 8)
+ CrLd||θt+1 − θt|| ( Assumption 5, Lemma 12)
+ Lp||θt+1 − θt|| (Lemma 14)
+ CrLϕ||θt+1 − θt|| (Assumption 5,Assumption 8)

=⇒ ||b(θt)− b(θt+1)|| ≤ (2LdCr + 2CrLϕ + Lr + Lp)||θt+1 − θt|| (A.24)

Using equation A.19, equation A.23 and equation A.24 in equation A.18:

||w∗
t − w∗

t+1|| ≤ ||A(θt)
−1 −A(θt+1)

−1|| ||b(θt)||+ ||A(θt+1)
−1|| ||b(θt)− b(θt+1)||

≤ ||A(θt)
−1|| ||A(θt)−A(θt+1)|| ||A(θt+1)

−1|| ||b(θt)||
+ ||A(θt+1)

−1|| ||b(θt)− b(θt+1)||
≤ (2Ld + 4Lϕ + Lt)||A(θt)

−1|| ||A(θt+1)
−1|| ||b(θt)|| ||θt+1 − θt||

+ (2LdCr + 2CrLϕ + Lr + Lp)||A(θt+1)
−1|| ||θt+1 − θt||

Note:

• ||b(θt)|| = ||
∫
dπ(s)(ϕπ(s)(ϕπ(s))⊺) ds|| ≤ Cr (Using Assumption 5)

• From Assumption 12, λmin is the lower bound on eigen values of A(θ) for all θ.

∴ ||w∗
t − w∗

t+1|| ≤
Cr(2Ld + 4Lϕ + Lt)

λ2
min

||θt+1 − θt||

+
(2LdCr + 2CrLϕ + Lr + Lp)

λmin
||θt+1 − θt||

≤ Lw||θt+1 − θt||
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where,

Lw =
Cr(2Ld + 4Lϕ + Lt)

λ2
min

+
(2LdCr + 2CrLϕ + Lr + Lp)

λmin

Lemma 7. Qw
diff is the approximate differential Q-value function parameterized by w. Then there

exist a constant Gθ, independent of policy parameter θ, such that:

|| 1
M

M−1∑
i=0

∇aQ
w
diff (s, a)|a=π(s)∇θπ(s)|| ≤ Gθ

Proof.
||Qw

diff (s, a1)−Qw
diff (s, a2)|| ≤ La||a1 − a2|| (Assumption 6)

=⇒ ||∇aQ
w
diff (s, a)|| ≤ La

=⇒ ||∇aQ
w
diff (s, a)|a=π(s)|| ≤ La

(A.25)

||π(s, θ1)− π(s, θ2)|| ≤ Lπ||θ1 − θ2|| (Assumption 7)
=⇒ ||∇θπ(s)|| ≤ Lπ

(A.26)

Using equation A.25 and equation A.26:

∥ 1

M

M−1∑
i=0

∇aQ
w
diff (s, a)|a=π(s)∇θπ(s)∇θπ(s)||

≤ 1

M

M−1∑
i=0

||∇aQ
w
diff (s, a)|a=π(s)∇θπ(s)∇θπ(s)||

≤ LaLπ = Gθ

Lemma 8. The average reward estimate ρt is bounded.
∀t > 0 |ρt| ≤ Cr + 2Cw

Here, Cw is the upper bound on critic parameter wt (Algorithm 2, step 8), Cr is the upper bound on
rewards (Assumption 5).

Proof.
|ρ0| ≤ Cr + 2Cw (Assumption 11)

For t = 1:

ρ1 = ρ0 + α0

( 1

M

M−1∑
i=0

Rπ(s0,i) + ϕπ(s′0,i)
⊺w̄0 − ϕπ(s0,i)

⊺w̄0 − ρ0

)
= (1− α0)ρ0 + α0

( 1

M

M−1∑
i=0

Rπ(s0,i) + ϕπ(s′0,i)
⊺w̄0 − ϕπ(s0,i)

⊺w̄0

)

|ρ1| ≤ (1− α0)|ρ0|+ α0||
( 1

M

M−1∑
i=0

Rπ(s0,i) + ϕπ(s′0,i)
⊺w̄0 − ϕπ(s0,i)

⊺w̄0

)
||

≤ (1− α0)|ρ0|+ α0

( 1

M

M−1∑
i=0

|Rπ(s0,i)|+ ||ϕπ(s′0,i)|| ||w̄0||+ ||ϕπ(s0,i)|| ||w̄0||
)

≤ (1− α0)(Cr + 2Cw) + (α0)(Cr + 2Cw) = (Cr + 2Cw) (Assumption 11)
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Therefore the bound hold for t = 1.
Let the bound hold for t = k. We will prove that the bound will also hold for k+1

ρk+1 = ρk + αk

( 1

M

M−1∑
i=0

Rπ(sk,i) + ϕπ(s′k,i)
⊺w̄k − ϕπ(sk,i)

⊺w̄k − ρk

)
= (1− αk)ρk + αk

( 1

M

M−1∑
i=0

Rπ(sk,i) + ϕπ(s′k,i)
⊺w̄k − ϕπ(sk,i)

⊺w̄k

)

|ρk+1| ≤ (1− αk)|ρk|+ αk||
( 1

M

M−1∑
i=0

Rπ(sk,i) + ϕπ(s′k,i)
⊺w̄k − ϕπ(sk,i)

⊺w̄k

)
||

≤ (1− αk)|ρk|+ αk

( 1

M

M−1∑
i=0

|Rπ(sk,i)|+ ||ϕπ(s′k,i)|| ||w̄k||+ ||ϕπ(sk,i)|| ||w̄k||
)

≤ (1− αk)(Cr + 2Cw) + (αk)(Cr + 2Cw) = (Cr + 2Cw)

The bound hold for t = k+1 as well. Hence by the principle of mathematical induction :

∀t > 0 |ρt| ≤ Cr + 2Cw

Lemma 9. The norm of target critic estimator w̄t is bounded

∀t > 0 ||w̄t|| ≤ Cw

Here, Cw is the upper bound on critic parameter wt (Algorithm 2, step 8).

