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Abstract

To achieve autonomy in a priori unknown real-world scenarios, agents should be
able to: i) act from high-dimensional sensory observations (e.g., images), ii) learn
from past experience to adapt and improve, and iii) be capable of long horizon
planning. Classical planning algorithms (e.g. PRM, RRT) are proficient at handling
long-horizon planning. Deep learning based methods in turn can provide the nec-
essary representations to address the others, by modeling statistical contingencies
between observations. In this direction, we introduce a general-purpose planning
algorithm called PALMER that combines classical sampling-based planning algo-
rithms with learning-based perceptual representations. For training these perceptual
representations, we combine Q-learning with contrastive representation learning
to create a latent space where the distance between the embeddings of two states
captures how easily an optimal policy can traverse between them. For planning with
these perceptual representations, we re-purpose classical sampling-based planning
algorithms to retrieve previously observed trajectory segments from a replay buffer
and restitch them into approximately optimal paths that connect any given pair of
start and goal states. This creates a tight feedback loop between representation
learning, memory, reinforcement learning, and sampling-based planning. The end
result is an experiential framework for long-horizon planning that is significantly
more robust and sample efficient compared to existing methods.

1 Introduction

Animals and humans operate on high-dimensional stimuli (e.g., vision) to achieve diverse and ever-
changing goals necessary for their survival [} 2} 3| 4, |5]. Learning through trial-and-error plays a
fundamental role in this [6} [7, 8,9, [10L 5]]. Even in simplest environments, a brute-force approach
to trial-and-error by trying every possible action for achieving every possible goal is intractable.
The complexity of this search motivates memory-based mechanisms for compositional thinking.
Examples of such mechanisms include : i) remembering relevant segments of past experience, ii)
recomposing them in new counterfactual ways to form plans, and iii) executing such plans as part of
a targeted search strategy. Such mechanisms for recycling past successful behavior can significantly
accelerate trial-and-error compared to uniformly sampling all possible actions. This is because the
same behavior (i.e., sequence of actions) can remain valid for different goals and in different contexts,
due to the inherent compositional structure of real-world goals as well as the commonality of the
physical laws that govern real-world environments.

What principles can allow for memory mechanisms to remember and recompose bits of experience?
The concept of dynamic programming (DP) is directly related to this discussion, as it greatly reduces
the computational cost of trial-and-error by employing the principle of optimality [[L1]. This principle
can be colloquially stated as treating new and complex problems as a recomposition of old and simpler
sub-problems that were already solved before. Recent work [12} 13| [14] employs this perspective to
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Figure 1: Top: Given a start-goal image pair, PALMER plans a path between them by concatenating the
endpoints of past trajectory segments retrieved from a provided replay buffer. This is enabled by a state
embedding function fy that can identify close-by states, and results in robust long-horizon planning. Bottom:
To achieve this : 1) it uses offline Q-learning to obtain local reachability estimates between states, ii) uses these
Q-values for representation learning to train fg, iii) uses f, to plan over the replay buffer, iv) executes these
plans, v) evaluates the resulting trajectories and inserts them back into the replay buffer to improve its contents.

build hierarchical reinforcement learning (RL) algorithms for goal-reaching tasks. Such methods set
edges between states using a distance regression model to build a planning graph, perform shortest
path computations over it using DP-based graph search, and follow the resulting shortest paths with a
learning-based local policy. Our paper builds upon this line of work.

Contribution: We describe a long-horizon planning method that directly operates on high dimensional
sensory input observable by an agent on its own (e.g., images from an onboard camera). Our
method combines classical sampling-based planning algorithms with learning-based perceptual
representations, to retrieve and recompose previously observed sequences of state transitions in a
replay buffer. This is enabled by a two-step process. First, we learn a latent space where the distance
between two states captures how many timesteps it takes for an optimal policy to go from one to the
other. To achieve this, we use goal-conditioned Q-values learned through offline hindsight relabelling
[L5] for contrastive representation learning. Second, we threshold this learned latent distance metric to
define a neighborhood criterion between states. We then define sampling-based planning algorithms
that search over the replay buffer [12] to retrieve and stitch together trajectory segments (i.e., past
sequences of observed transitions) whose endpoints are neighboring states. This trajectory stitching
approach allows for creating planning graphs to connect any pair of start and goal states that were
observed before (as depicted in Fig[T). Our approach operates on offline unlabeled data, and can
therefore be combined with any exploration method to populate the replay buffer. Our experiments
implement an image-based navigation policy in simulation, using an offline replay buffer populated
with uniform random-walk exploration data.

