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Abstract

Text classification aims to assign labels to tex-001
tual units by making use of global informa-002
tion. Recent studies have applied graph neu-003
ral network (GNN) techniques to capture the004
global word co-occurrence in a corpus. Most005
existing approaches require that all the nodes006
(training and test) in a graph are present dur-007
ing training, which are transductive and do not008
naturally generalise to unseen nodes. To make009
those models inductive, previous works use010
extra resources, like pretrained word embed-011
ding. However, high-quality resource is not012
always available and can be hard to train. Un-013
der the extreme settings with no extra resource014
and limited amount of training set, can we015
still learn an inductive graph-based text clas-016
sification model? In this paper, we introduce a017
novel inductive graph-based text classification018
framework, namely InducT-GCN (InducTive019
Graph Convolutional Networks for Text clas-020
sification). Compared to transductive models021
that require test documents in training, we con-022
struct a graph based on the statistics of train-023
ing documents only and represent document024
vectors with a weighted sum of word vectors.025
We then conduct one-directional GCN propa-026
gation during testing. Across five text classi-027
fication benchmarks, our InducT-GCN outper-028
formed state-of-the-art methods that are either029
transductive in nature or pre-trained additional030
resources. We also conducted scalability test-031
ing by gradually increasing the data size and032
revealed that our InducT-GCN can reduce the033
time and space complexity.034

1 Introduction035

Text classification is one of the most fundamental036

tasks in the natural language processing research.037

Assume that we are given a description d ∈ X of038

a document, where X is the document space; and039

a fixed set of classes C = {c1, c2, ..., cJ}, can be040

called as categories or labels. A document space X041

is typically some type of high-dimensional space042

and the classes are human defined for the needs of 043

an application. Note that we only consider a single- 044

class text classification problem in this research. 045

With the rise of deep learning, many text classi- 046

fication studies have focused on learning text rep- 047

resentations using sequence-based learning mod- 048

els, such as convolutional neural networks (CNN) 049

(Kim, 2014) or recurrent neural networks (RNN) 050

/long short term memory (LSTM) (Zhou et al., 051

2016). The CNN/RNN-based models focus on the 052

locality and sequence of text, and mainly aim to 053

detect semantic and syntactic information in local 054

consecutive word sequences. It tends to neglect 055

global word co-occurrence in a corpus and ignore 056

non-consecutive and long distance semantic infor- 057

mation (Peng et al., 2018). However, those models 058

need relatively large size of training set in order 059

to achieve better performance but most real-world 060

cases (e.g. specific domain or some low resource 061

languages) have very limited amount of training 062

set (limited labeled data). Recently, pre-trained 063

models, like BERT (Devlin et al., 2018), RoBERTa 064

(Liu et al., 2019), have achieved state-of-the-art 065

performance on several NLP tasks with limited 066

amount of training data. However, those models 067

requires much computation and external resources 068

for pre-training which are not always available. 069

Yao et al. (2019) proposed TextGCN and 070

achieves state-of-the-art result especially when 071

the percentage of training data is low without us- 072

ing any external resources and low computation 073

costs. It is an initial text graph-based neural net- 074

work framework, which conducts a straightforward 075

manner of graph construction and applies a GCN- 076

learning(Kipf and Welling, 2017) to deal with com- 077

plex structured textual data and prioritise global 078

feature exploitation. More recent studies (Wu et al., 079

2019; Liu et al., 2020; Zhu and Koniusz, 2021) fo- 080

cused on utilising more contextual information or 081

optimising the computation or performance. 082

However, most graph-based learning mod- 083
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els is intrinsically transductive, meaning that084