Proof. For t=1:

w̄1 = (1− β0)w̄0 + β0w1

||w̄1|| ≤ (1− β0)||w̄0||+ β0||w1||
||w̄1|| ≤ (1− β0)Cw + β0Cw (Assumption 11)
||w̄1|| ≤ Cw

The bound hold for t=1.
Let the bound hold for t = k. We will prove that the bound will also hold for k+1

w̄k+1 = (1− βk)w̄k + βkwk+1

||w̄k+1|| ≤ (1− βk)||w̄k||+ βk||wk+1||
||w̄k+1|| ≤ (1− βk)Cw + βkCw (Assumption 11)
||w̄k+1|| ≤ Cw

The bound hold for t = k+1 as well. Hence by the principle of mathematical induction :

∀t > 0 ||w̄t|| ≤ Cw

Lemma 10. The norm of target average reward estimator ρ̄t is bounded

∀t > 0 ||ρ̄t|| ≤ Cr + 2Cw

Here, Cw is the upper bound on critic parameter wt (Algorithm 2, step 8), Cr is the upper bound on
rewards (Assumption 5).
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Proof. For t=1:

ρ̄1 = (1− β0)ρ̄0 + β0ρ1

||ρ̄1|| ≤ (1− β0)||ρ̄0||+ β0||ρ1||
||ρ̄1|| ≤ (1− β0)(Cr + 2Cw) + β0(Cr + 2Cw) (Assumption 11)
||ρ̄1|| ≤ Cr + 2Cw

The bound hold for t=1.
Let the bound hold for t = k. We will prove that the bound will also hold for k+1

ρ̄k+1 = (1− βk)ρ̄k + βkρk+1

||ρ̄k+1|| ≤ (1− βk)||ρ̄k||+ βk||ρk+1||
||ρ̄k+1|| ≤ (1− βk)(Cr + 2Cw) + βk(Cr + 2Cw) (Assumption 11)
||ρ̄k+1|| ≤ Cr + 2Cw

The bound hold for t = k+1 as well. Hence by the principle of mathematical induction :

∀t > 0 ||ρ̄t|| ≤ Cr + 2Cw

Lemma 11. The A(θ) matrix defined below is negative definite for all values of θ (θ is the policy
parameter).

A(θ) =

∫
dπ(s)(ϕπ(s)(

∫
Pπ(s′|s)ϕπ(s′) ds′ − ϕπ(s))⊺ − ηI) ds

∀x x⊺A(θ)x ≤ −λ||x||2, λ > 0

η is the l2-regularisation coefficient from Algorithm 2 and η > λall
max, where λall

max is defined in the
proof below.

Proof. Let:

A′(θ) =

∫
dπ(s)(ϕπ(s)(

∫
Pπ(s′|s)ϕπ(s′) ds′ − ϕπ(s))⊺) ds = A(θ) + ηI (A.27)

Here, η is the l2-regularization coefficient from Algorithm 2.

x⊺A′(θ)x = x⊺
(A′(θ)⊺ +A′(θ)

2

)
x ≤ λmax(θ)||x||2

Here,
(A′(θ)⊺ +A′(θ)

2

)
is a symmetric matrix and λmax(θ) is the maximum eigen value of the(A′(θ)⊺ +A′(θ)

2

)
. Using λall

max from Assumption 13:

=⇒ x⊺A′(θ)x ≤ λall
max||x||2

x⊺(A′(θ)− ηI)x ≤ (λall
max − η)||x||2

x⊺A(θ)x ≤ (λall
max − η)||x||2 (using A.37)

Here, if we take η > λall
max then we can set λ = η − λall

max.

=⇒ ∀x x⊺A(θ)x ≤ −λ||x||2, λ > 0
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Lemma 12. Let θ1 and θ2 be the policy parameter for π′ and π respectively. dπ
′
(·) and dπ(·) be

the stationary state distribution for π′ and π respectively. Here, DTV denotes the total variation
distance between two probability distribution function. We have:∫

|dπ
′
(s)− dπ(s)| ds = 2DTV (d

π′
, dπ

′
) ≤ Ld||θ1 − θ2||

Here, Ld = 2m+1(⌈logκ a−1⌉ + 1/κ)Lt. Lt is the Lipchitz constant for the transition probability
density function (Assumption 9). Constants a and κ are from Assumption 2, m is the dimension of
state space.

Proof. ∫
|dπ

′
(s)− dπ(s)| ds = 2DTV (d

π′
, dπ) = 2DTV (µ1, µ2)

Let µ1 and µ2 be the stationary state probability measure for π′ and π respectively. Then we have :

dµ1 = dπ
′
(s) ds

dµ2 = dπ(s) ds

Using the result of Theorem 3.1 of Mitrophanov (2005):

2DTV (µ1, µ2) ≤ 2
(
⌈logκ a−1⌉+ 1

κ

)
||K1 −K2|| (A.28)

where K1 and K2 are probability transition kernel for markov chain induced by policy π′ and π.

From equation A.28:

||K1 −K2|| ≤ sup
||g||TV =1

||
∫

g(ds)(K1(·|s)−K2(·|s))||TV

||
∫

g(ds)(K1(·|s)−K2(·|s))||TV ≤ sup
|f |≤1

|
∫∫

f(s′)(K1 − k2)(ds
′|s)g(ds)|

≤ sup
|f |≤1

|
∫∫

f(s′)(Pπ′
(s′|s)− Pπ(s′|s))(s′|s)g(ds)ds′|

≤ sup
|f |≤1

∫∫
|f(s′)| |(Pπ′

(s′|s)− Pπ(s′|s)|g(ds)ds′

≤ Lt||θ1 − θ2||
∫

g(ds)

∫
ds′

≤ 2mLt||θ1 − θ2||

=⇒ ||K1 −K2|| ≤ 2mLt||θ1 − θ2|| (A.29)

