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ABSTRACT

Well-known robust aggregation schemes in federated learning (FL) are shown to
be vulnerable to an informed adversary who can tailor training-time attacks (Fang
et al., 2020; Xie et al., 2020). We frame robust distributed learning problem as a
game between a server and an adversary that is able to optimize strong training-
time attacks. We introduce RobustTailor, a simulation-based framework that
prevents the adversary from being omniscient. The simulated game we propose
enjoys theoretical guarantees through a regret analysis. RobustTailor improves
robustness to training-time attacks significantly while preserving almost the same
privacy guarantees as standard robust aggregation schemes in FL. Empirical results
under challenging attacks show that RobustTailor performs similar to an upper
bound with perfect knowledge of honest clients.

1 INTRODUCTION

In federated learning (FL), a global/personalized model is learnt from data distributed on multiple
clients without sharing data (McMahan et al., 2017; Kairouz et al., 2021). Clients compute their
(stochastic) gradients using their own local data and send them to a central server for aggregating and
updating a model. While FL offers improvements in terms of privacy, it creates additional challenges
in terms of robustness. Clients are often prone to the bias in the stochastic gradient updates, which
comes not only from poor sampling or data noise but also from malicious attacks of Byzantine clients
who may send arbitrary messages to the server instead of correct gradients (Guerraoui et al., 2018).
Therefore, in FL, it is essential to guarantee some level of robustness to Byzantine clients that might
be compromised by an adversary.

Compromised clients are vulnerable to data/model poisoning and tailored attacks (Fang et al.,
2020). Byzantine-resilience is typically achieved by robust gradient aggregation schemes e.g.,
Krum (Blanchard et al., 2017), Comed (Yin et al., 2018), and trimmedmean (Yin et al., 2018). These
aggregators are resilient against attacks that are designed in advance. However, such robustness
is insufficient in practice since a powerful adversary could learn the aggregation rule and tailor its
training-time attack. It has been shown that well-known Byzantine-resilient gradient aggregation
schemes are susceptible to an informed adversary that can tailor the attacks (Fang et al., 2020).
Specifically, Fang et al. (2020) and Xie et al. (2020) proposed efficient and nearly optimal training-
time attacks that circumvent Krum, Comed, and trimmedmean. A tailored attack is designed with
a prior knowledge of the robust aggregation rule used by the server, such that the attacker has a
provable way to corrupt the training process. Given the information leverage of the adversary, it is a
significant challenge to establish successful defense mechanisms against such tailored attacks.

In this paper, we formulate robust distributed learning problem against training-time attacks as a
game between a server and an adversary. To prevent the adversary from being omniscient, we propose
to follow a mixed strategy using the existing robust aggregation rules. In real-world settings, both
server and adversary have a number of aggregation rules and attack programs. How to utilize these
aggregators efficiently and guarantee robustness is a challenging task. We address scenarios where
neither the specific attack method is known in advance by the aggregator nor the exact aggregation
rule used in each iteration is known in advance by the adversary, while the adversary and the server
know the set of server’s aggregation rules and the set of attack programs, respectively.'

"While this assumption is essential to frame our game, we provide experimental results on challenging
settings where the server does not know the set of attack programs in Section 5.
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Due to information asymmetry between the server and the adversary, we assume every client do-
nates a small amount of honest data to the server as the price to achieve some level of security
more proactively and efficiently. Providing such public dataset to achieve robustness is a common
assumption in FL (Fang & Ye, 2022; Huang et al., 2022; Kairouz et al., 2021; Yoshida et al., 2020;
Zhao et al., 2018; Fang et al., 2020; Xie et al., 2020; Cao & Lai, 2019; Chang et al., 2019; Cao et al.,
2020). We propose RobustTailor, a scheme based on simulating aggregation rules under different
attacks. With minimal privacy leakage, RobustTailor realizes high resilience to training-time attacks.
RobustTailor maintains stable performance under a challenging mixed attack, a strategy we propose
for the adversary to simulate and design a successful attack when a smart server uses a mixed strategy
to make the problem of attack design computationally harder. We emphasize that any deterministic
Byzantine-resilient algorithm can be added in server’s aggregation pool. Similarly, any attack can be
used in the set of adversary’s attack programs.

1.1 SUMMARY OF CONTRIBUTIONS

* We frame robust distributed learning problem as a game between a server and an adversary
that tailors training-time attacks.

* We propose a simulation-based framework RobustTailor to improve robustness by prevent-
ing the adversary from being omniscient.

* The simulated game we propose enjoys theoretical guarantees through a regret analysis.

» Empirical studies validate our theory and show that RobustTailor preforms similar to an
upper bound with perfect knowledge of all honest clients over the course of training. Even
under a challenging mixed attack strategy, RobustTailor outperforms the robust baselines
in terms of robustness and accuracy.

1.2 RELATED WORK

In this section, we provide a summary of related work. See Appendix A for complete related work.

Training-time attacks in FL. Federated learning (FL) usually suffers from training-time attacks
(Biggio et al., 2012; Bhagoji et al., 2019; Sun et al., 2019; Bagdasaryan et al., 2020) because the
server trains the model across various unreliable clients with private datasets. A strong adversary
can potentially participate in every training round and adapt its attacks to an updated model. In
model update poisoning, a class of training-time attacks, an adversary controls some clients and
directly manipulates their outputs aiming to bias the global model towards opposite direction of
honest training (Kairouz et al., 2021). If Byzantine clients have access to the updates of honest clients,
they can tailor their attacks and make them difficult to detect (Fang et al., 2020; Xie et al., 2020).

Robust aggregation and Byzantine resilience. To improve robustness under general Byzantine
clients, a number of robust aggregation schemes have been proposed, which are mainly inspired by
robust statistics such as median-based aggregators (Yin et al., 2018; Chen et al., 2017), Krum (Blan-
chard et al., 2017), trimmed mean (Yin et al., 2018). Moreover, Fang et al. (2020); Xie et al. (2020);
Cao & Lai (2019); Cao et al. (2020) propose server-side verification methods using auxiliary data.
Karimireddy et al. (2021) and Alistarh et al. (2018) propose history-aided aggregators. Ramezani-
Kebrya et al. (2022) propose a framework based on randomization of multiple aggregation rules.
However, none of them selects a proper aggregation rule proactively during training as our framework
RobustTailor, and all of them can be used in RobustTailor while we mainly focus on statistical-
based aggregators in this paper. Although past work has shown that these aggregators can defend
successfully under specific conditions (Blanchard et al., 2017; Chen et al., 2017; Su & Vaidya, 2016),
Fang et al. (2020) and Xie et al. (2020) argue that Byzantine-resilient aggregators can fail when an
informed adversary tailor a careful attack and Gouissem et al. (2022) proves that such aggregation
rules are vulnerable. Therefore, developing a robust and efficient algorithm under such strong tailored
attacks is essential to improve security of FL, which is the goal of this paper.

Game theory in FL. Online convex optimization (OCO) framework (Zinkevich, 2003) is widely
influential in the learning community (Hazan et al., 2016; Shalev-Shwartz et al., 2012), and bandit
convex optimization (BCO) as an extension of OCO was proposed by Awerbuch & Kleinberg (2008)
for decision making with limited feedback. Bandit paradigms paralleling FL framework are proposed
by Shi & Shen (2021) and its extension under Byzantine attacks is proposed by Demirel et al.
(2022). However, they account for uncertainties from both arm and client sampling rather than robust
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aggregation in this paper. In this paper, we frame robust distributed learning problem as a game and
consider the bandit feedback model.

