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ABSTRACT

Continuous-time (CT) modeling has proven to provide improved sample effi-
ciency and interpretability in learning the dynamical behavior of physical systems
compared to discrete-time (DT) models. However, even with numerous recent de-
velopments, the CT nonlinear state-space (NL-SS) model identification problem
remains to be solved in full, considering common experimental aspects such as
the presence of external inputs, measurement noise, latent states, and general ro-
bustness. This paper presents a novel estimation method that addresses all these
aspects and that can obtain state-of-the-art results on multiple benchmarks with
compact fully connected neural networks capturing the CT dynamics. The pro-
posed estimation method called the subspace encoder approach (SUBNET) ascer-
tains these results by efficiently approximating the complete simulation loss by
evaluating short simulations on subsections of the data, by using an encoder func-
tion to estimate the initial state for each subsection and a novel state-derivative
normalization to ensure stability and good numerical conditioning of the training
process. We prove that the use of subsections increases cost function smoothness
together with the necessary requirements for the existence of the encoder func-
tion and we show that the proposed state-derivative normalization is essential for
reliable estimation of CT NL-SS models.

1 INTRODUCTION

Dynamical systems described by nonlinear state-space models with a state vector x(t) ∈ Rnx are
powerful tools of many modern sciences and engineering disciplines to understand potentially com-
plex dynamical systems. One can distinguish between Discrete-Time (DT) xk+1 = f(xk, uk) and
Continuous-Time (CT) dx(t)dt = f(x(t), u(t)) state-space models. In general, obtaining DT dynam-
ical models from data is easier than CT models since data in computers is represented as discrete
elements (e.g. arrays). However, the additional implementation complexity and computational costs
associated with identifying CT models can be justified in many cases. First and foremost, from the
natural sciences, we know that many systems are compactly described by CT dynamics which makes
the continuity prior of CT models a well-motivated regularization/prior (De Brouwer et al., 2019).
It has been observed that this regularization can be beneficial for sample efficiency (De Brouwer
et al., 2019) which is a common observation when “including physics” in learning approaches (Kar-
niadakis et al., 2021). Furthermore, the analysis of ODE equations is a well-regarded field of study
with many powerful results and methods which could further improve model interpretability (Fan
et al., 2021), such as applied in Bai et al. (2019). Another inherent advantage is that these models
can be used with irregularly sampled or missing data (Rudy et al., 2019). Lastly, in the control
community, CT models are generally regarded desirable for control synthesis tasks as shaping the
behavior of the controller is much more intuitive in CT (Garcia et al., 1989). Hence, developing
robust and general CT models and estimation methods would be greatly beneficial.

In the identification of physical CT systems, it is common to encounter challenges such as: external
inputs (u(t)), noisy measurements, latent states, unknown measurement function/distribution (e.g.
y(t) = h(x(t))), the need for accurate long-term predictions and a need for a sufficiently low com-
putational cost. For instance, all these aspects need to be considered for the cascade tank benchmark
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Figure 1: In this work, we consider the problem of estimating continuous-time (CT) state-space
models from noisy observation (additive noise) with long-term prediction capabilities, hidden states
and external signals in a computationally efficient and robust manner.

problem (Schoukens & Noël, 2017). These aspects and the considered CT state-space model is
summarized in Figure 1. Many of these aspects have been studied independently, for instance, Bra-
jard et al. (2020); Rudy et al. (2019) explicitly addressed the presence of noise on the measurement
data, Maulik et al. (2020); Chen et al. (2018) provided methods for modeling dynamics with latent
states, Zhong et al. (2020) considers the presence of known external inputs, Zhou et al. (2021a)
provides a computationally tractable method for accurate long-term sequence modeling. However,
formulating models and estimation methods for the combination of multiple or all aspects is in com-
parison underdeveloped with only a few attempts such as Forgione & Piga (2021a) that have been
made.

In contrast to previous work, we present a CT encoder-based method which is a general, robust and
well-performing estimation method for CT state-space model identification. That is, the formula-
tion addresses noise assumptions, external inputs, latent states, an unknown output function, and
provides state-of-the-art results on multiple benchmarks of real systems. The presented subspace
encoder method is summarized in Figure 2. The proposed method considers a cost function evalua-
tions on only short subsections of the available dataset which reduces the computational complexity.
Furthermore, we show theoretically that considering subsections enhances cost function smooth-
ness and thus optimization stability. The initial states of these subsections are estimated using the
encoder function for which we present necessary requirements for its existence. Lastly, we intro-
duce a normalization of the state and state-derivative and we show that it is required for proper CT
estimation. Moreover, we attain additional novelty as these results are obtained without needing to
impose a specific structure on the state-space (such as in Greydanus et al. (2019); Cranmer et al.
(2020)) obtaining a practically widely applicable method.

Our main contributions are the following;

• We formally derive the problem of CT state-space model estimation with latent states,
external inputs, and measurement noise.