2 Perception-Action Loop with Memory Retrievaﬂ

Nomenclature: An environment is represented as a tuple (S, A, peny ), where S and A are the state
and action spaces, and pey, (8’|, a) is the Markovian transition dynamics. A trajectory 7 € T is
any sequence of states and actions. 79 , 7—1 , 7; denote the first, last, and 7’th states in 7 respectively.
The length of a trajectory in terms of timesteps is denoted as len(7), and concatenation of two

"Most sub-sections have a corresponding section in the supplementary for further elaboration.
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Figure 2: An overview of the functions, inputs, and losses used in our method (see Sec for details). We aim
to train a perceptual encoder f, with two properties: i) representations of two states should be close if they were
observed to be easily reachable from each other within a low number of timesteps, ii) the representation of a state
should capture a minimal sufficient statistic to inform an agent about the actions needed to reach nearby states.

trajectories is denoted as 7.4; = 7 o 7. We assume an additive reward function R : 7 — R where
R(T) = >_(5,a)e- 7(s,a). We call a finite set of trajectories M = {7;} a replay buffer.

2.1 Perceptual Representations that Capture Local Reachability

A key component of our framework is a perceptual encoder fy(s) : S — R? that maps states into a
representation space where L2 distance dg(s¢, s4) := || fs(st) — fo(sq)|| captures local reachability
(i.e., how many timesteps it takes for the optimal policy to go from one state to another). To discuss
this more rigorously, we follow the work of [16}|12]] and define a goal-conditioned reward function
r(s¢, a, St41, sg) = —1s,,, 25, that returns —1 for all steps before reaching a goal. This means goal-
conditioned Q-values [16}[17] for the optimal policy correspond to negative shortest-path distances
(i.e., mar,Q(si,a,s4) = V(si,s5) = —len(7sp)). We can then define a symmetric distance metric
between states as dg(sc, s¢) := max( —V (s, ), =V (sq, sc) ). This in turn corresponds to the
two-way consistency criterion proposed in [13]. What we want from f(s) is for dy(s., s¢) and
dq(se, sg) to roughly correlate.

2.2 Representation Learning via Reinforcement Learning

Any perceptual encoder f whose latent representations satisfy the local reachability property defined
in Sec[2.T|can be used to implement the nearest neighbor retrieval and trajectory stitching mechanisms
for the upcoming sections [2.3]and [2.4] This section discusses one possible way to obtain such a
perceptual encoder, by using goal-conditioned Q-values for contrastive representation learning.

We propose a model (depicted in Fig[2) that includes the following standard components from
the literature: i) z = f4(s), projecting a state into a latent representation; ii) pswa(2iy 1 | 2¢, at),
modelling the transition distribution induced by pey,(s|s, a) over the latent space z = f4(s), as
discussed in [18] [19]; iii) 7;n, (a} | 2, z4), defining a distribution of actions to reach a goal state,
as discussed in [18] [19] [14]}; iv) p,(T" | 2, z4), modelling the distribution of timesteps necessary
to reach a goal state, as discussed in [20]]; v) Q(s¢, at, 4), a Q-value function that provides local
reachability estimates between pairs of states, as discussed in [12} [16]].