2 PROBLEM SETTING

Under a synchronous setting in FL, clients compute their updates on their own local data and then ag-
gregate from all peers to update model parameters. Consider a general distributed system consisting of
a parameter server and n clients (Chen et al., 2017; Abadi et al., 2016; Li et al., 2014). Suppose that f
Byzantine clients are controlled by an adversary and behave arbitrarily. Let x € R? denote a machine
learning model, e.g., it represents all weights and biases of a neural network. We consider minimizing
an overall empirical risk of multiple clients, which can be formulated as finite-sum problem:

n

. 1
min F(x) = > Fi(x) (FL)

where F; : R? — R denotes the training error (empirical risk) of x on the local data of client i.

At iteration t, honest clients compute and send honest stochastic gradients g;(x;) = VF;(x;) for
i € [n — f] while Byzantine clients, controlled by an informed adversary, output attacks b; € R¢
for j € [f]. The server receives all n updates and aggregates them following a particular robust
aggregation rule, which outputs an aggregated and updated model x;,; € R?. Finally, the server
broadcasts x;; to all clients.

2.1 GAME CONSTRUCTION

We frame this distributed learning problem under training-time attack as a game played by the adver-
sary and the server. The informed adversary and training-time attacks are described in Section 2.1.1.
The details of aggregators for the server are provided in Section 2.1.2. Though our formulation seems
natural and intuitive, to the best of our knowledge, our work is the first work that frames robust
learning problem under training-time tailored attacks as a game. The adversary aims at corrupting
training while the server aims at learning an effective model, which achieves a satisfactory overall
empirical risk over honest clients.

2.1.1 INFORMED ADVERSARY WITH ATTACKS

The adversary controls f out of n clients where these Byzantine clients collude aiming at disturbing
the entire training process by sending training-time attacks (Biggio et al., 2012; Bhagoji et al., 2019;
Sun et al., 2019; Bagdasaryan et al., 2020). We assume n > 2 f + 1 which is a common assumption in
the literature (Guerraoui et al., 2018; Blanchard et al., 2017; Alistarh et al., 2018; Rajput et al., 2019;
Karimireddy et al., 2022); otherwise the adversary will be able to provably control the optimization
trajectory and set the global model arbitrarily (Lamport et al., 1982).

An informed adversary controls the outputs of those compromised clients, e.g., their gradients
throughout the course of training. Moreover, the informed adversary has full knowledge of the outputs
of n — f honest clients across the course of training. Having access to the gradients of honest nodes,
the adversary can compute the global aggregated gradient of an omniscient aggregation rule, which is
the empirical mean of all honest updates without an attack:

1
= 1
g n_f;g )

When an adversary knows a particular server’s aggregation rule, it is able to design tailored attacks
using n — f honest gradients (Fang et al., 2020).

Definition 1 (Attack algorithm). Let {g1,...,gn—s} denote the set of honest updates computed by
n — f honest clients. The adversary designs f Byzantine updates using an AT algorithm:

{bnferlv-"»bn} = AT(glv"'vgnffaA) (2)
where A denotes the set of aggregators formally defined in Section 2.1.2.
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It is shown that several tailored attacks can be designed efficiently and provably fail well-known
aggregation rules with a specific structure e.g., Krum, Comed, and Krum + resampling (Fang et al.,
2020; Xie et al., 2020; Ramezani-Kebrya et al., 2022). Suppose that the adversary has a set of S
computationally tractable programs to design tailored attacks:

F = {ATy,AT,, ..., ATg}. 3)

2.1.2 SERVER WITH AGGREGATORS

The server aims at learning an effective model, which achieves a satisfactory overall empirical risk
over honest clients comparable to that under no attack. To update the global model, the server
aggregates all gradients sent by clients at each iteration.

Definition 2 (Aggregation rule). Let g;- € R< denote an update received from client j, which can be

either an honest or compromised client for j € [n]. The server aggregates all updates from n clients
and outputs a global update g € R? using an aggregation rule AG:

g=AG(g},....g,. F). )

where F denotes the set of attacks defined in Section 2.1.1.

We assume that the server knows the number of compromised clients f or an upper bound on f,
which is a common assumption in robust learning (Guerraoui et al., 2018; Blanchard et al., 2017;
Alistarh et al., 2018; Rajput et al., 2019; Karimireddy et al., 2022).

However, the server does not know the specific Byzantine clients among n clients in this distributed
system such that the server cannot compute g* in Eq. (1) directly. To learn and establish some
level of robustness against training-time attacks, several Byzantine-resilient aggregation rules have
been proposed e.g., Krum (Blanchard et al., 2017) and Comed (Yin et al., 2018). These methods
inspired by robust statistics provide rigorous convergence guarantees under specific settings and have
been shown to be vulnerable to tailored attacks (Fang et al., 2020; Xie et al., 2020). The set of M
aggregators used by the server is denoted by

A={AG,AG,,...,AGy}. (5)

Note that the pool of aggregators A and the set of attacks F are known by both the server and the
adversary, but the specific AT* are AG® chosen at iteration ¢ are unknown. Moreover, such powerful
but not omniscient adversary does not have access to the random seed generator at the server. This
is a mild and common assumption in cryptography, which requires a secure source of entropy to
generate random numbers at the server (Ramezani-Kebrya et al., 2022).

To avoid trivial solutions, we assume each aggregation rule is robust (formal definition of robustness
is provided in Appendix B) against a subset of attack algorithms in F while no aggregation rule
is immune to all attack algorithms. Similarly, each attack program can provably fail one or more
aggregation rules in .A while no attack program can provably fail all aggregation rules.

2.2 PROBLEM FORMULATION

To evaluate the performance of an updated global model, i.e., the output of AG in Eq. (4), we define a
loss function, which measures the discrepancy of the output of AG and an omniscient model update
under no attack.

Definition 3 (Loss function). The loss function associated with using aggregation rule AG under
attack AT is defined as:

((AG,AT, {g;}i=1) = [|AG(g1,. .., 8n—7, AT(g1,...,8n—y, F), A) — g"|
= HAG(g17 c 7gn7f7b’nff+17‘ < 7bna~’4) - g*”

where g* is the ideal model under no attack which is computed in Egq. (1).

(6)

To train the global model, the server takes multiple rounds of stochastic gradient descent by aggregat-
ing the stochastic gradients from clients. However, some gradients might be corrupt at each round,
which are sent by compromised clients controlled by the adversary. We frame this robust distributed
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learning scenario as a game between the adversary and the server. The server wants to minimize
the loss defined in Definition 3, while the adversary aims to maximize it. This game as a minimax
optimization problem is formulated as:

. nn .
A%&E%?}K(AG’AT’ {gi}tieq). (MinMax)

The entire process of model aggregation with 7' rounds is shown in Algorithm 1. Note that Eg
denotes the expectation with respect to randomness due to stochastic gradients. Ideally, the game
in MinMax can reach a Nash equilibrium (NE) (Nash, 1950). However, the loss is not computable
for the server, since the server cannot distinguish honest gradients such that g* is unknown for it.
Therefore, we will simulate the game in the following Section 3.

Algorithm 1 Update model from the perspective of server

Input: Initial weight vector xo, learning rate 7, iteration rounds 7", number of clients n, set of aggregation
rules A, set of attack algorithms F, and public dataset.
fort =1to T do
Server sends x; to all clients.
fori=1ton — f do
| Honest client ¢ computes local gradient g; (x;) = VF;(x:).

