
Reinforcement Learning with
Automated Auxiliary Loss Search

Tairan He1⇤ Yuge Zhang2 Kan Ren2† Minghuan Liu1

Che Wang3 Weinan Zhang1 Yuqing Yang2 Dongsheng Li2
1Shanghai Jiao Tong University 2Microsoft Research Asia 3New York University

whynot@sjtu.edu.cn kan.ren@microsoft.com

Abstract

A good state representation is crucial to solving complicated reinforcement learning
(RL) challenges. Many recent works focus on designing auxiliary losses for learn-
ing informative representations. Unfortunately, these handcrafted objectives rely
heavily on expert knowledge and may be sub-optimal. In this paper, we propose a
principled and universal method for learning better representations with auxiliary
loss functions, named Automated Auxiliary Loss Search (A2LS), which automat-
ically searches for top-performing auxiliary loss functions for RL. Specifically,
based on the collected trajectory data, we define a general auxiliary loss space of
size 7.5⇥ 1020 and explore the space with an efficient evolutionary search strategy.
Empirical results show that the discovered auxiliary loss (namely, A2-winner)
significantly improves the performance on both high-dimensional (image) and low-
dimensional (vector) unseen tasks with much higher efficiency, showing promising
generalization ability to different settings and even different benchmark domains.
We conduct a statistical analysis to reveal the relations between patterns of auxiliary
losses and RL performance. The codes and supplementary materials are available
at https://seqml.github.io/a2ls.

1 Introduction

Reinforcement learning (RL) has achieved remarkable progress in games [31, 47, 50], financial
trading [8] and robotics [13]. However, in its core part, without designs tailored to specific tasks,
general RL paradigms are still learning implicit representations from critic loss (value predictions)
and actor loss (maximizing cumulative reward). In many real-world scenarios where observations are
complicated (e.g., images) or incomplete (e.g., partial observable), training an agent that is able to
extract informative signals from those inputs becomes incredibly sample-inefficient.

Therefore, many recent works have been devoted to obtaining a good state representation, which
is believed to be one of the key solutions to improve the efficacy of RL [23, 24]. One of the main
streams is adding auxiliary losses to update the state encoder. Under the hood, it resorts to informative
and dense learning signals in order to encode various prior knowledge and regularization [40], and
obtain better latent representations. Over the years, a series of works have attempted to figure out
the form of the most helpful auxiliary loss for RL. Quite a few advances have been made, including
observation reconstruction [51], reward prediction [20], environment dynamics prediction [40, 6, 35],
etc. But we note two problems in this evolving process: (i) each of the loss designs listed above are
obtained through empirical trial-and-errors based on expert designs, thus heavily relying on human
labor and expertise; (ii) few works have used the final performance of RL as an optimization objective
to directly search the auxiliary loss, indicating that these designs could be sub-optimal.

⇤The work was conducted during Tairan He’s internship at Microsoft Research.
†The corresponding author is Kan Ren.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://seqml.github.io/a2ls

Replay Buffer
State

Encoder

Policy Network
&

 Q Network

Auxiliary
Loss

RL
Loss

Data
Gradient Inner Loop (RL training) Outer Loop (Evolution)

RL Training Scores

Auxiliary Loss Candidates

Auxiliary
Loss

Select Top 25%

Mutation

Loss Rejection
Reject

Figure 1: Overview of A2LS. A2LS contains an inner loop (left) and an outer loop (right). The
inner loop performs an RL training procedure with searched auxiliary loss functions. The outer loop
searches auxiliary loss functions using an evolutionary algorithm to select the better auxiliary losses.

To resolve the issues of the existing handcrafted solution mentioned above, we decide to automate
the process of designing the auxiliary loss functions of RL and propose a principled solution named
Automated Auxiliary Loss Search (A2LS). A2LS formulates the problem as a bi-level optimization
where we try to find the best auxiliary loss, which, to the most extent, helps train a good RL agent.
The outer loop searches for auxiliary losses based on RL performance to ensure the searched losses
align with the RL objective, while the inner loop performs RL training with the searched auxiliary
loss function. Specifically, A2LS utilizes an evolutionary strategy to search the configuration of
auxiliary losses over a novel search space of size 7.5⇥ 1020 that covers many existing solutions. By
searching on a small set of simulated training environments of continuous control from Deepmind
Control suite (DMC) [43], A2LS finalizes a loss, namely A2-winner.

To evaluate the generalizability of the discovered auxiliary loss A2-winner, we test A2-winner on
a wide set of test environments, including both image-based and vector-based (with proprioceptive
features like positions, velocities and accelerations as inputs) tasks. Extensive experiments show the
searched loss function is highly effective and largely outperforms strong baseline methods. More
importantly, the searched auxiliary loss generalizes well to unseen settings such as (i) different
robots of control; (ii) different data types of observation; (iii) partially observable settings; (iv)
different network architectures; and (v) even to a totally different discrete control domain (Atari 2600
games [1]). In the end, we make detailed statistical analyses on the relation between RL performance
and patterns of auxiliary losses based on the data of whole evolutionary search process, providing
useful insights on future studies of auxiliary loss designs and representation learning in RL.

2 Problem Formulation and Background

We consider the standard Markov Decision Process (MDP) E where the state, action and reward
at time step t are denoted as (st, at, rt). The sequence of rollout data sampled by the agent in the
episodic environment is (s0, . . . , st, at, rt, st+1, · · · , sT), where T represents the episode length.
Suppose the RL agent is parameterized by ! (either the policy ⇡ or the state-action value function Q),
with a state encoder g✓ parameterized by ✓ ✓ ! which plays a key role for representation learning in
RL. The agent is required to maximize its cumulative rewards in environment E by optimizing !,
noted as R(!; E) = E⇡[

PT�1
t=0 rt].

In this paper, we aim to find the optimal auxiliary loss function LAux such that the agent can reach the
best performance by optimizing ! under a combination of an arbitrary RL loss function LRL together
with an auxiliary loss LAux. Formally, our optimization goal is:

max
LAux

R(min
!