• We reduce the computational loads by proposing a subspace encoder-based identification
algorithm that employs short subsections, an encoder function that estimates the initial
latent states of these subsections, and a state-derivative normalization term for robustness.

• We make multiple theoretical contributions; (i) we prove that the use of short subsections
increases cost function smoothness by Lipschitz continuity analysis, (ii) we derive neces-
sary conditions for the encoder function to exist and (iii) we show that a state-derivative
normalization term is required for proper CT model estimation.

• We demonstrate that the proposed estimation method obtains state-of-the-art results on
multiple benchmarks.

2 RELATED WORK

One of the most influential papers in CT model estimation is the introduction of neural ODEs (Chen
et al., 2018), which showed that residual networks is presented as an Euler discretization of a contin-
uous in-depth neural network. Moreover, they also show that one can employ numerical integrators
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to integrate through the depth in a computationally efficient manner. This depth can be interpreted
as the time direction to be able to model dynamical systems. The ideas in the neural ODE contri-
bution have been extended to/used in, for instance, normalizing flows to efficiently model arbitrary
probability distributions (Papamakarios et al., 2021; Grathwohl et al., 2019), and enhance the under-
standing and interpretability of neural networks (Fan et al., 2021). However, the neural ODE does
not scale well for long sequences, nor does it consider external inputs or noise, and the optimization
process is often unstable.

An adjacent research direction is the method/models which consider CT dynamics and directly
use the state derivatives and even often the noiseless states to formulate structured and inter-
pretable models such as Hamiltonian Neural Networks (HNN) (Greydanus et al., 2019), Lagrangian
Neural Networks (LNN) (Cranmer et al., 2020) and Sparse Identification of Nonlinear Dynamics
(SINDy) (Brunton et al., 2016). In contrast, the proposed method is formulated for an unstructured
state-space and does not require the system state or the state derivatives to be known.

Our method is in part related to (Ayed et al., 2019) which concerns the estimation of CT models
with latent variables. They also employ an encoder function to estimate initial states, however,
this encoder is only dependent on the past outputs, contains a partially known state and there is
no theoretical support for the method. Furthermore, in that work, only a fixed output function is
considered and the involved optimization problem is solved as an optimal control problem whereas
our formulation alters the simulation loss function to obtain a computationally desirable form. Fur-
thermore, (Forgione & Piga, 2021a), to which we compare in this work, considers CT model with
latent variables, subsections, and an additional loss term for the integration error. However, they in-
clude the initial states of these subsections as free optimization parameters. This increases the model
complexity with the number of subsections. In contrast, our proposed method uses an encoder to
estimate the initial states. This results in fixed model complexity. Furthermore, we only employ a
single loss function and a novel state-derivative normalization term. Additionally, we provide the-
oretical insights into these existing elements and extend them to the considered setting in a robust
and computationally efficient manner.

3 PROBLEM STATEMENT

Consider a system represented by a continuous-time nonlinear state-space (CT NL-SS) description
sampled at a fixed interval ∆t for simplicity:

ẋs(t) = f(xs(t), u(t)),

yk = h(xs,k, uk) + wk,
(1)

where the subscript notation denotes sampling as xs,k = xs(k∆t), xs(t) ∈ Rnxs is the system state
variable, u(t) ∈ Rnu is the input, yk ∈ Rny is the output, f represents the system dynamics and
h gives the output function while wk ∈ Rny is a i.i.d. zero-mean white noise process with finite
variance Σw.

For this system, the CT model estimation problem can be expressed for a given dataset of measure-
ments:

DN = {(u0, y0), (u1, y1), ..., (uN−1, yN−1)},
with unknown wk, xs(t), ẋs(t), ẏk and initial state xs(0), as the following optimization problem
(a.k.a. simulation loss minimization):

min
θ,x(0)

1

N

N−1∑
k=0

∥y(k∆t)− ŷ(k∆t)∥22,

s.t. ŷ(t) = hθ(x(t)),

ẋ(t) = fθ(x(t), u(t)),

(2)

where x(t) ∈ Rnx is the model state, hθ and fθ are the output and state-derivative functions pa-
rameterized by θ and being Lipschitz continuous in their inputs and parameterization. These two
functions are formulated as multi-layer feedforward neural networks during our experiments.

To obtain the simulation output ŷ(k∆t), one can integrate ẋ(t) = fθ(x(t), u(t)) starting from the
initial state x(0). This integration can be performed with any ODE solver that allows for back-
propagation such as Euler (x(t+∆t) = x(t) +∆tfθ(x(t), u(t))), RK4, or numerous adaptive step
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methods (Chen et al., 2018; Ribeiro et al., 2020).1 To make this a well-posed optimization problem,
additional information or an assumption on the inter-sample behavior of u(t) is required, since,
for example, u(∆t/2) is not present in DN . This behavior is often chosen to be Zero-Order Hold
(ZOH) (Ljung, 1999) as can be viewed in Figure 1.