Compromised clients send attacks AT ({g:}7—{, A).
Sever receives gradients from all clients {g] }i—;.
Server chooses AG’ by solving

i Eg[(AGH, AT, {gi}i-1)].
nin - max_ g[¢(AG", Agitiz1)]

Server updates the model x;41 = x; — n: AG ({g}}7=q, F).

3 ROBUST AGGREGATION

Because MinMax cannot be solved during the process of updating the model, we propose to simulate
it instead and obtain an optimized aggregator for model updates. As mentioned in Section 2, the
informed adversary has an advantage over the server since it can perfectly estimate g* in Eq. (1)
while the server does not have such knowledge and cannot identify honest clients a priori. We assume
that each client donates a small amount of data as a public dataset to the server to achieve some level
of security by controlling the information gap between the server and adversary. Let g denote the
update computed at the server using the public dataset, which is a rough estimate of g*.

Remark 1. The server may obtain such public dataset from other sources not necessarily the current
clients. It is sufficient as long as the collected public dataset represents the clients’ data distribution
by some extent. To guarantee convergence, we only require that the update from the public dataset
is a rough estimate of the ideal g*. In particular, the quality of such estimate directly impacts the
convergence of our proposed algorithm (see Section 4 for details). As the quality of such estimate
improves, the convergence of the global model to an effective model improves. The existence of
such public dataset is a valid and common assumption in FL (Fang & Ye, 2022; Huang et al., 2022;
Kairouz et al., 2021; Yoshida et al., 2020; Chang et al., 2019; Zhao et al., 2018).

For the simulation, the server generates the simulated gradients {gi};;‘lf based on the public dataset.
The loss function in the simulated game becomes

n—f

= ~ \n— ~ ~ ~ ~ 1 ~

((AG, AT, {g:}/=) = [[AG(&1, .- . En— . AT((&1, - Bnss A), F) — gl o
i=1

Let £ € R{‘f *5 denote the loss of M aggregators corresponding to S attacks, and L(AG;, AT;)
represents the loss associated with aggregation rule 7 in A under attack j in F in the simulation.
After the adversary has committed to a probability distribution q over S attack algorithms, the server
chooses a probability distribution p over M aggregation rules. Then, the server incurs the loss

{(p,q) = pEg[L]q . We will solve Sim-MinMax below instead of MinMax.

min max pEg[Llq". Sim-MinMax
PEANM qGAsp g[ }q ( )
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where Ap; and Ag denote the probability simplex in [M] and [S], respectively.

In practice, it is computationally expensive to compute £ > and meanwhile there is noise due to
the gradients. Therefore, we consider bandit feedback model with limited feedback, in which the
server and adversary can only observe the loss through exploration. To solve Sim-MinMax in the
bandit feedback model, one player could implement the well-known Exponential-weight Algorithm
for Exploration and Exploitation (Exp3) (Seldin et al., 2013) whose detailed description is deferred
to Appendix C.

Due to two players (the server and the adversary) in our model, we propose an algorithm which
simultaneously executes Exp3. We term our proposed robust aggregation scheme as RobustTailor,
which outputs an optimized AG at each iteration. The specific algorithm from perspective of
the server is shown in Algorithm 2. Using the public dataset, the server generates n — f noisy
stochastic gradients g; = VF;(x;) for i € [n — f] at iteration ¢. After K rounds of simulation
on {'gi};glf , the server obtains a final probability distribution p and selects an aggregation rule by
sampling from p. The steps for our robust training procedure are summarized in Algorithm 3. Note
that Appendix H demonstrates both theoretical analysis and empirical results of RobustTailor’s
computation complexity.

Algorithm 2 RobustTailor
Input: Updating rates A1, A2, A1 and 2, simulation rounds &, simulated gradients {g;}7—/, A, F.

Initialize weight vector w® (i) = 1 for i € [M] and v°(5) = 1 for j € [S].
for k = 1to K do

Set pF(AG,) = (1 — M) =) — 4 Ay L fori € [M].

XL, wh()

k(AT.) — (1 — o* (j)
Set q"(AT;) =(1 )\g)zlevk(j)
Sample AG* ~ p* andNATk ~ q" respectively.
Estimate the loss £* = /(AGF AT* {g,}7=).

Set 24 (i) = MAGEAGTL kR (G) = (i) exp(— a5 (3) /M) for i € [M].
Ak ~
= MRS gy () = o ) exp(hafh ()/9) for j € [
J
Set p; = 2=k=1P (G0 g ¢ (M),
Sample AG ~ p.
Output: AG.

+ Aol forj € [S].

Set £5(j)

Algorithm 3 Server’s aggregation

Input: Learning rate 7, n clients, f compromised clients, iteration rounds 7', A and F
Initialize model xo.
fort =1to T do

Send x; to all clients.

Receive gradients from all clients {g; } 7.

Calculate simulated gradients {g; }7—,/.

Call Algorithm 2 to aggregate AG' = RobustTailor({g:}7=/, A, F).

Update the global model by x:+1 = x; — n: AG ({g}}7=1, F).

The adversary can also perform simulation to optimize its attack at each iteration. The main differences
for an adversarial simulation compared to RobustTailor include: 1) the adversary can use perfect

honest stochastic gradients {gi};zlf instead of noisy estimates; 2) the probability output is g which is
calculated by the weight vector of attacks v(j) for j € [S]. The details of the adversarial simulation

are provided in Appendix D.

4 THEORETICAL GUARANTEES

To show convergence of the inner optimization in Algorithm 2, we first show how to turn two simul-
taneously played no-regret algorithms for a minimax problem into convergence to a Nash equilibrium
(NE). To make the optimization problem shown in Algorithm 2 more general, we define a new loss



Under review as a conference paper at ICLR 2023

function L : [M] x [S] — R.. Consider simultaneously running two algorithms on the objective
L, such that their respective expected regret is upper bounded by some quantities R} and R, i.e.,

K K
E ZL(z‘mw—ZL(i,jk)] <Rk, E
k=1 k=1

K K )
> L(ix, ) = > Llix, i) | <Rk, (®)
k=1 k=1

for any ¢ € [M] and j € [S] where the expectation is taken over the randomness of the algorithms.

Lemma 1 (Folklore). Assume we run two algorithms simultaneously with regret as in (8) to obtain
{(ix, jr)}E_,. By playing i uniformly sampled from {ij }}_,, we can guarantee

= kK 1 i j
Ei [L(0, )] < Binpr jonar [LG7 7)) + 22 (R + Rie), ©)

for any j € [S] where (p*,q*) is a Nash equilibrium of E;x px j*~qr [L(1%, 7).

This kind of result is well-known in the literature (see for instance Dughmi et al. (2017, Cor. 4)).
When the algorithms have sublinear regrets, we refer to them as no-regret algorithms. This condition
ensures that the error term in (9) vanishes as K — oco. Exp3 (Auer et al., 2002), employed by both
the attacker and aggregator in Algorithm 2, enjoys such a no-regret property.

Lemma 2 (Hazan et al. 2016, Lemma 6.3). Let K be the horizon, N be the number of actions, and

Ly, : [N] — Ry be non-negative losses for all k. Then Exp3 with stepsize A = 1‘;;%1{,\/ enjoys the
following regret bound,
K K
E |> Ly (ix) = Y Li(i)| <2y/KNlogN, (10)
k=1 k=1

for any i € [N|, where the expectation is taken over the randomness of the algorithm.