the learned node representations/embeddings for085

words/documents are not naturally generalisable086

to unseen words/documents, making it difficult087

to apply in real world. The transductive nature088

of these graph-based learning models require rel-089

atively large computational space when the cor-090

pus size is large. Therefore, an inductive model is091

required. In order to extend a transdutive graph-092

based text classification into an inductive model,093

we mainly consider the following three require-094

ments: 1)The inductive learning model must not095

include any test set information during the train-096

ing. 2)The inductive model must not re-train the097

model on the whole new graph when it learns a098

new sample. 3)We use corpus-level graph-based099

text classification in order to make inductive model100

since it well covers the benefit of graph-based learn-101

ing, which captures complex global structure of102

the whole corpus and prioritises global feature103

exploitation. With these three requirements, in104

this paper, we propose a novel inductive graph-105

based text classification framework, called InducT-106

GCN (InducTive Graph Convolutional Networks107

for Text classification). We introduce a new in-108

ductive graph framework of graph construction,109

learning, and testing, and it can expand any tran-110

ductive GCN-based text classification model. The111

paper includes the following contributions:112

• To the best of our knowledge, we introduce the113

first inductive corpus-level GCN-based text114

classification framework without using any115

extra resources.116

• We compare our InducT-GCN on five bench-117

mark datasets under the limited labeled data118

settings. InducT-GCN achieves the highest119

accuracy on four of them, even beating some120

trasductive baselines integrated by using ex-121

ternal resources.122

• We introduce a new way to make transduc-123

tive GCN-based text classification models in-124

ductive, which improve the performance and125

reduce the time and space complexity.126

2 Related Work127

2.1 Graph Neural Networks128

Graph Neural Network (GNN)s (Cai et al., 2018;129

Kipf and Welling, 2017) have been effective at130

tasks to have rich relational structure and can pre-131

serve global structure information of a graph in132

graph embeddings by aggregating first-order neigh- 133

borhood information. Kipf and Welling (2017) 134

introduced Graph Convolutional Networks (GCN) 135

on semi-supervised and transductive classification 136

tasks using generalized convolutional layers. Then, 137

GraphSage (Hamilton et al., 2017) and FastGCN 138

(Chen et al., 2018) tailored GCNs on inductive 139

representation learning framework with sampling 140

methods. The Attention mechanism was also ap- 141

plied to GCN, called Graph Attention Networks 142

(GAT) (Veličković et al., 2018), in order to specify 143

different weights to different nodes in a neighbour- 144

hood. More recent GCN studies for transductive 145

and inductive frameworks have been proposed. For 146

transductive-based GCN, SGC (Wu et al., 2019) 147

was introduced to reduce the complexity and S2GC 148

(Zhu and Koniusz, 2021) was proposed to solve 149

over-smoothing problems. Some inductive-based 150

models, DeepGL (Rossi et al., 2020) and TGAT 151

(da Xu et al., 2020), were introduced to cover dif- 152

ferent graph tasks, including transfer learning and 153

topology learning. 154

2.2 Text Classification Using GNN 155

GNNs have received lots of attention in various 156

NLP tasks (Bastings et al., 2017; Marcheggiani 157

and Titov, 2017; Tu et al., 2019; Li et al., 2019; 158

Yao et al., 2019; Cao et al., 2019; Yang et al., 159

2021), including text classification. The GNN- 160

based text classification models can be categorised 161

into two types: Document-level and Corpus-level 162

approaches. 163

Document-level GNN in Text Classification 164

Several studies proposed a graph-based text clas- 165

sification by building a graph for each document 166

using words as nodes (Defferrard et al., 2016; Peng 167

et al., 2018; Zhang et al., 2018; Nikolentzos et al., 168

2020; Huang et al., 2019; Zhang et al., 2020). Word 169

nodes are represented by external resources, pre- 170

trained embedding, such as Word2vec (Mikolov 171

et al., 2013), and Glove (Pennington et al., 2014). 172

Hence, they do not consider any global structure 173

information of a corpus/entire dataset during their 174

model training/learning. 175

Corpus-level GNN in Text Classification 176

Compared to the above Document-level models, 177

Yao et al. (2019) proposed TextGCN, a graph-based 178

text classification that builds a graph for the entire 179

text corpus with documents and words as nodes. 180

Hence, it captures global information of an en- 181

tire corpus and conduct node(document) classifica- 182
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tion. After that, SGC (Wu et al., 2019) and S2GC183

(Zhu and Koniusz, 2021) constructed a graph as184

TextGCN, but proposed different information prop-185

agation approaches. Liu et al. (2020) introduced186

TensorGCN by explicitly integrating three differ-187

ent aspect-based graphs, including syntactic, se-188

mantic, and sequential, for better text classifica-189

tion performance. Li et al. (2021) also proposed190

the three graphs for covering semantics, syntantic,191

and contextual aspects. Note that all three graphs192

are based on an entire corpus and use the same193

propagation as GCN (Kipf and Welling, 2017).194

TG-Transformer(Zhang and Zhang, 2020) applied195

transformer with pretrained GloVe embeddings to196

the TextGCN, and BERTGCN(Lin et al., 2021) ap-197

plied BERT embedding to the TextGCN. All the198

above models are transductive-based approaches199

as GCN (Kipf and Welling, 2017). However, our200

model InducT-GCN, an inductive graph-based text201

classification framework, constructs a corpus-level202

graph but adopts the nature of inductive learning in203

order to naturally generalise to unseen nodes1.204

3 Tranductive and Inductive Nature205

In this section, we aim to discuss the nature of206

transductive and inductive GCN learning for text207

classification, and what inductive learning aspect208

we would like to explore for text classification.209

Most GCN models for text classification, including210

TextGCN(Yao et al., 2019), SGC(Wu et al., 2019),211

or S2GC (Zhu and Koniusz, 2021), are inherently212

transductive, and applied in the whole corpus-level213

fixed graph. Note that those models use a whole-214

corpus based textual graph, to create nodes (incl.215

document, word nodes) and edges (incl. word-216

word: PMI2, word-doc: TF-IDF).217

In order to extend those transductive models218

into an inductive learning nature, we fundamen-219

tally improve two aspects as follows. First, the220

transductive GCN-based text classification mod-221

els include documents not only from the train-222

ing set but also the test set when constructing a223

whole-corpus based textual graph for GCN learn-224

ing. Hence, the learned GCN model will be influ-225

enced/generalised by word/document information226

in the test set, which is supposed to be unseen227

nodes. Our inductive GCN-based text classifica-228

tion model constructs a graph with only training229

document information but does not consider any230

1The nature of inductive learning is detailed in Section 3
2Point-wise Mutual Information(Yao et al., 2019)