Multiple major issues are encountered when solving the optimization Problem (2) with a gradient-
descent-based method. The first issue is that computing the value of the loss function requires a
forward pass on the whole length of the dataset (Ayed et al., 2019). Hence, the computational
complexity grows linearly with the length of the dataset. Furthermore, a common occurrence is that
the values of x(t) or its gradient grows exponentially which results in non-smooth loss functions
or gradients. This causes gradient-based optimization algorithms to become unreliable since the
optimization process might be unstable or it converges to a local minima (Ribeiro et al., 2020). All
these issues are addressed in the proposed method.

4 PROPOSED METHOD

We propose to consider multiple overlapping short subsections of length T∆t to form a truncated
simulation loss instead of simulating over the entire length of the dataset. We express this in the
following optimization problem (note that we express the optimization problem with discrete-time
notation (uk := u(k∆t)) for brevity):

minimize
θ

1

N − T −max(na, nb) + 1

N−T∑
n=max(na,nb)

1

T

T−1∑
k=0

∥yn+k − ŷn+k|n∥22,

s.t. ŷn+k|n = hθ(xn+k|n),

xn+k+1|n = ODEsolve[
1

τ
fθ, xn+k|n, un+k,∆t],

xn|n = ψθ(un−1, ..., un−nb
, yn−1, ..., yn−na

).

(3)

Here, the pipe (|) notation indicates the current index and the starting index as (current index | start
index) to differentiate between different subsections. This pipe notation is similar to the notation
used in Kalman filtering and conditional probability distributions (Chui et al., 2017). Furthermore,
ODEsolve indicates a numerical scheme which integrates 1/τ fθ(x, u) from the initial state xn+k|n
for a length of ∆t given the input un+k. Lastly, we introduced an encoder function ψθ with encoder
lengths na and nb, for the past output and input samples respectively, which estimates the initial
states of the considered subsection. This encoder function will also be parameterized as a feedfor-
ward neural network during our experiments. A graphical summary of the proposed method called
the CT subspace encoder approach (abbreviated as SUBNET) can be viewed in Figure 2.

The first observation is that optimization Problem (3) is a generalisation of (2) since if T = N and
na = nb = 0, the original optimization Problem (2) is recovered. However, as one might observe,
this optimization problem is less computationally challenging to solve if T < N since the first sum
can be computed in parallel. In other words, computational costs scale as O(T ) for (3) and O(N)
for (2). Moreover, the smoothness of the encoder cost function is also enhanced since the associated
Lipschitz constant LV (enc) can scale exponentially with the subsection length (T∆t) as shown in
Theorem 1. The enhanced smoothness is reflected in the ease of optimization (Ribeiro et al., 2020).

Theorem 1. The Lipschitz constant LV (enc) of the cost function (3)

∥V (enc)(θ1)− V (enc)(θ2)∥2 ≤ LV (enc)∥θ1 − θ2∥2 (4)

scales as

LV (enc) = O(exp(2T∆tLf/τ)) (5)

where Lf is the Lipschitz constant of fθ.

Proof. See Appendix 8.1

1The adjoint methods for gradient computation is not within the scope of this research.
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Figure 2: The CT subspace encoder (SUBNET) method applied on a subsection of the data of
length T∆t starting from time t. The encoder ψθ estimates the initial state, hθ provides the output
predictions while 1

τ fθ governs the state dynamics. All three functions are parameterized by fully
connected neural networks. Lastly, the 1

τ factor is the novel state-derivative normalization factor
which significantly increases optimization stability. All three functions are optimized together by
minimizing the mean squared difference of the model outputs of multiple subsections of the available
training data as seen in Eq. (3) which both reduces the computational cost and enhances cost function
smoothness as seen in Theorem 1.

An error in the initial state of xn|n can significantly bias the estimate due to the short nature of the
subsections. To counter this, we formulated an encoder function ψθ which estimates the initial state
of each subsection. We do not add any additional loss term since an improved initial state error
estimate also minimizes the transient error (Forgione & Piga, 2021a) which is present in the encoder
loss.

A natural question to ask is under which conditions there exists an encoder function that can map
from the past inputs and outputs to this initial state. In Appendix 8.2, we formally derive necessary
conditions for the existence. These necessary conditions are that, state derivative fθ requires to be
Lipschitz continuous in x, and if the number of considered past outputs na and inputs nb are equal
then na ≥ nx/ny needs to be satisfied, among other conditions.

It is widely known that input and output normalization is essential for obtaining competitive models
throughout deep learning in terms of respecting the prior assumptions made in for instance Xavier
Weight Initialization (Glorot & Bengio, 2010). Input and output normalization can be seen to be
insufficient when considering CT state-space model due to the presence of the hidden state x and
the state-derivative fθ(x, u). However, as shown in Theorem 2, any CT system can be transformed
to become normalized by the introduction of a state transform and a positive 1/τ normalization
factor.