Note that any two simultaneously played no-regret algorithms for a minimax problem can be turned
into convergence to a NE following Lemmas 1 and 2. We obtain guarantees for the aggregation
rule returned from Algorithm 2 as a direct consequence of Lemmas 1 and 2. Considering a specific

situation in Algorithm 2, L is replaced by the simulation loss ¢ shown in Eq. (7).

Lemma 3. Let { be the simulation loss in Eq. (7). Sample AG ~ p as defined in Algorithm 2 with
A = \/ 1}%\[/[ and \y = %. Then the loss is bounded in expectation for any attack ATK € F
as,

T VMlog M + +/Slog S
+2 ,
VK
where (p*,q*) € Ay X Ag is a Nash equilibrium of the zero-sum game with stochastic payoff
matrix Eg[L] as defined in Sim-MinMax.

Eacg [F(AG,AT, {g),)] < pEglL)(a") (an

Lemma 3 implies that the simulated loss approaches the NE value even under the worst-case attack.
The proofs of Lemma 1 and Lemma 3 are provided in Appendix E and Appendix F respectively. Impor-
tantly, a sufficient condition for almost sure convergence for the outer loop is provided in Appendix B.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the resilience of RobustTailor against tailored attacks. To provide
intuitive results and show benefits of simulation in terms of robustness, we first construct a simple
pool of aggregators including only Krum (Blanchard et al., 2017) and Comed (Yin et al., 2018).
Concerning the adversary’s tailored attacks, we consider two different types of attacks, which can
successfully ruin Krum and Comed, respectively. As described in (Fang et al., 2020; Xie et al., 2020),
an adversary with e-reverse attack computes the average of honest update, scales the average with a
parameter €, and sends scaled updates to the server to induct the global model towards the inverse of
the direction along the one without attacks. It is known that a small e corrupts Krum, while a large
one corrupts Comed (Fang et al., 2020; Xie et al., 2020).
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We simulate training with a total of 12 clients, 2 of which are compromised by an informed adver-
sary. We train a CNN model on MNIST (Lecun et al., 1998) under both iid and non-iid settings
and meanwhile training CNN models on Fashion-MNIST (FMNIST) (Xiao et al., 2017) and CI-
FARI10 (Krizhevsky et al., 2009) is under iid setting. Note that the dataset is shuffled and equally
partitioned among clients in the iid settings (Fig. 1). In addition, all honest clients donate 5% of their
local training dataset to the server as a public dataset as specified in Remark 1, and the informed
adversary has access to the gradients of honest clients. Note that the details of the model and
training hyper-parameters are provided in Appendix G.1, and all experiments below without specific
clarification have same setup with Fig. 1a, Fig. 1b, and Fig. 3.

Single tailored attacks. RobustTailor successfully decreases the capability of the adversary to
launch tailored attacks. RobustTailor maintains stability in Fig. 1a when Krum fails catastrophically
under a small e attack. Fig. 1b shows that RobustTailor has much less fluctuations in terms of test
accuracy compared to Comed when facing a large € attack. In addition, on average, RobustTailor has
70.68% probability of choosing Comed under € = 0.5 attack while 65.49% probability of choosing
Krum under € = 100 attack, which proves that the server successfully learns how to defend. Training
on FMNIST shows consistent results as seen in Fig. 1c and Fig. 1d and further results on CIFAR10
are in Appendix G.2. Note that RobustTailor will outperform both Krum and Comed if there is a
larger pool to select aggregators, which results are shown in Appendix G.2.

o ;;;“‘MT.WWL”W

(a) MNIST, e = 0.5 (b) MNIST, € = 100 (¢c) FMNIST, e = 0.1 (d) FMNIST, e = 100

Figure 1: Test accuracy on MNIST and FMNIST under iid setting. Tailored attacks (¢ = 0.1/0.5,100) are
applied. RobustTailor selects an aggregator from Krum and Comed based on the simulation at each iteration.

Mixed attacks. We now consider additional and stronger attack strategies beyond vanilla e-reverse
attacks. We assume the adversary has a set of attacks including ¢ = 0.5 and ¢ = 100 attacks.
StochasticAttack shown in Fig. 2 picks an attack from its set uniformly at random at each
iteration. AttackTailor in Fig. 3 optimizes an attack based on simulation at each iteration, whose
detailed algorithm is in Appendix D. Compared to all previous attacks including StochasticAttack,
AttackTailor is much stronger since it can pick a proper attack under perfect knowledge of honest
updates. The poison of AttackTailor shown in Fig. 3 is almost as effective as the most targeted
attack tailored against a single deterministic aggregator. Importantly, RobustTailor shows impressive
robustness when facing such a strong adversary like AttackTailor.
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Figure 2: StochasticAttack. StochasticAttack  Figure 3: AttackTailor. AttackTailor applies
applies € = 0.5 and € = 100 uniform randomly. € = 0.5 and e = 100 based on the simulation.

Poisoned data mixed in the public dataset. Byzantine clients may be able to donate poisoned data
to the public dataset. We assume 16.7% of data in the public dataset is poisoned due to 16.7% of
malicious clients. Two normal data poisoning methods we choose are label flipping (LF) (Munoz-
Gonzilez et al., 2017) and random label (LR) (Zhang et al., 2021). Fig. 4 demonstrates that poisoned
data mixed in has little impact on RobustTailor, which also proves that a small gap between the
public dataset and true samples does not reduce the effectiveness of RobustTailor substantially.
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(b) e =100 (c) AttackTailor

Figure 4: Poisoned data mixed in the public dataset.

Unknown attacks for the server. In our assumption, the server knows all attacks in the adversary’s
pool. What will happen if there is an attack out of the server’s expectation? Fig. 5 gives the results.
In particular, ¢ = 0.1 in Fig. 5a and ¢ = 150 in Fig. 5b are the same type of attacks as ¢ = 0.5/100,
and Mimic (Karimireddy et al., 2022) in Fig. 5c and Alittle (Baruch et al., 2019) in Fig. 5d are the
different type of attacks. Note that we expand the set of RobustTailor with GM (Pillutla et al., 2022)
and Bulyan (Guerraoui et al., 2018) as in Fig. 9 and decrease the learning rate to 0.005 for against
Alittle and Mimic. It shows that RobustTailor can defend against not only the attacks similar to
expectation but also those totally different. As a mixed framework, RobustTailor is hard to be ruined
since the adversary hardly designs a tailored attack ruining several aggregation rules simultaneously.

(@e=0.1 (b) e = 150 (¢) Mimic (d) Alittle

Figure 5: Attacks out of the server’s expectation.

Aggregators with auxiliary data. Public dataset can be used not only for simulation but also to
assist with aggregation. Fang et al. (2020) have proposed two server-side verification methods: error
rate based rejection (ERR) and loss function based rejection (LFR), which reject potentially harmful
gradients using error rates or loss values before aggregation. We provide experiments with the setup
as in Fig. 3, and Krum/Comed assisted by ERR/LFR is totally ruined by AttackTailor with around
10% accuracy while RobustTailor reaches 90.28%. These results provide further evidence that
RobustTailor delivers superior performance over existing techniques. By additional experiments,
we observe that ERR/LFR helps aggregator achieve around 97% accuracy when facing ¢ = 0.5 attack
while it is totally ruined when against ¢ = 100. In this more sensitive situation, AttackTailor is
easily to break single aggregation rules but RobustTailor still performs well.