Following [12|[16]], we train Q(s;, at, s4) over an offline replay buffer M, using hindsight relabelling
(15 [16] with a reward function 7(s¢,a, 8¢41,85) = —1Ls,,,#s,. After training Q(s¢, at,sy) in
isolation, we freeze its parameters and use it to define a contrastive loss function [21] L¢ as explained
below. We then train the remaining components using the same replay buffer M. We randomly
sample a transition (s, a, s¢+1) and a time difference T, and set the goal state as s, := sy47, as in
hindsight relabelling. We then minimize the following losses:

* Lo(st:8g) = lninge(do(51,89) — dp) Lag(s,.sy)<cq + lhinge(dp — dp(st,59)) Lag(si.s,)2eq>
where ljnge is the hinge loss [22]. This contrastive loss dictates that perceptual representations
should be close together (i.e., dg(s¢, s4) < d,, holds) if and only if two states are close to each
other in terms of reachability (i.e., dg(s:, s4) < cg holds). d,, and cq are hyperparameters.



* Lp(T",T), Liny(a}, ar), and Lyyq(2;q,2i+1) are MSE and cross-entropy losses [19,20]. Ly
and L;,, dictate that perceptual representations should capture enough information to know when
and how an agent can reach from one state to another, while L ,,4 dictates that they should capture
only a minimal-sufficient statistic for doing so ([[19]] presents a more elaborate discussion).

2.3 Perceptual Experience Retrieval (PER)

Given a perceptual encoder f, that captures local reachability, we go over all states s; € M in
the replay buffer and compute their projections z; = f5(s;), which are stored alongside the states
themselves. We then employ z; to implement two retrieval mechanisms from the replay buffer: 1)
retrieving neighboring states, and ii) retrieving neighboring trajectories.

i) Retrieving Neighboring States: Given a query state s and radius d,, (i.e., the same one used in the
contrastive loss Lq in Sec, retrieving neighboring states amounts to computing the set Ny (s.) =
{sn | dg(c, sn) < dp}, which can be achieved by a straightforward L2 distance computation and
thresholding. The number of neighbors [Ny, (s.)| of a query state s is an approximate measure of
how many times the agent has visited around s., which also makes it a good visitation-count that is
applicable to both discrete and continuous state spaces.

ii) Retrieving Neighboring Trajectories: Given a starting state s. and a goal state s;, we can search
the replay buffer for the highest reward trajectory segment 7 that starts from a state 7y in Ndp (se)
and ends in a state 7_; in Ny, (s4). This corresponds to the following optimization problem:

TM(s0,85) "= ar;genj\l/[aXR(T) st. 70 € Na,(se), 71 € Ny, (s9) (1

To find Taq(s,,s,)» We first select all state pairs (s;,55) € N, (sc) x Ny, (sg). We then take all
sequences of transitions 7;; = {s;, @i, Sit1, ..., Sj—1,aj—q, S; } that start from s;, end at s;, and
are below a length threshold in terms of timesteps. We sort them based on R(7;;), and return the
trajectory with the highest reward. We call this trajectory retrieval process ‘Perceptual Experience
Retrieval’ (PER). We use PER only to retrieve short trajectory segments between close-by states
(sc, sg) (i.e., hence the length threshold on 7;;). These are then stitched together into long global
trajectories using the planning algorithms defined in the next section.

2.4 Long-Horizon Planning Through Stitching Trajectory Segments

This section discusses how PER can be employed for long-horizon planning. Classical sampling-
based planning algorithms such as RRT [23]] or PRM [24] connect points sampled from obstacle-free
space with line segments in order to build a planning graph. We instead reimagine them as memory
search mechanisms by altering their subroutines so that whenever an edge is created, a trajectory is
retrieved from the replay buffer through PER (eq[I)) and stored in that edge. Our new definitions for
these subroutines directly mirror the original ones given in [25]:

1) Sampling: Sampling originally returns a point from obstacle free space. We instead return a state
s. from the replay buffer M using any distribution (e.g., uniform, or based on visitation-counts).

