
Learning active tactile perception through belief-space control

Jean-François Tremblay, Johanna Hansen, David Meger, Francois Hogan, Gregory Dudek

Abstract— Robots operating in an open world can encounter
novel objects with unknown physical properties, such as mass,
friction, or size. It is desirable to be able to sense those
property through contact-rich interaction, before performing
downstream tasks with the objects. We propose a method for
autonomously learning active tactile perception policies, by
learning a generative world model leveraging a differentiable
bayesian filtering algorithm, and designing an information-
gathering model predictive controller. We test the method on
two simulated tasks: mass estimation and height estimation.
Our method is able to discover policies which gather informa-
tion about the desired property in an intuitive manner.

I. INTRODUCTION

Robots operating in an open world can encounter arbi-
trary, unseen objects and are expected to manipulate them
effectively. To achieve this, robots must have the ability to
infer the physical properties of unknown objects through
physical interactions. The online measurement of these
properties is key for robots to operate robustly in the real-
world with open-ended object categories.

Psychology literature refers to the way humans measure
these properties as exploratory procedures [1]. These proce-
dures, for example, include pressing to test for object hard-
ness and lifting to estimate object mass. These exploratory
procedures are challenging to hand-engineer and vary based
on the object class. This work focuses on learning such
exploratory procedures to estimate object properties through
belief-space control. Using a combination of 1) learning-
based state-estimation to infer the property from a sequence
of observations and actions 2) information-gathering model-
predictive control (MPC), we demonstrate that it is possible
to learn to execute actions that are informative about the
property of interest and to discover exploratory procedure
without any human priors.

II. RELATED WORKS

A. Learning for state-estimation

There are several works proposing the fusion of Bayesian
filtering methods with deep learning, where the dynamics
and observation models used are learned neural networks.

Lee et al. [2] provide a good overview of learning
Bayesian filtering models for robotics applications, and re-
lease torchfilter, a library of algorithm for this purpose
which we build on for our belief-space control algorithm.

In [3], the authors present the Backprop Kalman filter
described as a discriminative approach to filtering. Discrim-
inative filtering does away with learning an observation
model (a mapping from state to observation) and learns a
mapping from observation to state instead. Here, we argue
that learning a generative observation model, while more

computationally challenging, is key to predicting future state
uncertainty and planning for informative actions.

Burkhart et al. [4] present the discriminative Kalman filter
concurrently to [3]. This approach assumes linear dynamics
and models the prior over observations as Gaussian. It can
only handle stationary observation processes.

B. Active perception

Active perception consist of acting in a way that as-
sists perception and can incorporate learning, including the
learning methods above. Denil et al. [5] use reinforcement
learning for “Which is Heavier” and “Tower” environments,
where the goal of the former is to push blocks and, after
a certain interaction period, take a “labelling action” to
guess which block is heavier. You get a reward if the label
is correct. They then train a recurrent deep reinforcement
learning policy on that environment. The action space for
these problems is constrained and designed to act such that
the blocks are pushed with a fixed force towards their center
of mass. While this method enables the robot to effectively
retrieve mass using human priors and intuition, our work
differs where the robot is tasked with discovering such
behaviors autonomously with unconstrained action spaces.

More specifically to robotics, Wang et al. [6] introduce
SwingBot, a robotic system that swings up an object with
changing physical properties (moments, center of mass).
Before the swing up phase, the system follows a hand-
engineered exploratory procedure that shakes and tilts the
object in the hand to extract the necessary information for a
successful swing up. Rather than engineering the exploration
phase, we propose a generic framework for extracting such
information before accomplishing a given task.

III. METHODS

We are in a controlled hidden Markov model (HMM)
setting (a partially observable Markov decision process
(POMDP) without a reward function), where each obser-
vation ot gives us partial information about the state of the
robot and object we are interested in. More formally a con-
trolled HMM is a tuple (S,A, p(st+1|st, at),Ω, p(ot|st)),
where the state, action and observation space (S, A and Ω
respectively) are in Rn,Rm,Rd respectively. It is important
to note that in this context, the state can contain robot pose
and velocity, object pose and velocity, object properties,
and all properties that describes the environment and that
are subject to change either during or in between episodes.
The representation for the state will be learned in a self-
supervised fashion, as described in § III-A, and will be

learned in such a way that the first element of the state
represents the object property of interest:

st = (mt, zt),mt ∈ R, zt ∈ Rn−1. (1)

We are in an episodic setting with ending timestep T , and
where at each episode the object is randomized. For mass
estimation as an example, at each episode, an object with a
different mass is presented and the goal is to infer the mass
of this new object.

