InducT-GCN: Inductive Graph Convolutional Networks
for Text Classification

Anonymous ACL submission

Abstract

Text classification aims to assign labels to tex-
tual units by making use of global informa-
tion. Recent studies have applied graph neu-
ral network (GNN) techniques to capture the
global word co-occurrence in a corpus. Most
existing approaches require that all the nodes
(training and test) in a graph are present dur-
ing training, which are transductive and do not
naturally generalise to unseen nodes. To make
those models inductive, previous works use
extra resources, like pretrained word embed-
ding. However, high-quality resource is not
always available and can be hard to train. Un-
der the extreme settings with no extra resource
and limited amount of training set, can we
still learn an inductive graph-based text clas-
sification model? In this paper, we introduce a
novel inductive graph-based text classification
framework, namely InducT-GCN (InducTive
Graph Convolutional Networks for Text clas-
sification). Compared to transductive models
that require test documents in training, we con-
struct a graph based on the statistics of train-
ing documents only and represent document
vectors with a weighted sum of word vectors.
We then conduct one-directional GCN propa-
gation during testing. Across five text classi-
fication benchmarks, our InducT-GCN outper-
formed state-of-the-art methods that are either
transductive in nature or pre-trained additional
resources. We also conducted scalability test-
ing by gradually increasing the data size and
revealed that our InducT-GCN can reduce the
time and space complexity.

1 Introduction

Text classification is one of the most fundamental

tasks in the natural language processing research.

Assume that we are given a description d € X" of
a document, where X is the document space; and
a fixed set of classes C = {c1, ca,...,cs}, can be
called as categories or labels. A document space X
is typically some type of high-dimensional space

and the classes are human defined for the needs of
an application. Note that we only consider a single-
class text classification problem in this research.

With the rise of deep learning, many text classi-
fication studies have focused on learning text rep-
resentations using sequence-based learning mod-
els, such as convolutional neural networks (CNN)
(Kim, 2014) or recurrent neural networks (RNN)
/long short term memory (LSTM) (Zhou et al.,
2016). The CNN/RNN-based models focus on the
locality and sequence of text, and mainly aim to
detect semantic and syntactic information in local
consecutive word sequences. It tends to neglect
global word co-occurrence in a corpus and ignore
non-consecutive and long distance semantic infor-
mation (Peng et al., 2018). However, those models
need relatively large size of training set in order
to achieve better performance but most real-world
cases (e.g. specific domain or some low resource
languages) have very limited amount of training
set (limited labeled data). Recently, pre-trained
models, like BERT (Devlin et al., 2018), RoBERTa
(Liu et al., 2019), have achieved state-of-the-art
performance on several NLP tasks with limited
amount of training data. However, those models
requires much computation and external resources
for pre-training which are not always available.

Yao et al. (2019) proposed TextGCN and
achieves state-of-the-art result especially when
the percentage of training data is low without us-
ing any external resources and low computation
costs. It is an initial text graph-based neural net-
work framework, which conducts a straightforward
manner of graph construction and applies a GCN-
learning(Kipf and Welling, 2017) to deal with com-
plex structured textual data and prioritise global
feature exploitation. More recent studies (Wu et al.,
2019; Liu et al., 2020; Zhu and Koniusz, 2021) fo-
cused on utilising more contextual information or
optimising the computation or performance.

However, most graph-based learning mod-

els is intrinsically transductive, meaning that
the learned node representations/embeddings for
words/documents are not naturally generalisable
to unseen words/documents, making it difficult
to apply in real world. The transductive nature
of these graph-based learning models require rel-
atively large computational space when the cor-
pus size is large. Therefore, an inductive model is
required. In order to extend a transdutive graph-
based text classification into an inductive model,
we mainly consider the following three require-
ments: 1)The inductive learning model must not
include any test set information during the train-
ing. 2)The inductive model must not re-train the
model on the whole new graph when it learns a
new sample. 3)We use corpus-level graph-based
text classification in order to make inductive model
since it well covers the benefit of graph-based learn-
ing, which captures complex global structure of
the whole corpus and prioritises global feature
exploitation. With these three requirements, in
this paper, we propose a novel inductive graph-
based text classification framework, called InducT-
GCN (InducTive Graph Convolutional Networks
for Text classification). We introduce a new in-
ductive graph framework of graph construction,
learning, and testing, and it can expand any tran-
ductive GCN-based text classification model. The
paper includes the following contributions:

* To the best of our knowledge, we introduce the
first inductive corpus-level GCN-based text
classification framework without using any
extra resources.

* We compare our InducT-GCN on five bench-
mark datasets under the limited labeled data
settings. InducT-GCN achieves the highest
accuracy on four of them, even beating some
trasductive baselines integrated by using ex-
ternal resources.

* We introduce a new way to make transduc-
tive GCN-based text classification models in-
ductive, which improve the performance and
reduce the time and space complexity.