Theorem 2. Given ẋ(t) = f(x(t), u(t)) and y(t) = h(x(t), u(t)) that defines the dynamics of
a system. For any bounded non-zero state-trajectory x(t) ∈ Rnx and input signal u(t) ∈ Rnu

that satisfies ẋ(t) = f(x(t), u(t)) for all t ∈ R, there exists a τ and a scalar state transformation
γx̃(t) = x(t) such that both the equivalent state trajectory x̃ and state-derivative function f̃(x̃, u)
of the transformed system ˙̃x = 1

τ f̃(x̃(t), u(t)) are normalized on the time interval [0, L] as

RMS(x̃) =

√
1

L

∫ L

0

1

nx
∥x̃(t)∥22 dt = 1 & RMS(f̃(x̃, u)) = 1. (6)

if RMS(f(x, u)) ̸= 0.

Proof. With

γ = RMS(x) &
1

τ
=

RMS(ẋ)
RMS(x)

(7)

the normalization conditions are satisfied, as shown below

RMS(x̃) = RMS(x)/γ = 1 (8a)

RMS(f̃(x̃, u)) = τRMS( ˙̃x) = τRMS(ẋ)/γ = τRMS(ẋ)/RMS(x) = 1 (8b)
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Figure 3: A photo of the Cascade Tank with overflow (CCT) system (Schoukens & Noël, 2017)
and a graphical depiction of the Coupled Electric Drive (CED) system (Wigren & Schoukens,
2017). These two systems and the EMPS benchmark are the basis of the benchmarks used in the
analysis and comparison of the SUBNET method.

Hence, to assure the existence of a properly normalized model where both the state-derivative f̃
function and state x̃ are normalized, it is sufficient to include a state and state-derivative nor-
malization factor. Furthermore, this proof also guides the choice of τ since the amplitude of
RMS(x)/RMS(ẋ) might be known from physical insight or by an approximate model.

5 EXPERIMENTS

5.1 BENCHMARK DESCRIPTIONS

The Cascade Tank with overflow (CCT) benchmark (Schoukens & Noël, 2017; Schoukens et al.,
2017) consists of measurements taken from a two-tank fluid system with a pump. The input signal
controls a water pump that delivers water from the reservoir to the upper tank. Through a small
opening in the upper tank, the water enters the lower tank where the water level is recorded. Lastly,
through a small opening in the lower tank, the water re-enters the reservoir. This benchmark is non-
linear as the flow rates are governed by square root relations and the water can overflow either tank
which is a hard saturation nonlinearity. The benchmark consists of two datasets with measurements
of 1024 samples each at a sample rate of ∆t = 4s. The first dataset is used for training, the first 512
samples of the second set are used for validation (used only for early stopping) and the entire second
set for testing. Most of the other methods to which we compare our approach use the entire second
set as validation and test set, as no explicit test set is provided in this benchmark description.
The Coupled Electric Drive (CED) benchmark (Wigren & Schoukens, 2017) consists of measure-
ments from a belt and pulley with two motors where both clockwise and counter-clockwise move-
ment is permitted. The motors are actuated by the given inputs and the measured output is a pulse
transducer that only measures the absolute velocity (i.e. insensitive to the sign of the velocity) of the
belt. The system approximately has three states; the velocity of the belt, the position of the pulley,
and the velocity of the pulley. The benchmark consists of two datasets of measured 500 samples
each at a sample rate of ∆t = 20ms. The first 300 samples are used for training and the other 200
samples are for testing, of those samples the first 100 samples are also used for validation with both
datasets. Similar to the last benchmark, even with this overlap, it is still a fair comparison as most
of the other methods to which we compare use the entire second set as validation and test.
The Electro-Mechanical Positioning System (EMPS) benchmark (Janot et al., 2019) consists of
measured signals from a one-dimensional drive system used to drive the prismatic joint of robots or
machine tools. The provided measurements of the position are obtained in closed-loop actuated and
no direct velocity measurements are available. The main source of nonlinearity are the nonlinear
friction effects (e.g. static and dynamic friction). The benchmark consists of two sequences of
samples 24841 with a sampling time of ∆t = 1ms. As prescribed by the benchmark, the first
sequence is used for training and validation and the second sequence for testing (i.e. the validation
set and test set are completely disjoint). Specifically for the CT subnet implementation, we utilize
17885 samples of the first set for training and the last 6956 samples are used for validation while the
entire second set is used for testing.

6



Published as a conference paper at ICLR 2023

Table 1: The test RMSE simulation on two benchmarks for the CT SUBNET method using an
ensemble of models. The value given is the best RMSE simulation of all estimated models and
the value between parentheses is the mean performance of the models. Note that we are unable to
report the results for the neural ODE without state-derivative normalization 1/τ for CCT since the
optimization was unstable.