LRL(!; E) + �LAux(✓; E); E) , (1)

where � is a hyper-parameter balancing the relative weight of the auxiliary loss. The left part (inner
loop) of Figure 1 illustrates how data and gradients flow in RL training when an auxiliary loss is
enabled. Some instances of LRL and LAux are given in Appendix B. Unfortunately, existing auxiliary
losses LAux are handcrafted, which heavily rely on expert knowledge, and may not generalize well

2

Table 1: Typical solution with auxiliary loss and their common elements.

Auxiliary Loss Operator Input Elements

Horizon Source Target
Forward dynamics [35, 40, 6] MSE 1 {st, at} {st+1}

Inverse dynamics MSE 1 {at, st+1} {st}
Reward prediction [20, 6] MSE 1 {st, at} {rt}
Action inference [40, 6] MSE 1 {st, st+1} {at}

CURL [23] Bilinear 1 {st} {st}
ATC [42] Bilinear k {st} {st+1, · · · , st+k}
SPR [39] N-MSE k {st, at, at+1, · · · , at+k�1} {st+1, · · · , st+k}

in different scenarios as shown in the experiment part. To find better auxiliary loss functions for
representation learning in RL, we introduce our principled solution in the following section.

3 Automated Auxiliary Loss Search

To meet our goal of finding top-performing auxiliary loss functions without expert assignment, we
turn to the help of automated loss search, which has shown promising results in the automated
machine learning (AutoML) community [27, 28, 48]. Correspondingly, we propose Automated
Auxiliary Loss Search (A2LS), a principled solution for resolving the above bi-level optimization
problem in Equation 1. A2LS resolves the inner problem as a standard RL training procedure; for the
outer one, A2LS defines a finite and discrete search space (Section 3.1), and designs a novel evolution
strategy to efficiently explore the space (Section 3.2).

3.1 Search Space Design

We have argued that almost all existing auxiliary losses require expert knowledge, and we expect to
search for a better one automatically. To this end, it is clear that we should design a search space that
satisfies the following desiderata.

• Generalization: the search space should cover most of the existing handcrafted auxiliary losses to
ensure the searched results can be no worse than handcrafted losses;

• Atomicity: the search space should be composed of several independent dimensions to fit into any
general search algorithm [30] and support an efficient search scheme;

• Sufficiency: the search space should be large enough to contain the top-performing solutions.

Given the criteria, we conclude and list some existing auxiliary losses in Table 1 and find their
commonalities, as well as differences. We realize that these losses share similar components and
computation flow. As shown in Figure 2, when training the RL agent, the loss firstly selects a sequence
{st, at, rt}i+k

t=i from the replay buffer, when k is called horizon. The agent then tries to predict some
elements in the sequence (called target) based on another picked set of elements from the sequence
(called source). Finally, the loss calculates and minimizes the prediction error (rigorously defined
with operator). To be more specific, the encoder part g✓ of the agent, first encodes the source into
latent representations, which is further fed into a predictor h to get a prediction y; the auxiliary loss is
computed by the prediction y and the target ŷ that is translated from the target by a target encoder g✓̂,
using an operator f . The target encoder is updated in an momentum manner as shown in Figure 2
(details are given in Appendix C.1.2). Formally,

LAux(✓; E) = f
⇣
h
�
g✓(seqsource)

�
, g✓̂(seqtarget)

⌘
, (2)

where seqsource, seqtarget ✓ {st, at, rt}i+k
t=i are both subsets of the candidate sequence. And for

simplicity, we will denote g✓(st, at, rt, st+1, · · ·) as short for [g✓(st), at, rt, g✓(st+1), · · ·] for the
rest of this paper (the encoder g only deals with states {si}). Thereafter, we observe that these
existing auxiliary losses differ in two dimensions, i.e., input elements and operator, where input

elements are further combined by horizon, source and target. These differences compose our search
dimensions of the whole space. We then illustrate the search ranges of these dimensions in detail.

Input elements. The input elements denote all inputs to the loss functions, which can be further

3

Input Elements

Encoder Target Encoder

Predictor

Operator

Auxiliary Loss

momentum update

stop-grad

Example of forward dynamics prediction (horizon k=1)

Input Elements

Operator
Search Space

.

Horizon

TargetSource

Figure 2: Overview of the search space {I, f} and the computation graph of auxiliary loss functions.
I selects a candidate sequence {st, at, rt}i+k

t=i with horizon k; then determine a source and a target

as arbitrary subsets of the sequence; an encoder g✓ first encodes the source into latent representations,
which is fed into a predictor h to get a prediction y; the auxiliary loss is computed over the prediction
y and the ground truth ŷ that is translated from the target by a target encoder g✓̂, using a operator f .

disassembled as horizon, source and target. Different from previous automated loss search works, the
target here is not “ground-truth” because auxiliary losses in RL have no labels beforehand. Instead,
both source and target are generated via interacting with the environment in a self-supervised manner.
Particularly, the input elements first determine a candidate sequence {st, at, rt}i+k

t=i with horizon k.
Then, it chooses two subsets from the candidate sequence as source and target respectively. For
example, the subsets can be {st}, {st, st+1}, or {st, rt+1, at+2}, {st, st+1, at+1}, etc.

Operator. Given a prediction y and its target ŷ, the auxiliary loss is computed by an operator
f , which is often a similarity measure. In our work, we cover all different operators f used by
the previous works, including inner product (Inner) [17, 42], bilinear inner product (Bilinear) [23],
cosine similarity (Cosine) [3], mean squared error (MSE) [35, 6] and normalized mean squared error
(N-MSE) [39]. Additionally, other works also utilize contrastive objectives, e.g., InfoNCE loss [33],
incorporating the trick to sample un-paired predictions and targets as negative samples and maximize
the distances between them. This technique is orthogonal to the five similarity measures mentioned
above, so we make it optional and create 5⇥ 2 = 10 different operators in total.