information from the test sets. We just focus on 231

generalising to unseen nodes, and aligning newly 232

observed subgraphs to the node that the model has 233

already optimised on. 234

Secondly, the transductive models learn the em- 235

bedding for Vtrain, Vtest, Vword simultaneously by 236

using one-hot input vectors H(0) ∈ Rn×n. For 237

any new test sample, the embedding for that sam- 238

ple should be re-learned by re-training the model 239

on the new graph. In this case, the re-learning/re- 240

training process does not perfectly fulfil the effec- 241

tive generalisation to unseen nodes. Therefore, we 242

come up with new graph construction and train- 243

ing/testing solution for inductive learning, instead 244

of re-learning or re-training. 245

4 InducT-GCN 246

We propose an Inductive Graph Convolutional Net- 247

work (GCN) for text classification, named ‘InducT- 248

GCN’, which can be an extension of the traditional 249

transductive GCN-based text classification models. 250

We adopt the traditional transductive GCN-based 251

text classification models, including TextGCN(Yao 252

et al., 2019) and SGC(Wu et al., 2019), and focus 253

on expanding those models to efficient inductive 254

learning models. This section demonstrates the 255

proposed inductive learning components3 applied 256

to TextGCN. 257

4.1 Revisit TextGCN 258

TextGCN is a GCN-based text classification model 259

that uses a large and heterogeneous text graph 260

based on the whole corpus. To understand the con- 261

cept properly, we first explore the GCN process. 262

Graph Convolutional Networks(GCN) For- 263

mally, considering a graph G = (V,E,A), where 264

V (|V | = n) is a set of nodes, E is a set of edges, 265

and A ∈ Rn×n is an adjacent matrix representing 266

the edge values between nodes. The propagation 267

rule of each hidden layer is: 268

H(l+1) = f(H(l), A) = σ(ÃH(l)W (l)) (1) 269

where Ã = D−
1
2AD−

1
2 is a normalized symmet- 270

ric matrix for A and Dii = ΣjAij as a degree 271

matrix of adjacent matrix A. H l is lth hidden 272

layer input and W l is a weight to be learned in 273

this layer. σ is an activation function, e.g. ReLU: 274

σ(x) = max(0, x). 275

3We also applied our proposed inductive learning compo-
nents to SGC in Section 6.2
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TextGCN Followed by the GCN(Kipf and276

Welling, 2017), TextGCN constructs a large corpus-277

level graph but with textual information, docu-278

ment and word as nodes so it can be modelled279

the global word-document co-occurrence. Like280

GCN, the constructed graph includes document281

and word nodes from training sets, as well as test282

sets. TextGCN aims to model the global word-283

document occurrence with two major edges: 1)284

word-word edge: calculated by point-wise mutual285

information(PMI), 2) document-word edge: TF-286

IDF. Note that they use one-hot vectors for word287

and document nodes. One-hot vectors are fed into288

a two-layer GCN model to jointly learn the em-289

bedding for the documents and words during the290

training phase. The representations learned from291

the document nodes in the training set are used for292

training the text(document) classification model,293

and those on the document nodes in the test set are294

used for predicting the document class.295

4.2 InducT-GCN Graph Construction296

4.2.1 Graph Nodes297

As mentioned earlier, our inductive GCN-based298

text classification model, InducT-GCN, strictly do299

not consider any information or statistics from the300

test set, which is supposed to be unseen nodes. In-301

stead, we construct the nodes only the with training302

document information. Consider a set of nodes303

V = {Vtrain, Vword} and the Vword are the unique304

words in the training documents. In order to define305

input vector H(0) for graph nodes in the InducT-306

GCN graph, we consider two requirements:307

• During the graph propagation, all the input308

vectors for document nodes and word nodes309

are multiplied by the same weights so that310

these vectors should align with each other.311

• Unlike TextGCN (transductive model), our312

InducT-GCN must not use one-hot vectors for313

representing document nodes. As mentioned,314

we do not consider or deal with any informa-315

tion of testing documents during the training316

phase. Hence, the model will neither learn317

any representation nor make a prediction on318

testing documents if we directly use the one-319

hot vector for document node embedding as320

TextGCN proposed.321

With this in mind, we propose a new document322

representation by focusing on the nature of our pro-323

posed inductive learning idea. For the proper align-324

Figure 1: Input Vectors Representations (document and
word node vectors) when two input documents are “w1

w1 w2 w3" and “w3 w4".