2) Lines and Their Cost: The equivalent of drawing a line segment in our framework is retrieving
a trajectory Taq(s.,s,)> and its length and cost are len(7ay(s,,s,)) and —R(Taq(s,,s,)) respectively.
3) Nearest State and Neighborhood Queries: Given a query point s;, these subroutines return the
closest point or a neighborhood of points within a distance, among a set of vertices V' = {s;}. We
preserve these definitions, and only replace the metric from euclidean distance to len(Taq(s,,s,))-

Nearest(V, s,) = argmin len(Taq(s.,,s,))
1%

Near(V,sq,1) :={s. € V| len(Tam(se,s,)) < r}
4) Collision Tests: Collision tests originally prevent the sampling and line drawing subroutines from

intersecting obstacles. Since we are planning in retrospect, any such undesirable event can be handled
during PER by adjusting the reward function (i.e., if 7 has such an event, this reflects on R(7)).

Using these subroutines directly in-place of their originals, we reimplement experiential equivalents
of PRM, RRT, and RRT*, which we call R-PRM, R-RRT, R-RRT*. We denote the resulting planned
trajectory as Tq:(s,,s,)- Algorithms describe R-PRM as an example, and the supplementary
contains descriptions for R-RRT, R-R .



Algorithm 1 R-PRM (Roadmap Construction)

1: Input: fy, M

2: V< {SampleFree;}i=1,.. num_vertices; £ < 0 > Initialize vertices and edges
3: for each s; € V do

4: U < Near(V,s;,r) \ {si}

5: for each s; € U do > Place PER trajectories in edges
6: E+EU {(Si’ Sj) © Tedge = TM(s4,85)1 dedgfi = 7R(TM(81,5]'))}

return G = (V, E)

Algorithm 2 R-PRM (Trajectory Restitching Given the Constructed Roadmap)

I: Input: s;,s,,G = (V,E),R(7), f3, M

2: for each s, € V do > Insert s, and s4 into the PRM graph
3: if len(Taq(s,,s;,)) < r then > Place PER trajectories in edges
4: E+F U {(S 1) ¢ Tedge = TM(sc,8:)9 dedge = _R(TM(sc,si))}

5: if len(Ta(s;,s,)) < 7 then

6: E < EU{(si,s 9) * Tedge = TM(si,54)0 Qedge = —R(TM(s1,5,))}

T: Tstitched € (Z)

8: {s;} « ShortestPath(s., sq,G,R(T)) > Trajectory stitching by dynamic programming
9: for 0 < i < |{s;}| do > Concatenate PER trajectories along the shortest path
10:

Tstitched < Tstitched © TM(si—1,8:)

return 7o (s, s,) = Tstitched

We note two things about our proposed planning algorithms First, they can optimize any general
reward function R. As the number of sampled vertices increases, R(Tr¢ (s, )) gets optimized
through dynamic programming (i.e., by minimizing the Bellman error between vertices of the roadmap
(3), therefore employing the same mechanism as classical sampling-based planning algorithms [25].
Second, they operate on an offline dataset of unlabeled transitions which solely consists of high-
dimensional on-board sensory data (e.g. images), without assuming any auxiliary instrumentation
in the environment or oracle information that cannot be sensed by the agent on its own. They
therefore aim to relax the assumptions classical sampling-based planning methods make about what
constitutes a model (e.g., replacing a geometric environment model with sensory experience) and
what constitutes a state (e.g., enabling search and planning directly over images).

2.5 Refining Memory Contents via Forming and Executing Plans

We iteratively form and execute 7+ (s, s,). and whenever execution is successful, we insert the
resulting new trajectories back into M. We note that these new trajectories are not exactly the same
aS TAL"(s,,5,)s DECAUSE Tpq (s, ,s,) CONtains approximate mismatches between the endpoints of its
stitched trajectory segments due to nearest neighbor retrieval. Forming and executing plans this way
creates the following perception-action loop: i) M with refined contents is used to train a more
accurate ()(s¢, a, S4), ii) a more accurate Q(s¢, a, s4) creates a more accurate distance metric dg, iii)
a better dy generates better Ty (s, ,s,)» IV) better Ty (s, s,y result in higher frequencies of successful
execution to further refine M (see the supplementary for an algorithmic description).