(a) CCT benchmark

Method RMSE
BLA (Relan et al., 2017) 0.75
Volterra model (Birpoutsoukis et al., 2018) 0.54
State-space with
GP-inspired prior (Svensson & Schön, 2017) 0.45

SCI (Forgione & Piga, 2021a) 0.40
IO stable CT ANN (Weigand et al., 2021) 0.39
NL-SS + NLSS2 (Relan et al., 2017) 0.34
TSEM (Forgione & Piga, 2021a) 0.33
Tensor B-splines (Karagoz & Batselier, 2020) 0.30
Vanilla neural ODE (Chen et al., 2018) NaN
neural ODE with
normalization (∆t/τ = 0.03)

0.18
(0.33)

Grey-Box with physical
overflow model (Rogers et al., 2017) 0.18

DT subspace encoder 0.37
(0.97)

CT subspace encoder
(∆t/τ = 0.032)

0.22
(0.30)

(b) CED benchmark

Method RMSE [ticks/s]
Set 1 Set 2

RBFNN - FSDE (Ayala et al., 2014) 0.130 0.185
GP with rational
quadratic kernel (Zhou et al., 2021b) 0.150 0.167

GP with squared
exponential kernel (Zhou et al., 2021b) 0.153 0.132

Sparse Bayesian MLP (Zhou et al., 2021b) 0.149
(0.187)

0.120
(0.134)

Cascaded Splines (Scarpiniti et al., 2015) 0.216 0.110

Sparse Bayesian LSTM (Zhou et al., 2021b) 0.121
(0.155)

0.097
(0.126)

Extended Fuzzy Logic
(Sabahi & Akbarzadeh-T, 2015) 0.150 0.092

Vanilla neural ODE (Chen et al., 2018) 0.141
(0.362)

0.098
(0.370)

neural ODE with
normalization (∆t/τ = 0.12)

0.131
(0.198)

0.086
(0.158)

DT subspace encoder 0.169
(0.187)

0.117
(0.1557)

CT subspace encoder
(∆t/τ = 0.3)

0.115
(0.143)

0.074
(0.100)

5.2 RESULTS

Using the SUBNET method, we estimate models where the three functions hθ, fθ and ψθ are im-
plemented as 2 hidden layer neural networks with 64 hidden nodes per layer, tanh activation and a
linear bypass from the input to the output for CCT and CED and 1 hidden layer with 30 hidden nodes
for EMPS. As an ODE solver, we use a single RK4 step between samples and assume that the input
signal has been applied in a zero-order hold sense. As for the implementation of the CT subspace
encoder-based method, the following hyperparameters are considered; nx = 2, na = nb = 5 and
T = 30 for CCT, nx = 3, na = nb = 4 and T = 60 for CED and nx = 3, na = nb = 20 and
T = 200 for EMPS. These hyperparameters are chosen based on hyperparameters analysis shown
in Beintema et al. (2021) for discrete-time. We observed similar effects of the hyperparameters for
continuous-time. The training is done by using the Adam optimizer with default settings (Kingma &
Ba, 2015) with a batch size of 32 for CED, 64 for CCT and 1024 for EMPS and using a simulation
on the validation dataset for early stopping to reduce overfitting.

We also directly compare our method with a reproduction of neural ODE on both benchmarks.
We adapt the code and the example (“latent ODE.py”) available online (Chen et al., 2018) to
include ZOH inputs, leaving the neural network unaltered and an RK4 integrator. We observed that
the initial model was unstable for CCT and underperforming for CED and, hence, the neural ODE
method alone was unable to provide state-of-the-art results. To stabilize and improve the neural
ODE method we also introduce a state-derivative normalization term 1/τ motivated by Theorem 2.
The value of 1/τ for CCT and CED for neural ODE was initially chosen to be the optimal value
found in the SUBNET approach, however, in the CED case, it was lowered due to optimization
instabilities. 2

We compared our obtained model to the literature in Table 1 for CCT and CED. We report both
the mean and the minimum of an ensemble of models estimated only differing in parameter ini-
tialization. This ensemble consists of 17 SUBNET models for both CCT and CED and 24 and 8
neuralODE models for CCT and CED respectively. The table also includes the discrete-time (DT)
subspace encoder which has the same network structure and loss function as the CT subspace en-
coder but where the ODE solver is replaced by fθ. The table shows that the obtained models with
the CT subspace encoder method provide state-of-the-art results. The obtained models are the best-
known with a black-box modeling approach on both benchmarks. Furthermore, we use unrestricted

2The code used for both SUBNET and neural ODE experiments is available at https://github.com/
GerbenBeintema/CT-subnet
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Figure 4: Time-domain simulation for both the (a) CCT and (b) CED benchmarks of the obtained
models by the CT SUBNET method along the test set. Since the CED benchmark contains two
separate test sequences, hence, they are shown in two separate figures.
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Figure 5: Time domain simulation results on
the EMPS benchmark test set using the model
obtained from the CT SUBNET method.

.

Table 2: The resulting test RMSE simulation on
the test set for the EMPS benchmark compared
with results in the literature.