2 Related Work

2.1 Graph Neural Networks

Graph Neural Network (GNN)s (Cai et al., 2018;
Kipf and Welling, 2017) have been effective at
tasks to have rich relational structure and can pre-
serve global structure information of a graph in

graph embeddings by aggregating first-order neigh-
borhood information. Kipf and Welling (2017)
introduced Graph Convolutional Networks (GCN)
on semi-supervised and transductive classification
tasks using generalized convolutional layers. Then,
GraphSage (Hamilton et al., 2017) and FastGCN
(Chen et al., 2018) tailored GCNs on inductive
representation learning framework with sampling
methods. The Attention mechanism was also ap-
plied to GCN, called Graph Attention Networks
(GAT) (Velickovi¢ et al., 2018), in order to specify
different weights to different nodes in a neighbour-
hood. More recent GCN studies for transductive
and inductive frameworks have been proposed. For
transductive-based GCN, SGC (Wu et al., 2019)
was introduced to reduce the complexity and S2GC
(Zhu and Koniusz, 2021) was proposed to solve
over-smoothing problems. Some inductive-based
models, DeepGL (Rossi et al., 2020) and TGAT
(da Xu et al., 2020), were introduced to cover dif-
ferent graph tasks, including transfer learning and
topology learning.

2.2 Text Classification Using GNN

GNNs have received lots of attention in various
NLP tasks (Bastings et al., 2017; Marcheggiani
and Titov, 2017; Tu et al., 2019; Li et al., 2019;
Yao et al., 2019; Cao et al., 2019; Yang et al,,
2021), including text classification. The GNN-
based text classification models can be categorised
into two types: Document-level and Corpus-level
approaches.

Document-level GNN in Text Classification
Several studies proposed a graph-based text clas-
sification by building a graph for each document
using words as nodes (Defferrard et al., 2016; Peng
et al., 2018; Zhang et al., 2018; Nikolentzos et al.,
2020; Huang et al., 2019; Zhang et al., 2020). Word
nodes are represented by external resources, pre-
trained embedding, such as Word2vec (Mikolov
et al., 2013), and Glove (Pennington et al., 2014).
Hence, they do not consider any global structure
information of a corpus/entire dataset during their
model training/learning.

Corpus-level GNN in Text Classification
Compared to the above Document-level models,
Yao et al. (2019) proposed TextGCN, a graph-based
text classification that builds a graph for the entire
text corpus with documents and words as nodes.
Hence, it captures global information of an en-
tire corpus and conduct node(document) classifica-

tion. After that, SGC (Wu et al., 2019) and S?GC
(Zhu and Koniusz, 2021) constructed a graph as
TextGCN, but proposed different information prop-
agation approaches. Liu et al. (2020) introduced
TensorGCN by explicitly integrating three differ-
ent aspect-based graphs, including syntactic, se-
mantic, and sequential, for better text classifica-
tion performance. Li et al. (2021) also proposed
the three graphs for covering semantics, syntantic,
and contextual aspects. Note that all three graphs
are based on an entire corpus and use the same
propagation as GCN (Kipf and Welling, 2017).
TG-Transformer(Zhang and Zhang, 2020) applied
transformer with pretrained GloVe embeddings to
the TextGCN, and BERTGCN(Lin et al., 2021) ap-
plied BERT embedding to the TextGCN. All the
above models are transductive-based approaches
as GCN (Kipf and Welling, 2017). However, our
model InducT-GCN, an inductive graph-based text
classification framework, constructs a corpus-level
graph but adopts the nature of inductive learning in
order to naturally generalise to unseen nodes’.

3 Tranductive and Inductive Nature

In this section, we aim to discuss the nature of
transductive and inductive GCN learning for text
classification, and what inductive learning aspect
we would like to explore for text classification.
Most GCN models for text classification, including
TextGCN(Yao et al., 2019), SGC(Wu et al., 2019),
or S2GC (Zhu and Koniusz, 2021), are inherently
transductive, and applied in the whole corpus-level
fixed graph. Note that those models use a whole-
corpus based textual graph, to create nodes (incl.
document, word nodes) and edges (incl. word-
word: PMI?, word-doc: TF-IDF).

In order to extend those transductive models
into an inductive learning nature, we fundamen-
tally improve two aspects as follows. First, the
transductive GCN-based text classification mod-
els include documents not only from the train-
ing set but also the test set when constructing a
whole-corpus based textual graph for GCN learn-
ing. Hence, the learned GCN model will be influ-
enced/generalised by word/document information
in the test set, which is supposed to be unseen
nodes. Our inductive GCN-based text classifica-
tion model constructs a graph with only training
document information but does not consider any

'The nature of inductive learning is detailed in Section 3
2Point-wise Mutual Information(Yao et al., 2019)

information from the test sets. We just focus on
generalising to unseen nodes, and aligning newly
observed subgraphs to the node that the model has
already optimised on.

Secondly, the transductive models learn the em-
bedding for Virqin, Viest> Vword Simultaneously by
using one-hot input vectors H(®) € R"*"_ For
any new test sample, the embedding for that sam-
ple should be re-learned by re-training the model
on the new graph. In this case, the re-learning/re-
training process does not perfectly fulfil the effec-
tive generalisation to unseen nodes. Therefore, we
come up with new graph construction and train-
ing/testing solution for inductive learning, instead
of re-learning or re-training.

4 InducT-GCN

We propose an Inductive Graph Convolutional Net-
work (GCN) for text classification, named ‘InducT-
GCN’, which can be an extension of the traditional
transductive GCN-based text classification models.
We adopt the traditional transductive GCN-based
text classification models, including TextGCN(Yao
et al., 2019) and SGC(Wu et al., 2019), and focus
on expanding those models to efficient inductive
learning models. This section demonstrates the
proposed inductive learning components® applied
to TextGCN.