Additional experiments. To further validate the performance of RobustTailor, we set up additional
experiments in Appendix G.2 including 1) three datasets; 2) non-iid settings; 3) more Byzantines;
4) more aggregation rules added in RobustTailor; 5) the impact of the proportion of public data; 6)
subsampling by the server; 7) dynamic strategy of the adversary; 8) adversary with partial knowledge.

6 CONCLUSIONS AND FUTURE WORK

We formulate the robust distributed learning problem as a game between a server and an adversary.
We propose RobustTailor, which achieves robustness by simulating the server’s aggregation rules
under different attacks optimized by an informed and powerful adversary. RobustTailor provides
theoretical guarantees for the simulated game through a regret analysis. We empirically demonstrate
the significant superiority of RobustTailor over baseline robust aggregation rules. Any Byzantine-
resilient scheme with a given structure can be added to RobustTailor ’s framework.

Although the increased computation complexity of RobustTailor is acceptable for the great ro-
bustness which is analyzed in Appendix H, it is also a future work to develop efficient and secure
protocols to apply RobustTailor e.g., using multi-party computation (Boneh et al., 2019).
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Notation. We use E[-], || - ||, || - ||o, and || - ||« to denote the expectation operator, Euclidean norm,
number of nonzero elements of a vector, and dual norm, respectively. We use | - | to denote the length
of a binary string, the length of a vector, and cardinality of a set. We use lower-case bold letters to
denote vectors. Sets are typeset in a calligraphic font. The base-2 logarithm is denoted by log, and
the set of binary strings is denoted by {0, 1}*. We use [n] to denote {1, --- ,n} for an integer n. We
use A, to denote the probability simplex in R .

A COMPLETE RELATED WORK

Federated learning (FL). FL (McMabhan et al., 2017; Konecny et al., 2016) keeps training data
decentralized in multiple clients which collaboratively train a model under the orchestration of a
server (Kairouz et al., 2021). For the server, such clients are often more unpredictable and especially
more vulnerable to the attacks. Secure aggregation protocols (Bonawitz et al., 2017; So et al., 2020)
ensure that the server computes aggregated updates without revealing the original data. In this paper,
we focus on training-time attacks and corresponding aggregation rules.

Training-time attacks. Standard attacks can be broadly classified into training-time attacks (poison-
ing attacks) (Biggio et al., 2012; Li et al., 2016; Jagielski et al., 2018; Bhagoji et al., 2019; Huang
etal., 2011; Mei & Zhu, 2015; Alfeld et al., 2016; Koh & Liang, 2017; Mahloujifar et al., 2019; Gu
et al., 2019; Xie et al., 2019; Wang et al., 2020b; Yang & Li, 2021; Karimireddy et al., 2021; Data &
Diggavi, 2021; Carlini & Terzis, 2021; Allen-Zhu et al., 2021) and inference-time attacks (evasion
attacks) (Goodfellow et al., 2014; Carlini & Wagner, 2017). Because the server in FL trains the
model across various unreliable clients with private datasets, FL usually suffers from training-time
attacks (Biggio et al., 2012; Bhagoji et al., 2019; Sun et al., 2019; Bagdasaryan et al., 2020). A
strong adversary can potentially participate in every training round, and meanwhile it can adapt its
attacks to an updated model. One class of training-time attacks concerned in this work is model
update poisoning. In model poisoning attack, an adversary can control some clients and can directly
manipulate their outputs trying to bias the global model towards the opposite direction (Kairouz et al.,
2021). If Byzantine clients have access to the updates of honest clients, they can tailor their attacks
and make them difficult to detect (Fang et al., 2020; Xie et al., 2020; Lamport et al., 1982; Blanchard
et al., 2017; Goodfellow et al., 2014; Bagdasaryan et al., 2020).

Robust aggregation and Byzantine resilience. To improve robustness under general Byzantine
clients, a number of robust aggregation schemes have been proposed, which are mainly inspired by ro-
bust statistics such as median-based aggregators (Yin et al., 2018; Chen et al., 2017), Krum (Blanchard
et al., 2017), trimmed mean (Yin et al., 2018). Krum (Blanchard et al., 2017) and coordinate-wise
median (Comed) (Yin et al., 2018; Chen et al., 2017) are two main aggregation rules used in this paper.
Krum is a squared-distance-based aggregation rule and it aggregates the gradients that minimize
the sum of squared distances to its n — f — 2 closest vectors where n denotes the total number of
clients and f is the number of adversarial ones. Comed is a median-based aggregator and it selects
the gradient closest to the median of each dimension.

Except of statistical aggregation rules, there are still many related works like server-side verification,
client-side self-clipping etc. From the perspective of the server, Fang et al. (2020); Xie et al. (2020);
Cao & Lai (2019); Cao et al. (2020) propose some server-side verification methods using auxiliary
data. Specifically, Fang et al. (2020) assume the server has a small validation dataset and uses error
rates to reject harmful gradients. In (Xie et al., 2020; Cao & Lai, 2019), the server asks a small
clean dataset from clients and filters out unreliable gradients. Cao et al. (2020) utilize the ReL.U-
clipped cosine-similarity between local gradients and the standard one calculated by a small clean
dataset as the weight for aggregation. Moreover, Karimireddy et al. (2021) and Alistarh et al. (2018)
propose history-aided aggregators, and an expandable framework proposed by Ramezani-Kebrya et al.
(2022) utilizes randomization to improve robustness. None of them selects a proper aggregation rule
proactively during training as our framework RobustTailor. We note that all aggregation rules shown
here can be added to the pool of RobustTailor because a public dataset is available in our assumption
and any aggregation rule can use it. In addition, client-side clipping methods are proposed by Sun
et al. (2021) and Sun et al. (2019), and client-side momentum SGD is considered by Karimireddy
et al. (2021) and El Mhamdi et al. (2021). However, the ability of clients is not the focus of our paper
and we will consider it in future work.
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Past work has shown that these aggregators can defend successfully under specific conditions
(Blanchard et al., 2017; Chen et al., 2017; Su & Vaidya, 2016). However, Fang et al. (2020) and Xie
et al. (2020) argue that Byzantine-resilient aggregators can fail when an informed adversary tailors
a careful attack. Therefore, developing a robust and efficient algorithm under such strong tailored
attacks is essential to improve security of FL, which is the goal of this paper.

Heterogeneous data. In the real world applications, many issues such as heterogeneous data become
significant (Kairouz et al., 2021; Karimireddy et al., 2020). Karimireddy et al. (2022) find that robust
learning algorithms of FL may fail under iid setting. Several algorithms are proposed to tackle non-iid
data (Yoshida et al., 2020; Zhao et al., 2018; Karimireddy et al., 2022; Wang et al., 2020a; Data &
Diggavi, 2021; Zhu et al., 2021). Besides, data heterogeneity easily leads to backdoor attacks, which
can be viewed as a kind of training-time attacks (Xie et al., 2019; Bagdasaryan et al., 2019; Zawad
et al., 2021). Therefore, establishing robustness under non-iid setting is also an important indicator
for an aggregator.

Game theory in FL. Online Convex Optimization (OCO) framework (Zinkevich, 2003) is widely
influential in the learning community (Hazan et al., 2016; Shalev-Shwartz et al., 2012), and Bandit
Convex Optimization (BCO) as an extension of OCO was proposed by Awerbuch & Kleinberg
(2008) for decision making with limited feedback. Bandit paradigms paralleling FL framework are
proposed by Shi & Shen (2021) and its extension under Byzantine attacks is proposed by Demirel
et al. (2022). However, they account for uncertainties from both arm and client sampling rather than
robust aggregation in this paper. In this paper, we frame robust distributed learning problem as a
game and consider the bandit feedback model.