From equation A.28 and equation A.29:

∫
|dπ

′
(s)− dπ(s)| ds = 2DTV (d

π′
, dπ

′
) ≤ 2m+1(⌈logκ a−1⌉+ 1

κ
)Lt||θ1 − θ2||

≤ Ld||θ1 − θ2||
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Lemma 13. The optimal critic parameter w∗
ϵ according to compatible function approximation

Lemma (2) is bounded by constant Cw∗
ϵ
.

||w∗
ϵ || ≤ Cw∗

ϵ

Proof. From Lemma2:

∇θρ(π) =

∫
S

dπ(s)∇aQ
π
diff (s, a)|a=π(s)∇θπ(s, θ) ds

=

∫
S

dπ(s)∇aQ
w
diff (s, a)|a=π(s)∇θπ(s, θ) ds

=

∫
S

dπ(s)∇θπ(s, θ)∇θπ(s, θ)
⊺w∗

ϵ ds

= E[∇θπ(s, θ)∇θπ(s, θ)
⊺]w∗

ϵ

Here,
Hθ = E[∇θπ(s, θ)∇θπ(s, θ)

⊺]

∇θρ(π) = Hθw
∗
ϵ

=⇒ w∗
ϵ = H−1

θ ∇θρ(π)

=⇒ ||w∗
ϵ || ≤ ||H−1

θ || ||∇θρ(π)||

By using Assumption 14, the lower bound on minimum eigenvalue of Hθ for all θ is λϵ
min and using

Assumption 6 and 7 :

||w∗
ϵ || ≤

LaLπ

λϵ
min

= Cw∗
ϵ

Lemma 14. The average reward performance metric, defined in 3, ρ(π)(ρ(θ)) is Lipchitz continuous
wrt to the policy (actor) parameter θ.

||ρ(θ1)− ρ(θ2)|| ≤ Lp||θ1 − θ2||

Proof. Let θ1 and θ2 be the policy parameters of policy π′ and π.

||ρ(θ1)− ρ(θ2)|| = ||ρ(π′)− ρ(π)||

= ||
∫
S

dπ
′
(s)Rπ′

(s) ds−
∫
S

dπ(s)Rπ(s) ds||

≤ ||
∫
S

(dπ
′
(s)− dπ(s))Rπ′

(s) ds||+ ||
∫
S

dπ(s)(Rπ′
(s)−Rπ(s)) ds||

≤ Ld||θ1 − θ2|| (Lemma 12)
+ Lr||θ1 − θ2|| (Assumption 10)

≤ (Ld + Lr)||θ1 − θ2|| = Lp||θ1 − θ2|| (Ld + Lr = Lp)

Lemma 15. The optimal critic parameter w(θt)∗ as a function of actor parameter θt is Lipchitz
continuous with constant Lv for off-policy case. Note: w∗

t = w(θt)
∗. µ is the behaviour policy.

||w∗
t − w∗

t+1|| ≤ Lv||θt+1 − θt||
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Proof. η is the l2-regularisation coefficient from Algorithm 3 and η > χall
max, where χall

max is defined
in Lemma 16. Because of carefully setting the value of η, A(θt) is negative definite. Thus, for
on-policy TD(0) with l2-regularization and target estimators, the following condition holds true for
optimal critic parameter w∗

t :

E[(Rµ(s)− ρ∗t )ϕ
π(s) + (ϕπ(s)(E[ϕπ(s′)]− ϕπ(s))⊺ − ηI)w∗

t ] = 0

b(θt) := E[(Rµ(s)− ρ∗t )ϕ
π(s)]

A(θt) := E[(ϕπ(s)(E[ϕπ(s′)]− ϕπ(s))⊺ − ηI)]

∴ b(θt) +A(θt)w
∗
t = 0 =⇒ w∗

t = −A(θt)
−1b(θt)

Expectation above is with respect to stationary state distribution dµ(·) of policy µ. Please note the
abuse of notation here, A(θt) is actually same as Aµ

off (θt) of Lemma 16.

||w∗
t − w∗

t+1|| = ||A(θt)
−1b(θt)−A(θt+1)

−1b(θt+1)||
≤ ||A(θt)

−1b(θt)−A(θt+1)
−1b(θt) +A(θt+1)

−1b(θt)−A(θt+1)
−1b(θt+1)||

≤ ||A(θt)
−1 −A(θt+1)

−1|| ||b(θt)|| 1⃝
+ ||A(θt+1)

−1|| ||b(θt)− b(θt+1)|| 2⃝
(A.30)

From equation A.30:

1⃝:

||A(θt)
−1 −A(θt+1)

−1|| = ||A(θt)
−1A(θt+1)A(θt+1)

−1 −A(θt)
−1A(θt)

A(θt+1)
−1||

≤ ||A(θt)
−1|| ||A(θt)−A(θt+1)|| ||A(θt+1)

−1||
(A.31)

From equation A.31:

Here, π′ and π represents the policy with parameter θt+1 and θt respectively and µ be the behaviour
policy .

||A(θt)−A(θt+1)|| ≤ ||
∫

dµ(s)(ϕπ′
(s)(

∫
Pµ(s′|s)ϕπ′

(s′) ds′ − ϕπ′
(s))⊺ − ηI) ds

−
∫

dµ(s)(ϕπ(s)(

∫
Pµ(s′|s)ϕπ(s′) ds′ − ϕπ(s))⊺ − ηI) ds||

≤ ||
∫

dµ(s)(ϕπ′
(s)(

∫
Pµ(s′|s)ϕπ′

(s′) ds′)⊺) ds

−
∫

dµ(s)(ϕπ(s)(

∫
Pµ(s′|s)ϕπ(s′) ds′)⊺) ds|| 1⃝

≤ ||
∫

dµ(s)(ϕπ(s)(ϕπ(s))⊺) ds−
∫

dµ(s)(ϕπ′
(s)(ϕπ′

(s))⊺) ds|| 2⃝
(A.32)