In § III-A we describe how to infer the belief
state (containing an estimate of the object property
of interest) bt ≈ p(st|a0, . . . , at−1, o1, . . . ot), b̄t ≈
p(st|a0, . . . , at−1, o1, . . . ot−1). In § III-B we use that esti-
mate to design an information-gathering controller. Finally,
in § III-C we present how to integrate these two things in
a data-collection/training and control loop.

A. Learning-based Kalman filter

Here the goal is to learn a dynamics and observation
model while performing belief-state inference. The dynam-
ics model representing p(st|st−1, at−1) is

st = fθ(st−1, at−1) + Σθ(st−1, at−1)wt (2)

where wt are independent and identically distributed (IID)
standard Gaussian random variable in Rn.

Generative filtering (as opposed to discriminative filtering
[2, 3]) implies learning a generative world-model, able to
fully simulate the system and generate observations via the
equation

ot = hθ(st) + Γθ(st)vt. (3)

where vt are IID standard Gaussian random variables in Rd.
While learning this model can be more challenging in the
face of high-dimensional and complex observation spaces
(e.g. images), it opens up new avenues for forward belief-
space planning.

Using an explicit-likelihood (Gaussian state-space model)
setting, we train the model in an self-predictive manner. In
(8), we present the derivation for the loss of the generative
observation model. This derivation is adapted from [7]
Chapter 12, where we integrate action variables.

p(o1, . . . , oT |θ, a0, . . . , aT−1) (4)

=

T∏
t=1

p(ot|θ, o1, . . . , ot−1, a0, . . . , at−1) (5)

=

T∏
t=1

∫
Rn

p(ot|θ, st)p(st|θ, o1, . . . , ot−1, a0, . . . , at−1)dst

(6)

≈
T∏
t=1

∫
Rn

p(ot|θ, st)b̄t(st|θ)dst (7)

=

T∏
t=1

Est∼b̄t(st|θ)p(ot|θ, st) (8)

Here b̄t is the output of the predict step of our filter
with input bt−1 and at−1. It is only an approximation of

p(st|θ, o1, . . . ot−1, a0, . . . , at−1). If we take the log, get
a lower bound from Jensen’s inequality and compute the
empirical mean, we get:

log p(o1, . . . , oT |θ, a0, . . . , aT−1) (9)

'
T∑
t=1

1

N

N∑
i=1

log p(ot|θ, sit) sit ∼ b̄t(st|θ) (10)

:= ELBO (11)

Equation 9 gives us a lower bound of the log likelihood
(similarly to the ELBO loss in VAEs [8]) to train our model
leveraging the differentiable approximate inference used to
compute b̄t. Because b̄t = N (st|µ̄t, Σ̄t), we can use the
reparametrization trick to sample sit by sampling ξi from a
n-dimensional standard Gaussian, and then letting

sit = µ̄t + Σ̄tξ
i (12)

θ represents the parameters for f,Σ, h,Γ which are
neural networks. We jointly perform state-estimation and
parameter optimization by estimating bt = (µt,Σt) using a
extended Kalman filter (EKF), the operation of which are
all differentiable (as shown for example by Lee et al. [2]),
and maximizing the likelihood of the ground-truth object
property of interest. For example, if mass is of interest, the
loss for one timestep for an episode where the ground-truth
mass is m would be:

Lm = −
T∑
t=1

logN (m|µ1
t ,Σ

11
t) (13)

Where N (·|µ, σ) is a Gaussian pdf with mean µ and
variance σ. The first element of the state represents the mass,
and we are maximizing its log-likelihood.

The loss we minimize is a combination of the self-
predictive loss for the observation, and the likelihood of
the mass in the state representation:

L = ELBO + Lm (14)

In practice, we sample sequences of length less that T ,
and initialize the filter using stored beliefs in the dataset, in
a truncated backpropagation through time fashion.