ment between word and document representation, 325

InducT-GCN generates document node represen- 326

tations based on its word nodes vectors. We use 327

a weighted average of word vectors to construct 328

document nodes vectors, and the key idea of this 329

construction is applying TF-IDF weights. Formally, 330

one-hot vectors are used for representing word 331

nodes vectors H(0)
w , ∀w ∈ Vword. For representing 332

training documents node vectors H(0)
i ,∀i ∈ Vtrain, 333

we use TF-IDF vectors. The values for each dimen- 334

sion is TF-IDF values for the corresponding word 335

in that specific document: 336

H
(0)
ij = TF-IDF(i, j) (2) 337

where i and j are document and word, respectively. 338

Assume H(0) ∈ Rn×|Vword|, where n = 339

|Vtrain|+ |Vword|. When two input documents are 340

“w1 w1 w2 w3" and “w3 w4". Figure 1 visualise 341

the input vector representation, where H(0)
0 and 342

H
(0)
1 are document vectors and H(0)

i , ∀i ∈ [2, 5] 343

are word vectors. 344

4.2.2 Graph Edges 345

We focus on extending corpus-level transductive 346

GCN-based text classification to inductive learning, 347

and select TextGCN(Yao et al., 2019) as one of its 348

kind. Like TextGCN, we define two-edge types 349

for InducT-GCN graph: 1) Word-Word with PMI 350

and 2) Word-Doc edges with TF-IDF. Note that 351

each node also connects to itself. PMI is calculated 352

based on the co-occurrence of a pair of words in a 353

slicing window4. Formally, it is calculated by: 354

PMI(i, j) = log
p(i, j)

p(i)p(j)
(3) 355

where p(i, j) represents the co-occurrence proba- 356

bility of word i and j and estimated by p(i, j) = 357

4The window size is 20, followed by TextGCN
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#Co−occurrence
#Windows , p(i) represents the probability of358

word i and estimated by p(i, j) = #Occurrence
#Windows .359

The graph is un-directed and all the edges are sym-360

metrical. The Adjacent Matrix A is calculated as:361

362

Aij =


max(0,PMI(i, j)) i, j are words
TF-IDFi,j i is word, j is doc
1 i = j

0 otherwise

(4)363

4.3 InducT-GCN Learning and Testing364

After building the graph, we train it using a two-365

layer Graph Convolutional Network as in (Kipf366

and Welling, 2017). The first GCN layer learns367

the word embeddings. The dimension of the sec-368

ond GCN layer is the number of classes of the369

dataset, and the output is fed into a softmax acti-370

vation function. The node representations on the371

training documents are used for cross-entropy loss372

calculation and back-propagation. Formally, the373

propagation can be described as:374

H(1) = σ(ÃH(0)W (0)) (5)375

Z = softmax(ÃH(1)W (1)) (6)376

where W (0) is a learned word embedding lookup377

table. Loss is calculated by using cross-entropy378

between Zi and Yi, ∀i ∈ Vtrain.379

In GCN, the propagation for each layer is con-380

ducted by updating the nodes with the weighted381

sum of their first-order neighbours and the node it-382

self. In order to make predictions on the test set, the383

first-order and second-order neighbours’ represen-384

tation for each test document should be aggregated.385

Note that we utilise the test documents during test-386

ing phase only so there is no need to update all the387

nodes in the graph during the propagation.388

Instead, we conduct an one-direction propaga-389

tion and only update test document node t,∀t ∈390

Vtest. Firstly, H(1)
i ,∀i ∈ Vword, W (0) and W (1)391

are recorded after training phase. Storing H
(1)
i392

enables InducT-GCN not to work on the training393

document nodes during the test phase so it saves394

computation resources. During the testing phase,395

InducT-GCN supports batch testing(Hamilton et al.,396

2017). For each batch of test document node397

B ∈ Vtest, |B| = b, the edges EB between B398

and Vword are calculated using TF-IDF with the399

document frequency of the training set.400

Test document input H ′(0)B is also calculated us-401

ing TF-IDF. The testing phase can be described402

as: 403

AB = concat(EB, I) (7) 404

H
′(0)
word,B = concat(H(0)

word, H
′(0)
B ) (8) 405

H
′(1)
B = σ(ABH

′(0)
word,BW

(0)) (9) 406

H
′(1)
word,B = concat(H(1)

word, H
′(1)
B ) (10) 407

ZB = softmax(ABH
′(1)
word,BW

(1)) (11) 408

where AB ∈ Rb×(|Vword|+b) stands for the weights 409

of the weighted sum calculation, and H ′(0) ∈ 410

R(|Vword|+b)×|Vword| stands for the input vectors 411

in the subgraph and will be used to update the 412

test document node using word nodes informa- 413

tion. H ′(1)B ∈ Rb×h is the updated test document 414

node embedding after the first layer of GCN and 415

h is the hidden dimension size. Then, the stored 416

{H(1)
w ,∀w ∈ Vword}, represented as H(1)

