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ABSTRACT

Large Transformer models achieved the state-of-the-art status for Natural Lan-
guage Understanding and are increasingly the baseline architecture for source code
generation models. Transformers are usually pre-trained on a large unsupervised
corpus, learning token representations and transformations relevant to modeling
generally available text, and then fine-tuned on a particular task of interest. While
fine-tuning is a tried-and-true method for adapting a model to a new domain, for
example question-answering on a given topic or a source code generation model,
generalization remains an on-going challenge. Here we explore the ability of
various levels of model fine-tuning to improve generalization by personalized
fine-tuning. In the context of generating unit tests for Java methods, here we
evaluate learning to personalize to a specific project using several methods to
personalize transformer models for unit test generation for a specific Java project.
We consider three fine-tuning approaches: (i) custom fine-tuning, which allows
all the model parameters to be tuned; (ii) lightweight fine-tuning, which freezes
most of the model’s parameters, allowing a tuning of the token embeddings and
softmax layer or the final layer alone; (iii) prefix tuning, which keeps language
model parameters frozen, but optimizes a small project-specific prefix vector. Each
of these techniques offers a different trade-off in total compute cost and prediction
performance, which we evaluate by code and task-specific metrics, training time,
and total computational operations. We compare these fine-tuning strategies for
code generation and discuss the potential generalization and cost benefits of each
in deployment scenarios.

1 INTRODUCTION

It is well-known that even the best models can fail to generalize properly to new domains, and even
to new users of said models. For example, a model trained to answer questions in general may
not answer StackOverflow questions as well as the questions in the training domain, or a software
developer in an Enterprise environment with private code may have libraries and attribute name which
differ from public source code used to train a code synthesis model.

The current dominant paradigm in Natural Language Processing (NLP) modeling is to pre-train a
large transformer model (Vaswani et al.||2017a)) on a large corpus and then fine-tune it on a particular
task of interest. For example, a question-answering (Q&A) model is generally first pre-trained
on a large corpus of textual data for the specific language (e.g., Wikipedia, and news articles in
English), then fine-tuned on a task-specific dataset of paired questions and corresponding answers.
The pre-training process aims at learning semantic vector representation of the language and words,
while the fine-tuning process specializes the model for a specific domain.

Transformer models are also increasingly the baseline architecture used for code generation tasks,
such as writing methods from natural language description (Clement et al., 2020; |Austin et al., 2021}
Chen et al.| [2021)), or generating test cases from the focal method under test (Tufano et al., 2021).
Similarly for NLP tasks these models are pre-trained on a large corpus of natural text and publicly
available source code and then fine-tuned on a specific code-related task. Further, these models
also may not generalize to new domains of interest, and can benefit from task or even user-specific
fine-tuning, here called customization or personalization. Customization is particularly relevant for
code generation models since it provides several benefits:
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* allows fine-tuning on source code data that may not be available when training a base model
(e.g., private repositories or internal codebases), enabling improved overall performances on
codebases with proprietary dependencies and code styles;

* the opportunity to improve data privacy by considering private or sensitive data only during
the customization process on the client side;

* the opportunity to reduce deployment cost as customized models can offer better user
performance without increasing model size.

Custom models can provide clear benefits to users and model providers. We envision serving tens or
hundreds of thousands of custom models, but doing so presents several logistical hurdles, including
the costs of training, storing, and loading these models into GPU memory for inference. Worse,
memory costs will only be exacerbated when working with ever larger and more powerful models.

For these reasons, we investigate several customization approaches, some of which can dramati-
cally reduce the memory footprint and amortized computational cost introduced by custom models.
Specifically, we consider three fine-tuning approaches: (i) custom fine-tuning, which allows all the
model parameters to be tuned; (ii) lightweight fine-tuning, which only optimizes the token embedding
representations or the final softmax layer; (iii) prefix tuning, which keeps language model parameters
frozen, but optimizes a small project-specific vector prefix.

In our extensive empirical evaluation we found that all the customization strategies lead to significant
model improvements on a target project in terms of both intrinsic and task-specific metrics. While
there is no unambiguous winner among the customization strategies, each approach can provide spe-
cific benefits in particular deployment scenarios. This paper provides insights on these customization
strategies, their benefits and drawbacks, as well as providing guidelines and suggestions on which one
to use based on the training cost, memory and storage, number of users, and deployment scenarios.

2 APPROACH

This section describes the proposed customization approach for code generation models. We begin
by formally defining the customization process, then we provide details for each of the fine-tuning
strategies.