From equation A.32:
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1⃝:

||
∫

dµ(s)(ϕπ′
(s)(

∫
Pµ(s′|s)ϕπ′

(s′) ds′)⊺) ds−
∫

dµ(s)(ϕπ(s)(

∫
Pµ(s′|s)ϕπ(s′) ds′)⊺) ds||

≤ ||
∫
(dµ(s)− dµ(s))ϕπ′

(s)(

∫
Pµ(s′|s)ϕπ′

(s′) ds′)⊺ ds||

+ ||
∫

dµ(s)(ϕπ′
(s)− ϕπ(s))(

∫
Pµ(s′|s)ϕπ′

(s′) ds′)⊺ ds||

+ ||
∫

dµ(s)ϕπ(s)(

∫
(Pµ(s′|s)− Pµ(s′|s))ϕπ′

(s′) ds′)⊺ ds||

+ ||
∫

dµ(s)ϕπ(s)(

∫
Pµ(s′|s)(ϕπ′

(s′)− ϕπ(s′)) ds′⊺) ds

≤ Lϕ||θt+1 − θt|| (Assumption 8)
+ Lϕ||θt+1 − θt|| (Assumption 8)

||
∫

dµ(s)(ϕπ′
(s)(

∫
Pµ(s′|s)ϕπ′

(s′) ds′)⊺) ds−
∫

dµ(s)(ϕπ(s)(

∫
Pµ(s′|s)ϕπ(s′) ds′)⊺) ds||

≤ 2Lϕ||θt+1 − θt||
(A.33)

From equation A.32:

2⃝:

||
∫

dµ(s)(ϕπ(s)(ϕπ(s))⊺) ds−
∫

dµ(s)(ϕπ′
(s)(ϕπ′

(s))⊺) ds||

≤ ||
∫

dµ(s)(ϕπ(s)− ϕπ′
(s))(ϕπ(s))⊺ ds||

+ ||
∫

dµ(s)ϕπ′
(s)(ϕπ(s)− ϕπ′

(s))⊺ ds||

≤ 2Lϕ||θt+1 − θt||

(A.34)

Using equation A.33 and equation A.34 in equation A.32

||A(θt)−A(θt+1)|| ≤ (4Lϕ + Lt)||θt+1 − θt|| (A.35)

From equation A.30:
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2⃝:

||b(θt)− b(θt+1)|| = ||
∫

dµ(s)((Rµ(s)− ρ∗t+1)ϕ
π′
(s) ds−

∫
dµ(s)(Rµ(s)− ρ∗t )ϕ

π(s) ds||

≤ ||
∫

dµ(s)(Rµ(s)ϕπ′
(s) ds−

∫
dµ(s)Rµ(s)ϕπ(s) ds||

+ ||
∫

dµ(s)ρ∗t+1ϕ
π′
(s) ds−

∫
dµ(s)ρ∗tϕ

π(s) ds||

≤ ||
∫

dµ(s)(Rµ(s)−Rµ(s))ϕπ′
(s) ds||

+ ||
∫

dµ(s)Rµ(s)(ϕπ′
(s)− ϕπ(s) ds||

+ ||
∫

dµ(s)(ρ∗t+1 − ρ∗t )ϕ
π′
(s) ds||

+ ||
∫

dµ(s)ρ∗t (ϕ
π′
(s)− ϕπ(s) ds||

≤ CrLϕ||θt+1 − θt|| (Assumption 5)
+ Lp||θt+1 − θt|| (Lemma 14)
+ CrLϕ||θt+1 − θt|| (Assumption 5)

=⇒ ||b(θt)− b(θt+1)|| ≤ (2CrLϕ + Lp)||θt+1 − θt|| (A.36)

Using equation A.31, equation A.35 and equation A.36 in equation A.30:

||w∗
t − w∗

t+1|| ≤ ||A(θt)
−1 −A(θt+1)

−1|| ||b(θt)||+ ||A(θt+1)
−1|| ||b(θt)− b(θt+1)||

≤ ||A(θt)
−1|| ||A(θt)−A(θt+1)|| ||A(θt+1)

−1|| ||b(θt)||
+ ||A(θt+1)

−1|| ||b(θt)− b(θt+1)||
≤ 4Lϕ||A(θt)

−1|| ||A(θt+1)
−1|| ||b(θt)|| ||θt+1 − θt||

+ (2CrLϕ + Lp)||A(θt+1)
−1|| ||θt+1 − θt||

Note:

• ||b(θt)|| = ||
∫
dµ(s)(ϕπ(s)(ϕπ(s))⊺) ds|| ≤ Cr (Assumption 5)

• Let λmin is the lower bound on eigen values of A(θ) for all θ.

∴ ||w∗
t − w∗

t+1|| ≤
Cr(4Lϕ)

λ2
min

||θt+1 − θt||

+
(2CrLϕ + Lp)

λmin
||θt+1 − θt||

≤ Lv||θt+1 − θt||

where,

Lv =
4CrLϕ

λ2
min

+
CrLϕ

λmin

Lemma 16. The Aµ
off (θ) matrix defined below is negative definite for all values of θ (θ is the policy

parameter). θµ is the policy parameter for behaviour policy µ.

Aµ
off (θ) :=

∫
dµ(s)(ϕπ(s)(

∫
Pπ(s′|s)ϕπ(s′) ds′ − ϕπ(s))⊺ − ηI) ds
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∀x x⊺Aµ
off (θ)x ≤ −λ||x||2, λ > 0

η is the l2-regularisation coefficient from Algorithm 3 and η > χall
max, where χall

max is defined in the
proof below.