word, are 417

used to propagate training documents information 418

to the test document nodes for the second layer. 5 419

4.4 Generalization 420

In summary, we successfully replace the input 421

vectors with InducT-GCN way of node input vec- 422

tors and use one-directional propagation on a sub- 423

graph during the test phase. With our Inductive 424

graph construction and learning framework, it is 425

possible to extend any corpus-level and tranduc- 426

tive GCN-based text classification models, such as 427

TextGCN(Yao et al., 2019), SGC(Wu et al., 2019), 428

TensorGCN(Liu et al., 2020), and S2GC (Zhu and 429

Koniusz, 2021). Section 6.2 shows the detailed 430

generalization evaluation results. 431

4.5 Space and Time Analysis 432

Comparing with TextGCN, InducT-GCN is more 433

efficient both in time and space. For the space 434

complexity:(1)Number of Parameters of InducT- 435

GCN is |Vword| ∗h+h∗c while TextGCN requires 436

(|Vtrain|+ |Vword|+ |Vtest|)∗h+h∗ c parameters. 437

Meanwhile, |Vword| in InducT-GCN is smaller than 438

that in TextGCN. (2)Graph Space complexity of 439

InducT-GCN is O(|Vword|2 + |Vtrain| ∗ |Vword|) 440

and for TextGCN, it is O(|Vword|2 + (|Vtrain| + 441

|Vtest|) ∗ |Vword|). Similarly, |Vword| in InducT- 442

GCN is smaller than TextGCN. 443

Comparing with TextGCN, our model is faster 444

in three ways: (1)When constructing the graph, 445

the time complexity of PMI is O(|Vword|2 ∗ 446

5We formally describe the overall algorithms for training
and testing phase of InducT-GCN in Appendix A.
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Dataset # Full Train # Limited Train # Test # Word # Node # Class Avg Len
R8 5,485 274 2,189 1,878 2,152 8 62.22

R52 6,532 326 2,568 2,568 2,894 52 66.98
Ohsumed 3,357 167 4,043 2,667 2,834 23 123.7

20NG 11,314 113 7,532 2,839 2,952 20 163.5
MR 7,108 355 3,554 605 960 2 7.25

Table 1: Summary statistics of datasets. The limited environment description can be found in the Section 5.1

#Windows), and it is smaller for InducT-GCN.447

(2)The training time is shorter for InducT-GCN448

since the graph is smaller. (3)When new test449

samples show, TextGCN requires retraining while450

InducT-GCN can make predictions without retrain-451

ing. The testing result can be found in Section452

B.453

5 Evaluation Setup454

We evaluate the performance of our InducT-GCN455

on text classification, and examine the effectiveness456

of the proposed inductive learning approach.457

5.1 Dataset6458

We first evaluate InducT-GCN on 5(five) pub-459

licly available and widely used text classification460

benchmark datasets, including R8, R52, Ohsumed,461

20NG, and MR. In order to test in the limited en-462

vironment (small size training set), we select 5%463

of the full training set (1% for 20NG, due to the464

size). Note that the size of the test set is the same as465

the original. The detailed statistics of datasets can466

be found in Table 1. Secondly, we also extend the467

evaluation on the larger test sets. We apply the data468

augmentation methods on R8 dataset, called R8A.469

The detailed procedure can be found as follows.470

R8, R52 are two subsets of the Reuters dataset,471

and focus on the topic classification with 8 and472

52 classes respectively. Ohsumed is produced by473

the MEDLINE database, which is a bibliographic474

database of life sciences and biomedical informa-475

tion. It focuses on the medical text classification476

using 23 classes for different cardiovascular dis-477

eases abstracts. 20NG(20 NewsGroup) is a 20478

class-based news classification dataset. MR(Movie479

Review) is a binary (positive and negative) senti-480

ment polarity analysis, in which each movie re-481

view only contains one sentence. R8A: To evalu-482

ate our InducT-GCN scalability in the larger test483

set, we apply a data augmentation technique. Nl-484

paug7, the python library for data augmentation in485

6The datasets will be shared via the github for reproducibil-
ity.