2.1 CUSTOMIZATION PROCESS

We use the term customization to refer to the process of fine-tuning a model m, previously trained
on a generic dataset for a task ¢, with the goal of improving its performance on a specific dataset
p. The performance of a machine learning model m on a dataset p is measured by one or more
evaluation functions f(m,p), where f can be either a maximization (e.g., BLEU, top-k accuracy)
or minimization (e.g., perplexity) function. The customization process is designed to modify the
trainable parameters of the model m, obtaining the model m/’, such that the performance of m’ on p
is better than what was attained by m. Specifically, f(m', p) > f(m, p) for maximization functions,
or f(m/,p) < f(m,p) for minimization functions.

In this work, m is an encoder-decoder transformer model, ¢ is a code generation task, and p is a target
software project to which we intend to customize m.

2.2 CUSTOM FINE-TUNING

Custom fine-tuning is the most straightforward customization approach. The model to be customized
is taken as is and trained on a selected project. All parameters are trainable during this process.
Figure[Ta|shows the model during fine-tuning, where all the parameters from the encoder and decoder
blocks, as well as embeddings and output layers can be modified.

2.3 LIGHTWEIGHT FINE-TUNING - EMBEDDINGS AND OUTPUT LAYER (L-EO)

Fully fine-tuning a model for every project or user may be prohibitive in terms of storage and memory
costs. As a result, we explore ways to mitigate these costs by reducing the number of parameters that
vary from one custom model to another. In our lightweight fine-tuning experiments, we achieve this
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Figure 1: Overview of the Customization Approaches - Transformer models during fine-tuning,
where the frozen parts of the model (not trainable) are displayed in gray: (a) Custom fine-tuning
modifies all parameters during training; (b) L-EO trains only the embedding and output layers; (c)
L-LDB allows to train only the parameters of the last decoder block; (d) Prefix tuning adds a trainable
prefix to the encoder and decoder blocks.

by freezing most parameters in the baseline model, and only keeping a small subset trainable. Figure
[Tb|shows the Lightweight fine-tuning - Embeddings and Output Layer (L-EO) design, where most of
the model parameters are frozen (displayed in gray), and we allow only the embedding and output
layers parameters to be fine-tuned, following the approach in|Lu et al.| (2021).

2.4 LIGHTWEIGHT FINE-TUNING - LAST DECODER BLOCK (L-LDB)

In this lightweight fine-tuning strategy, shown in Figure [Ic|[(L-LDB), most of the model’s parameters
are kept frozen, while only the parameters in the last decoder block are trainable, this includes:
self-attention, encoder-decoder attention, layernorm and feedforward layers. This design decision
of training only the last decoder block is motivated by experimental results analyzing the model’s
parameter changes during custom fine-tuning. Figure[2]reports the average absolute changes, during
fine-tuning, in the parameters belonging to different Encoder and Decoder blocks for a BART model.
We observe that, as we go through the transformer model, the average change in parameter values
tends to increase, with the last decoder block showing the highest changes in parameter values. As a
result, we hypothesize that it could be sufficient to tune the last decoder block and obtain performance
improvements similar to the fully custom fine-tuned model.

2.5 PREFIX TUNING

Prefix tuning was first introduced by |Li and Liang| (2021)), with the goal of fine-tuning a general
model for different tasks. The technique concatenates a sequence (prefix) of virtual tokens (trainable
parameters) to the front of the input of every encoder and decoder block. In our context, the intuition
behind this approach is that the prefix embeds the properties of a specific project, which allows the
model to generate customized responses for that repository. Practically, we set the prefix length to 200
tokens, and thus with an embedding size of 1024, this gives a total of 1024 x 200 x 24 x 2 ~ 10M
trainable parameters. The prefix is initialized to the most frequent words in the repository for which
the model is customized.

2.6 TRAINABLE PARAMETERS DURING FINE-TUNING

Table [T] provides an overview of the number of total and trainable parameters involved in each
customization process, in the case of a BART Transformer model with 406M parameters. Custom
fine-tuning allows to train 100% of the 406M available parameters in the model. During L-EO
finetuining, instead, only 13% (53M) parameters are trained. The L-LDB fientuning reduces the
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Figure 2: This figure shows the total average parameter change after fine-tuning to a new project
domain, showing that the largest parameter changes occur in deeper parts of the model. This motivates
our choice to try only fine-tuning the later layers of the model.

number of trainable parameters to 4.2% (17M). Finally, Prefix tuning has the lowest number of
trainable parameters, only 2.4% (10M) of the total, but these are additional parameters added to the
model, which reaches a total of 416M.