Final design. In the light of preceding discussion, with the definition of input elements and operator,
we finish the design of the search space, which satisfactorily meets the desiderata mentioned above.
Specifically, the space is generalizable to cover most of the existing handcrafted auxiliary losses;
additionally, the atomicity is embodied by the compositionality that all input elements work with
any operator; most importantly, the search space is sufficiently large with a total size of 7.5⇥ 1020

(detailed calculation can be found in Appendix E) to find better solutions.

3.2 Search Strategy

The success of evolution strategies in exploring large, multi-dimensional search space has been proven
in many works [19, 4]. Similarly, A2LS adopts an evolutionary algorithm [37] to search for top-
performing auxiliary loss functions over the designed search space. In its essence, the evolutionary
algorithm (i) keeps a population of loss function candidates; (ii) evaluates their performance; (iii)
eliminates the worst and evolves into a new better population. Note that step (ii) of “evaluating” is
very costly because it needs to train the RL agents with dozens of different auxiliary loss functions.
Therefore, our key technical contribution contains how to further reduce the search cost (Section 3.2.1)
and how to make an efficient search procedure (Section 3.2.2).

3.2.1 Search Space Pruning

In our preliminary experiment, we find out the dimension of operator in the search space can be
simplified. In particular, MSE outperforms all the others by significant gaps in most cases. So we
effectively prune other choices of operators except MSE. See Appendix D.1 for complete comparative
results and an ablation study on the effectiveness of search space pruning.

4

Horizon decrease

Horizon increase

Replacement

Crossover

Mask before mutation Mask After mutation

Changed by
Muation

Selected

Not Selected

Figure 3: Four types of mutation strategy for evolution. We represent both the source and the target

of the input elements as a pair of binary masks, where each bit of the binary mask represents selected

(green block) by 1 or not selected (white block) by 0.

3.2.2 Evolution Procedure

Our evolution procedure roughly contains four important components: (i) evaluation and selection:
a population of candidate auxiliary losses is evaluated through an inner loop of RL training, then we
select the top candidates for the next evolution stage (i.e., generation); (ii) mutation: the selected
candidates mutate to form a new population and move to the next stage; (iii) loss rejection: filter
out and skip evaluating invalid auxiliary losses for the next stage; and (iv) bootstrapping initial
population: assign more chance to initial auxiliary losses that may contain useful patterns by prior
knowledge for higher efficiency. The step-by-step evolution algorithm is provided in Algorithm 1 in
the appendix, and an overview of the A2LS pipeline is illustrated in Figure 1. We next describe them
in detail.

Evaluation and selection. At each evolution stage, we first train a population of candidates with
a population size P = 100 by the inner loop of RL training. The candidates are then sorted by
computing the approximated area under learning curve (AULC) [11, 41], which is a single metric
reflecting both the convergence speed and the final performance [46] with low variance of results.
After each training stage, the top-25% candidates are selected to generate the population for the next
stage. We include an ablation study on the effectiveness of AULC in Appendix D.3.

Mutation. To obtain a new population of auxiliary loss functions, we propose a novel mutation
strategy. First, we represent both the source and the target of the input elements as a pair of binary
masks, where each bit of the mask represents selected by 1 or not selected by 0. For instance,
given a candidate sequence {st, at, rt, st+1, at+1, rt+1}, the binary mask of this subset sequence
{st, at, rt+1} is denoted as 110001. Afterward, we adopt four types of mutations, also shown in
Figure 3: (i) replacement (50% of the population): flip the given binary mask with probability
p = 1

2·(3k+3) with the horizon length k; (ii) crossover (20%): generate a new candidate by randomly
combining the mask bits of two candidates with the same horizon length in the population; (iii)
horizon decrease and horizon increase (10%): append new binary masks to the tail or delete existing
binary masks at the back. (iv) random generation (20%): every bit of the binary mask is generated
from a Bernoulli distribution B(0.5).

Loss rejection protocol. Since the auxiliary loss needs to be differentiable with respect to the
parameters of the state encoder, we perform a gradient flow check on randomly generated loss
functions during evolution and skip evaluating invalid auxiliary losses. Concretely, the following
conditions must be satisfied to make a valid loss function: (i) having at least one state element in
seqsource to make sure the gradient of auxiliary loss can propagate back to the state encoder; (ii)
seqtarget is not empty; (iii) the horizon should be within a reasonable range (1  k  10 in our
experiments). If a loss is rejected, we repeat the mutation to fill the population.

Bootstrapping initial population. To improve the computational efficiency so that the algorithm can
find reasonable loss functions quickly, we incorporate prior knowledge into the initialization of the
search. Particularly, before the first stage of evolution, we bootstrap the initial population with a prior
distribution that assigns high probability to auxiliary loss functions containing useful patterns like
dynamics and reward prediction. More implementation details are provided in Appendix C.3.

5

4 Evolution and Searched Results

Cheetah-Run (Image) Reacher-Easy (Image) Walker-Walk (Image)

Figure 4: Evolution process in the three training (image-based) environments. Every white dot
represents a candidate of auxiliary loss, and y-axis shows its corresponding approximated AULC
score [11, 41]. The horizontal lines show the scores of the baselines. The AULC score is approximated
with the average evaluation score at 100k, 200k, 300k, 400k, 500k time steps.

As mentioned in Section 1, we expect to find auxiliary losses that align with the RL objective and
generalize well to unseen test environments. To do so, we use A2LS to search over a small set of
training environments, and then test the searched results on a wide range of test environments. In this
section, we first introduce the evolution on training environments and search results.