3 Related work

Self-supervised goal reaching: Our approach is closely related to goal-reaching methods that combine
learning-based distance-regression with graph search, particularly Semi-parametric Topological
Memory (SPTM) [[14] and Search on the Replay Buffer (SoRB) [12], which we compare to in our
experiments. The key difference of our approach is that when setting the edges of the planning
graph, it retrieves transitions that actually happened rather than relying on learned distance regression.
This brings two main benefits. First is robustness. Local reachability estimates are susceptible
to overestimation when evaluated between pairs of states that are far apart or unreachable. This
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Figure 3: A comparison between perceptual distances dg and other suitable metrics from Sec While
all of these metrics are reasonably monotonic with physical reachability (i.e., goal distance), only perceptual
distances dg do not saturate when evaluated locally (i.e., for close by goals). In addition, the ratio between the
variance of d and the slope of its mean is much smaller compared to other sensible metrics (i.e., d, has a high
signal-to-noise ratio). This means that perceptual distances can implement a more accurate nearest-neighbor
criterion for perceptual experience retrieval and trajectory stitching, compared to the other metrics.

is because such states rarely occur together and are therefore out of distribution for the distance
regression model. This creates ‘hallucinated’ shortcuts in the planning graph that corrupt shortest
path queries [12| [13]]. To address this, [[14] employs temporally consistent localization and adaptive
waypoint selection, while [12]] employs distributional Q-learning and an ensemble of Q-functions.
In our approach, eq[I|naturally addresses this problem, since it requires an actual short trajectory in
the dataset approximately connecting two states before marking them as close. The second benefit
of our approach is that it can optimize general reward functions. This is because it decouples the
reachability metric len(7) (used in nearest neighbor queries and as a threshold to create edges) from
the downstream task reward R(7) (used to set edge distances), unlike previous work.

Image-Based Navigation: [26, 27, 28] present learning-based navigation systems that incrementally
build roadmaps through online operation. Our approach has two main differences: i) it builds a
roadmap entirely using raw offline data, therefore allowing applications like multi-robot learning
without additional loop-closure mechanisms to fuse graphs from multiple agents, ii) our approach
can optimize general reward functions, therefore it is not limited to navigation.

Robot Motion Planning: A common approach to motion planning is to first run a sampling-based
planning algorithm [29 23], and then refine the result through trajectory optimization [30, 311 32] to
satisfy constraints [33} 34} [35]. An important bottleneck is that sampling-based planning algorithms
require a precomputed map of the environment, and our approach extends such algorithms in a way
that relaxes this requirement by replacing a precomputed map with raw exploration experience.
SLAM and Geometric Maps: SLAM based methods [36] can autonomously construct high-fidelity
geometric maps [37,138], therefore alleviating the bottleneck of precomputing environment maps. The
downside of such approaches is that they can abstract away useful physical and semantic affordances.
For example, a purely geometric map cannot plan a path through a traversable field of tall-grass,
while our approach can learn such affordances as long as they are represented in past experiences.

4 Experiments’]

Setup: Our experiments are performed in ViZDoom [39], Habitat [40]], and the Maze2D benchmark
[41]. The VizDoom environment consists of a clover shaped maze. States solely consist of four images
INorth/East/South/West that form a panorama (i.e., 4 X 3 x 160 x 120 dimensions), and actions move
the agent North/South/East/West by a fixed distance A. The maze contains many long-thin column-
like obstructions (shown as dots in visualizations). Habitat experiments contain demonstrations on two
large-scale scans of real-world apartments: i) Roxboro, with a total area of 62 m2, and ii) Annawan,
which has a total-area of 75Hm2. States consist of a single 150 FOV image (i.e., 3 X 256 x 256
dimensions). There are 3 actions: {turn_left_30_deg, turn_right_30_deg, move_forward_A}.
Maze2D is a continuous control task, where states consist of the 2D position and velocity of a point
mass, and actions correspond to 2D accelerations. In all environments, an offline training dataset
is collected by a uniform random walk exploring the environment. For VizDoom and Habitat, this
offline training dataset consists of only 300k and 150k timesteps respectively, while for Maze2D
there are 1e6 timesteps. Supplementary material contains further details.