4.1 Revisit TextGCN

TextGCN is a GCN-based text classification model
that uses a large and heterogeneous text graph
based on the whole corpus. To understand the con-
cept properly, we first explore the GCN process.

Graph Convolutional Networks(GCN) For-
mally, considering a graph G = (V, E, A), where
V(]V] = n) is a set of nodes, E is a set of edges,
and A € R™*"™ is an adjacent matrix representing
the edge values between nodes. The propagation
rule of each hidden layer is:

HFD = f(HO A) = o(AHOWOY (1)

where A = D=3 AD~7% is a normalized symmet-
ric matrix for A and D;; = X;A;; as a degree
matrix of adjacent matrix A. H 'is 1, hidden
layer input and W' is a weight to be learned in
this layer. o is an activation function, e.g. ReLU:
o(x) = maz(0,z).

3We also applied our proposed inductive learning compo-
nents to SGC in Section 6.2

TextGCN Followed by the GCN(Kipf and
Welling, 2017), TextGCN constructs a large corpus-
level graph but with textual information, docu-
ment and word as nodes so it can be modelled
the global word-document co-occurrence. Like
GCN, the constructed graph includes document
and word nodes from training sets, as well as test
sets. TextGCN aims to model the global word-
document occurrence with two major edges: 1)
word-word edge: calculated by point-wise mutual
information(PMI), 2) document-word edge: TF-
IDF. Note that they use one-hot vectors for word
and document nodes. One-hot vectors are fed into
a two-layer GCN model to jointly learn the em-
bedding for the documents and words during the
training phase. The representations learned from
the document nodes in the training set are used for
training the text(document) classification model,
and those on the document nodes in the test set are
used for predicting the document class.

4.2 InducT-GCN Graph Construction

4.2.1 Graph Nodes

As mentioned earlier, our inductive GCN-based
text classification model, InducT-GCN, strictly do
not consider any information or statistics from the
test set, which is supposed to be unseen nodes. In-
stead, we construct the nodes only the with training
document information. Consider a set of nodes
V' = {Virain, Vwora} and the V.4 are the unique
words in the training documents. In order to define
input vector H(® for graph nodes in the InducT-
GCN graph, we consider two requirements:

* During the graph propagation, all the input
vectors for document nodes and word nodes
are multiplied by the same weights so that
these vectors should align with each other.

¢ Unlike TextGCN (transductive model), our
InducT-GCN must not use one-hot vectors for
representing document nodes. As mentioned,
we do not consider or deal with any informa-
tion of testing documents during the training
phase. Hence, the model will neither learn
any representation nor make a prediction on
testing documents if we directly use the one-
hot vector for document node embedding as
TextGCN proposed.

With this in mind, we propose a new document
representation by focusing on the nature of our pro-
posed inductive learning idea. For the proper align-

Document node vectors
Word node vectors

0347 0173 0 0

0 0 0 0.347

1 0 0 0
HO =

0 1 0 0

V] 0 1 0

0 0 0 1

Figure 1: Input Vectors Representations (document and
word node vectors) when two input documents are “w;
w1 W ’LU3" and “’LUg ’LU4”.

ment between word and document representation,
InducT-GCN generates document node represen-
tations based on its word nodes vectors. We use
a weighted average of word vectors to construct
document nodes vectors, and the key idea of this
construction is applying TF-IDF weights. Formally,
one-hot vectors are used for representing word
nodes vectors H&O) ,Yw € Viyorq. For representing
training documents node vectors H i(0)7 Vi € Virain,
we use TF-IDF vectors. The values for each dimen-
sion is TF-IDF values for the corresponding word
in that specific document:

(0) o ..
H;;’ = TF-IDF(i, 5) (2)

where 7 and j are document and word, respectively.

Assume H©® ¢ RWVwordl where n =
|Virain| + |Vwora|- When two input documents are
“wi wy we w3" and “ws wy". Figure 1 visualise
the input vector representation, where Héo) and
H {O) are document vectors and Hfo),w € [2,5]
are word vectors.

4.2.2 Graph Edges

We focus on extending corpus-level transductive
GCN-based text classification to inductive learning,
and select TextGCN(Yao et al., 2019) as one of its
kind. Like TextGCN, we define two-edge types
for InducT-GCN graph: 1) Word-Word with PMI
and 2) Word-Doc edges with TF-IDF. Note that
each node also connects to itself. PMI is calculated
based on the co-occurrence of a pair of words in a
slicing window*. Formally, it is calculated by:

p(i, j)
p(i)p(7)
where p(i, j) represents the co-occurrence proba-
bility of word 7 and j and estimated by p(i,j) =

PMI(i, j) = log 3)

“The window size is 20, followed by TextGCN

#Co—occurrence

#Windows
word i and estimated by p(i,j) = %.

The graph is un-directed and all the edges are sym-
metrical. The Adjacent Matrix A is calculated as:

, (i) represents the probability of

max(0,PMI(i,5)) 1,7 are words

TF-IDF; ; 1 is word, j is doc

Aij = " o 4)
1 1=
0 otherwise

4.3 InducT-GCN Learning and Testing

After building the graph, we train it using a two-
layer Graph Convolutional Network as in (Kipf
and Welling, 2017). The first GCN layer learns
the word embeddings. The dimension of the sec-
ond GCN layer is the number of classes of the
dataset, and the output is fed into a softmax acti-
vation function. The node representations on the
training documents are used for cross-entropy loss
calculation and back-propagation. Formally, the
propagation can be described as:

HY = g(AHOW©) 5)
Z = softmax(AHOWW) (6)

where W) is a learned word embedding lookup
table. Loss is calculated by using cross-entropy
between Z; and Y;, Vi € Viygin.