4.1 Evolution on Training Environments

The training environments are chosen as three image-based (observations for agents are images)
continuous control tasks in DMC benchmark [43], Cheetah-Run, Reacher-Easy, and Walker-Walk.
For each environment, we set the total budget to 16k GPU hours (on NVIDIA P100) and terminate
the search when the resource is exhausted. Due to computation complexity, we only run one seed
for each inner loop RL training, but we try to prevent such randomness by cross validation (see
Section 4.2). We use the same network architecture and hyperparameters config as CURL [23] (see
Appendix C.4.1 for details) to train the RL agents. To evaluate the population during evolution, we
measure A2LS as compared to SAC, SAC-wo-aug, and CURL, where we randomly crop images
from 100 ⇥ 100 to 84 ⇥ 84 as data augmentation (the same technique used in CURL[23]) for all
methods except SAC-wo-aug. The whole evolution process on three environments is demonstrated
in Figure 4. Even in the early stages (e.g., stage 1), some of the auxiliary loss candidates already
surpass baselines, indicating the high potential of automated loss search. The overall AULC scores of
the population continue to improve when more stages come in (detailed numbers are summerized in
Appendix D.10). Judging from the trend, we believe the performances could improve even more if
we had further increased the budget.

4.2 Searched Results: A2-winner

Cheetah-Run Reacher-Easy Walker-WalkNo
rm

al
iz

ed
 A

UL
C

Sc
or

e
(w

.r.
tl

ow
es

t s
co

re
)

Figure 5: Cross validation on image-
based training environments.

Although some candidates in the population have achieved re-
markable AULC scores in the evolution (Figure 4), they were
only evaluated with one random seed in one environment,
making their robustness under question. To ensure that we
find a consistently-useful auxiliary loss, we conduct a cross
validation. We first choose the top 5 candidates of stage-5 of
the evolution on Cheetah-Run (detailed top candidates during
the whole evolution procedure are provided in Appendix F).
For each of the five candidates, we repeat the RL training on
all three training environments, shown in Figure 5. Finally,
we mark the best among five (green bar in Figure 5) as our
final searched result. We call it A2-winner, which has the
following form:

LAux(✓; E) = kh
�
g✓(st+1, at+1, at+2, at+3)

�
� g✓̂(rt, rt+1, st+2, st+3)k2 . (3)

6

Table 2: Episodic rewards (mean & standard deviation for 10 seeds) on DMC100K (100K time steps)
and DMC500K (500K time steps). Note that the optimal score of DMC is 1000 for all environments.
The baseline methods are PlaNet [16], Dreamer [15], SAC+AE [51], SLAC [26], image-based
SAC [14]. Performance values of all baselines are referred to [23], except for Image SAC. Learning
curves of all 12 DMC environments are included in Appendix D.2.

500K Steps Scores A2-winner CURL§ PlaNet§ Dreamer§ SAC+AE§ SLACv1§ Image SAC

Cheetah-Run† 613 ± 39 518± 28 305± 131 570± 253 550± 34 640 ± 19 99 ± 28
Reacher-Easy† 938 ± 46 929± 44 210± 390 793± 164 627± 58 - 312 ± 132
Walker-Walk† 917 ± 18 902± 43 351± 58 897± 49 847± 48 842± 51 76 ± 44
Finger-Spin⇤ 983 ± 4 926± 45 561± 284 796± 183 884± 128 673± 92 282 ± 102

Cartpole-Swingup⇤ 864 ± 19 841± 45 475± 71 762± 27 735± 63 - 344 ± 104
Ball in cup-Catch⇤ 970 ± 8 959± 27 460± 380 897± 87 794± 58 852± 71 200 ± 114
100K Steps Scores

Cheetah-Run† 449 ± 34 299± 48 138± 88 235± 137 267± 24 319± 56 128 ± 12
Reacher-Easy† 778 ± 164 538± 223 20± 50 314± 155 274± 14 - 277 ± 69
Walker-Walk† 510 ± 151 403± 24 224± 48 277± 12 394± 22 361± 73 127 ± 28
Finger-Spin⇤ 872 ± 27 767± 56 136± 216 341± 70 740± 64 693± 141 160 ± 138

Cartpole-Swingup⇤ 815 ± 66 582± 146 297± 39 326± 27 311± 11 - 243 ± 19
Ball in cup-Catch⇤ 862 ± 167 769± 43 0± 0 246± 174 391± 82 512± 110 100 ± 90

†: Training environments. ⇤: Unseen test environments. §: Results reported in [23].

5 Generalization Experiments

To verify the effectiveness of the searched results, we conduct various generalization experiments
on a wide range of test environments in depth. Implementation details and more ablation studies are
given in Appendix C and Appendix D.

Generalize to unseen image-based tasks. We first investigate the generalizability of A2-winner
to unseen image-based tasks by training agents with A2-winner on common DMC tasks and
compare with model-based and model-free baselines that use different auxiliary loss functions
(see Appendix C.5 for details about baseline methods). The results are summarized in Table 2
where A2-winner greatly outperforms other baseline methods on most tasks, including unseen test

environments. This implies that A2-winner is a robust and effective auxiliary loss for image-based
continuous control tasks to improve both the efficiency and final performance.

Table 3: Mean and Median scores (normalized by human
score and random score) achieved by A2LS and baselines on
26 Atari games benchmarked at 100k time-steps (Atari100k).

Metric A2-winner CURL Eff. Rainbow DrQ [22] Random Human

Mean Human-Norm’d 0.568 0.381 0.285 0.357 0.000 1.000
Median Human-Norm’d 0.317 0.175 0.161 0.268 0.000 1.000

Generalize to totally different
benchmark domains. To further ver-
ify the generalizability of A2-winner
on totally different benchmark
domains other than DMC tasks, we
conduct experiments on the Atari
2600 Games [1], where we take
Efficient Rainbow [44] as the base RL algorithm and add A2-winner to obtain a better state
representation. Results are shown in Table 3 where A2-winner outperforms all baselines, showing
strong evidence of the generalization and potential usages of A2-winner. Note that the base RL
algorithm used in Atari is a value-based method, indicating that A2-winner generalizes well to both
value-based and policy-based RL algorithms.