Method RMSE
[mm]

Fully
Black-box

BLA
(Janot et al., 2019) 61.67 ✓

dynoNET
(Forgione & Piga, 2021b) 2.64 ✗

IO stable CT ANN
(Weigand et al., 2021) 3.68 ✓

TSEM
(Forgione & Piga, 2021a)

a 4.73 ✗

SCI
(Forgione & Piga, 2021a)

a 6.65 ✗

Vanilla neural ODE
(Chen et al., 2018) NaN ✓

CT subspace encoder
(∆t/τ = 0.01) 4.61 ✓

aRMS values reported in Weigand et al. (2021)

state-space and fully connected neural networks as model elements. Remarkably, the resulting per-
formance is close to the performance of a grey-box model. Furthermore, Figure 4 illustrates that the
resulting models have been able to model the nonlinear behavior present in both benchmarks.

Table 1 also contains the results of the modified neural ODE with normalization. One observation
is that the best and mean performance difference is significantly larger than for SUBNET. We think
that this is due to the availability of only a single sequence in the training set for the CCT benchmark
(and two sequences for CED) which results in extensive overfitting. In comparison, the subspace en-
coder method is less prone to overfitting since it uses many subsections of the available sequence(s).
Moreover, the subspace encoder method only requires about 20 minutes to train a model to the
lowest validation loss, whereas, neural ODE requires about 2 hours for CED and 5 hours for CCT.

We compare the CT SUBNET method applied on the EMPS benchmark to the existing methods in
Table 2 and show the simulated response on the test set in Figure 5. The obtained results show a
remarkable accuracy over the entire 24841 samples showing that the CT SUBNET method is able
to make accurate long-term predictions while using relatively short sub-sequences of only T = 200
in length during training. In the table, dynoNET is significantly better than the proposed method,
however, this method utilizes grey-box knowledge (i.e. physics-based) in the network structure but
this is system specific and not easily generalizable. Lastly, IO stable CT ANN performs slighly
better than the proposed method since it enforces stability which can be a problem during estimation
since there is a position integrator present in system. Furthermore, since the validation and test set
are disjoint we also show that overfitting does not play a role in the reported results.
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Figure 6: The influence of the state-derivative normalization hyperparameter ∆t/τ as in ẋ =
1
τ fθ(x, u) on different model properties for both the (a) CCT and (b) CED benchmarks. The shown
model properties are the mean state amplitude RMS(x), mean state-derivative amplitude RMS(f)
and the RMSE simulation on the test set(s). These two figures show that there exists a range of ∆t/τ
where RMS(f) ≈ RMS(x) ≈ 1 which numerically validates Theorem 2. Furthermore, ∆t/τ with
this property also has a significantly lowered RMSE simulation as was argued in its introduction.

When we introduced the state-derivative normalization factor 1/τ , we argued that it would nor-
malize fθ and that it would increase optimization stability and, hence, the quality of the ob-
tained models. Here, we provide some empirical insight for these two statements by provid-
ing a parameter sweep over ∆t/τ . To eliminate variations due to different initial parameters we
trained an ensemble of models which creates box plots with mean state amplitude defined by
RMS(x) ≜

√
1

Nnx

∑
k ∥x(k∆t)∥22, mean state-derivative amplitude RMS(f), and the RMSE sim-

ulation. These box-plots as shown in Figure 6 indeed illustrate that there exists an 1/τ such that
both RMS(f) ≈ RMS(x) ≈ 1 and that the best performing models are close to that value of 1/τ .
Moreover, to illustrate that improper normalization (i.e. τ = 1) can diminish the performance for
both CCT and CED, observe that the RMSE simulation on the test set(s) is 2.0 and 0.3 [ticks/s] for
∆t/τ = ∆t = 4 s and ∆t/τ = ∆t = 0.02 s respectively.

6 CONCLUSION

In this paper, we have introduced the CT subspace encoder approach to identify nonlinear dynamical
systems in the presence of latent states, external inputs, and measurement noise. We have shown
that the proposed method can obtain highly accurate CT models only consisting of fully connected
neural networks. The approach has improved computational cost and stability by considering multi-
ple subsections where the initial state is estimated with an encoder function and by a state-derivative
normalization term to improve optimization stability. We provided multiple theoretical proofs which
provide additional insight and motivation for the method. These proofs are, increased cost function
smoothness, necessary conditions for the existence of the encoder function and that for proper nor-
malization in CT modeling one requires the state-derivative normalization term. Furthermore, we
obtain state-of-the-art results on all three considered benchmarks.

9
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7 REPRODUCIBILITY STATEMENT

• Datasets: (i) The CCT dataset is described in Schoukens & Noël (2017);
Schoukens et al. (2017) and is available for download at https://data.4tu.
nl/articles/dataset/Cascaded_Tanks_Benchmark_Combining_
Soft_and_Hard_Nonlinearities/12960104, (ii) the CED dataset is
described in Wigren & Schoukens (2017) and is available for download at
http://www.it.uu.se/research/publications/reports/2017-024/,
(iii) the EMPS datset is described in (Janot et al., 2019) and is available for download at
https://www.nonlinearbenchmark.org/benchmarks/emps.

• Code: Both the implementation and experiments of CT SUBNET and neural ODE are
available at https://github.com/GerbenBeintema/CT-subnet.