7https://github.com/makcedward/nlpaug

NLP, is applied for augmenting the R8 test set. To 486

achieve this, we randomly choose one of the four 487

options: (1) randomly deleting a word, (2) adding a 488

word based on Word2Vec embedding similarity, (3) 489

substituting a word using Synonyms in WordNet 490

(Miller, 1995), (4) randomly swapping two words. 491

With the above procedure, we evaluate our InducT- 492

GCN with 1-5 times (2,189, 4,378, 6,567, 8,756, 493

10,945) of the R8 original test set size. The detailed 494

evaluation can be found in Section 6.3. 495

All dataset are preprocessed and tokenised based 496

on Kim (2014). We remove the words if shown less 497

than 2 times8 in the training documents or if listed 498

in NLTK stop word list. 499

5.2 Baselines 500

We compare InducT-GCN with baselines, mainly 501

those models with no external knowledge and learn- 502

ing in an inductive way. However, due to the lim- 503

ited number of baselines, we include the baselines 504

with pretrained word embeddings, such as CNN- 505

non-static, LSTM (pretrained), and TextING. We 506

also add transductive models, including TextGCN 507

and SGC. 508

• TF-IDF + SVM/LR applies TF-IDF vectors 509

for the input representation, and uses a tradi- 510

tional machine learning models, Support Vec- 511

tor Machine (SVM) or Logistic Regression 512

(LR), as classifiers respectively. 513

• CNN Kim (2014) applies Convolutional Neu- 514

ral Network on text classification. We evalu- 515

ate two types: 1) CNN-rand with randomly 516

initialised word embeddings and 2) CNN-non- 517

static with pretrained GloVe(Pennington et al., 518

2014) embeddings separately. 519

• LSTM Liu et al. (2016) applies Long Short- 520

Term Memory, and uses last hidden state for 521

the text representation. We use 1) randomly 522

initialised word embedding or 2) pretrained 523

Glove(Pennington et al., 2014). 524

8Words only shown once can not work as a bridge between
two document nodes.
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Method PT. R8 5% R52 5% Ohsumed 5% 20NG 1% MR 5%
TF-IDF + SVM 7 0.8054 ± 0.0000 0.6830 ± 0.0000 0.1476 ± 0.0000 0.1289 ± 0.0000 0.5537 ± 0.0000

TFIDF + LR 7 0.8090 ± 0.0000 0.6869± 0.0000 0.1813 ± 0.0000 0.1860 ± 0.0000 0.5967 ± 0.0000
CNN-rand 7 0.8107 ± 0.0110 0.6854 ± 0.0100 0.1586 ± 0.0079 0.1390 ± 0.0179 0.5485 ± 0.0122

CNN-non-static 3 0.9052 ± 0.0097 0.7708 ± 0.0181 0.3411 ± 0.0370 0.2969 ± 0.0277 0.7009 ± 0.0060
LSTM 7 0.7392 ± 0.0146 0.6364 ± 0.0060 0.1614 ± 0.0085 0.0766 ± 0.0063 0.5301 ± 0.0191

LSTM (Pretrain) 3 0.7916 ± 0.0499 0.6667 ± 0.0303 0.2486 ± 0.0392 0.1010 ± 0.0220 0.6680 ± 0.0198
TextGCN (Yao et al., 2019) 7 0.9116 ± 0.0127 0.7885 ± 0.0751 0.2225 ± 0.1138 0.2198 ± 0.1293 0.5341 ± 0.0216

SGC (Wu et al., 2019) 7 0.8955 ± 0.0098 0.7725 ± 0.0189 0.2474 ± 0.0392 0.2948 ± 0.0342 0.6015 ± 0.0051
TextING (Zhang et al., 2020) 3 0.8648 ± 0.0414 0.7465 ± 0.0298 0.3026 ± 0.0235 N/A 0.6117 ± 0.0342

InducT-GCN 7 0.9155 ± 0.0051 0.8135 ± 0.0384 0.3563 ± 0.0078 0.3461 ± 0.0337 0.6037 ± 0.0038

Table 2: Comparison with Baseline on Limited Labeled Data. For 20NG dataset, TextING(Zhang et al., 2020) has
out of Memory issue so the TextING authors also have not tested on the 20NG either. *The column PT. refers to
the model applied any pre-trained embedding.