.. Parameters
Customization Process Total  Trained
Custom 406M  406M (100%)
L-EO 406M  53M (13%)
L-LDB 406M  17M (4.2%)
Prefix 416M  10M (2.4%)

Table 1: Comparing the number of trainable parameters in each fine-tuning method.

3 EXPERIMENTAL DESIGN

The goal of our experimental design is to investigate whether custom models outperform the baseline
model, leading to performance improvements in terms of intrinsic metrics (RQq), as well as extrinsic
task-specific metrics (RQ2). Next, we analyze and compare the different customization approaches in
terms of training and compute costs (RQs) as well as model size and required storage for deployment.

In our case study, we chose Unit Test Case generation as our code generation task ¢, and AthenaTest
by [Tufano et al.| (2021) as our baseline model m, which is a BART transformer model pre-trained
on source code and English, and fine-tuned on Java unit test generation. The task is modeled as a
translation task, where the input is a focal method (i.e., method under test), and the output is a test
case which tests the focal method’s correctness. We randomly sample 20 projects from the test set,
each of those representing the dataset p on which a custom model is fine-tuned. Specifically, for each
project p, we start from the baseline model m and fine-tune four different custom models according
to the four proposed fine-tuning strategies. For each project and fine-tuning strategy (e.g., L-EO), we
fine-tune and evaluate the models using 4-fold cross-validation. The models are trained until the best
validation loss is reached, independently for every fold, every repository, and every customization
approach. In total, we fine-tune and evaluate 20(projects) x 4(approaches) x 4(folds) = 320
models.

3.1 DATASET

Table 2] reports information about the 20 GitHub repositories sampled from the test set, which will be
used to customize our models. The table shows (i) the Project ID, which will be used in the paper to
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reference a specific project; (ii) the project name; (iii) the project size in terms of disk usage; (iv) the
popularity of the project in terms of number of stars obtained on GitHub; (v) and the dataset size,
which corresponds to the number of data points for the unit test generation task (i.e., pair of focal
method and test case). The list of projects represent a diverse set of repositories with different size,
domain, and popularity. They span from small personal projects (e.g., Tutorials with 6 stars), to
open source projects developed by large organizations such as Apache and Google.

ProjectID  Name Project Size (MB) Stars  Dataset Size
26644682  Talend Data Prep 68.8 56 651
40735368 GeoTools 62.4 8 653
107330274  Titus Control Plane 36.0 302 660
52972024 Smart Actors 57.8 22 704
9714608 Arakhné Foundation Classes 17.9 13 753
60701247  Android Plugin for IntelliJ IDEA 1026.7 716 754
14550159 EverRest 5.3 24 761
9278888 Brave 18.8 2084 787
66940520 DHIS 2 118.1 211 862
33645537 Tutorials 34.4 6 878
62253355 Mobi 62.6 35 986
155883728 0OakPAL 15.0 9 1005
4710920 Apache Dubbo 36.1 36231 1058
29603649 Wilma 6.7 40 1074
42949039 Herd 227.2 127 1249
1381673 Drools 176.7 3908 1394
1244027 ModeShape 131.1 212 1550
73948366 AthenZ 38.8 639 1920
660443 Chemistry Development Kit (CDK) 214.8 305 2591
87849739  Eclipse Ditto™ Project 52.5 311 2842

Table 2: Dataset - Projects used for customization

3.2 RQ: INTRINSIC EVALUATION METRICS

RQ;: Do custom models obtain better performances on intrinsic metrics, such as BLEU and
perplexity, w.r.t. the baseline? To begin, we investigate how the different model customization
approaches described in Sec. [2]score on intrinsic metrics such as BLEU and perplexity. All approaches
entail fine-tuning the baseline model to the dataset of a specific project, with the choice of parameters
being tuned depending on the approach taken. The four variants are trained independently until the
best validation loss is achieved. We report the BLEU4 score and the mean perplexity per token on the
test fold, for all the 20 projects. Next, we perform statistical tests to investigate whether the observed
differences between the baseline and custom models are significant, as well as differences among
the customization approaches. Specifically, we rely on the Kruskal-Wallis test, a non-parametric
statistical test.