In GCN, the propagation for each layer is con-
ducted by updating the nodes with the weighted
sum of their first-order neighbours and the node it-
self. In order to make predictions on the test set, the
first-order and second-order neighbours’ represen-
tation for each test document should be aggregated.
Note that we utilise the test documents during test-
ing phase only so there is no need to update all the
nodes in the graph during the propagation.

Instead, we conduct an one-direction propaga-
tion and only update test document node ¢, Vt €
Viest. Firstly, HY Vi € Viyopa, W® and W)
are recorded after training phase. Storing Hzgl)
enables InducT-GCN not to work on the training
document nodes during the test phase so it saves
computation resources. During the testing phase,
InducT-GCN supports batch testing(Hamilton et al.,
2017). For each batch of test document node
B € Vies,|B| = b, the edges Ep between B
and V,,-q are calculated using TF-IDF with the
document frequency of the training set.

Test document input H go) is also calculated us-
ing TF-IDF. The testing phase can be described

as:
Ap = concat(Ep, I) @)
Hggld,B = Concat(stzoo)rd’ HJ/B(O)) (8)
H = o(AgHy0, s W))
H;giid,B = Concat(Hz(ulo)rd’ Hgl)) (10)
Zp = softmax(ApH,\)y ;W) (11)

where Ap € RV*(Vwordl+b) gtands for the weights
of the weighted sum calculation, and H'(® ¢
RVword|+0)x|Vwordl stands for the input vectors
in the subgraph and will be used to update the
test document node using word nodes informa-
tion. Hgl) € RP*M is the updated test document
node embedding after the first layer of GCN and
h is the hidden dimension size. Then, the stored
{Hz(ul),Vw € Viyord}, represented as H S{}T 4> are
used to propagate training documents information
to the test document nodes for the second layer. >

4.4 Generalization

In summary, we successfully replace the input
vectors with InducT-GCN way of node input vec-
tors and use one-directional propagation on a sub-
graph during the test phase. With our Inductive
graph construction and learning framework, it is
possible to extend any corpus-level and tranduc-
tive GCN-based text classification models, such as
TextGCN(Yao et al., 2019), SGC(Wu et al., 2019),
TensorGCN(Liu et al., 2020), and S2GC (Zhu and
Koniusz, 2021). Section 6.2 shows the detailed
generalization evaluation results.

4.5 Space and Time Analysis

Comparing with TextGCN, InducT-GCN is more
efficient both in time and space. For the space
complexity:(1)Number of Parameters of InducT-
GCN is |Viyora| * h + h * ¢ while TextGCN requires
(|Virain| + |Viword| + | Viest|) * h + h * ¢ parameters.
Meanwhile, |V,0r¢| in InducT-GCN is smaller than
that in TextGCN. (2)Graph Space complexity of
InducT-GCN is O(|Vword|2 + |Vtrtm'n| * |Vw07‘d|)
and for TextGCN, it is O(|Viporal? + (|[Virain| +
[Viestl) * [Vivordl). Similarly, [Vi,ora in InducT-
GCN is smaller than TextGCN.

Comparing with TextGCN, our model is faster
in three ways: (1)When constructing the graph,
the time complexity of PMI is O(|Vioral? *

SWe formally describe the overall algorithms for training
and testing phase of InducT-GCN in Appendix A.

Dataset | # Full Train # Limited Train # Test # Word # Node # Class Avg Len

R8 5,485 274
R52 6,532 326
Ohsumed 3,357 167
20NG 11,314 113
MR 7,108 355

2,189 1,878 2,152 8 62.22
2,568 2,568 2,894 52 66.98
4,043 2,667 2,834 23 123.7
7,532 2,839 2,952 20 163.5
3,554 605 960 2 7.25

Table 1: Summary statistics of datasets. The limited environment description can be found in the Section 5.1

#Windows), and it is smaller for InducT-GCN.
(2)The training time is shorter for InducT-GCN
since the graph is smaller. (3)When new test
samples show, TextGCN requires retraining while
InducT-GCN can make predictions without retrain-
ing. The testing result can be found in Section
B.

5 Evaluation Setup

We evaluate the performance of our InducT-GCN
on text classification, and examine the effectiveness
of the proposed inductive learning approach.