Proof. Let:

Aµ
off

′(θ) =

∫
dµ(s)(ϕπ(s)(

∫
Pπ(s′|s)ϕπ(s′) ds′ − ϕπ(s))⊺) ds = Aµ

off (θ) + ηI (A.37)

Here, η is the l2-regularization coefficient from Algorithm 2.

x⊺Aµ
off

′(θ)x = x⊺
(Aµ

off
′(θ)⊺ +Aµ

off
′(θ)

2

)
x ≤ χmax(θ)||x||2

Here,
(Aµ

off
′(θ)⊺ +Aµ

off
′(θ)

2

)
is a symmetric matrix and χmax(θ) is the maximum eigen value of

the
(Aµ

off
′(θ)⊺ +Aµ

off
′(θ)

2

)
. Using χall

max from Assumption 15:

=⇒ x⊺Aµ
off

′(θ)x ≤ χall
max||x||2

x⊺(Aµ
off

′(θ)− ηI)x ≤ (χall
max − η)||x||2

x⊺Aµ
off (θ)x ≤ (χall

max − η)||x||2 (using A.37)

Here, if we take η > χall
max then we can set λ = η − χall

max.

=⇒ ∀x x⊺Aµ
off (θ)x ≤ −λ||x||2, λ > 0

Lemma 17. Let the cumulative error of off-policy actor be
∑T−1

t=0 E||∇̂θρ(θt)||2 and cumulative
error of critic be

∑T−1
t=0 E||∆wt||2. θt and wt are the actor and linear critic parameter at time t. θµ

is the policy parameter for behavior policy µ. Bound on the cumulative error of off-policy actor with
behaviour policy µ is proven using cumulative error of critic as:

1

T

T−1∑
t=0

E||∇̂θρ(θt)||2 ≤ 4
Cr

Cγ
T v−1 + 6C4

π(
1

T

T−1∑
t=0

E||∆wt||2) + 6C4
π(τ

2 +
4

M
C2

w∗
ϵ
)

+ 2
CγLJG

2
θ

1− v
T−v +

Z

T

T−1∑
t=0

E||θµ − θt||2

Here, Cr is the upper bound on rewards (Assumption 5) , Cγ , v are constants used for step size
γt (Assumption 3, ∥∇θπ(s)∥ ≤ Cπ (Assumption 7), ∆wt = wt − w∗

t , τ = maxt ∥w∗
t − w∗

ϵ,t∥,
w∗

ϵ is the optimal critic parameter according to Lemma2. w∗
t is the optimal parameters given

by TD(0) algorithm corresponding to policy parameter θt. Constant Cw∗
ϵ

is defined in Lemma
13. LJ is the coefficient used in smoothness condition of the non convex function ρ(θ). Constant
Gθ is defined in Lemma 7. M is the size of batch of samples used to update parameters. Z =
2m+1C(⌈logκ a−1⌉ + 1/κ)Lt with Lt being the Lipchitz constant for the transition probability
density function (Assumption 9). Constants a and κ are from Assumption 2, m is the dimension of
state space, and C = maxs ∥∇aQ

π
diff (s, a)|a=π(s)∇θπ(s, θ)∥.
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Proof.

1

T

T−1∑
t=0

E||∇̂θρ(θt)||2 =
1

T

T−1∑
t=0

E||∇θρ(θt) + ∇̂θρ(θt)−∇θρ(θt)||2

≤ 1

T

T−1∑
t=0

E||∇θρ(θt)||2 +
1

T

T−1∑
t=0

E||∇̂θρ(θt)−∇θρ(θt)||2

Using Theorem 2 and Lemma 3:

1

T

T−1∑
t=0

E||∇̂θρ(θt)||2 ≤ 4
Cr

Cγ
T v−1 + 6C4

π(
1

T

T−1∑
t=0

E||∆wt||2) + 6C4
π(τ

2 +
4

M
C2

w∗
ϵ
)

+ 2
CγLJG

2
θ

1− v
T−v +

Z

T

T−1∑
t=0

E||θµ − θt||2

Theorem 4. The off-policy average reward actor critic algorithm (Algorithm 3) with behavior policy
µ obtains an ϵ-accurate optimal point with sample complexity of Ω(ϵ−2.5). Here θµ refers to the
behavior policy parameter and θt refers to the target or current policy parameter. We obtain

min
0≤t≤T−1

E∥∇̂θρ(θt)∥2 = O
(

1

T 0.4

)
+O(1) +O(W 2

θ )

≤ ϵ+O(1) +O(W 2
θ )

where Wθ := max
t

∥θµ − θt∥.

Proof. Lemma 4 and Lemma 5 will hold in the case of off-policy update. Lemma 4 will require
Lemma 15 instead of Lemma 6.

Using Lemma 4 and Lemma 5 and using the procedure followed in Theorem 3 to obtain asymptotic
notations, we have:

1

T

T−1∑
t=0

E||∆wt||2 = O
(

1

T 1−σ

)
+O

(
1

Tσ

)
+O

(
1

T 2(v−σ)

)
+O(1) (A.38)

Using Lemma 17 and equation A.38:

min
0≤t≤T−1

E||∇̂θρ(θt)||2 = O
(

1

T 1−v

)
+O

(
1

T v

)
+O

(
1

T 1−σ

)
+O

(
1

Tσ

)
+O

(
1

T 2(v−σ)

)
+O(1) +

Z

T

T−1∑
t=0

E||θµ − θt||2

By setting v = 3/5 and σ = 2/5, we obtain:

44



Under review as a conference paper at ICLR 2023

min
0≤t≤T−1

E||∇̂θρ(θt)||2 = O
(

1

T 0.4

)
+O(1) +

Z

T

T−1∑
t=0

E||θµ − θt||2

= O
(

1

T 0.4

)
+O(1) + ZN2

θ

= O
(

1

T 0.4

)
+O(1) +O(N2

θ ).

Further,

O
(

1

T 0.4

)
≤ ϵ.

Hence, the sample complexity of off-policy average reward actor-critic algorithm is Ω(ϵ−2.5).

A.2 BOUNDEDNESS OF CRITIC PARAMETER

In this section we prove the critic parameter w used in Algorithm 2 and 3 is bounded even without
using projection operator ΓCw

defined as ΓCw
: Rk → B, where B(⊂ Rk) is a compact convex set.

Let policy π is parameterized by θ.