• Hardware: It takes about 15 minutes to estimate a single CT SUBNET model and 2 hours
for a single neural ODE model on a consumer laptop. A notable exception is CT SUBNET
for EMPS which took about 10 hours due to the increased size and difficulty of the dataset.
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8 APPENDIX

8.1 PROOF OF THEOREM 1

Recall that the subspace encoder loss function as in Eq. 3 can be expressed in the following form

V enc(θ) =
1

N − T −max(na, nb) + 1

N−T∑
n=max(na,nb)

1

T

T−1∑
k=0

∥yn+k − ŷn+k|n∥22,

with ŷn+k|n = hθ(xn+k|n) = hθ(x((n+ k)∆t|n∆t)),

ẋ(t|n∆t) = 1

τ
fθ(x(t|n∆t), u(t))

x(n∆t|n∆t) = ψθ(un−1, ..., un−nb
, yn−1, ..., yn−na

).

(9)

Our aim is to derive the scaling in T of the Lipschitz constant Lenc as defined in

|V enc(θ1)− V enc(θ2)|2 ≤ L2
enc∥θ1 − θ2∥22, ∀θ1, θ2 ∈ Θ ⊂ Rnθ . (10)

We aim to express Lenc in terms of the following Lipschitz constants

∥hθ1(x1)− hθ2(x2)∥22 ≤ L2
h(∥x1 − x2∥22 + ∥θ1 − θ2∥22). (11a)

∥fθ1(x1, u)− fθ2(x2, u)∥22 ≤ L2
f (∥x1 − x2∥22 + ∥θ1 − θ2∥22), (11b)

∥ψθ1(upast, ypast)− ψθ2(upast, ypast)∥22 ≤ L2
ψ∥θ1 − θ2∥22. (11c)

for all x1, x2 ∈ X ⊂ Rnx and ∀θ1, θ2 ∈ Θ ⊂ Rnθ . A sufficient condition for these Lipschitz
constants to be finite is that the derivatives are finite on a compact set of inputs which is often the
case in feed-forward neural networks.

Furthermore, to derive the scaling of Lenc we use known properties of the Lipschitz constants;

12
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• The sum property: c(x) = a(x) + b(x) has a Lipschitz constant of Lc = La + Lb.
• The multiplication property: c(x) = a(x)b(x) has a Lipschitz Lc =MaLb+MbLa where
Ma is the maximal value of a on a closed set of inputs x ∈ X and Mb being similarly
defined.

Since the encoder loss function as in Eq. 3 can be written as a sum:

V enc(θ) =
1

N − T −max(na, nb) + 1

N−T∑
n=max(na,nb)

V sec(n, θ1) (12a)

V sec(n, θ1) =
1

T

T−1∑
k=0

∥yn+k − ŷn+k|n∥22 (12b)

where

|V sec(n, θ1)− V sec(n, θ2)|2 ≤ L2
sec∥θ1 − θ2∥22, (12c)

Then by the sum property this implies that Lenc = Lsec since

Lenc =
1

N − T −max(na, nb) + 1

N−T∑
n=max(na,nb)

Lsec. (13)

Hence, it is sufficient to consider only a single subsection. Take n = 0 and drop the bar notation for
simplicity. By the sum and multiplication properties, we derive get

|V sec(θ1)− V sec(θ2)| ≤ 2/T

T−1∑
k=0

(My +Mk)∥ŷ1,k − ŷ2,k∥2, (14)

where My is the bound on ∥y(t)∥2 assuming a stable system and Mk, the bound on ∥ŷk∥2. The
Mk bound scales the same as ∥ŷ1,k − ŷ2,k∥2 as shown in Ribeiro et al. (2020). The ∥ŷ1,k − ŷ2,k∥2
expression can be expanded by using Eq. 11a as

∥ŷ1,k − ŷ2,k∥22 ≤ L2
h(∥x1(k∆t)− x2(k∆t)∥22 + ∥θ1 − θ2∥22). (15)

Next, we aim to derive an expression for the Lipschitz constant Lx(t) given in terms of

∥x1(t)− x2(t)∥22 ≤ Lx(t)
2∥θ1 − θ2∥22. (16)

whereby Eq. (11c)
Lx(0) = Lψ. (17)

By considering a small increment in time of length h, we can express Lx(t+ h) in terms of Lx(t).
Using the fact that h is small we can use an Eurler step and discard higher order terms of h as;

∥x1(t+ h)− x2(t+ h)∥22 = ∥(x1(t)− x2(t)) + h/τ(fθ1(x1(t), u(t))− fθ2(x2(t), u(t)))∥22
≤ ∥x1(t)− x2(t)∥22 + 2h/τ∥x1(t)− x2(t)∥2∥fθ1(x1(t), u(t))− fθ2(x2(t), u(t))∥2

by the triangle inequality. Next, we can replace all the f terms by Eq. (11b) and x terms by Eq. (16)
to derive an expression for Lx(t+ h) as

≤ ∥x1(t)− x2(t)∥22 + 2h/τ∥x1(t)− x2(t)∥2Lf
√

∥x1(t)− x2(t)∥22 + ∥θ1 − θ2∥22

≤
(
Lx(t)

2 + 2h/τLx(t)Lf
√
Lx(t)2 + 1

)
∥θ1(t)− θ2(t)∥22

Lx(t+ h) =

√
Lx(t)2 + 2hLx(t)

√
Lx(t)2 + 1Lf/τ .