2 All experiments have a corresponding section in the supplementary providing further implementation details.
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Figure 4: Comparisons of our local policy 7 and global policy 7+ with SPTM and SoRB. 7 performs well
because it avoids getting stuck (as such events are filtered by eq[T), while 7+ performs well because it builds
robust roadmaps without hallucinated shortcuts; therefore avoiding the main failure modes of the baselines.
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Figure 5: At the core of PALMER is a process called perceptual experience retrieval (PER). Given a query
pair of current-goal states, PER searches the replay buffer to retrieve the highest scoring trajectory Taq(s, s ,)
whose first and last states are close to the query pair according to the perceptual distance dy. Left, Middle:
Visualizations of Tq(s,,s,) retrieved using PER and nearest neighbor states Na, (st) retrieved using dg. Right:
Setting edges of a roadmap using len (T (s t75g>)’ compared with distance estimates used in SORB and DDL
[20]. We found that distance estimates from baselines are prone to setting false edges that cross map boundaries.

4.1 Experiments in Vizdoom

Validating Perceptual Representations: Fig|3|shows that d (s¢, s4) obtained from our model captures
a suitable notion of local reachability. Figld|in turn shows that retrieving nearest neighbor states
J\/'glp (s) from M using d, (i.e., NN retrieval) returns physically close states.

Validating Perceptual Experience Retrieval (PER): Figl5| shows visualizations of trajectories re-
trieved with PER. We implement a retrieval policy 74 that computes Tpq(s,,s,) through qu' at
each timestep ¢ and executes argmazx, Q(s¢, a,T M(St7sg)78,1), therefore forming a model predictive
control (MPC) loop. We evaluate 7 in an image-based navigation task where start/goal images
are sampled randomly to have an euclidean distance n x A in between, and a trial is considered
successful if the agent can get within A proximity of the goal position within 4 x n time-steps. We
use the local policies from SORB [12] and SPTM [14] as baselines. FigE| shows the results. The
main mode of failure for both SPTM and SORB local policies is that they get stuck in column-like
structures. x4 avoids this, since eqm retrieves collision free Ty(s, s,)-

Robust Distances: PER also helps avoid hallucinations in local distance regression. Fig[5]illustrates
this point by setting edges between sampled states by thresholding len(7a(s,,s,)), Where methods of
[12} 20] are used as baselines. It can be seen that edges set by len(7(s,,s,)) are more robust.

Proposed Planning Algorithms: Figl6|shows visualizations of planning graphs and 74 (s, s,) Pro-
duced by R-PRM, R-RRT, and R-RRT*. It can be seen that R-PRM doesn’t contain any hallucinated
edges, while R-RRT and R-RRT* maintain the visual characteristics of their classical counterparts
(i.e., R-RRT has jagged branches with uniform coverage, while R-RRT* has straight branches
shooting out from the root). We implement an MPC policy 7+ that replans at each timestep ¢
using Algorithmto return T (s, s,)> and executes argmazx, Q(s, a, TM*(St759)7571). We again
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through PER and stored in that edge. We visualize the resulting planning graphs produced by our proposed
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Figure 7: Memory Refinement: In PALMER, a policy has three groups of parameters: Q(s¢, at, sq), fe, and the
contents of M. Iteratively forming plans through PER and executing them creates a feedback loop between
these components, where: i) actions inform perception during the training of fo, ii) perception facilitates actions
through the formation plans, and iii) memory serves as the medium for this reciprocal interaction. As a result,
trajectories produced by explicit planning are gradually internalized as implicit behavior encoded in the model
parameters. This leads to: Q-values propagating further into distant goals (Left), memory contents getting closer
to optimal (Middle), and performances of local policies showing significant improvement (Right).

use SORB [12]] and SPTM [14] as baselinesﬂ Fig shows the results. In addition to the local policy
getting stuck, a new mode of failure for both baselines is that false distance estimates throw-off
graph search by setting hallucinated shortcuts. A new baseline is 7., which extends the SPTM
local policy by using p,q and p; from Sec@to implement an MPC loop with n-step look-ahead.
Tmpe avoids getting stuck in columns thanks to n-step lookahead, but still isn’t sufficient for global
navigation as the accuracy of simulated rollouts from p¢,,q decreases with the number of timesteps.