For simplicity of proof we are assuming the batch size M to be 1. Critic parameter wt ∈ Rk,
ϕπ(s) ∈ Rk and ρt is a scalar. Let the update rules used for critic parameter and average reward
estimator be as follows:

wt+1 = wt + αt

(
Rπ(st)− ρ̄t + ϕπ(s′t)

⊺w̄t − ϕπ(st)
⊺wt

)
ϕπ(st)− αtηwt

ρt+1 = ρt + αt

(
Rπ(st)− ρt + ϕπ(s′t)

⊺w̄t − ϕπ(st)
⊺w̄t

)
wt+1 = wt + βt(wt+1 − wt+1)

ρt+1 = ρt + βt(ρt+1 − ρt+1)

(A.39)

Let us define zt as [wt ρt]
⊺ and z̄t as [w̄t ρ̄t]

⊺. 0 is a vector in Rk and I0 is an identity matrix in
R(k+1)×(k+1) with I0[k][k] = 0 (assuming indexing starts from 0).

[
wt+1

ρt+1

]
=

[
wt

ρt

]
+ αt

(
Rπ(st)

[
ϕπ(st)

1

]
+

[
ϕπ(st)ϕ

π(s′t)
⊺ −ϕπ(st)

ϕπ(s′t)
⊺ − ϕπ(st)

⊺ 0

] [
w̄t

ρ̄t

]

−
[
ϕπ(st)ϕ

π(st)
⊺ 0

0⊺ 1

] [
wt

ρt

]
− ηI0

[
wt

ρt

])
[
w̄t+1

ρ̄t+1

]
=

[
w̄t

ρ̄t

]
+ βt

([
wt+1

ρt+1

]
−
[
w̄t

ρ̄t

])
(A.40)

Here, Rπ(st)

[
ϕπ(st)

1

]
= Rπ

ϕ(st), Aϕ(st, s
′
t) =

[
ϕπ(st)ϕ

π(s′t)
⊺ −ϕπ(st)

ϕπ(s′t)
⊺ − ϕπ(st)

⊺ 0

]
and Bϕ(st) =[

ϕπ(st)ϕ
π(st)

⊺ 0
0⊺ 1

]

zt+1 = zt + αt

(
Rπ

ϕ(st) +Aϕ(st, s
′
t)z̄t − (Bϕ(st) + ηI0)zt

)
z̄t+1 = z̄t + βt(zt+1 − z̄t)

(A.41)

Now, we will use the extension of stability criteria for iterates given Borkar & Meyn (2000) to two
timescale stochastic approximation scheme (Lakshminarayanan & Bhatnagar, 2017) to show the
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boundedness of the critic parameter and average reward estimator together. Let us write A.41 in the
standard form of stochastic approximation scheme.

zt+1 = zt + αt

(
h(zt, z̄t) +M1

t+1

)
Let, R̄π

ϕ =
∫
S
dπ(st)R

π
ϕ(st) dst, Āϕ =

∫
S
dπ(st)

∫
S
Pπ(s′t|st)Aϕ(st, s

′
t) ds

′
t dst, B̄ϕ =∫

S
dπ(st)Bϕ(st) st

Here,

h(zt, z̄t) =

∫
S

dπ(st)
(
Rπ

ϕ(st) +Aϕ(st, s
′
t)z̄t − (Bϕ(st) + ηI0)zt

)
dst

=R̄π
ϕ + Āϕz̄t − (B̄ϕ + ηI0)zt

M1
t+1 =Rπ

ϕ(st) +Aϕ(st, s
′
t)z̄t − (Bϕ(st) + ηI0)zt − h(zt, z̄t)

z̄t+1 = z̄t + βt

(
g(zt, z̄t) +M2

t+1 + ϵ(n)
)

Here,
g(zt, z̄t) =λ(z̄t)− z̄t

M2
t+1 =0

λ(z̄t) =(Bϕ + ηI0)
−1(Rπ

ϕ +Aϕz̄t)

ϵ(n) =zt+1 − λ(z̄t)

λ(z̄t) is the unique globally asymptotically stable equilibrium point of the ODE ż = h(z(t), z̄). λ
used here has no relation to usage of λ in any other section of the paper. Using Lemma 1 of Chapter
6 of (Borkar, 2009), we have ∥zt+1 − λ(z̄t)∥ → 0. Hence ϵ(n) = o(1). Therefore we can use the
conclusion of (Lakshminarayanan & Bhatnagar, 2017).

We will now satisfy condition A1 till condition A5 of (Lakshminarayanan & Bhatnagar, 2017) to
prove the boundedness of the critic parameter:

Condition A1:
∥h(z1, z̄1)− h(z2, z̄2)∥ = ∥Āϕ(z̄1 − z̄2)− (B̄ϕ + ηI0)(z1 − z2)∥

≤ ∥Āϕ∥∥z̄1 − z̄2∥+ ∥B̄ϕ + ηI0∥∥z1 − z2∥
≤ max(∥Āϕ∥, ∥B̄ϕ + ηI0∥)(∥z̄1 − z̄2∥+ ∥∥z1 − z2∥)
= Lh(∥z̄1 − z̄2∥+ ∥∥z1 − z2∥) (Lh = max(∥Āϕ∥, ∥B̄ϕ + ηI0∥))

(A.42)

Therefore, h(z, z̄) is Lipchitz continuous with constant Lh.

∥g(z1, z̄1)− g(z2, z̄2)∥ = ∥((B̄ϕ + ηI0)Aϕ − I)(z̄1 − z̄2)∥
≤ ∥((B̄ϕ + ηI0)Aϕ − I)∥∥z̄1 − z̄2∥
= Lg∥z̄1 − z̄2∥ (Lg = ∥((B̄ϕ + ηI0)Aϕ − I)∥)

(A.43)

Therefore, g(z, z̄) is Lipchitz continuous with constant Lg .

Using A.42 and A.43, condition A1 is satisfied.

Condition A2:
Let us define an increasing sequence of σ−fields {Ft} as {zm, z̄m,M1

m,M2
m,m ≤ t}.