Generalize to different observation types. To see whether A2-winner (searched in image-based
environments) is able to generalize to the environments with different observation types, we test
A2-winner on vector-based (inputs for RL agents are proprioceptive features such as positions,
velocities and accelerations) tasks of DMC and list the results in Table 4. Concretely, we compare
A2-winner with SAC-Identity, SAC and CURL, where SAC-Identity does not have state encoder
while the others share the same state encoder architecture (See Appendix C.1.1 and Appendix D.6 for
detailed implementations). To our delight, A2-winner still outperforms all baselines in 12 out of 18
environments, showing A2-winner can also benefit RL performance in vector-based observations.
Moreover, the performance gain is particularly significant in more complex environments like
Humanoid, where SAC barely learns anything at 1000K time steps. In order to get a deeper
understanding of this phenomenon, we additionally visualize the Q loss landscape for both methods
in Appendix D.7.

7

r
Table 4: Episodic rewards (mean & standard deviation for 10 seeds) on DMC100K (easy tasks) and
DMC1000K (difficult tasks) with vector inputs.

100K Steps Scores A2-winner A2-winner-v SAC-Identity SAC CURL

Cheetah-Run† 529 ± 76 472 ± 30 237 ± 27 172 ± 29 190 ± 32
Finger-Spin⇤ 790 ± 128 837 ± 52 805 ± 32 785 ± 106 712 ± 83

Finger-Turn hard⇤ 272 ± 149 218 ± 117 347 ± 150 174 ± 94 43 ± 42
Cartpole-Swingup⇤ 866 ± 24 877 ± 5 873 ± 10 866 ± 7 854 ± 17

Cartpole-Swingup sparse⇤ 634 ± 226 695 ± 147 455 ± 359 627 ± 307 446 ± 196
Reacher-Easy⇤ 818 ± 211 934 ± 38 697 ± 192 874 ± 87 749 ± 183
Walker-Stand⇤ 935 ± 32 948 ± 7 940 ± 10 862 ± 196 767 ± 104
Walker-Walk⇤ 932 ± 39 906 ± 78 873 ± 89 925 ± 22 852 ± 64
Walker-Run⇤ 616 ± 52 564 ± 45 559 ± 34 403 ± 43 289 ± 61

Ball in cup-Catch⇤ 964 ± 7 965 ± 7 954 ± 12 962 ± 13 941 ± 32
Fish-Upright⇤ 586 ± 128 498 ± 88 471 ± 62 400 ± 62 295 ± 117
Hopper-Stand⇤ 177 ± 257 311 ± 177 14 ± 16 26 ± 40 6 ± 3

1,000K Steps Scores A2-winner-v A2-winner SAC-Identity SAC CURL

Quadruped-Run† 863 ± 50 838 ± 58 345 ± 157 707 ± 148 497 ± 128
Hopper-Hop† 213 ± 31 278 ± 106 121 ± 51 134 ± 93 60 ± 22

Pendulum-Swingup⇤ 200 ± 322 579 ± 410 506 ± 374 379 ± 391 363 ± 366
Humanoid-Stand⇤ 329 ± 35 286 ± 15 9 ± 2 7 ± 1 7 ± 1
Humanoid-Walk⇤ 311 ± 36 299 ± 55 16 ± 28 2 ± 0 2 ± 0
Humanoid-Run⇤ 75 ± 37 88 ± 2 1 ± 0 1 ± 0 1 ± 0

†: Training environments. ⇤: Unseen test environments.

Ball in cup-Catch Cheetah-Run

Figure 6: Comparison of A2-winner with
different depth of convolutional encoder in
image-based DMC environments.

Generalize to different hypothesis spaces. The
architecture of a neural network defines a hypothe-
sis space of functions to be optimized. During the
evolutionary search in Section 4.1, the encoder archi-
tecture has been kept static as a 4-layer convolutional
neural network. Since encoder architecture may have
a large impact on the RL training process [34, 2], we
test A2-winner with three encoders with different
depth of neural networks. The result is shown in
Figure 6. Note that even though the auxiliary loss is
searched with a 4-layer encoder, the 6-layer convolutional encoder is able to perform better in both
two environments. This proves that the auxiliary loss function of A2-winner is able to improve
RL performance with a deeper and more expressive image encoder. Moreover, the ranking of RL
performance (6-layer > 4-layer > 2-layer) is consistent across the two environments. This shows that
the auxiliary loss function of A2-winner does not overfit one specific architecture of the encoder.

Cheetah-Run Hopper-Hop

Figure 7: Comparison of A2-winner and
baselines in partially observable vector-based
DMC environments.

Generalize to partially observable scenarios.
Claiming the generality of a method based on con-
clusions drawn just on fully observable environments
like DMC is very dangerous. Therefore, we conduct
an ablation study on the Partially Observable Markov
Decision Process (POMDP) setting to see whether
A2-winner is able to perform well in POMDP. We
random mask 20% of the state dimensions (e.g., 15
dimensions -> 12 dimensions) to form a POMDP
environment in DMC. As demonstrated in Figure 7,
A2-winner consistently outperforms CURL and SAC-DenseMLP in the POMDP setting in Hopper-
Hop and Cheetah-Run, showing that A2-winner is not only effective in fully observable environments
but also partially observable environments.

To search or not? As shown above, the searched result A2-winner can generalize well to all kinds
of different settings. A natural question here is, however, for a new type of domain, why not perform
a new evolution search, instead of simply using the previously searched result? To compare these
two solutions, we conduct another evolutionary search similar to Section 4.1 but replaced the three
image-based tasks with three vector-based ones (marked by † in Table 4) from scratch. More details
are summarized in Appendix D.5. We name the searched result as “A2-winner-v”. As shown in
Table 4, A2-winner-v is a very strong-performing loss for vector-based tasks, even stronger than
A2-winner. Actually, A2-winner-v is able to outperform baselines in 16 out of 18 environments
(with 15 unseen test environments), while A2-winner only outperforms baselines in 12 out of 18
environments. However, please note that it costs another 5k GPU hours (on NVIDIA P100) to

8

Table 5: Statistical analysis on auxiliary loss functions. The number reported is the difference of the
expected RL score when the auxiliary losses have one pattern compared to those do not have. The
corresponding p-value from the t-test is also reported. Positive numbers indicate that this pattern is
beneficial. If the performance gain is statistically significant, the number is marked with the asterisk,
indicating it is very likely to be helpful. Negative numbers indicate this pattern is detrimental.