B ROBUSTNESS OF RobustTailor

In this section, we define a general robustness definition of an aggregation rule against an attack.
Note that our definition covers a broad range of settings with general pure and mixed aggregation
along with general pure and mixed attack strategies. Our robustness notion leads to almost sure
convergence guarantees to a local minimum of F' in FL, which is equivalent to being immune to
training-time attacks.

Definition 4 (Robustness of an aggregator to an attack program). Let x € R? denote a machine
learning model. Let g;(x) = VF;(x) € R? be independent honest updates for i € [n). Let G(x)
denote a function that draws an honest client i uniformly at random followed by outputting an
unbiased stochastic gradient of VF;(x) over that client such that E[G(x)] = VF(x) where E is
over both random client and samples. Let AG denote an arbitrary aggregation rule, which can
be a mixed aggregation strategy selecting an aggregator from A = {AGy,...,AGy} based on
simulation. The output of AG is given by §(x) = AG({g'}!"_,). Note that {g'}}_, includes both
honest and compromised updates. The compromised updates are the output of an attack program
AT({g:}7=, A). Note that AT can be a pure or mixed attack strategy.

=1

The mixed aggregation rule AG is Byzantine-resilient to AT if §(x) satisfies E[§(x)]T VF(x) > 0
and E[||g(x)||"] < K, E[||G(x)||"] for r = 2,3, 4 and some constant K.,..

Suppose {n; }$2; in Algorithm 3 satisfies >, 7: = coand Y, ? < oo. For a nonconvex loss function,
which is three times differentiable with continuous derivatives, bounded from below, and satisfies
global confinement assumption in (Bottou, 1998, Section 5.1), general pure and mixed aggregation
and attack strategies satisfying Definition 4, and general non-iid data distribution across clients, we
can establish almost sure convergence (VF'(x;) — 0 a.s.) of the output of AG in Algorithm 3 along
the lines of (Bottou, 1998; Fisk, 1965; Métivier, 1982).

Note that to achieve E[g(x)]T VF(x) > 0 shown above, it requires both the distance between
V F(x) and the estimate of the honest update g and the distance between g and the expected output
of Algorithm 2, i.e., E[g(x)], are small. Let 6; denote the angle between VF'(x) and g, and let 0 de-
note the angle between g and E[g(x)], given by arg cos (m%) and arg cos (M%) ,
respectively. If §; + 6, < 7/2, then we have E[§(x)] T VF(x) > 0. Following the arguments
in Appendix B, almost sure convergence of Algorithm 3 is guaranteed as long as 6, + 02 < 7/2.
This condition can be satisfied assuming 1) the public data donated by clients is representative of
the underlying data distribution of honest clients, which controls 61, and 2) the number of Byzantine
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clients is sufficiently small, which controls 85. We defer derivation of the explicit necessary condition
for almost sure convergence to future work.

C DETAILS OF EXP3

The bandit feedback model considers the following iterate game.

Definition 5 (Bandit setting). The player is given a decision set [N]. At each iterationk = 1,..., K:
1. the player picks iy, € [N].
2. the adversary picks a loss vector (*.

3. the player observes and suffers the loss at index iy, i.e. £*(iy,).

Exp3, as shown abstractly in Algorithm 4, enjoys a so called no-regret property in this setting. We
employ Exp3 from both the perspective of a simulated server and simulated attacker to find a robust
aggregation rule in Algorithm 2. In Appendix E we show how to convert the no-regret properties into
a convergence guarantee.

Algorithm 4 Exp3

Input: Updating rate A and )\, iteration rounds K, N
Initialize weight vector w°(i) = 1 fori =1,..., N.
for k =1t0 K do

Set W# = "N wk(i), and set fori = 1,..., N

w* (i
p(i) = (1 - N2 s

Draw i; randomly accordingly to the probabilities p.

Receive loss £F.
Setfori=1,...,N

ék(z) _ {Ek/p(l), it i =ig;

0, otherwise.

W (i) = w” (i) exp(=A* (i) /N).

D SIMULATION OF ADVERSARY

In this section, we show the simulation of the adversary. We term adversarial simulation as
AttackTailor, which outputs an appropriate AT at each iteration. The specific steps from the
perspective of the adversary is shown in Algorithm 5. After observing n — f honest gradients, the
server performs K -round simulation and obtains a final probability distribution q. By sampling from
q, the server selects an attack. Then, f Byzantine clients create and send the compromised gradients
to the server. The steps for simulating the attack procedure are summarized in Algorithm 6.

Importantly, the main difference between the adversary’s simulation compared with that of server is
that the adversary does simulation based on realistic honest gradients while the server has access only
to noisy estimates of true gradients. Hence, unlike typical games and simulation setups, the adversary
has an additional advantage over the server, which is due to information asymmetry.
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Algorithm 5 AttackTailor
Input: Updating rates A1, A2, A1 and 2, simulation rounds K, gradients of honest clients {g;}"~;/, A and F
Initialize weight vector w? (i) = 1 for i € [M] and w3 (5) = 1 for j € [S].

for k = 1to K do
— k.
Set p(AG:) = (1= M) sx iy + gy fori =1, M.

Set g (AT;) = (1= he) st B + oL forj =1,..., .
J

vk ()

Sample AG* ~ p* and AT* ~ q" respectively.
Estimate the loss £* = ¢(AG®, AT* {g;}"—).
Setfori=1,..., M

i 7H{AG _AG}k w0 = wP(4) ex — M09 (2
(i) = (AG) AN 1 () 1() P( >\€1()/M)
Setforj=1,...,8
o) ]I{AT —AT} WL () = wh (1) exp(al (7
l(5) = 7(AT) 2 (9) 2 (7) exp(A2lz(5)/95)-
Setfori=1,..., M
k
@ 2k 1§;(A1‘)

Sample AT ~ q.
Output: AT.

Algorithm 6 Adversary’s attack
Input: Learning rate 7, n workers, f compromised workers, iteration rounds 7', A and F
fort =1to T do

Observe all gradients of honest workers {g;}7=/'.

Call Algorithm to attack AT = AttackTailor({g;}7~/, A, F).
Produce f gradients for compromised clients. Set for j € [f]

b; = AT'({g: )12, A).

Send compromised gradients {b; };:1 to the server.