Refining Memory Contents: We refine the contents of M by iteratively generating and executing
TM*(s.,s,)- Ve then retrain all model components only on the resulting new data that is equal in size
to the initial unrefined M. Fig shows the results. When a4, and argmax,Q(as, a, s4) are used as
policies, their success ratio increases significantly if they are trained on the optimized M. Q-value
estimates trained on the optimized M also propagate better to goals further away. The scaling of
ZGTL(TM(Smsg)) with goal-distance changes from an exponential trend to an approximately linear one,
due to the inclusion of transitions from successfully executed 7+ (s, s,)- These results highlight that
refining memory contents improves the quality of future plans.

4.2 Experiments in Habitat

As shown in Fig[8] we find that our method allows image-based navigation in this new domain
with significantly different visuals and layouts (i.e., real-world apartments), action space (i.e., turn-
left, turn-right, go-forward), and state space (i.e., single 256 x 256 RGB images with 150 FOV).
Perhaps more surprisingly, we find that training f only on exploration data from a single apartment
generalizes substantially well to any unseen apartment, which directly allows perceptual experience
retrieval and trajectory stitching when provided with a corresponding replay buffer. For a quantitative
evaluation, we randomly pick two apartments, named Roxbox and Annawan. In both apartments, we
collect an exploration dataset using a uniform random walk sequence of only 150k timesteps. We

3For a comparison without confounders, we train SORB with DDQN [42] rather than distributional Q-learning
[43], and we do not employ temporally consistent localization for SPTM, as such fixes are equally applicable to
our method and orthogonal to the discussion. The supplementary provides further elaboration.
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Figure 8: We evaluate our R-PRM based policy 7w+ in the Habitat simulator for image-based navigation. Top
Left: Success ratios in training and test apartments. Top Right: Number of timesteps until reaching the goal.
("Habitat seen" refers to the training apartment Roxbox, while "habitat unseen" refers to the test apartment
Annawan. Bottom: We found that training the perception model f, on a single apartment generalizes sufficiently
well to allow perceptual experience retrieval and trajectory stitching in any unseen apartment.

train the model components solely on data from Roxbox. We then use them to implement our 7+
policy from Sec which we then evaluate on both apartments. For n € {8,16,24, 32, 36,44}, we
randomly sample 100 pairs of start and goal-states in a way that the geodesic distance between them
lies within n X A and (n + 8) X A through rejection sampling. A policy is considered successful if
it can get within 2 x A proximity of the goal-state. We do not plot the SPTM and SORB baselines,
because we found that the models ;. (a|s¢, sg) and argmaz, Q(s¢, a, s4) that they use as local
navigation policies achieved almost zero percent success rate in reaching local goals beyond ~ 2 x A
distance. We empirically observed that most of the time these policies get stuck in repetitive rotational
motions without moving forward. This is most likely due to the difficulty of offline RL training with
hindsight relabelling over random-walk data obtained with a much more challenging non-cartesian
action space {turn_left_30_deg, turn_right_30_deg, move_forward_A}.

4.3 Experiments in Maze2D

SAC | SAC-off | BEAR | AWR | BCQ | CQL | IQL | Diffuser | PALMER
maze2d-umaze | 1104 | 145.6 28.6 252 | 415 | 31.7 | 89.6 182.1 131.76
maze2d-medium | 69.5 82.0 89.8 332 | 350 | 264 | 105.2 | 3329 416.28
maze2d-large 14.1 1.5 19.0 70.1 | 232 | 40 | 159.9 | 328.1 361

Table 1: Total rewards on the Maze2D benchmark, which is a continuous control task that requires long-horizon
planning. Our R-PRM based 7+ policy achieves comparatively strong performance.

To test our method on a continuous control task, we perform additional experiments on the Maze2D
benchmark. As shown in Table[I] we find that the same 7~ policy from sections [4.1] and [4.2]
achieves strong performance, and can solve mazes of all three complexities.