5.1 Dataset®

We first evaluate InducT-GCN on 5(five) pub-
licly available and widely used text classification
benchmark datasets, including R8, R52, Ohsumed,
20NG, and MR. In order to test in the limited en-
vironment (small size training set), we select 5%
of the full training set (1% for 20NG, due to the
size). Note that the size of the test set is the same as
the original. The detailed statistics of datasets can
be found in Table 1. Secondly, we also extend the
evaluation on the larger test sets. We apply the data
augmentation methods on R8 dataset, called R8A.
The detailed procedure can be found as follows.
RS, R52 are two subsets of the Reuters dataset,
and focus on the topic classification with 8 and
52 classes respectively. Ohsumed is produced by
the MEDLINE database, which is a bibliographic
database of life sciences and biomedical informa-
tion. It focuses on the medical text classification
using 23 classes for different cardiovascular dis-
eases abstracts. 20NG(20 NewsGroup) is a 20
class-based news classification dataset. MR(Movie
Review) is a binary (positive and negative) senti-
ment polarity analysis, in which each movie re-
view only contains one sentence. R8A: To evalu-
ate our InducT-GCN scalability in the larger test
set, we apply a data augmentation technique. NI-
paug’, the python library for data augmentation in

%The datasets will be shared via the github for reproducibil-
ity.
"https://github.com/makcedward/nlpaug

NLP, is applied for augmenting the RS test set. To
achieve this, we randomly choose one of the four
options: (1) randomly deleting a word, (2) adding a
word based on Word2Vec embedding similarity, (3)
substituting a word using Synonyms in WordNet
(Miller, 1995), (4) randomly swapping two words.
With the above procedure, we evaluate our InducT-
GCN with 1-5 times (2,189, 4,378, 6,567, 8,756,
10,945) of the R8 original test set size. The detailed
evaluation can be found in Section 6.3.

All dataset are preprocessed and tokenised based
on Kim (2014). We remove the words if shown less
than 2 times?® in the training documents or if listed
in NLTK stop word list.

5.2 Baselines

We compare InducT-GCN with baselines, mainly
those models with no external knowledge and learn-
ing in an inductive way. However, due to the lim-
ited number of baselines, we include the baselines
with pretrained word embeddings, such as CNN-
non-static, LSTM (pretrained), and TextING. We
also add transductive models, including TextGCN
and SGC.

* TF-IDF + SVM/LR applies TF-IDF vectors
for the input representation, and uses a tradi-
tional machine learning models, Support Vec-
tor Machine (SVM) or Logistic Regression
(LR), as classifiers respectively.

* CNN Kim (2014) applies Convolutional Neu-
ral Network on text classification. We evalu-
ate two types: 1) CNN-rand with randomly
initialised word embeddings and 2) CNN-non-
static with pretrained GloVe(Pennington et al.,
2014) embeddings separately.

* LSTM Liu et al. (2016) applies Long Short-
Term Memory, and uses last hidden state for
the text representation. We use 1) randomly
initialised word embedding or 2) pretrained
Glove(Pennington et al., 2014).

8Words only shown once can not work as a bridge between
two document nodes.

https://github.com/makcedward/nlpaug

Method PT. R8 5% R525% Ohsumed 5% 20NG 1% MR 5%
TF-IDF + SVM X | 0.8054 +£0.0000 | 0.6830 +0.0000 | 0.1476 +0.0000 | 0.1289 +0.0000 | 0.5537 + 0.0000
TFIDF + LR X | 0.8090 +0.0000 | 0.6869+ 0.0000 | 0.1813 +0.0000 | 0.1860 + 0.0000 | 0.5967 + 0.0000
CNN-rand X | 0.8107 £0.0110 | 0.6854 = 0.0100 | 0.1586 +0.0079 | 0.1390 +0.0179 | 0.5485 +0.0122
CNN-non-static v 0.9052 +0.0097 | 0.7708 £ 0.0181 | 0.3411 £0.0370 | 0.2969 + 0.0277 | 0.7009 + 0.0060
LSTM X | 0.7392+£0.0146 | 0.6364 +0.0060 | 0.1614 +0.0085 | 0.0766 + 0.0063 | 0.5301 +0.0191
LSTM (Pretrain) v | 0.7916 £0.0499 | 0.6667 +0.0303 | 0.2486 +0.0392 | 0.1010 + 0.0220 | 0.6680 + 0.0198
TextGCN (Yao et al., 2019) X 1 09116+0.0127 | 0.7885 £ 0.0751 | 0.2225 +0.1138 | 0.2198 +0.1293 | 0.5341 +0.0216
SGC (Wu et al., 2019) X | 0.8955£0.0098 | 0.7725 £ 0.0189 | 0.2474 £ 0.0392 | 0.2948 + 0.0342 | 0.6015 + 0.0051
TextING (Zhang et al., 2020) | v | 0.8648 £0.0414 | 0.7465 £ 0.0298 | 0.3026 + 0.0235 N/A 0.6117 +£0.0342
InducT-GCN X | 0.9155 +0.0051 | 0.8135 +0.0384 | 0.3563 = 0.0078 | 0.3461 + 0.0337 | 0.6037 + 0.0038

Table 2: Comparison with Baseline on Limited Labeled Data. For 20NG dataset, TextING(Zhang et al., 2020) has
out of Memory issue so the TextING authors also have not tested on the 20NG either. *The column PT. refers to

the model applied any pre-trained embedding.

* TextGCN/SGC are the graph-based transduc-
tive learning models. Yao et al. (2019) intro-
duced TextGCN, a graph-based transductive
and corpus-level text classification model. In-
spired by TextGCN, Wu et al. (2019) propose
SGC (Simplifying Graph Convolutional net-
works) using the same graph construction and
improves the performance.

* TextING, proposed by Zhang et al. (2020),
and a document-level GNN for text classifi-
cation. It uses pretrained GloVE embedding
and applies graph embedding to classify the
documents in an inductive way.