This expression allows us to derive that the derivative of Lx(t) is given by

L̇x(t) = lim
h→0

Lx(t+ h)− Lx(t)

h
, (18)

=
√
1 + Lx(t)2Lf/τ. (19)
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which suggests that L̇x(t) is continuous in t and has the closed form solution as

Lx(t) = Lx(0) +

∫ t

0

L̇x(t
′)dt′ (20)

= sinh(tLf/τ + arcsinh(Lψ)) (21)

Now by substituting Eq. (21) into, (16), (15), (14) and using (13) we arrive at the following expres-
sion for Lenc as

Lenc = 2/T
∑
k

(My +Mk)Lh(sinh(k∆tLf/τ + arcsinh(Lψ)) + 1) (22a)

which scales in the limit of large T as

Lenc = O(exp(2T∆tLf/τ)), (23a)

since Lf > 0 and ∆t > 0. Note that the 2 in the exponent is from the multiplication with Mk which
also scales as the y term as previously mentioned.

Furthermore, this bound cannot be lowered since the linear system ẋ(t) = x(t)Lf/τ already results
in the scaling of Lenc ∼ exp(2T∆tLf/τ).

8.2 RECONSTRUCTABILITY OF THE INITIAL STATE FROM PAST INPUT AND OUTPUTS

To derive the conditions on the existence of the encoder function suppose that we have a system
given by

ẋ(t) = f(x(t), u(t)), (24a)
yn = h(xn) + wn, (24b)

where xn = x(n∆t). For this system, if a state is given x(t0) along the input trajectory u(t) one
would in principle be able to compute x(t) for all t > t0. However, since we aim to construct the
state given past outputs we need x(t) for t < t0 which requires backward in time integration. This
backward integration on f is guaranteed to be unique if f is Lipschitz continuous in x for all u as by
the Picard–Lindelöf theorem (Murray & Miller, 2013). Hence, since f is assumed to be Lipschitz
continuous we can construct an operator fd which can integrate backwards or forwards as

xn+1 = fd(xn, un) → xn−1 = f−1
d (xn, un−1) (25)

where u is subject to ZOH.

This operator allows us to construct past outputs as

yn−1 = (h ◦ f−1
d )(xn, un−1) + wn−1

yn−2 = (h ◦ f−2
d )(xn, un−1, un−2) + wn−2

...

yn−z = (h ◦ f−zd )(xn, un−1, un−2, ..., un−z) + wn−z

Y −z
n = (H ◦ F−z

d )(xn, U
−z
n ) +W−z

n

(26)

where
f−pd (xn, un−1, ..., un−p) = f−p+1

d (f−1
d (xn, un−1), un−2, ..., un−p)

is the application of f−1
d , p times to obtain xn−p. Furthermore, Y −z

n = [y⊤n−1, y
⊤
n−2, ..., y

⊤
n−z]

⊤

and, (H ◦ F−z
d ) with W−z

n are similarly defined. To construct the initial state xn, we need to
invert Eq. (26). This inverse is also known as a reconstructability map (Katayama, 2005). For the
inverse to exist, several necessary requirements can be given. One such necessary requirement is
that a small perturbation to a solution xn should change (H ◦ F−z

d ), otherwise these solutions are

indistinguishable from the output. This is formalized stating by that the matrix ∂(H◦F−z
d )(xn,U

−z
n )

∂xn

has a null space of rank zero which is also known as the local observability condition. This is the
same as the condition that the column rank of this matrix ≥ nx. A necessary requirement for this
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column rank condition is that the number of columns is equal to or greater than the number of rows
i.e. zny ≥ nx.

Hence, under the right conditions, it might be possible to solve Eq. (26) for a singular xn since this
equation is a nonlinear fixed point problem if W−z

n is known. For the case that W−z
n is unknown

one can estimate the state x̂n ≈ xn by solving the nonlinear regression problem;

x̂n = argmin
x̂n

∥Y −z
n − (H ◦ F−z

d )(x̂n, U
−z
n )∥2, (27a)

= argmin
x̂n

∥L(x̂n, Y −z
n , U−z

n )∥2. (27b)

Hence, both f uniformly Lipschitz continuous and (∇xL)
T∇xL being full rank in x̂n are necessary

conditions for the existence of a unique reconstructability map.

Computing the reconstructability map for our model thus requires solving an optimization prob-
lem that becomes computationally infeasible during training. Hence, the encoder function aims to
approximate the solution to Problem (27).
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