3.3 RQg: TASK-SPECIFIC PERFORMANCES

RQ3: Do custom models improve on performance metrics specific to unit test generation?
We want to investigate how the different customization approaches compare with respect to the
downstream task of generating unit tests. Beyond BLEU score and perplexity, we would like to see if
custom models can produce the correct target code, how closely their unit tests mimic the repository
style, or even if they can perfectly match the desired output.

* Perfect Matches: We compare the model’s output string with the target developer-written
unit test. If the two strings are identical, this is considered a perfect match. We do not take
spacing and indentation into account as we are using a Java dataset (where indentation is not
required). We report the proportion of perfect matches among the top 5 model predictions.
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 Abstracted Code Matches: We pass the model output and target output through the src2abs
tool (Tufanol |2018), to obtain an abstracted version, masking variable names, method names,
etc. We also do not distinguish between different objects of the same type.

* Coding Style: For each project’s custom model, we would like to determine how closely the
model learns the developer’s personal programming style and preferences. To this end, we
extract the collection of all identifiers (i.e., variables and functions’ names) from the unit
tests written by the developer as well as those generated by the models. We then pass these
text outputs through a tf-idf vectorizer and compute the cosine similarity between them.
This allows us to compare the developer’s and the models’ word usage. We examine the
similarity between the developer’s unit tests and the baseline and custom models generated
tests. This scores the vocabulary similarity of the unit tests with the model generated code.

3.4 RQgs: TRAINING COST COMPARISON

RQ3: Given the same amount of compute, which custom models achieve the biggest perfor-
mance improvement? Since our four training regimes tune a different number of parameters, simply
comparing the training time or number of optimization steps to reach the best validation loss may
not be appropriate. For a model with [N parameters, we approximate the computation cost of a
forward pass to be C' ~ 2N floating point operations per training token, with an additional correction
for embedding layers. The backward pass takes roughly twice the amount of compute, but it is
unnecessary for layers that are frozen. For additional details, we refer to Table 1 in Kaplan et al.
(2020). We report the resulting compute in petaFLOPS-seconds.

4 RESULTS

4.1 RQq: INTRINSIC EVALUATION METRICS

Table [3| presents the results of custom models in terms of the intrinsic metrics: BLEU and perplexity.
Specifically, for each project, we report the average BLEU and perplexity over the four folds, achieved
on the test set by the different customization strategy, as well as the baseline model. We observe
notable improvements in both metrics for every project w.r.t. the baseline, with BLEU going from
16.1 achieved by the baseline model to 36-38 by custom models.

The statistical tests reported in Table |4|confirm that the improvement observed by the four customiza-
tion techniques are statistically significant w.r.t. the baseline (p < le-7). However, we do not observe
statistical significance in the differences among the customization strategies, meaning that, in terms
of intrinsic metrics performances, the differences are within margin of error.

4.2 RQy: TASK-SPECIFIC PERFORMANCES

The results in terms of task-specific performances are presented in Figure 3] The plot[3a]shows the
top-k accuracy for perfect matches (solid line) and abstracted matches (dotted line), aggregated over
the 20 projects. The baseline model outputs the same code structure (abstracted) in roughly 3% of all
cases, and virtually never produces the exact target output (<1%). Moreover, its performance does not
improve as we consider more predictions. All customization processes show significant improvement
compared to the baseline. Specifically, these improvements are observed for every single project
(full results will be available on our online appendix). Customized models produce the correct code
structure as their top prediction in ~13-14% of instances, and a perfect match in ~4-6% of cases.
They also tend to improve as we consider their top 5 predictions. Between the different customization
processes, Custom consistently performs the best, closely followed by Prefix and L-LDB. When
considering abstracted code matches, these three approaches are nearly identical. L-EO, however,
performs slightly worse than the others.

Plot [3b] shows the distribution of tf-idf cosine similarity computed between identifiers used in the
developers’ written tests and the models’ generated outputs. We observe that the distribution for
custom models is skewed towards the higher values of cosine similarity. This result demonstrates that
custom models tend to use variable and function names that are more similar to what developers used
in their own tests.
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BLEU4 Perplexity
Base Cust. L-EO L-LDB Prefix ‘ Base Cust. L-EO L-LDB Prefix