B. Information-gathering model-predictive controller

The goal is to control the belief space process in a way
that collects information about the property we’re trying
to perceive. The belief space for continuous systems is
generally infinite dimensional (the space of probability dis-
tributions over the state space) thus intractable to work with
using traditional control tools. However, by approximating
the belief space using a parametric family (a Gaussian in our
case), the problem can be formulated as a standard finite-
dimensional continuous control problem. This is what we
tackle here.

a) Belief dynamics: We can use the learned world
model to simulate the belief space dynamics, as illustrated in
Figure 1. The key is to be able to use the learned observation
model to predict the future uncertainty about the state, rather
than merely predict future states.

st

bt (current belief)

bt+1 (future simulated belief)

bt+2

st+1
st+2

ot+1 ot+2

fθ(st, at) + Σθ(st, at)wt

hθ(st+2) + Γθ(st+2)vt+2

Fig. 1. Illustration of the sampling process for belief-space planning using
a generative model. First, states are sampled from the current belief. We
can then use our dynamics model and candidate actions to sample future
states. These future states are given to our generative observation model
to generate observations. We can then feed the generated observations
and candidate actions to the state estimator to simulate the belief-space
dynamics.

b) Cost function: We want our controller to minimize
the entropy H of the system:

J =

T∑
t=1

H(b1t) (15)

to minimize the uncertainty about the property of the object
as soon as possible in the episode (compared to a final cost
formulation). Minimizing this cost, for a Gaussian belief
bt = (µt,Σt), is equivalent to minimizing the cost

J =

T∑
t=1

log Σ11
t (16)

c) Optimizer: In this work, we used a sampling-based
optimizer which selected the randomly-generated sequence
of actions, minimizing the cost. The actions were generated
using a Gaussian random walk in three dimensions, with a
standard deviation of 10 cm. Following the model-predictive
control framework, we only execute the first action of the
sequence and then re-optimize.

C. Full training and control loop

During training, we follow the procedure:
1) Collect data using current controller for one epoch

(randomizing the object property of interest), saving
the observations, actions and estimated beliefs as well
as the ground truth object property for this epoch

2) Train the state estimator using the dataset
3) Update stored beliefs in the dataset (by replaying the

actions and observations)
Step 3) does not have to be done every epoch and can be

costly as the dataset grows, but it is important to perform
truncated backpropagation through time and initialize our
state estimate during training.

0.0 0.5 1.0 1.5 2.0 2.5
step 1e5

0.0

0.1

0.2

0.3

M
AE

 (k
g)

Weight

Raw
Smoothed
Hand engineered policy

0.0 0.5 1.0 1.5 2.0 2.5
step 1e5

0.00

0.01

0.02

0.03

0.04

0.05

M
AE

 (m
)

Height

Fig. 2. MAE for the property estimation tasks, at the end of the episode
averaged over 5 runs, as learning progresses. The hand engineered policy
gives an upper bound on what can be achieved when the behavior must not
be discovered, and we simply have to extract the mass from a sequence of
sensor readings.

IV. EXPERIMENTS

We set up a custom robosuite [9] environment for our
experiments. The robot is a Franka Emika arm with a palm-
shaped end-effector (as shown in Figure 3) and a force-
torque sensor at the wrist. At each episode, a cube of
the same size and visual appearance is laid down at the
same location, with only its mass changing. We use position
control, only translation. The observations are low-level for
now: joint pose and velocity, object pose, force and torque
at the wrist.

A. Mass estimation

The first task is to learn to estimate the mass of a cube.
The cube has constant size and friction coefficient, but its
mass changes randomly between 1 kg and 2 kg in between
episodes. Because the robot has no gripper, just a palm, it
can’t pick up the object, but it should be able to push it and
extract mass from the force and torque readings generated
by the push.

B. Height estimation

The second task is to learn to estimate the height of a
block, randomized between 1 cm and 15 cm. The force
torque sensor, in this scenario, also acts has a contact
detector. The expected behavior would be to come down
until contact is made, at which point you can extract the
height from forward kinematics (keep in mind that our

Fig. 3. Demonstration of the learned controller for mass estimation. We
can see that it learns to stably push the object to extract mass from force
torque readings. Notice how the uncertainty goes down as the arm starts
pushing the block.

method has no concept of forward kinematics embedded into
it). One subtlety is that the arm must position itself above the
box before moving down, as it can otherwise make contact
with the table instead.