The score difference between average performances w/ and w/o typical patterns (w/ - w/o)
Forward dynamics Inverse dynamics Reward prediction Action inference State reconstruction

Cheetah-Run (Image) +1.28 �3.51 �31.16⇤⇤ �75.95⇤⇤ +42.44⇤⇤

Reacher-Easy (Image) +28.25⇤ +8.36 +37.80⇤⇤ +3.35 +70.72⇤⇤

Walker-Walk (Image) +22.20 �48.59⇤⇤ �8.11 +29.86⇤ +13.93
Cheetah-Run (Vector) +94.18⇤⇤ �23.66⇤⇤ �33.28⇤⇤ �109.33⇤⇤ �50.15⇤⇤

Hopper-Hop (Vector) +15.50⇤⇤ �16.47⇤⇤ �11.30⇤ �32.10⇤⇤ �25.67⇤⇤

Quadruped-Run (Vector) �28.07 �18.19 �114.23⇤⇤ �105.37⇤⇤ �82.06⇤⇤

⇤: p-value < 0.05. ⇤⇤: p-value < 0.01

The score difference between two sets varying the number of elements in source and target
State, ntarget > nsource Action, ntarget > nsource Reward, ntarget > nsource

Cheetah-Run (Image) +80.09⇤⇤ +13.62 +3.33
Reacher-Easy (Image) +1.98 �12.72 +65.66⇤⇤

Walker-Walk (Image) +73.56⇤⇤ +42.22⇤ �41.90⇤

Cheetah-Run (Vector) +188.06⇤⇤ �102.62⇤⇤ �93.94⇤⇤

Hopper-Hop (Vector) +19.80⇤⇤ �29.70⇤⇤ �5.03
Quadruped-Run (Vector) +75.17⇤⇤ �4.31 �46.60⇤

⇤: p-value < 0.05. ⇤⇤: p-value < 0.01

search for A2-winner-v while there is no additional cost to directly use A2-winner. It is a trade-off
between lower computational cost and better performance.

6 Analysis of Auxiliary Loss Functions
In this section, we analyze all the loss functions we have evaluated during the evolution procedure as
a whole dataset in order to gain some insights into the role of auxiliary loss in RL performance. By
doing so, we hope to shed light on future auxiliary loss designs. We will also release this “dataset”
publicly to facilitate future research.

Typical patterns. We say that an auxiliary loss candidate has a certain pattern if the pattern’s source

is a subset of the candidate’s source, and the pattern’s target is a subset of the candidate’s target.
For instance, a loss candidate of {st, at} ! {st+1, st+2} has the pattern {st, at} ! {st+1}, and
does not have the pattern {at, st+1} ! {st}. We then try to analyze whether a certain pattern is
helpful to representation learning in RL in expectation.

Specifically, we analyze the following patterns: (i) forward dynamics {st, at} ! {st+1}; (ii)
inverse dynamics {at, st+1} ! {st}; (iii) reward prediction {st, at} ! {rt}; (iv) action inference
{st, st+1} ! {at} and (v) state reconstruction in the latent space {st} ! {st}. For each of these
patterns, we categorize all the loss functions we have evaluated into (i) with or (ii) without this pattern.
We then calculate the average RL performances of these two categories, summarized in Table 5.
Some interesting observations are as follows.

(i) Forward dynamics is helpful in most tasks and improves RL performance on Reacher-Easy
(image) and Cheetah-Run (vector) significantly (p-value<0.05).

(ii) State reconstruction in the latent space improves RL performance in image-based tasks but
undermines vector-based tasks. The improvements in image-based tasks could be attributed
to the combination of augmentation techniques, which, combined with reconstruction loss,
enforces the extraction of meaningful features. In contrast, no augmentation is used in the
vector-based setting, and thus the encoder learns no useful representations. This also explains
why CURL performs poorly in vector-based experiments.

(iii) In the vector-based setting, some typical human-designed patterns (e.g., reward prediction,
inverse dynamics, and action inference) can be very detrimental to RL performance, implying
that some renowned techniques in loss designs might not work well under atypical settings.

Number of Sources and Targets. We further investigate whether it is more beneficial to use a small
number of sources to predict a large number of targets (ntarget > nsource, e.g., using st to predict
st+1, st+2, st+3), or the other way around (ntarget < nsource, e.g., using st, st+1, st+2 to predict
st+3). Statistical results are shown in Table 5, where we find that auxiliary losses with more states

9

on the target side have a significant advantage over losses with more states on the source side. This
result echoes recent works [42, 39]: predicting more states leads to strong performance gains.

7 Related Work
Reinforcement Learning with Auxiliary Losses. Usage of auxiliary tasks for learning better state
representations and improving the sample efficiency of RL agents, especially on image-based tasks,
has been explored in many recent works. A number of manually designed auxiliary objectives are
shown to boost RL performance, including observation reconstruction [51], reward prediction [20],
dynamics prediction [6] and contrastive learning objectives [23, 39, 42]. It is worth noting that
most of these works focus on image-based settings, and only a limited number of works study the
vector-based setting [32, 35]. Although people may think that vector-based settings can benefit less
from auxiliary tasks due to their lower-dimensional state space, we show in our paper that there is
still much potential for improving their performance with better learned representations.