26644682 141 329 316 31.9 34.0 1.275 1212 1208 1.238 1.197
40735368 185 30.7 290 294 29.1 1276 1186 1.197 1.186 1.194
107330274 148 38.0  35.0 359 35.7 1.273 1160 1.168 1.164 1.175
52972024 102 318 33.2 322 30.1 1271 1.142 1.146 1.135 1.135
9714608 147 41.0 38.1 40.4 40.2 1263 1.155 1.145 1.150 1.138
60701247 10.8 289 244 259 26.6 1267 1.187 1.190 1.172 1.176
14550159 200 495 472 46.6 46.4 1.245 1121 1.122 1.116 1.124
9278888 173  46.8 445 472 47.8 1272 1137 1.152 1.138 1.140
66940520 174 379 339 355 37.7 1264 1.154 1.163 1.154 1.150
33645537 170 304 312 32.0 31.0 1264 1.231 1.200 1.192 1.211
62253355 1477 48.0 457 47.3 48.0 1.292 1113 1.114 1.114 1.116
155883728 13.7 413 375 39.3 39.5 1.238 1.132 1.148 1.146 1.140
4710920 282 391 381 38.8 38.6 1.218 1.161 1.162 1.167 1.160
29603649 19.1 584 549 56.6 56.8 1266 1.096 1.110 1.099 1.098
42949039 170 382 377 37.5 37.3 1.238 1.154 1.152 1.154 1.148
1381673 143 333 293 30.9 30.8 1261 1133 1.152 1.138 1.138
1244027 196 301 297 30.0 30.0 1.244 1142 1.160 1.142 1.150
73948366 120 331 318 34.0 33.6 1267 1.161 1157 1.159 1.164
660443 150 340 372 36.5 343 1.281 1.180 1.170 1.169 1.177
87849739 134 451 470 48.9 46.8 1.259 1.138 1.136 1.124 1.144

Average 16.1 384 369 37.8 37.7 ‘1.262 1.153 1.158 1.153 1.154

Project

Table 3: The BLEU score and perplexity for the customization methods evaluated on the 20 projects
in our test set.

BLEU4 Perplexity
Base Cust. L-EO L-LDB Prefix ‘ Base Cust. L-EO L-LDB Prefix
Base - 3e-08 3e-08 3e-08 3e-08 | - 3e-08 3e-08 3e-08 3e-08
Cust.  3e-08 - 0.4 0.7 0.7 3e-08 - 0.5 0.9 0.9
EO 3e-08 04 - 0.5 0.7 3e-08 0.5 - 0.5 0.5
LDB 3e-08 0.7 0.5 - 0.9 3e-08 09 0.5 - 0.8
Prefix 3e-08 0.7 0.7 0.9 - 3e-08 09 0.5 0.8 -

Table 4: Kruskal-Wallis Test p-values testing the significance of the pairwise hypothesis that one
customization method is superior than another. Custom strategies are significantly better than baseline.

Top-K Accuracy Similarity of model output with target output

25 20
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Figure 3: Task-specific metrics (a) custom models outperform the baseline in terms of perfect matches
(solid line) and abstract matches (dotted line); (b) custom models generate code that uses identifiers
(i.e., variable and function names) that are more similar to the project codebase.
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4.3 RQj3: TRAINING COST COMPARISON

For each customization process, we plot validation loss as a function of compute, as defined in
section[3.4] The results are presented in Figure [ where the light lines represent the validation loss
curve for each individual project and fold, while the bold line represents the average for each custom
strategy. First note that Custom achieves very large gains during the first epoch, as evidenced by
the fact that its validation loss starts much lower than L-EO and L-LDB. Custom also outperforms
other customization processes when given a limited amount of compute. However, we observe that
beyond a certain amount of compute, Custom and L-LDB tend to achieve similar performances. In
contrast, L-EO starts at the same validation loss as L-LDB but converges much slower to the best
loss, requiring 2-3 times as much compute.

Since the prefix parameters suffer from poor initialization, Prefix is the most expensive customization
process. To overcome this problem, it is possible to first train the prefix on a large generic dataset.
Then, given proper hyperparameter tuning, it is possible to substantially cut down compute cost for
customizing the prefix.

4.0 - —— Custom
— L-EO
L-LDB
3.5 —— Prefix
3.0 A
a
o
225
o
=
L 2.0 A
a
o
©1.5-
1.0 4
0.5 ~
101 100 10! 102 103

Compute

Figure 4: Validation Loss vs Compute (PF-seconds) - Light lines represent the validation loss curve
for each individual project and fold, while the bold line represents the average for each custom
strategy. Custom is the most efficient, lightweight approaches require slightly more compute to reach
a comparable validation loss, while prefix is the least efficient, suffering from poor initialization.