E[M1
t+1|Ft] = E[Rπ

ϕ(st) +Aϕ(st, s
′
t)z̄t − (Bϕ(st) + ηI0)zt − h(zt, z̄t)|Ft]

=

∫
S

dπ(st)
(
Rπ

ϕ(st) +Aϕ(st, s
′
t)z̄t − (Bϕ(st) + ηI0)zt

)
dst − h(zt, z̄t)

= 0
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E[M2
t+1|Ft] = 0

Hence, {M1
t} and {M2

t} are martingale difference sequence.

∥M1
t+1∥2 = ∥(Rπ

ϕ(st)− R̄ϕ) + (Aϕ(st, s
′
t)− Āϕ)z̄t − (Bϕ(st)− B̄ϕ(st))zt∥2

≤ 3(∥Rπ
ϕ(st)− R̄ϕ∥2 + ∥(Aϕ(st, s

′
t)− Āϕ)∥2∥z̄t∥2 + ∥Bϕ(st)− B̄ϕ(st))∥2∥zt∥2)

≤ K1(1 + ∥zt∥2 + ∥z̄t∥2)

Here, K1 = 6max(∥Rπ
ϕ(st)∥, ∥(Aϕ(st, s

′
t)∥, ∥Bϕ(st)∥) and it follows from Assumption 4 and 5.

We have, E[∥M1
t+1∥2||Ft] ≤ K1(1+∥zt∥2+∥z̄t∥2) and E[∥M2

t+1∥2||Ft] ≤ K2(1+∥zt∥2+∥z̄t∥2).
K2 can be any positive constant. Hence condition A2 is satisfied.

Condition A3:

We have,
∑

t αt =
∑

t
Cα

(1+t)σ = ∞,
∑

t βt =
∑

t
Cβ

(1+t)u = ∞ and
∑

t(α
2
t + β2

t ) =∑
t

(
( Cα

(1+t)σ )
2+(

Cβ

(1+t)u )
2
)
< ∞. We can carefully set the value of σ and u to satisfy the conditions

on step sizes.

Condition A4:

hc(z, z̄) :=
h(cz, cz̄)

c

hc(z, z̄) =
R̄π

ϕ + cĀϕz̄t − c(B̄ϕ + ηI0)zt

c

lim
c→∞

hc(z, z̄) = lim
c→∞

R̄π
ϕ + cĀϕz̄t − c(B̄ϕ + ηI0)zt

c
= Āϕz̄t − (B̄ϕ + ηI0)zt

Let us define h∞(zt, z̄t) := Āϕz̄t − (B̄ϕ + ηI0)zt.The ODE ż(t) := h∞(z(t), z̄) has a unique
globally asymptotically stable equilibrium point λ∞(z̄) = (B̄ϕ + ηI0)

−1Āϕz̄ if (B̄ϕ + ηI0) is
positive definite matrix. Let Cϕ =

∫
S
dπ(st)ϕ

π(st)ϕ
π(st)

⊺ dst.

B̄ϕ + ηI0 =

[
Cϕ + ηI 0

0⊺ 1

]
[w⊺ ρ]

[
Cϕ + ηI 0

0⊺ 1

] [
w
ρ

]
= w⊺(Cϕ + ηI)w + ρ2

If η is strictly greater than negative of the minimum eigenvalue of Cϕ then,

∀
[
w
p

]
̸=
[
0
0

]
[w⊺ ρ]

[
Cϕ + ηI 0

0⊺ 1

] [
w
ρ

]
> 0

∀
[
w
p

]
̸=
[
0
0

]
[w⊺ ρ]

[
B̄ϕ + ηI0

] [w
ρ

]
> 0

(A.44)

Hence, for η + λmin(Cϕ) > 0, B̄ϕ + ηI0 is positive definite matrix. Therefore, the ODE
ż(t) := h∞(z(t), z̄) has a unique globally asymptotically stable equilibrium point λ∞(z̄) and
λ∞(0) = 0. Condition A4 is satisfied.

Condition A5:
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gc(z̄) :=
g(cλ∞(z̄), cz̄)

c

gc(z̄) =
(B̄ϕ + ηI0)

−1(Rπ
ϕ + cAϕz̄)− cz̄

c

lim
c→∞

gc(z̄) = lim
c→∞

(B̄ϕ + ηI0)
−1(Rπ

ϕ + cAϕz̄)− cz̄

c

= (B̄ϕ + ηI0)
−1Aϕz̄ − z̄

(A.45)

Let us define g∞ := ((B̄ϕ + ηI0)
−1Aϕ − I)z̄. The ODE ˙̄z(t) = g∞(z̄(t)) has origin as its unique

globally asymptotically stable equilibrium if I − (B̄ϕ + ηI0)
−1Aϕ is positive definite matrix.

∥ · ∥ refers to L2-norm. λi are the eigenvalues of the matrix Cϕ. Let us assume the following:

max(1,max
i

(
1

λi + η
)) = ∥(B̄ϕ + ηI0)

−1∥ ≤ 1

∥Aϕ∥
=⇒ ∥(B̄ϕ + ηI0)

−1∥∥Aϕ∥ < 1

=⇒ ∥x∥∥(B̄ϕ + ηI0)
−1∥∥Aϕ∥∥x∥ < ∥x∥2

=⇒ ∥x⊺(B̄ϕ + ηI0)
−1Aϕx∥ < ∥x∥2

=⇒ x⊺(B̄ϕ + ηI0)
−1Aϕx < ∥x∥2

=⇒ x⊺(I − (B̄ϕ + ηI0)
−1Aϕ)x > 0

(A.46)

Hence, if max(1,maxi(
1

λi+η )) <
1

∥Aϕ∥ , then I−(B̄ϕ+ηI0)
−1Aϕ is positive definite matrix. There-

fore, the ODE ˙̄z(t) = g∞(z̄(t)) has origin as its unique globally asymptotically stable. Condition A5
is satisfied.