Compared to the previous works, we point out two major advantages of our approach. (i) Instead
of handcrafting an auxiliary loss with expert knowledge, A2LS automatically searches for the best
auxiliary loss, relieving researchers from such tedious work. (ii) A2LS is a principled approach
that can be used in arbitrary RL settings. We discover great auxiliary losses that bring significant
performance improvement in image-based and the rarely studied vector-based settings.

Automated Reinforcement Learning. RL training is notoriously sensitive to hyper-parameters
and environment changes [18]. Recently, many works attempted to take techniques in AutoML to
alleviate human intervention, for example, hyper-parameter optimization [7, 36, 49, 53], reward
search [9, 45] and network architecture search [38, 10]. In contrast to these methods which optimize a
new configuration for each environment, we search for auxiliary loss functions that generalize across
different settings such as (i) different robots of control; (ii) different data types of observation; (iii)
partially observable settings; (iv) different network architectures; (v) different benchmark domains.

Automated Loss Design. In the AutoML community, it has become a trend to design good loss
functions that can outperform traditional and handcrafted ones. To be specific, to resolve computer
vision tasks, AM-LFS [27] defines the loss function search space as a parameterized probability
distribution of the hyper-parameters of softmax loss. A recent work, AutoLoss-Zero [28], proposes
to search loss functions with primitive mathematical operators.

For RL, existing works focus on searching for a better RL objective, EPG [19] and MetaGenRL [21]
define the search space of loss functions as parameters of a low complexity neural network. Recently,
[4] defines the search space of RL loss functions as a directed acyclic graph and discovers two
DQN-like regularized RL losses. Note that none of these works investigates auxiliary loss functions,
which are crucial to facilitate representation learning in RL and to make RL successful in highly
complex environments. To the best of our knowledge, our work is the first attempt to search for
auxiliary loss functions that can significantly improve RL performance.

8 Conclusion and Future Work
We present A2LS, a principled and universal framework for automated auxiliary loss design for RL.
By searching on training environments with this framework, we discover a top-performing auxiliary
loss function A2-winner that generalizes well to a diverse set of test environments. Furthermore, we
present an in-depth investigation of the statistical relations between auxiliary loss patterns and RL
performance. We hope our studies provide insights that will deepen the understanding of auxiliary
losses in RL, and shed light on how to make RL more efficient and practical. Limitations of our
current work lie in that searching requires an expensive computational cost. In the future, we plan to
incorporate more delicate information such as higher-order information [12] of the inner-loop RL
training procedure to derive more efficient auxiliary loss search methods.

10

References
[1] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning

environment: An evaluation platform for general agents. Journal of Artificial Intelligence

Research, 47:253–279, 2013.

[2] Johan Bjorck, Carla P Gomes, and Kilian Q Weinberger. Towards deeper deep reinforcement
learning. arXiv preprint arXiv:2106.01151, 2021.

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine

learning, pages 1597–1607. PMLR, 2020.

[4] John D Co-Reyes, Yingjie Miao, Daiyi Peng, Esteban Real, Quoc V Le, Sergey Levine, Honglak
Lee, and Aleksandra Faust. Evolving reinforcement learning algorithms. In International

Conference on Learning Representations, 2020.

[5] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zijian He, Zhen Wei, Kan Chen,
Yuandong Tian, Matthew Yu, Peter Vajda, and Joseph E. Gonzalez. Fbnetv3: Joint architecture-
recipe search using predictor pretraining, 2020.

[6] Tim De Bruin, Jens Kober, Karl Tuyls, and Robert Babuška. Integrating state representation
learning into deep reinforcement learning. IEEE Robotics and Automation Letters, 3(3):1394–
1401, 2018.

[7] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. In International Conference on Machine

Learning, pages 1407–1416. PMLR, 2018.

[8] Yuchen Fang, Kan Ren, Weiqing Liu, Dong Zhou, Weinan Zhang, Jiang Bian, Yong Yu, and
Tie-Yan Liu. Universal trading for order execution with oracle policy distillation. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 35, pages 107–115, 2021.

[9] Aleksandra Faust, Anthony Francis, and Dar Mehta. Evolving rewards to automate reinforce-
ment learning. arXiv preprint arXiv:1905.07628, 2019.

[10] Jörg K. H. Franke, Gregor Köhler, André Biedenkapp, and Frank Hutter. Sample-efficient
automated deep reinforcement learning. In 9th International Conference on Learning Represen-

tations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[11] Sina Ghiassian, Banafsheh Rafiee, Yat Long Lo, and Adam White. Improving performance
in reinforcement learning by breaking generalization in neural networks. arXiv preprint

arXiv:2003.07417, 2020.

[12] Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net opti-
mization via hessian eigenvalue density. In International Conference on Machine Learning,
pages 2232–2241. PMLR, 2019.

[13] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates. In 2017 IEEE international

conference on robotics and automation (ICRA), pages 3389–3396. IEEE, 2017.

[14] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms
and applications. arXiv preprint arXiv:1812.05905, 2018.

[15] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

[16] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee,
and James Davidson. Learning latent dynamics for planning from pixels. In International

Conference on Machine Learning, pages 2555–2565. PMLR, 2019.

11

[17] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 9729–9738, 2020.

[18] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In Proceedings of the AAAI conference on

artificial intelligence, volume 32, 2018.

[19] Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly C. Stadie, Filip Wolski, Jonathan Ho, and
Pieter Abbeel. Evolved policy gradients. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural

Information Processing Systems 31: Annual Conference on Neural Information Processing

Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 5405–5414, 2018.

[20] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo,
David Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary
tasks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,

April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[21] Louis Kirsch, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Improving generalization in meta
reinforcement learning using learned objectives. In 8th International Conference on Learning

Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[22] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

[23] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised represen-
tations for reinforcement learning. In International Conference on Machine Learning, pages
5639–5650. PMLR, 2020.

[24] Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learning with augmented data. Advances in Neural Information Processing

Systems, 33:19884–19895, 2020.

[25] Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learning with augmented data. Advances in Neural Information Processing

Systems, 33:19884–19895, 2020.