5.3 Settings

For a fair comparison, we apply the same set
of hyper-parameters to all dataset without hyper-
parameter tuning. As described in Yao et al.
(2019), we applied two layers graph convolutional
model to all graph-based baseline models, includ-
ing TextGCN (Yao et al., 2019), SGC (Wu et al.,
2019), our InducT-GCN. Whereas the embedding
size in the first GCN layer is 200, that in the second
layer is the number of classes of each dataset. The
dropout rate for each layer is 0.5. Adam optimizer
with a learning rate of 0.02 is used for training,
and no weight decay is applied. For each experi-
ment, followed by the original GCN paper (Kipf
and Welling, 2017), 200 epochs are set to be the
maximum number of epochs, and an early stop-
ping mechanism is applied. 10% of the training
set is randomly selected as the validation set. The
model would stop training when the minimum val-
idation loss in the recent 10 epochs is larger than
the minimum validation loss 10 epochs ago, which
indicates the loss does not decrease for 10 con-
secutive epochs. For other baseline models, early
stopping mechanism is also applied by using the

default hyper-parameters. For all experiments, the
models are trained using 16 Intel(R) Core(TM) i9-
9900X CPU @ 3.50GHz and NVIDIA Titan RTX
24GB on Ubuntu 20.04.1 with Pytorch 1.7. Fol-
lowed by Yao et al. (2019); Wu et al. (2019); Liu
et al. (2020); Zhang et al. (2020), we use the accu-
racy as an evaluation metric. For each testing result,
we produce the average and standard derivation of
the ten-time running results.

6 Result

6.1 Performance Evaluation

A comprehensive experiment is conducted on the
5 benchmark datasets in the limited environment
as mentioned in Section 5.1. The result presented
in Table 2 shows that our proposed InducT-GCN
significantly outperforms all baselines (including
transductive graph-based models, such as TextGCN
and SGC, and CNN, LSTM, TextING use exter-
nal knowledge, pretrained word embeddings) in
terms of average accuracy on four datasets in R8,
R52, Ohsumed, 20NG. Meanwhile, the standard
derivation is smaller than most of baseline models,
showing the robustness of our model. For more in-
depth performance analysis, we can highlight that
this result shows the effectiveness of the proposed
InducT-GCN on long text datasets. While the aver-
age lengths of 20NG and Ohsumed are longer than
100 and those of R8 and R52 are still longer than 60,
MR is less than 10 which can be considered as an
extremely short text dataset. We found that models
with pre-trained word embeddings GloVe, achieve
better performance on the short text documents.
This is mainly because it would be very difficult to
recognise the global word co-occurrence with this
short length of text documents, which leads to a
fewer connection (bridging) between word nodes in

Method R8 5% R52 5% Ohsumed 5% 20NG 1% MR 5%
SGC 0.8955 £ 0.0098 | 0.7725 £ 0.0189 | 0.2474 £ 0.0392 | 0.2948 £ 0.0342 | 0.6015 = 0.0051
InducT-SGC | 0.9045 + 0.0046 | 0.8046 = 0.0066 | 0.3106 = 0.0061 | 0.2990 + 0.0251 | 0.6017 + 0.0048
Table 3: Transductive Graph Text Classification Model Test
::2 — maverocn | e — nautrsac and InducT-GCN on different test sizes, with 1 to
T e 3o s 5 times (2,189, 4,378, 6,567, 8,756, 10,945) of the

>

S 0.01 Y 000]
g [

9 0.90

§ 0.89

< < 0.8
0.89

0.87

0887 2 3 4 0861 2 3 4
Test Size (times) Test Size (times)

(a) TextGCN (b) SGC

Figure 2: Test accuracy with different test size on R8A
by using both TextGCN and SGC with our proposed
Inductive model.

corpus-level text graph. Nevertheless, our InducT-
GCN performs the best among the models, which
do not have any pre-trained embeddings’.

6.2 Generalization Evaluation

In this section, we report the generalisation capabil-
ity of our inductive graph construction and learning
framework. As mentioned earlier, our framework
is applied to TextGCN, the most widely known
transductive graph-based text classification model.
We now extend our inductive framework to another
corpus-level graph-based model, SGC (Wu et al.,
2019), and called InducT-SGC. Table 3 visualises
the comparison of the original transductive SGC
models and our InducT-SGC. As can be seen in the
table, our InducT-SGC produces much higher per-
formance than the original SGC when the labeled
data are limited. The performance improvement be-
tween both pair of the original transductive and our
inductive model, TextGCN-to-InducT-GCN and
SGC-to-InductSGC, clearly shows the generalisa-
tion capability of our proposed inductive frame-
work. It can be also applied to other corpus-level
graph-based text classification models in the future.

6.3 Impact of Test Size

As mentioned earlier, we use the R8A (R8 with a
data augmentation) to show the scalability of our
proposed Inductive learning framework by compar-
ing TextGCN and InducT-GCN in the larger text
set. Figure 2a shows the comparison of TextGCN

® Apart from our main goal, we also conducted an evalu-
ation on R8 and R52 in the full environment for testing the
superiority of our Inductive learning framework. The result
can be found in the appendix C

R8 original test set size. The larger the test size,
the larger the gap between TextGCN and InducT-
GCN. TextGCN produces worse performance with
the largest test size. This is mainly because there
would be only a small proportion of the document
nodes contributing to the gradient in TextGCN with
a larger test set. Especially during the training
phase, it is difficult for TextGCN to learn embed-
dings of those test document nodes having fewer
connections with word nodes by backpropagation.
Moreover, we found that the performance of our
InducT-GCN decreased only a little (less than 0.5)
when the test size grows. We also conducted the ex-
act same evaluation based on SGC by applying our
Inductive graph construction and learning frame-
work to SGC, named InducT-SGC. Like the result
that our InducT-GCN produced, the InducT-SGC
produces much higher performance than the orig-
inal SGC. The performance trend shows how our
Inductive framework fits perfectly on the inductive
learning nature.