E PROOF OF LEMMA 1

Proof. Defined i ~ p to be uniformly sampled from {iy } ,If:l, and j ~ q to be uniformly sampled
from {ji }+_,. Using the no-regret property from (8),

s s e o

K
E[L(i,j)] = E [;ZL(m) ZL (ir Jx) ] —% e
k=1 k:l

for any i € [M] and j € [S], where the expectation is taken over i and j and the randomness of the
algorithms. Subtracting the two equations,

+ Fﬂ

12)

EILG, )] - BILG,1)] < 2 (Rh + Ric) =< (13)

Observe that by first evoking the inequality with 7 ~ p and secondly with j ~ @, we see that (P, q)
is an e-approximate Nash equilibrium, i.e.,

E[L(i, j)] — & < E[L(i, j)] < EB[L(i, j)] + &. (14)
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We are interested in the i-players performance E[L(4, j)] which we can relate to the mixed strategy
Nash equilibrium defined as E[L(i*, j)] < E[L(i*, j*)] < E[L(i,5*)] where i* ~ p* and j* ~ q*.
By picking ¢ ~ p* in (13) we get,
- . . ]- j i
E[L(i, j)] < E[L(i, j)] + 7= (R + Ri)
* 1 i i
= B[L(i",J)] + (Rl + Rig) (s)
Xk 1 j i
S EILG 5] + 22 (R + Rik),

where the last inequalities follows by the definition of a Nash equilibrium above. The claim follows
by writing the expectation on the RHS in terms of p* and q*. O

F PROOF OF LEMMA 3

Proof. Let both player 7 and player j in Lemma 1 employ the no-regret algorithm Exp3 such that
Lemma 2 applies and consequently R’ and R, in (8) reduce to

x = 2¢/KMlog M

. (16)
Ry =2y/KSlog 5.
Substituting (16) into Lemma 1, we have
_ Y. Mlog M + +/Slog S
B (L7, 1)] € Birmpe gonge [L(5%, 5] + 208 & V108 S (17)

VK

Notice that Algorithm 2 is an instance of two simultaneously played Exp3 algorithms where i = AG,
j =AT and L(i, j) = ¢ (AG, AT, {g/}""_,). It follows from (17) that

Eac,g [Z(AGvATv {gé}?ﬂ)} < EaG mp AT ~qv, |L(AGH, AT*, {g/}7 )
vVMlog M + +/Slog S (18)
. Vi

where AG is the average iterate as defined in Algorithm 2. We can concisely write the Nash
equilibrium on the R.H.S. of (18) in terms of the payoff matrix £ from Sim-MinMax defined

componentwise as L(AG, AT) = ((AG, AT, {g/};"_,). This completes the proof. O

G EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS
In this section, we provide the training hype-parameters and show a series of additional experiments.

G.1 DETAILS OF IMPLEMENTATION

Both MNIST (Lecun et al., 1998) and FMNIST (Xiao et al., 2017) datasets contain 60000 training
samples and 10000 test samples. Each sample is a 28 by 28 pixel grayscale image. The details
of training hype-parameters are shown in Table 1. The network architecture is a fully connected
neural network with two fully connected layers (Leroux et al., 2016). The number of neurons is 100
and 10 for the first and second layer, respectively. All experiments have been run on a cluster with
Xeon-Gold processors and V100 GPUs.

G.2 ADDITIONAL EXPERIMENTS
To further validate the performance of RobustTailor, we set up additional experiments:

* Training on 3 datasets.

* Non-iid settings with 3 different heterogeneous degree.
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Table 1: Training Hyper-parameters for Fashion-MNIST and MNIST

Hyper-parameter | MNIST | FMNIST | CIFAR10

Learning Rate 0.01 0.003 0.002
Batch Size 50 50 80
Total Iterations 15K 10K 10K
Simulation Rounds 10 10 10
A1, Ao 0.3 0.3 0.3
ALy Ao 0.3 0.3 0.3

* More Byzantines.
* More aggregators (Geomed, Trimmedmean, Bulyan) added against single attack.
* The impact of the proportion of public data.
e Subsampling by the server.
* Dynamic strategy of the adversary.
e Adversary with partial knowledge.
Different datasets. We train a CNN model on MNIST (Lecun et al., 1998), Fashion-MNIST

(FMNIST) (Xiao et al., 2017) and CIFAR10 (Krizhevsky et al., 2009) under iid setting. We summarize
the training results against 3 attacks here and they are consensus with the results shown in Section 5.

racy(%)

Test Accur:

6 08 06
Training Iteration led Training lteration

(b) MNIST, e = 100 (¢) MNIST, AttackTailor

racy(%)
racy(%)

Test Accu
Test Accu

00 02 04 06 08 10 04 0.6
Training Iteration led Training Iteration led

(d) FMNIST, ¢ = 0.1

0.0 02 04 06 08 1.0
Training lteration le4

(f) FMNIST, AttackTailor

racy(%)
racy(%)

st Accur
Test Accur

o. 6 0.4 0.6
Training Iteration led Training Iteration 1e4

Training lteration led

(g) CIFARIO, ¢ = 0.1 (h) CIFARIO, ¢ = 100 (i) CIFARI0, AttackTailor

Figure 6: iid setting on three datasets. RobustTailor includes Krum and Comed. AttackTailor includes
€ =0.1/0.5 and e = 100.

Non-iid settings. We also extend our consideration to more realistic settings with non-iid data
distribution across clients. We use the heterogeneous degree 1 € [0, 1] to represent the level of
disparity among clients’ local data. To be specific, we construct a setting, in which 100 % of
local data for each client is drawn in a non-identical but independent manner from a particular class
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corresponding to the client index and 100(1 — u) % of the local data is drawn iid from all classes. A
small p represents low disparity while a large . means significant disparity among clients. Fig. 7
shows three non-iid settings including ;o = 0.1, 0.5,0.9. We surprisingly observe that RobustTailor
shows a satisfactory level of robustness even under heterogeneous data settings.
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Figure 7: Non-iid setting. Larger p means higher heterogeneous degree.

More Byzantines. Fig. 8 shows the results when there are 4 Byzantines in 12 total clients under
three different attacks. Except the number of compromised clients, which is four instead of two, the
setting is same as that in Fig. 1. We observe that both Krum and Comed are sensitive to the number of
Byzantine clients while RobustTailor is much more stable. Specifically, Krum has lower accuracy
closing to zero, and Comed shows more obvious fluctuations.
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Figure 8: 4 Byzantines. There are n = 12 total workers including f = 4 Byzantine workers.

More aggregators against single attacks. To show the intuitive results of RobustTailor, we just
construct the server’s pool with two aggregators including Krum and Comed in the main text. However,
RobustTailor could outperform both Krum and Comed simultaneously when additional aggregators
are put into the server’s pool. Trimmedmean (TM) (Yin et al., 2018), Geomed (GM) (Pillutla et al.,
2022), and Bulyan (Guerraoui et al., 2018) are also statistic-based Byzantine-resilient aggregators
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and all of them can be added in RobustTailor. When Bulyan is included, each Bulyan aggregator
uses a different aggregator from Krum, Comed, TM, and GM for either the selection phase or in the
aggregation phase. For each class, we generate 16 aggregators, each with a randomly generated £,
norm from one to 16. RobustTailor selects one aggregator from the entire pool of 64 aggregators
based on the simulation at each iteration. Moreover, centered clipping (CC) (Karimireddy et al.,
2021) as a history-aided aggregator was proposed recently and it can also be added in RobustTailor
framework. Fig. 9 shows results when more aggregators added into RobustTailor framework and
they perform better.

—#*— Omniscient —#*— Omniscient

Test Accuracy(%)
Test Accuracy(%)

70 —8— RobustTailor 70 —— RobustTailor
Krum Krum
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Figure 9: More aggregators added into to RobustTailor structure against single attacks.

Proportion of public data. Because RobustTailor ask for clients to donate a small amount of
data as the public dataset, we want to minimise data leakage as much as possible while maintaining
effectiveness. Therefore, detecting the impact of the proportion of public data is necessary. In our
experiments, we assume every client donates 5% of data to the server. Fig. 10 shows the performance
of RobustTailor with different proportion of public data under 3 attacks. Note that except for the
proportion of public data, other settings of 3 figures in Fig. 10 are the same as Fig. 1a, Fig. 1b, and
Fig. 3 respectively. It is obvious that the amount of public data has little impact on RobustTailor and
even very small proportion of data donated by clients (e.g., 0.1%) can help RobustTailor achieve a
great performance. This also strongly proves Remark 1 that the public dataset just need to represent
clients’ data distribution.
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Figure 10: The impact of the proportion of public data.