[26] Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic:
Deep reinforcement learning with a latent variable model. arXiv preprint arXiv:1907.00953,
2019.

[27] Chuming Li, Xin Yuan, Chen Lin, Minghao Guo, Wei Wu, Junjie Yan, and Wanli Ouyang. Am-
lfs: Automl for loss function search. In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 8410–8419, 2019.

[28] Hao Li, Tianwen Fu, Jifeng Dai, Hongsheng Li, Gao Huang, and Xizhou Zhu. Autoloss-zero:
Searching loss functions from scratch for generic tasks. arXiv preprint arXiv:2103.14026, 2021.

[29] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. Advances in neural information processing systems, 31, 2018.

[30] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, J. Marben, P. Müller, and F. Hutter.
Boah: A tool suite for multi-fidelity bayesian optimization & analysis of hyperparameters.
arXiv:1908.06756 [cs.LG].

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602, 2013.

[32] Jelle Munk, Jens Kober, and Robert Babuška. Learning state representation for deep actor-critic
control. In 2016 IEEE 55th Conference on Decision and Control (CDC), pages 4667–4673.
IEEE, 2016.

12

[33] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[34] Kei Ota, Devesh K Jha, and Asako Kanezaki. Training larger networks for deep reinforcement
learning. arXiv preprint arXiv:2102.07920, 2021.

[35] Kei Ota, Tomoaki Oiki, Devesh Jha, Toshisada Mariyama, and Daniel Nikovski. Can increasing
input dimensionality improve deep reinforcement learning? In International Conference on

Machine Learning, pages 7424–7433. PMLR, 2020.

[36] Supratik Paul, Vitaly Kurin, and Shimon Whiteson. Fast efficient hyperparameter tuning for
policy gradients. arXiv preprint arXiv:1902.06583, 2019.

[37] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image
classifier architecture search. Proceedings of the AAAI Conference on Artificial Intelligence,
33:4780–4789, Jul 2019.

[38] Frederic Runge, Danny Stoll, Stefan Falkner, and Frank Hutter. Learning to design RNA. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,

May 6-9, 2019. OpenReview.net, 2019.

[39] Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip
Bachman. Data-efficient reinforcement learning with self-predictive representations. In Interna-

tional Conference on Learning Representations, 2020.

[40] Evan Shelhamer, Parsa Mahmoudieh, Max Argus, and Trevor Darrell. Loss is its own reward:
Self-supervision for reinforcement learning. arXiv preprint arXiv:1612.07307, 2016.

[41] Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

[42] Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation
learning from reinforcement learning. In International Conference on Machine Learning, pages
9870–9879. PMLR, 2021.

[43] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018.

[44] Hado P van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in
reinforcement learning? Advances in Neural Information Processing Systems, 32, 2019.

[45] Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Janarthanan Rajendran, Richard L. Lewis,
Junhyuk Oh, Hado van Hasselt, David Silver, and Satinder Singh. Discovery of useful questions
as auxiliary tasks. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information

Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,

NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 9306–9317, 2019.

[46] Tom Viering and Marco Loog. The shape of learning curves: a review. arXiv preprint

arXiv:2103.10948, 2021.

[47] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

[48] Xiaobo Wang, Shuo Wang, Cheng Chi, Shifeng Zhang, and Tao Mei. Loss function search
for face recognition. In International Conference on Machine Learning, pages 10029–10038.
PMLR, 2020.

[49] Zhongwen Xu, Hado Philip van Hasselt, Matteo Hessel, Junhyuk Oh, Satinder Singh, and David
Silver. Meta-gradient reinforcement learning with an objective discovered online. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural

Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

13

[50] Guan Yang, Minghuan Liu, Weijun Hong, Weinan Zhang, Fei Fang, Guangjun Zeng, and Yue
Lin. Perfectdou: Dominating doudizhu with perfect information distillation. arXiv preprint

arXiv:2203.16406, 2022.

[51] Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus.
Improving sample efficiency in model-free reinforcement learning from images. arXiv preprint

arXiv:1910.01741, 2019.

[52] Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen, Kevin Murphy, and Frank Hutter.
Nas-bench-101: Towards reproducible neural architecture search, 2019.

[53] Tom Zahavy, Zhongwen Xu, Vivek Veeriah, Matteo Hessel, Junhyuk Oh, Hado van Hasselt,
David Silver, and Satinder Singh. A self-tuning actor-critic algorithm. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Ad-

vances in Neural Information Processing Systems 33: Annual Conference on Neural Information

Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

14

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] We include
data, implementation details for reproduction.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We try to cover all the training details.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

	Introduction
	Problem Formulation and Background
	Automated Auxiliary Loss Search
	Search Space Design
	Search Strategy
	Search Space Pruning
	Evolution Procedure

	Evolution and Searched Results
	Evolution on Training Environments
	Searched Results: A2-winner

	Generalization Experiments
	Analysis of Auxiliary Loss Functions
	Related Work
	Conclusion and Future Work
	Algorithm
	Examples of Loss Functions
	Implementation Details
	Architecture
	State Encoder Architectures
	Siamese Network

	Loss Operators
	Evolution Strategy
	Training Details
	Hyper-parameters in the Image-based Setting
	Hyper-parameters in the Vector-based Setting

	Baselines Implementation

	Additional Experiment Results
	Search Space Pruning
	Learning Curves for A2LS on Image-based DMControl
	Effectiveness of AULC scores
	Comparing Auxiliary Loss with Data Augmentation
	Evolution on Vector-based RL
	Encoder Architecture Ablation for Vector-based RL
	Visualization of Loss Landscape
	Histogram of Auxiliary Loss Analysis
	Comparing A2-winner with Advanced Human-designed Auxiliary Losses
	The Trend of Increasing Performance during Evolution

	Search Space Complexity Analysis
	Top-performing Auxiliary Losses
	A2-winner and A2-winner-v
	During Evolution