7 Conclusion

In this study, we propose a novel inductive graph-
based text classification framework, named InducT-
GCN, which makes heavy and transductive GCN-
based text classification models inductive. We
construct a graph only using training set statistics.
InducT-GCN can efficiently capture global infor-
mation with fewer parameters and smaller space
complexity. Our InducT-GCN significantly out-
performed all graph-based text classification base-
lines, and even better than the models using pre-
trained embeddings. We also demonstrated the
generalisation capability of our inductive graph
construction and learning framework by applying
and expanding different transductive graph-based
text classification models, like TextGCN and SGC.
The performance and computation time surpris-
ingly improved, compared to the original models.
It is hoped that this paper provides some insight
into the future integration of the lighter and faster
inductive graph neural networks on different NLP
tasks.

References

Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego
Marcheggiani, and Khalil Sima’an. 2017. Graph
convolutional encoders for syntax-aware neural ma-
chine translation. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1957-1967.

Hongyun Cai, Vincent W Zheng, and Kevin Chen-
Chuan Chang. 2018. A comprehensive survey of
graph embedding: Problems, techniques, and appli-
cations. IEEE Transactions on Knowledge and Data
Engineering, 30(9):1616-1637.

Yixin Cao, Zhiyuan Liu, Chengjiang Li, Juanzi Li, and
Tat-Seng Chua. 2019. Multi-channel graph neural
network for entity alignment. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1452—-1461.

Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgcen:
Fast learning with graph convolutional networks via
importance sampling. In International Conference
on Learning Representations.

da Xu, chuanwei ruan, evren korpeoglu, sushant kumar,
and kannan achan. 2020. Inductive representation
learning on temporal graphs. In International Con-
ference on Learning Representations (ICLR).

Michaél Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. 2016. Convolutional neural networks on
graphs with fast localized spectral filtering. In NIPS.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

William L Hamilton, Rex Ying, and Jure Leskovec.
2017. Inductive representation learning on large
graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, pages 1025-1035.

Lianzhe Huang, Dehong Ma, Sujian Li, Xiaodong
Zhang, and WANG Houfeng. 2019. Text level graph
neural network for text classification. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3435-3441.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, pages 1746-1751.

Thomas N Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.

Chen Li, Xutan Peng, Hao Peng, Jianxin Li, and Li-
hong Wang. 2021. Textgtl: Graph-based transduc-
tive learning for semi-supervised text classification
via structure-sensitive interpolation. In Proceedings
of the Thirtieth International Joint Conference on Ar-
tificial Intelligence (IJCAI), pages 2680-2686.

Y Li, R Jin, and Y Luo. 2019. Classifying relations
in clinical narratives using segment graph convo-
Iutional and recurrent neural networks (seg-gcrns).
Journal of the American Medical Informatics Asso-

ciation: JAMIA, 26(3):262-268.

Yuxiao Lin, Yuxian Meng, Xiaofei Sun, Qinghong Han,
Kun Kuang, Jiwei Li, and Fei Wu. 2021. Bertgen:
Transductive text classification by combining gcn
and bert. arXiv preprint arXiv:2105.05727.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016.
Recurrent neural network for text classification with
multi-task learning. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial In-
telligence, IJCAI 2016, New York, NY, USA, 9-15
July 2016, pages 2873-2879. IICAI/AAAI Press.

Xien Liu, Xinxin You, Xiao Zhang, Ji Wu, and Ping
Lv. 2020. Tensor graph convolutional networks for
text classification. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages
8409-8416.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1506-1515.

Tomds Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Ist International Con-
ference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop
Track Proceedings.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39-
41.

Giannis Nikolentzos, Antoine Tixier, and Michalis
Vazirgiannis. 2020. Message passing attention net-
works for document understanding. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 8544—8551.

Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao
Bao, Lihong Wang, Yangqiu Song, and Qiang Yang.
2018. Large-scale hierarchical text classification
with recursively regularized deep graph-cnn. In Pro-
ceedings of the 2018 world wide web conference,
pages 1063-1072.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-

ing (EMNLP), pages 1532-1543.

Ryan A Rossi, Rong Zhou, and Nesreen K Ahmed.
2020. Deep inductive graph representation learning.
IEEE Computer Architecture Letters, 32(03):438—
452.

Ming Tu, Guangtao Wang, Jing Huang, Yun Tang, Xi-
aodong He, and Bowen Zhou. 2019. Multi-hop read-
ing comprehension across multiple documents by
reasoning over heterogeneous graphs. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 2704-2713.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lid, and Yoshua Bengio.
2018. Graph Attention Networks. International
Conference on Learning Representations.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher
Fifty, Tao Yu, and Kilian Weinberger. 2019. Sim-
plifying graph convolutional networks. In Interna-
tional conference on machine learning, pages 6861—
6871. PMLR.