• TextGCN/SGC are the graph-based transduc-525

tive learning models. Yao et al. (2019) intro-526

duced TextGCN, a graph-based transductive527

and corpus-level text classification model. In-528

spired by TextGCN, Wu et al. (2019) propose529

SGC (Simplifying Graph Convolutional net-530

works) using the same graph construction and531

improves the performance.532

• TextING, proposed by Zhang et al. (2020),533

and a document-level GNN for text classifi-534

cation. It uses pretrained GloVE embedding535

and applies graph embedding to classify the536

documents in an inductive way.537

5.3 Settings538

For a fair comparison, we apply the same set539

of hyper-parameters to all dataset without hyper-540

parameter tuning. As described in Yao et al.541

(2019), we applied two layers graph convolutional542

model to all graph-based baseline models, includ-543

ing TextGCN (Yao et al., 2019), SGC (Wu et al.,544

2019), our InducT-GCN. Whereas the embedding545

size in the first GCN layer is 200, that in the second546

layer is the number of classes of each dataset. The547

dropout rate for each layer is 0.5. Adam optimizer548

with a learning rate of 0.02 is used for training,549

and no weight decay is applied. For each experi-550

ment, followed by the original GCN paper (Kipf551

and Welling, 2017), 200 epochs are set to be the552

maximum number of epochs, and an early stop-553

ping mechanism is applied. 10% of the training554

set is randomly selected as the validation set. The555

model would stop training when the minimum val-556

idation loss in the recent 10 epochs is larger than557

the minimum validation loss 10 epochs ago, which558

indicates the loss does not decrease for 10 con-559

secutive epochs. For other baseline models, early560

stopping mechanism is also applied by using the561

default hyper-parameters. For all experiments, the 562

models are trained using 16 Intel(R) Core(TM) i9- 563

9900X CPU @ 3.50GHz and NVIDIA Titan RTX 564

24GB on Ubuntu 20.04.1 with Pytorch 1.7. Fol- 565

lowed by Yao et al. (2019); Wu et al. (2019); Liu 566

et al. (2020); Zhang et al. (2020), we use the accu- 567

racy as an evaluation metric. For each testing result, 568

we produce the average and standard derivation of 569

the ten-time running results. 570

6 Result 571

6.1 Performance Evaluation 572

A comprehensive experiment is conducted on the 573

5 benchmark datasets in the limited environment 574

as mentioned in Section 5.1. The result presented 575

in Table 2 shows that our proposed InducT-GCN 576

significantly outperforms all baselines (including 577

transductive graph-based models, such as TextGCN 578

and SGC, and CNN, LSTM, TextING use exter- 579

nal knowledge, pretrained word embeddings) in 580

terms of average accuracy on four datasets in R8, 581

R52, Ohsumed, 20NG. Meanwhile, the standard 582

derivation is smaller than most of baseline models, 583

showing the robustness of our model. For more in- 584

depth performance analysis, we can highlight that 585

this result shows the effectiveness of the proposed 586

InducT-GCN on long text datasets. While the aver- 587

age lengths of 20NG and Ohsumed are longer than 588

100 and those of R8 and R52 are still longer than 60, 589

MR is less than 10 which can be considered as an 590

extremely short text dataset. We found that models 591

with pre-trained word embeddings GloVe, achieve 592

better performance on the short text documents. 593

This is mainly because it would be very difficult to 594

recognise the global word co-occurrence with this 595

short length of text documents, which leads to a 596

fewer connection (bridging) between word nodes in 597
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Method R8 5% R52 5% Ohsumed 5% 20NG 1% MR 5%
SGC 0.8955 ± 0.0098 0.7725 ± 0.0189 0.2474 ± 0.0392 0.2948 ± 0.0342 0.6015 ± 0.0051

InducT-SGC 0.9045 ± 0.0046 0.8046 ± 0.0066 0.3106 ± 0.0061 0.2990 ± 0.0251 0.6017 ± 0.0048

Table 3: Transductive Graph Text Classification Model Test

(a) TextGCN (b) SGC

Figure 2: Test accuracy with different test size on R8A
by using both TextGCN and SGC with our proposed
Inductive model.

corpus-level text graph. Nevertheless, our InducT-598

GCN performs the best among the models, which599

do not have any pre-trained embeddings9.600

6.2 Generalization Evaluation601

In this section, we report the generalisation capabil-602

ity of our inductive graph construction and learning603

framework. As mentioned earlier, our framework604

is applied to TextGCN, the most widely known605

transductive graph-based text classification model.606

We now extend our inductive framework to another607

corpus-level graph-based model, SGC (Wu et al.,608

2019), and called InducT-SGC. Table 3 visualises609

the comparison of the original transductive SGC610

models and our InducT-SGC. As can be seen in the611

table, our InducT-SGC produces much higher per-612

formance than the original SGC when the labeled613

data are limited. The performance improvement be-614

tween both pair of the original transductive and our615

inductive model, TextGCN-to-InducT-GCN and616

SGC-to-InductSGC, clearly shows the generalisa-617

tion capability of our proposed inductive frame-618

work. It can be also applied to other corpus-level619

graph-based text classification models in the future.620

6.3 Impact of Test Size621

As mentioned earlier, we use the R8A (R8 with a622

data augmentation) to show the scalability of our623

proposed Inductive learning framework by compar-624

ing TextGCN and InducT-GCN in the larger text625

set. Figure 2a shows the comparison of TextGCN626

9Apart from our main goal, we also conducted an evalu-
ation on R8 and R52 in the full environment for testing the
superiority of our Inductive learning framework. The result
can be found in the appendix C

and InducT-GCN on different test sizes, with 1 to 627

5 times (2,189, 4,378, 6,567, 8,756, 10,945) of the 628

R8 original test set size. The larger the test size, 629

the larger the gap between TextGCN and InducT- 630

GCN. TextGCN produces worse performance with 631

the largest test size. This is mainly because there 632

would be only a small proportion of the document 633

nodes contributing to the gradient in TextGCN with 634

a larger test set. Especially during the training 635

phase, it is difficult for TextGCN to learn embed- 636

dings of those test document nodes having fewer 637

connections with word nodes by backpropagation. 638

Moreover, we found that the performance of our 639

InducT-GCN decreased only a little (less than 0.5) 640

when the test size grows. We also conducted the ex- 641

act same evaluation based on SGC by applying our 642

Inductive graph construction and learning frame- 643

work to SGC, named InducT-SGC. Like the result 644

that our InducT-GCN produced, the InducT-SGC 645

produces much higher performance than the orig- 646

inal SGC. The performance trend shows how our 647

Inductive framework fits perfectly on the inductive 648

learning nature. 649

7 Conclusion 650

In this study, we propose a novel inductive graph- 651

based text classification framework, named InducT- 652

GCN, which makes heavy and transductive GCN- 653

based text classification models inductive. We 654

construct a graph only using training set statistics. 655

InducT-GCN can efficiently capture global infor- 656

mation with fewer parameters and smaller space 657

complexity. Our InducT-GCN significantly out- 658

performed all graph-based text classification base- 659

lines, and even better than the models using pre- 660

trained embeddings. We also demonstrated the 661

generalisation capability of our inductive graph 662

construction and learning framework by applying 663

and expanding different transductive graph-based 664

text classification models, like TextGCN and SGC. 665

The performance and computation time surpris- 666

ingly improved, compared to the original models. 667

It is hoped that this paper provides some insight 668

into the future integration of the lighter and faster 669

inductive graph neural networks on different NLP 670

tasks. 671
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A Learning and Inferencing Algorithm 840