Subsampling by the server. Subsampling, a common technique in large-scale FL, can also increase
the complexity of attacks. The server picks a subset of clients randomly and asks for updates at
each iteration. The adversary can know which clients are selected and leverage the selected honest
updates to design the attack for the compromised clients which are also chosen. Due to subsampling
usually used in FL with large amount of clients, we run additional experiments with 120 clients, in
which 20 clients are Byzantines. The server chooses 10% of clients randomly for aggregation at each
iteration, and it assumes that 2 of 12 clients are compromised every iteration. Note that other settings
of experiments are same as Fig. la, Fig. 1b, and Fig. 3 in the paper except for learning rate. We
decrease the learning rate from 0.01 to 0.001 because all aggregation methods are too unstable under
the original setting. The results are shown in Fig. 11, which is consistent with the results without
subsampling.
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(b) e =100

(c) AttackTailor

Figure 11: Subsampling by the adversary.

Dynamic strategy of the adversary. The adversary can also use a dynamic strategy that changes the
number of malicious updates dynamically. The adversary picks 1-3 clients randomly to control at
each iteration while the server still considers 2 Byzantines in 12 clients. Other settings are the same
as Section 5. Fig. 12 shows the results and Table 2 compares them with the results without dynamic
attack strategy in Section 5. Although some aggregation rules are impacted lightly by such dynamic
attack strategy, RobustTailor has a good performance which is consistent with the original results.

(@e=0.5 (b) e =100

(¢) AttackTailor

Figure 12: Dynamic attack strategy of the adversary.

Table 2: Comparison between the adversary with and without dynamic strategy.

Attack | Aggregator |  With dynamic attack | Without dynamic attack

RobustTailor 87.49% 90.54%

e=10.5 Krum 84.37% 82.13%
Comed 72.80% - 90.57% 72.07% - 90.74%

RobustTailor 85.26% - 91.62% 91.72%

e =100 Krum 93.88% 94.74%
Comed 71.80% - 88.15% 71.72% - 89.01%

RobustTailor 90.17% 90.54%

AttackTailor Krum 75.75% 81.68%
Comed 77.37% - 88.05% 74.69% - 89.69%

Adversary with partial knowledge. What we want to demonstrate in the main text is that
RobustTailor can keep a great and stable performance even when facing a very strong adver-
sary who has full knowledge of all honest clients. However, it is very hard for the adversary to have
full knowledge of the model updates of all honest clients in reality. Although Fang et al. (2020) show
that the partial knowledge attacks are weaker than the full knowledge attack’s, it is still significant to
consider more realistic attacks. For the partial knowledge setting, assume the adversary only knows
the updates of two honest clients and design compromised gradients based on them. Note that other
settings are the same as Section 5. We show the empirical results under both iid and non-iid (the
heterogenous degree ;. = 0.9) settings in Fig. 13 and compares them against the adversary with full
knowledge in Table 3. Most aggregation rules can perform at least the same as the scenario of the
adversary with full knowledge.
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Figure 13: Adversary with partial knowledge.

Table 3: Comparison between the adversary partial knowledge with and with full knowledge.

(@) e=0.5
Attack |  Aggregator | Partial \ Full
RobustTailor 89.27% 90.54%
iid Krum 79.58% 82.13%
Comed 66.69% - 90.65% 72.07% - 90.74%
RobustTailor 88.93% 87.54%
non-iid Krum 73.50% 66.96%
Comed 80.85% - 90.54% 81.84% - 90.48%
(b) e = 100
Attack |  Aggregator | Partial \ Full
RobustTailor 85.18% - 92.31% 91.72%
iid Krum 94.74% 94.74%
Comed 69.83% - 89.32% 71.72% - 89.01%
RobustTailor 86.27% - 92.03% 90.62%
non-iid Krum 92.85% 92.85%
Comed 73.71% - 89.75% 75.73% - 89.38%
(¢) AttackTailor
Attack |  Aggregator | Partial \ Full
RobustTailor 91.67% 90.54%
iid Krum 91.77% 81.68%
Comed 67.13% - 90.06% 74.69% - 89.69%
RobustTailor 91.51% 90.26%
non-iid Krum 90.60% 80.97%
Comed 73.53% - 90.12% 74.39% - 89.99%

H COMPUTATIONAL COMPLEXITY

The computational complexity bound depends on the simulation of the inner loop (including sim-
ulation rounds K, aggregator set A, and attack set F) and problem dimensions of the outer loop
(including number of clients n and the dimension of gradients). We show the theoretical analysis
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below and utilize empirical results to prove that it is worth to trade a little more computational
complexity for a great robust model.

Theoretical analysis For RobustTailor with K simulation rounds, our algorithm approaches a
min-max equilibrium the best aggregation rule at the rate O(K ~'/2). In addition, the computational
cost of RobustTailor is influenced by the server’s aggregation rules and the adversary’s attacks. If n
clients submit d-dimensional vectors, Krum’s expected time complexity is O(n?d) (Blanchard et al.,
2017) and Comed’s is O(nd) (Pillutla et al., 2022).

For more fine-grained complexity analysis, suppose {71, ..., T} denote the number of elementary
operations to run each aggregation rule within the set of M aggregation rules. The worst-case runtime
complexity of RobustTailor per simulation round is determined by max;c[as T;. However, the
average complexity per round is the expected value of the number of elementary operations where
the expectation is over the distribution of how likely each aggregator is chosen during simulation,
which can be estimated empirically. Let us use p; to denote the probability of choosing A;. The
average complexity per round is given by T = Zfil T;p;. Finally, the overall time complexity of

RobustTailor is given by O(T K ~1/2).

Moreover, the number of elementary operations for simulation can be much smaller than applying
the actual aggregator on the model during training assuming the size of the public data is very small,
which is typically the case in practice(Yoshida et al., 2020; Zhao et al., 2018). Note that our algorithm
just adds computation complexity to the server while all clients remain the same cost based on
their models and datasets. Therefore, it is worthwhile to trade slightly longer training time for a
significantly improved training procedure w.r.t. robustness.

Empirical results We show computation costs and accuracy for different aggregation rules after
running 15k iterations in reality, whose results are also shown in Fig. 1. We can see that RobustTailor
still maintains a stable and high accuracy when facing a powerful adversary although it needs more
computation time. However, Krum cannot reach a high accuracy and Comed shows a very unstable
performance with lots of fluctuations when facing a strong adversary with AttackTailor. We note
that compared with undesirable models of Krum and Comed, RobustTailor improves accuracy and
stability drastically at the cost of slightly increased training time.

Table 4: Computational Complexity based on MNIST after running 15k iterations

Aggregator \ Time \ Accuracy
Omniscient 34 min 96.63%
RobustTailor 96 min 85.87%
Krum 37 min 82.13%
Comed 52 min 90.74%
(@)e=0.5
Aggregator \ Time \ Accuracy
Omniscient 34 min 96.63%
RobustTailor 96 min 92.03%
Krum 37 min 94.74%
Comed 52 min 60.39%-88.80%
(b) e = 100
Aggregator \ Time \ Accuracy
Omniscient 34 min 96.63%
RobustTailor 190 min 89.72%
Krum 90 min 80.98%
Comed 121 min 71.34%-89.75%
(c) AttackTailor
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