V. RESULTS

Every 5000 environment steps, we run the evaluation
procedure. It consists of running 5 episodes with randomized
object property, and computing the MAE, where the absolute
error is computed using the estimate at the last timestep of
the episode. The training curve, showing the evolution of
the MAE for the different tasks is shown in Figure 2. In
the graph, a line is shown where a information-gathering
policy was hand-coded by a human and we trained the state-
estimator; straight pushing for mass and coming down to
touch the block for height. It is meant as an approximate
upper-bound for the information-gathering controller.

We can see that as learning progresses, two things happen
concurrently:

1) the agent learn to perform informative actions. In the
case of mass estimation, the policy pushes the block
stably as shown in Figure 3. In the case of height

Fig. 4. Demonstration of the learned controller for height estimation. We
can see that it learns to come down and adjust its estimate as it moves
through free space, until touching the block.

estimation, the policy goes down in a straight line
until it touches the blocks.

2) the state-estimator learns to extract mass from the
raw observations generated by the informative actions.
For example during height estimation, the uncertainty
remains high until the end-effector touches the block,
at which point the estimate peaks at the correct height.

It is important to note that the pushing strategy is in no way
encoded in the agent; initial trajectories are simply random
walks in the workspace.

VI. CONCLUSION

With the goal of discovering active tactile perception
behaviors to measure object properties, we designed a
learning-based state estimator and an information-gathering
controller. Together, these two pieces allowed a simulated
robot to discover a pushing strategy for mass estimation and
a top-down patting strategy for height estimation, without
any prior on what should the trajectory be. This opens up
the door to learning more complex information-gathering
policies, such as those for estimating the center of mass,
hardness, friction coefficient and more.

REFERENCES

[1] S. J. Lederman and R. L. Klatzky. “Hand movements:
A window into haptic object recognition”. In: Cogni-
tive Psychology 19.3 (1987), pp. 342–368.

[2] M. A. Lee, B. Yi, R. Martı́n-Martı́n, S. Savarese,
and J. Bohg. “Multimodal Sensor Fusion with Dif-
ferentiable Filters”. In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).
2020, pp. 10444–10451.

[3] T. Haarnoja, A. Ajay, S. Levine, and P. Abbeel.
“Backprop KF: Learning Discriminative Deterministic
State Estimators”. In: Advances in Neural Information
Processing Systems. Ed. by D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett. Vol. 29. Curran
Associates, Inc., 2016.

[4] M. C. Burkhart, D. M. Brandman, B. Franco, L. R.
Hochberg, and M. T. Harrison. “The Discriminative
Kalman Filter for Bayesian Filtering with Nonlinear
and Nongaussian Observation Models”. In: Neural
Computation 32.5 (2020), pp. 969–1017.

[5] M. Denil, P. Agrawal, T. D. Kulkarni, T. Erez, P.
Battaglia, and N. De Freitas. “Learning to perform
physics experiments via deep reinforcement learning”.
In: ICLR (2017).

[6] C. Wang, S. Wang, B. Romero, F. Veiga, and E.
Adelson. “SwingBot: Learning Physical Features from
In-hand Tactile Exploration for Dynamic Swing-up
Manipulation”. In: 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS).
2020, pp. 5633–5640.

[7] S. Särkkä. Bayesian filtering and smoothing. Cam-
bridge university press, 2013.

[8] D. P. Kingma and M. Welling. “Auto-encoding varia-
tional bayes”. In: International Conference on Learn-
ing Representations (ICLR) (2013).

[9] Y. Zhu, J. Wong, A. Mandlekar, and R. Martı́n-Martı́n.
“robosuite: A Modular Simulation Framework and
Benchmark for Robot Learning”. In: arXiv preprint
arXiv:2009.12293. 2020.

	Introduction
	Related works
	Learning for state-estimation
	Active perception

	Methods
	Learning-based Kalman filter
	Information-gathering model-predictive controller
	Full training and control loop

	Experiments
	Mass estimation
	Height estimation

	Results
	Conclusion