5 Discussion and Future Directions

Is PALMER less expressive than standard deep Q-learning: Two important premises of deep Q-
learning [44, 34]] are: 1) minimizing Bellman error through temporal-difference (TD) updates can
restitch observed transitions in new optimal ways [41,45]], ii) a neural network can learn to extrapolate




Q-values to unobserved but close-by states in high-dimensional spaces (e.g. images) [46]]. Both
arguments are equally valid for our approach, since it can: i) restitch transitions at arbitrary resolu-
tions (i.e., anywhere from one-step transitions to multi-step trajectories) by virtue of sampling-based
planning, ii) group together close-by states through d,. Therefore, PALMER is an RL algorithm
that: i) optimizes Bellman error through sampling-based optimal planning rather than gradient-based
TD-updates [46], ii) performs extrapolation between states using a perceptual-backbone f rather
than a deep Q-network, and iii) replaces the greedy-policy argmaz, Q(s,a, s,) and value estimate
maz, Q(st,a, 8¢) with argmaz, Q(8t, a, Tag (s, ,s,),s,1) a0d R(Tag(s.,s,)) TESpectively. The key
benefits of these alterations come into play when s; and s, are far apart, and these benefits are: i)
the PER mechanism in eq that prevents hallucinations in (s, a, s4), ii) global propagation of
value estimates by virtue of employing sampling-based planning methods, which are known to be
particularly proficient at searching high-dimensional state spaces across long-horizons [35} [29].
Combining PALMER with standard deep Q-learning: Our approach can also be flexibly combined
with any traditional Q-learning method [46, 47, [48], by using our proposed planning algo-
rithms (Sec[2.4)) as experience replay methods [49]. This alternative approach stitches together
TM*(s.,s,) during training, and perform backwards TD-updates over this trajectory starting from
Sg = TM'(su,s,),s,—1 and ending at sc = Taq(s,..s,),5,0- AS suggested by Fig this can al-
low value estimates Q(s¢,a,s,) to propagate more globally. Our proof-of-concept experiments
identify this as a promising direction, and we leave a further extensive evaluation to future work.
Connections to contingency learning: Contingency learning refers to the acquisition of knowledge
of statistical correlations between percepts [50} 3, 51]]. Following this definition, PALMER can be
interpreted as a contingency learning framework, as the latent distance metric dg captures statisti-
cally how likely two states are to be observed in close temporal proximity. The knowledge of these
statistical contingencies between states is then used for long-horizon decision making through the
proposed perceptual experience retrieval and planning mechanisms.

6 Conclusion and Limitations

We presented PALMER, a long-horizon planning method that combines learning-based perceptual
representations with classical sampling-based planning algorithms. Given a goal state s, and reward
function R, our method searches the contents of an offline replay-buffer M to stitch together a
sequence of transitions Ta¢(s,.s,) = {51,a1,52,...} that reaches s, while maximizing R. This
results in an experiential framework for long-horizon planning that is significantly more robust and
sample efficient compared to baselines.

Our experiments show that PALMER can successfully solve long-horizon planning tasks from
continuous high-dimensional inputs. In particular, we have shown that given an offline dataset of
only 150k transitions (i.e., compared to sample complexities around the orders of magnitude 1e6-1e7
common in RL) obtained from an entirely uniform random-walk (i.e., which is significantly less
structured compared to on-policy rollouts), it allows image-based navigation between any two points
in large-scale scans of real-world apartments.

We believe that our memory-based planning perspective highlights a number of interesting questions
for future research. First, which transitions should be kept in the replay buffer M, and which ones
should be discarded? M cannot be infinitely expanded after deployment, and it is critical to distill
away redundancies between stored experiences. Second, when the environment undergoes a change,
which transitions in the replay buffer remain valid and can still be used for planning, and which ones
become invalid? A mechanism that can answer this question can allow quick and sample-efficient
adaptation to environmental changes. Third, how can we extend f3 to allow more abstract associations
and functional equivariances between states? This can improve generalization by defining a more
flexible notion of experience retrieval that can recycle past behavior in new contexts and for new
tasks. We leave these questions to future work.
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