5 DISCUSSION & LESSONS LEARNED

The four customization strategies considered in this work are effective in improving a code generation
model’s performances on a given software project. Specifically, all custom models significantly
outperform the baseline in terms of intrinsic metrics (i.e., BLEU and perplexity) as well as task-
specific metrics (i.e., abstract and raw matches). While the differences among the customization
approaches are not significant (no clear winner), each strategy offers specific advantages in different
circumstances and deployment scenarios.
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Custom fine-tuning achieves the overall best performances and the customization process is relatively
fast and efficient. This is somewhat expected, since this customization strategy allows all the model’s
parameters to be tuned on the specific project. This characteristic also leads to the major disadvantage
of this approach: each custom model is an entire copy of the original model. Storage and inference
costs could become prohibitive when serving many users with personalized custom models.

Lightweight fine-tuning achieves good results while training fewer parameters. This allows to serve
potentially many users with custom models which can be stored and loaded efficiently. Specifically,
L-LDB trains fewer parameters than L-EO, however the latter could allow to deploy the embedding
and output layers on the user side, with a privacy-preserving focus.

Prefix fine-tuning trains the lowest number of parameters (only 2.4% for a BART model), while
improving over the baseline. However, it increases the total number of parameters of the model
(prefixes are additional virtual tokens) and requires more compute time to achieve good performances,
mostly due to the prefix initialization problem. On the bright side, this strategy allows to batch
together requests from different users (with different prefixes), which can be processed by a single
model, generating personalized outputs.

6 RELATED WORK

This work is related to two areas of the existing literature: neural source code generation and model
personalization. Neural code generation has generated an intense recent interest in NLP, using
Transformer models [Vaswani et al.[| (2017b) in particular for code completion Svyatkovskiy et al.
(2020;2019); |Clement et al.| (2020); Raychev et al.|(2014); |Bruch et al.| (2009); IBrockschmidt et al.
(2018)), code synthesis from examples (Chen et al.| (2018)), natural language to code |[Clement et al.
(2020); (Chen et al.|(2018)); |Austin et al.| (2021), code feature summarization |Liu et al.|(2021)); Moreno
et al. (2013)); Scalabrino et al.|(2017); Wan et al.| (2018)); |Alon et al. (2018)); Moreno et al. (2014),
code search|Husain et al.| (2019); [Feng et al.|(2020), unit test generation [Tufano et al|(2021) and even
bug fixing|Drain et al.{(2021]) and detection|Zhai et al.|(2020). This paper naturally is an extension and
evaluation of personalized unit test generations as studied by [Tufano et al.|(2021)), and an important
contribution to the understanding optimization in a deployment scenario.

Much of the previous literature on personalized models focuses on client-side training to keep
data on device |Shor et al.| (2019); [Popov et al.| (2018), and most work is in the domain of search
query completion Jaech and Ostendort| (2018)), natural language completion [Popov et al.| (2018)),
or even automated speech recognition Shor et al.[(2019). Naturally this work extends the domain
of evaluation beyond natural language tasks and into the software engineering domain. This paper
does not evaluate methods for client side training with restricted resources, however, as the most
powerful large language models which enable state of the art code synthesis have 10-100 million
parameters. At the time of writing such large models cannot be executed in a reasonable amount of
time on most consumer laptops. We leave to future work extending these studies to models which
have been pruned, quantized, distilled, and optimized to be ran in limited resource environments.

7 CONCLUSION

In this paper we explored different ways to customize a code generation model for a given codebase,
with the goal of improving its performances on a target project. We described and analyzed four
customization strategies and applied them on 20 different software projects for the task of generating
unit test cases. Specifically, we considered the following strategies: (i) custom fine-tuning, which
allows all the model parameters to be tuned on the target project; (ii) L-EO fine-tuning, a lightweight
training which freezes most of the model’s parameters, tuning only embedding and output layers; (iii)
L-LDB fine-tuning, a lightweight training which only tunes the last decoder block; (iv) prefix tuning,
which keeps language model parameters frozen, but optimizes a small project-specific vector (prefix).

In our extensive empirical evaluation we found that all the customization strategies lead to significant
model’s improvements on a target project, in terms of both intrinsic and task-specific metrics, with the
custom models adapting to the coding style of the target project. While there is no clear winner among
the customization strategies, each approach can provide specific benefits in particular deployment
scenarios.
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