Let us the consider the ODE ż(t) = h(z(t), z̄). Here, h(z(t), z̄) = R̄π
ϕ + Āϕz̄ − (B̄ϕ + ηI0)zt

As earlier, for η + λmin(Cϕ) > 0, B̄ϕ + ηI0 is positive definite matrix. Therefore, the ODE
ż(t) := h(z(t), z̄) has a unique globally asymptotically stable equilibrium point λ(z̄) = (Bϕ +
ηI0)

−1(Rπ
ϕ +Aϕz̄t).

Conditions A1 to A5 are satisfied, therefore supt ∥zt∥ < ∞, which implies iterates are bounded.
Hence critic parameter wt is bounded.
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B ALGORITHM AND HYPERPARAMETERS

B.1 (OFF-POLICY) ARO-DDPG PRACTICAL ALGORITHM

Algorithm 1 (Off-Policy) ARO-DDPG Practical Algorithm

Initialize actor parameter θ and critic parameters w1, w2.Initialize actor target parameter θ → θ
Initialize critic target parameters w1 → w1, w2 → w2. Initialize average reward parameter ρ.
Initialize target average reward parameter ρ → ρ. Initialize Replay buffer = {}

1: t = 0, s0 = env.reset()
2: while t ≤ total steps do
3: at = π(st) + ϵ {ϵ denotes the noise}
4: st+1 ∼ P (·|st, at) and rt = R(st, at)
5: Store {st, at, st+1} in the Replay Buffer
6: if t % eval_freq == 0 then
7: Evaluate(agent)
8: end if
9: if t % critic_update_freq == 0 then

10: Update critic according to (24) - (27)
11: end if
12: if t % actor_update_freq == 0 then
13: Update actor according to (28) - (29)
14: Update target estimators according to (30) - (32)
15: end if
16: if st+1 is terminal then
17: st = env.reset()
18: else
19: st = st+1

20: end if
21: end while

B.2 FINITE TIME ANALYSIS ALGORITHM

Here we present the algorithm with linear function approximator for which finite time analysis was
done. Bt denotes the batch of tuple of the form {si, ai, s′i} sampled from the buffer at timestep t.
ΓCw

is a projection operator defined as ΓCw
: Rk → B, where B(⊂ Rk) is a compact convex set.

Here, the critic parameter w ∈ Rk.
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Algorithm 2 On-policy AR-DPG with Linear FA

Initialize actor parameter θ and critic parameters w. Initialize actor target parameter θ → θ.
Initialize critic target parameters w → w.Initialize average reward parameter ρ
Initialize target average reward parameter ρ → ρ
Initialize buffer = {}

1: t = 0, s0 = env.reset()
2: while t ≤ total steps do
3: at = π(st) + ϵ {ϵ is the noise}
4: st+1 ∼ P (·|st, at) and rt = R(st, at)
5: Store {st, at, st+1} in the Buffer
6: if t % critic_update_freq == 0 then
7: Sample Bt = {si, ai, s′i}

M−1
i=0 from the Replay Buffer

8: wt+1 = ΓCw

(
wt+

αt

M

∑M−1
i=0

(
Rπ(si)− ρ̄t+ϕπ(s′i)

⊺w̄t−ϕπ(si)
⊺wt

)
ϕπ(si)−αtηwt

)
9: ρt+1 = ρt +

αt

M

∑M−1
i=0

(
Rπ(si)− ρt + ϕπ(s′i)

⊺w̄t − ϕπ(si)
⊺w̄t

)
10: wt+1 = wt + βt(wt+1 − wt+1)
11: ρt+1 = ρt + βt(ρt+1 − ρt+1)

12: θt+1 = θt +
γt
M

∑M−1
i=0 ∇aQ

w
diff (si, a)|a=π(si)∇θπ(si)

13: buffer = {}
14: end if
15: if st+1 is terminal then
16: st = env.reset()
17: else
18: st = st+1

19: end if
20: end while

Algorithm 3 Off-policy AR-DPG with Linear FA
Initialize actor parameter θ and critic parameters w
Initialize actor target parameter θ → θ and
Initialize critic target parameters w → w
Initialize average reward parameter ρ and
Initialize target average reward parameter ρ → ρ
µ is the behavior policy
Initialize Replay buffer = {}

1: t = 0, s0 = env.reset()
2: while t ≤ total steps do
3: at = µ(st) + ϵ {ϵ is the noise}
4: st+1 ∼ P (·|st, at) and rt = R(st, at)
5: Store {st, at, st+1} in the Replay Buffer
6: Sample Bt = {si, ai, s′i}

M−1
i=0 from the Replay Buffer

7: wt+1 = ΓCw

(
wt +

αt

M

∑M−1
i=0

(
Rµ(si)− ρ̄t + ϕπ(s′i)

⊺w̄t − ϕπ(si)
⊺wt

)
ϕπ(si)− αtηwt

)
8: ρt+1 = ρt +

αt

M

∑M−1
i=0

(
Rµ(si)− ρt + ϕπ(s′i)

⊺w̄t − ϕπ(si)
⊺w̄t

)
9: wt+1 = wt + βt(wt+1 − wt+1)

10: ρt+1 = ρt + βt(ρt+1 − ρt+1)

11: θt+1 = θt +
γt
M

∑M−1
i=0 ∇aQ

w
diff (si, a)|a=π(si)∇θπ(si)

12: if st+1 is terminal then
13: st = env.reset()
14: else
15: st = st+1

16: end if
17: end while
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B.3 HYPERPARAMETERS

Hyperparameter Value
Buffer Size 1e6

Total Environment Steps 1e6
Batch size 256

Evaluation Frequency 5000
Training Episode Length 1000

Evaluation Episode Length 10000
Activation Function ReLU
Learning rate Actor 3e-4
Learning rate Critic 3e-4

Learning rate Average reward parameter 3e-4
No. of Hidden Layers 2

No. of Nodes in Hidden Layer 128
Update frequency 10 steps

No. of Critic updates 10
No. of Actor updates 5

Polyak averaging constant 0.995
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