Alorightm 1 shows the training phase and testing 841

phase of InducT-GCN. 842

Algorithm 1 InducT-GCN Training and Testing
Phase
Input: Training Graph G(V, Ã), V =
{Vtrain, Vword};Test Adjacent Matrix
{A′B,w, B ∈ Vtest,∀w ∈ Vword}; Training

input vectors {H(0)
i ,∀i ∈ Vtrain}; Test input

vectors {H ′(0)B , B ∈ Vtest}; Training Labels
{Yi, ∀i ∈ Vtrain}
Parameter: Weight matrices W (0) and W (1)

Output: Prediction Results for Test Samples
{YB, B ∈ Vtest}

1: for epoch = 1, 2, . . . do
2: H(1) ← σ(ÃH(0)W (0))
3: Z ← softmax(ÃH(1)W (1))
4: L← CrossEntropy(Yi, Zi),∀i ∈ Vtrain
5: Update W (0) and W (1)

6: end for
7: for Batch B in Vtest do
8: G′ ← {A′B,w, H

(0)
w , H

′(0)
B },∀w ∈ Vword

9: H
′(1)
B ← GCN(G′, vB)

10: G′′ ← {A′B,w, H
(1)
w , H

′(1)
B },∀w ∈ Vword

11: YB ← argmax(GCN(G′′, vB))
12: end for

B Computation Time Results 843

Table 6 visualises the superiority of our induc- 844

tive learning framework by reducing the compu- 845

tation time, including graph construction and train- 846

ing/testing. It compared the original transductive 847

TextGCN with our model on R8A; The larger the 848

gap between TextGCN and our InducT-GCN, the 849

larger the test size. 850

C Performance in Full Dataset 851

We also evaluated the performance of our InducT- 852

GCN with the full dataset, like the TextGCN was 853

evaluated (Yao et al., 2019). As can be seen 854

in Table 7, the performance of InducT-GCN and 855

TextGCN on R8 and R52 are comparable when 856

using the entire dataset. We can conclude that 857
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# Parameters R8 5% R52 5% Ohsumed 5% 20NG 1% MR 5%
1st Layer 375,600 513,600 533,400 567,800 121,000
2nd Layer 1,600 10,400 4,600 4,000 400

Total 377,200 524,000 538,000 571,800 121,400

Table 4: Number of Parameters

Embedding R8 5% R52 5% Ohsumed 5% 20NG 1% MR 5%
RAND 0.9155 ± 0.0051 0.8135 ± 0.0384 0.3563 ± 0.0078 0.3461 ± 0.0337 0.6037 ± 0.0038

Word2Vec 0.9124 ± 0.0043 0.8290 ± 0.0084 0.3544 ± 0.0305 0.3476 ± 0.0086 0.6003 ± 0.0045
GloVe 0.9159 ± 0.0102 0.8266 ± 0.0090 0.3514 ± 0.0186 0.3662 ± 0.0197 0.6051 ± 0.0055

Table 5: Pretrained Embedding

Test Size TextGCN InducT-GCN
Graph Training Graph Training

×1 6.29 2.75 0.89 0.52
×2 11.90 3.20 1.11 0.53
×3 16.60 3.54 1.30 0.53
×4 21.10 4.13 1.52 0.55
×5 27.50 4.98 1.68 0.51

Table 6: Graph Construction Time and Training Time
comparison on R8A (sec)

InducT-GCN has superior than the TextGCN in858

terms of the performance and computation, which859

is not only in smaller space with fewer parameter860

numbers, but also in the whole dataset setting.861

Method R8 Full R52 Full
TextGCN 0.9629 ± 0.0010 0.9295 ± 0.0020

InducT-GCN 0.9653 ± 0.0017 0.9323 ± 0.0015

Table 7: Comparison with TextGCN on Full Data

D Number of Parameters862

The number of parameters of the first GCN layer is863

|Vword| ∗ h, which is the number of unique words864

times first layer hidden dimension. In the second865

layer, h ∗ |C| parameters are trained, and |C| is the866

number of classes for each dataset. In total, the867

number of parameters is (|Vword| + |C|) ∗ h, and868

details are shown in Table 4.869

E Pretrained Embeddings870

(Draft) The first layer of InducT-GCN actullay871

learns the word embeddings, and in InducT-GCN872

the weights were randomly initialized. We also873

tested with initializing with pretrained word em-874

beddings, shown in Tabel 5. In most of the cases,875

the performance improves, showing the potential876

of InducT-GCN when combined with external re-877

sources.878
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