Tianchi Yang, Linmei Hu, Chuan Shi, Houye Ji, Xiaoli
Li, and Ligiang Nie. 2021. Hgat: Heterogeneous
graph attention networks for semi-supervised short
text classification. ACM Transactions on Informa-
tion Systems, 39(3).

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7370-7377.

Haopeng Zhang and Jiawei Zhang. 2020. Text graph
transformer for document classification. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
8322-8327.

Yue Zhang, Qi Liu, and Linfeng Song. 2018. Sentence-
state Istm for text representation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 317-327.

Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu,
Zhongzhen Wen, and Liang Wang. 2020. Every doc-
ument owns its structure: Inductive text classifica-
tion via graph neural networks. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 334-339.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu,
Hongyun Bao, and Bo Xu. 2016. Text classification
improved by integrating bidirectional 1stm with two-
dimensional max pooling. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages

3485-3495.

10

Hao Zhu and Piotr Koniusz. 2021. Simple spectral
graph convolution. In International Conference on
Learning Representations.

A Learning and Inferencing Algorithm

Alorightm 1 shows the training phase and testing
phase of InducT-GCN.

Algorithm 1 InducT-GCN Training and Testing
Phase

Input: Training Graph G(V,A),V
{Virain, Vwora };Test Adjacent Matrix
{A/B,uﬂ B € Viest,Vw € Vyorq}; Training

input vectors {H}O),Vi € Virgin}; Test input
vectors {Hg0)7 B € Viest}); Training Labels
{}/;avz € V%rain}

Parameter: Weight matrices W (%) and W)
Output: Prediction Results for Test Samples
{YB7 B e ‘/test}

1: for epoch =1,2,...do

2 HW « o(AHOW ()

3 Z <« softmaz(AHMW D)

4: L <« CrossEntropy(Y;, Z;),Vi € Virain

s: Update W and W

6: end for

7: for Batch B in Vi do

8: G + {AlB,uﬂ Hz(uo), Hgo)},Vw € Vword
o. HY « GCN(C, vp)

10: G {4}, HY HUOY Y € Viorg
11: Yp + argmaz(GCN(G",vp))

12: end for

B Computation Time Results

Table 6 visualises the superiority of our induc-
tive learning framework by reducing the compu-
tation time, including graph construction and train-
ing/testing. It compared the original transductive
TextGCN with our model on R8A; The larger the
gap between TextGCN and our InducT-GCN, the
larger the test size.

C Performance in Full Dataset

We also evaluated the performance of our InducT-
GCN with the full dataset, like the TextGCN was
evaluated (Yao et al., 2019). As can be seen
in Table 7, the performance of InducT-GCN and
TextGCN on R8 and R52 are comparable when
using the entire dataset. We can conclude that

https://doi.org/10.1145/3450352
https://doi.org/10.1145/3450352
https://doi.org/10.1145/3450352
https://doi.org/10.1145/3450352
https://doi.org/10.1145/3450352

Parameters R8 5% R52 5% Ohsumed 5% 20NG 1% MR 5%
Ist Layer 375,600 513,600 533,400 567,800 121,000
2nd Layer 1,600 10,400 4,600 4,000 400
Total 377,200 524,000 538,000 571,800 121,400
Table 4: Number of Parameters
Embedding R8 5% R52 5% Ohsumed 5% 20NG 1% MR 5%
RAND 0.9155 £ 0.0051 | 0.8135 £0.0384 | 0.3563 £ 0.0078 | 0.3461 +0.0337 | 0.6037 £ 0.0038
Word2Vec | 0.9124 £0.0043 | 0.8290 + 0.0084 | 0.3544 +0.0305 | 0.3476 + 0.0086 | 0.6003 = 0.0045
GloVe 0.9159 + 0.0102 | 0.8266 = 0.0090 | 0.3514 £0.0186 | 0.3662 + 0.0197 | 0.6051 + 0.0055
Table 5: Pretrained Embedding
Test Size TextGCN InducT-GCN
Graph | Training | Graph | Training
x1 6.29 2.75 0.89 0.52
X2 11.90 3.20 1.11 0.53
x3 16.60 3.54 1.30 0.53
x4 21.10 4.13 1.52 0.55
x5 27.50 4.98 1.68 0.51

Table 6: Graph Construction Time and Training Time
comparison on R8A (sec)

InducT-GCN has superior than the TextGCN in
terms of the performance and computation, which
is not only in smaller space with fewer parameter
numbers, but also in the whole dataset setting.

Method R8 Full R52 Full
TextGCN | 0.9629 + 0.0010 | 0.9295 + 0.0020
InducT-GCN | 0.9653 +0.0017 | 0.9323 + 0.0015

Table 7: Comparison with TextGCN on Full Data

D Number of Parameters

The number of parameters of the first GCN layer is
|Viword| * h, which is the number of unique words
times first layer hidden dimension. In the second
layer, h * |C| parameters are trained, and |C| is the
number of classes for each dataset. In total, the
number of parameters is (|Viyora| + [C|) * h, and
details are shown in Table 4.

E Pretrained Embeddings

(Draft) The first layer of InducT-GCN actullay
learns the word embeddings, and in InducT-GCN
the weights were randomly initialized. We also
tested with initializing with pretrained word em-
beddings, shown in Tabel 5. In most of the cases,
the performance improves, showing the potential
of InducT-GCN when combined with external re-
sources.

11

